
COSTABS: A Cost and Termination Analyzer for ABS ∗

Elvira Albert, Puri Arenas, Samir Genaim,

Miguel Gómez-Zamalloa

Complutense University of Madrid, Spain

{elvira,puri,samir.genaim,mzamalloa}@fdi.ucm.es

Germán Puebla

Technical University of Madrid, Spain

german@fi.upm.es

Abstract

ABS is an abstract behavioural specification language to model
distributed concurrent systems. Characteristic features of ABS are
that: (1) it allows abstracting from implementation details while
remaining executable: a functional sub-language over abstract data
types is used to specify internal, sequential computations; and (2)
the imperative sub-language provides flexible concurrency and
synchronization mechanisms by means of asynchronous method
calls, release points in method definitions, and cooperative schedul-
ing of method activations. This paper presents COSTABS, a COSt
and Termination analyzer for ABS, which is able to prove termina-
tion and obtain resource usage bounds for both the imperative and
functional fragments of programs. The resources that COSTABS
can infer include termination, number of execution steps, memory
consumption, number of asynchronous calls, among others. The
analysis bounds provide formal guarantees that the execution of
the program will never exceed the inferred amount of resources.
The system can be downloaded as free software from its web site,
where a repository of examples and a web interface are also pro-
vided. To the best of our knowledge, COSTABS is the first system
able to perform resource analysis for a concurrent language.

Categories and Subject Descriptors F3.2 [Logics and Meaning
of Programs]: Program Analysis; F2.9 [Analysis of Algorithms
and Problem Complexity]: General; D.1.3 [Programming Tech-
niques]: [Concurrent Programming] Distributed programming,
Parallel programming; D.3 [Programming Languages]: [Formal
Definitions and Theory]

General Terms Languages, Theory, Verification, Reliability

Keywords Static Analysis, Resource Guarantees, Parallelism,
Concurrent Objects

∗ This work was funded in part by the Information & Communication
Technologies program of the European Commission, Future and Emerg-
ing Technologies (FET), under the ICT-231620 HATS project, by the
Spanish Ministry of Science and Innovation (MICINN) under the TIN-
2008-05624 DOVES project, the UCM-BSCH-GR35/10-A-910502 GPD

Research Group and by the Madrid Regional Government under the
S2009TIC-1465 PROMETIDOS-CM project.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’12, January 23–24, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1118-2/12/01. . . $10.00

1. Introduction

ABS [9] is an abstract behavioral specification language for
distributed object-oriented systems. Abstract behavioral specifi-
cation languages can be situated between design-oriented and
implementation-oriented specification languages. ABS addresses
the specification of executable formal models for distributed object-
oriented systems: it allows a high-level specification of a system,
including its concurrency and synchronization mechanisms as well
as local state updates. Thus, ABS models capture the concurrent
control flow of object-oriented (OO) systems, yet abstract away
from many implementation details which may be undesirable at
the modeling level, such as the concrete representation of internal
data structures, the scheduling of method activations, and the prop-
erties of the communication environment. Scheduling in ABS is
cooperative, i.e., switching between tasks of the same object hap-
pens only at specific scheduling points during the execution, which
are explicit in the source code and can be syntactically identified.

Cost analysis [12] (a.k.a. resource usage analysis) aims at
automatically inferring bounds on the resource consumption of
programs statically, i.e., without having to execute the program.
The inferred bounds are symbolic expressions given as func-
tions of its input data sizes. For instance, given a method void
traverse(List l), an upper bound (e.g., for number of execu-
tion steps) can be an expression of the form size(l)*200+10,
which guarantees that the number of steps will never exceed such
amount. In recent work [1], we have presented a framework for
performing cost analysis of ABS programs. The main novelties of
[1] are related to the concurrency and distribution aspects of the
language. (1) Concurrency poses new challenges to the process of
obtaining sound and precise size relations. This is mainly because
the interleaving behavior inherent to concurrent computations can
influence how the sizes of data are modified. For instance, a class
field which acts as loop counter can be decreased, by some in-
terleaved concurrent task, while the task executing such loop is
suspended and waiting for some condition to hold. (2) Distribution
does not match well with the traditional monolithic notion of cost
which aggregates the cost of all distributed components together.
[1] proposes the use of cost centers to keep the resource consump-
tion of the different distributed components separate.

This paper presents COSTABS, an implementation of the cost
analysis framework for concurrent objects introduced in [1]. The
system incorporates a sound size analysis, whose precision can be
increased by means of invariants on the class fields. For simple
examples, the invariants can be automatically generated. In more
complex cases, the user can provide the invariants by means of
annotations in the source code. The system also allows comput-
ing the cost bound as a monolithic expression or, more interest-
ingly, in separated cost centers. Performing cost analysis at the
level of a specification language has as an additional advantage
that performance errors can be detected early in the software devel-

151

opment process, e.g., we can observe bottlenecks in a distributed
system if one component has a large resource consumption while
siblings are idle most of the time. COSTABS can be used through
three different interfaces: a command-line interface, a web inter-
face and an Eclipse plugin. The system is open-source and can be
downloaded (together with examples, documentation, etc.) from:
http://costa.ls.fi.upm.es/costabs.

2. The ABS Language

The language ABS [9] is a successor of Creol [6, 10]. It is an OO
language for distributed concurrent systems whose concurrency
model is based on concurrent objects. An ABS program defines in-
terfaces, classes, datatypes, and functions, and has a main block to
configure the initial state. It has is a standard strict functional sub-
language which is used to abstract from implementation details:
abstract data types are used to specify internal, sequential com-
putations. The concurrent imperative sub-language has Java-like
syntax but with some important differences w.r.t. Java. One is that
statements can only access fields of the current class. This means
that a concurrent object can be run in a dedicated processor, as it
encapsulates a local heap which is not accessible from outside the
object. Other differences are that classes may contain parameters
which are treated as standard class fields, and all methods return a
value (Unit plays the role of void in Java).

The main difference with Java is on the concurrency model
which is not thread-based but rather based on the notion of concur-
rent objects. Concurrent objects were introduced to provide pro-
grammers with simple language extensions which allow program-
ming concurrent applications with relatively little effort and in a
less error-prone way. In this model, communication is based on
asynchronous method calls that can be synchronized by means of
future variables as follows:

• Asynchronous method calls, denoted x=o!m(e), allow the
caller to proceed with its execution without blocking on the
call. Here x is a future variable, o is an object (typed by an in-
terface), and e are expressions which many involve functional
data. A future variable x refers to a return value which has yet
to be computed.

• External synchronization in ABS is controlled by means of
two operations, await and get. In await g, the guard g is a
Boolean condition. It is often used to test if a future variable has
been bound to a value already, expressed by means of the test
x?. If g evaluates to false, the processor is released, the current
process is suspended and the processor becomes idle. When the
processor is idle, any enabled process from the object’s pool of
suspended processes may be scheduled.

• The other synchronization operation is get. It allows retrieving
the return value by blocking all execution in the object until the
return value is available.

• A synchronous call, abbreviated as v=o.m(e), is internally
transformed into the statement sequence x=o!m(e); v=x .get.

EXAMPLE 2.1. Our running example is the mail server applica-
tion in Fig. 1. At the top, we see a fragment of the functional sub-
program which includes type definitions (String is predefined) and
function lookup. The imperative concurrent part contains the inter-
faces and the implementation of all classes. Calls to functions and
functional data structures appear in italics. A mail server is com-
posed of an address book (the class parameter ab) and a list of user
names (the field listUsers). User names can be added to the server
by invoking method addUser. Method notify sends a message (m)
to all users in the list listUsers. To this end, it first asynchronously
invokes getUserAddress in order to retrieve the next user (variable

data List〈A〉=Nil | Cons(A,List〈A〉);
data Pairs〈A,B〉=Pair (A,B);
dataMap〈A,B〉=EmptyM |

Assoc(Pairs〈A,B〉,Map〈A,B〉);
type UserName=String ;
typeMessage=String ;

def B lookup〈A,B〉(Map〈A,B〉 ms, A k) =
case ms {Assoc(Pair (k,y),) ⇒ y;

Assoc(,tm) ⇒ lookup(tm,k);}

interface AddressBook {
User getUserAddress(UserName u);

}
interface User {
Unit receive(Message msg);

}
interfaceMailServer {
Unit addUser(UserName u);
Unit notify(Message m);

}
class AddressBookImp implements AddressBook {
Map〈UserName ,User〉 users = EmptyM ;

User getUserAddress(UserName u){
return lookup(users,u);

}
}

class UserImp implements User {
List〈Message〉 msgs = Nil ;

Unit receive(Message msg) {
msgs = Cons(msg,msgs);

}
}

classMailServerImp(AddressBook ab)
implementsMailServer {

List〈UserName〉 listUsers = Nil ;

Unit addUser(UserName u) {
listUsers = Cons(u, listUsers);

}

Unit notify(Message m) {
while (listUsers != Nil) {

Fut〈User〉 u;
u = ab!getUserAddress(head(listUsers));
await u ? ;
User us = u.get;
us!receive(m);
listUsers = tail(listUsers);

}
}

}

Figure 1. ABS Implementation of a Mail Server

u) in the list. The await instruction allows releasing the processor
if the information is not ready. The next instruction get blocks the
execution of the current task until the requested information has
arrived. When it arrives, the asynchronous call to receive is en-
charged of sending the message to the corresponding user without
any kind of synchronization.

Due to the fact that objects encapsulate their own heaps, the
language allows distribution and parallelism. In particular, each
object (or group of objects [11]) can be potentially run in a separate
processor in parallel with the others.

EXAMPLE 2.2. Fig. 2 shows a graphical representation of the con-
current activity when executing the program with two users us1 and
us2. It can be observed that the four objects (us1, us2, ms and ab)
become distinct concurrent entities which communicate with each
other by means of asynchronous calls (shown as labeled arrows)

152

http://costa.ls.fi.upm.es/costabs

hus2

Qus2

Qms

hms

v

Future Variables

hab

Qab

hus1

Qus1

ms

us1

receive

us2
receive

ab

getUserAddress

Figure 2. Overview of Concurrent Activity

and use future variables (shown at the top) to eventually return/re-
trieve the results. Inside the objects, we depict the fact that concur-
rent objects have their own heaps ho (not accessible from outside),
their queue of pending tasks Qo and an active task (if any).

3. The Cost and Termination Analyzer

The process of inferring the resource consumption (or cost) of a
given program consists of the following steps: (1) Selecting a cost
model which determines the type of resource whose consumption
we are interested in approximating; (2) Applying size analysis to
infer information on how the sizes of the different data structures
change during the execution; (3) Generating cost equations that de-
scribe the cost of the program in terms of its input data sizes and
solving them into closed-form lower/upper bounds. These steps, in
principle, are required for cost analysis of both sequential and con-
current programs, however, in the concurrent setting the technical
details of each step are more complicated (see [1]). In what follows,
we explain these steps on the running example, by laying stress on
the differences w.r.t. cost analysis in a sequential setting.

3.1 Cost Models

Briefly, a cost model is a function that maps each instruction to
the amount of resources consumed when executing it. COSTABS
provides the following cost models, the first three ones are inherited
from the sequential setting, while the last two ones are specific for
concurrent programs.

• Termination: this model does not require assigning cost to in-
structions (or, what it is the same, it assigns them cost zero).
Hence, as the accumulated cost is zero, in order to infer an up-
per bound, the analyzer just needs to prove that all loops in the
program terminate.

• Steps: it tries to approximate the number of executed instruc-
tions, including both instructions of the imperative and the func-
tional parts of the program.

• Memory: the memory consumption estimates the size of the
terms constructed in the functional part of the language. This
is because objects are meant to be the concurrency units, while
the data structures are constructed using terms.

• Objects: it counts the total number of objects created along
the execution. This provides an indication of the amount of
parallelism that might be achieved, since each object could be
running in a different a processor.

• Task-level: it estimates the number of tasks that are spawned
along an execution. This can be counted by tracing how many

asynchronous calls are performed. The task-level is useful for
finding optimal deployment configurations, and detect situa-
tions like when one component is receiving too many requests
while its siblings are idle.

In addition to the above models, it is easy to add new cost models
to the system by just mapping each instruction to a corresponding
cost according to the model.

3.2 Size Analysis

The objective of size analysis is to infer size relations which allow
reasoning on how the sizes of data change along the program’s
execution. This information is essential, among other things, for
bounding the number of iterations that loops perform. For example,
for the while loop in method notify, size analysis infers that the size
of the list listUsers decreases at each iteration, and thus the number
of iterations is bounded by its initial size.

The first step in size analysis is to define the meaning of size of
a term (i.e., the size of a data structure). For this, COSTABS relies
on the notion of norms [3] which are functions that map terms to
their sizes. By default, COSTABS uses the term-size norm, which
counts the number of type constructors in a given term. Any norm
can be used in the analysis, depending on the nature of the data
structures used in the program. For instance, the list-length norm
that counts the number of elements in lists, or the term-depth norm
that calculates the depth of the corresponding data structures.

Once the norms are chosen, COSTABS applies a global analysis
that infers relations between the sizes of the different variables
at different program points, w.r.t. the chosen norm. This analysis,
in principle, is done by means of a fixpoint computation over
some numerical abstract domain. For the functional part, since it
is sequential, existing size analysis for sequential settings can be
applied [5]. For example, such analysis is able to infer that the size
of the first argument of function lookup is decreasing when calling
it recursively. For the imperative part, the analysis must be modified
to handle the concurrency primitives, otherwise, soundness is not
guaranteed mainly because such analysis does not account for
modifications of the global state by other tasks.

COSTABS modifies a classical sequential size analysis in order
to handle the concurrency primitives as follows: (a) when executing
an instruction which does not cause the suspension of the current
task, then fields (i.e., the global state) are tracked as if they were
local variables, since in the concurrent objects setting it is guar-
anteed that in such circumstances no other tasks can modify those
fields simultaneously; and (b) when executing an instruction that
might cause suspension (e.g., await) of the current task, then the
analysis loses all information about the corresponding fields, this is
because they might be modified by other tasks in the meantime.

This simple modification guarantees soundness of size analysis
for a concurrent setting. However, it often loses precision. For ex-
ample, in the while loop of method notify, losing the information
on the field listUsers when executing await prevents us from prov-
ing that its size decreases in each iteration. Thus, COSTABS fails
to bound the number of iterations of that loop. To overcome this
problem, COSTABS provides a way to incorporate class invariants
that provide guarantees on the global states when the process is re-
sumed. For example, if we add the following invariant (using JML
syntax)

//@invariant \old(listUsers) == listUsers

before the await instruction in the while loop of method notify,
then we state that it is guaranteed that when the process resumes,
the value of listUsers will be the same as when the process has
been suspended. Under these conditions, and taking into account
the effect of the last instruction of the loop, it is possible to prove

153

that the size of listUsers decreases at each iteration, and thus bound
the number of iterations.

3.3 Cost Centers

The last step in cost analysis uses the inferred size relations and
the selected cost model in order to generate cost equations that
capture the cost of the program in terms of its input, and solves
them into closed-form bounds. These cost equations are similar to
classical recurrence equations, but with multiple arguments and a
high degree of non-determinism. (We skip the technical details, the
interested reader can refer to [1].) Let us directly explain the upper
bounds that we obtain for the running example.

By applying the analysis starting from method notify and using
the Steps cost model, we obtain the following upper bound (after
simplifying the constants for the sake of readability):

5 + (22 + 4 ∗ users+) ∗ listUsers
+

Variables listUsers+ and users+ refer to the maximum sizes of
the fields listUsers and users respectively. The subexpression (22+
4 ∗ users+) refers to the cost of each iteration of the while loop.
This includes the cost of the called methods and functions, namely
getUserAddress, receive, and lookup, as well as the cost of the lo-
cal instructions. Note that the subexpression 4∗users+ refers to the
cost consumed by function lookup. The constant 4 is for executing
the code of lookup once, and users+ is the number of recursive
calls. The cost of each iteration is then multiplied by listUsers+,
which is a bound on the number of iterations of the while loop. Fi-
nally, we add 5 to account for the cost of the instructions outside
the loop (in this case it refers to the last comparison of the while
loop’s guard).

COSTABS includes also an option to split the cost into Cost
Centers that represent the different distributed components of the
system. This allows us to obtain the cost per component rather
than a single cost expression as we have seen above. The current
implementation of COSTABS assumes that objects of the same
type belong to the same cost center, i.e., they share the processor.
By applying the analysis with the same settings as above, but with
the cost center option enabled, we obtain the upper bounds (after
simplification of constants for the sake of readability):

Cost Center Upper Bound

MailServerImp 5 + 16 ∗ listUsers+

UserImp 3 ∗ listUsers+

AddressBookImp (3 + 4 ∗ users+) ∗ listUsers+

Observe that the sum of these bounds is identical to the single
bound we have obtained before. The difference is that the new
expressions provide additional information that indicates the cost
per cost center as follows: (1) Cost center MailServerImp accounts
for the cost of executing the local instructions of the while loop,
which are 16∗listUsers+ steps, plus that of executing the code out-
side the loop, which is 5 steps; (2) Cost center UserImp consumes
the cost of executing receive, which is 3 steps, listUsers+ times;
and (3) Cost center AddressBookImp includes the cost of execut-
ing getUserAddress and lookup, which is 3 + 4 ∗ users+ steps,
listUsers+ times. By using cost centers, it is possible to observe
that most of the work is done on cost center AddressBookImp,
which has a quadratic complexity while the others are linear.

Similarly, by applying cost analysis for the Task-Level cost
model (which counts the number of calls to methods) and, without
separating in cost centers, we obtain the following upper bounds:

Method/Function Upper Bound

notify 1
receive listUsers+

getUserAddress listUsers+

As regards the Memory cost model, COSTABS just infers that
addUser has a constant consumption. The other parts of the code
do not construct any term. Also, for the Objects cost model, we get
cost zero, as no objects are created in the analyzed methods.

4. Conclusions and Future Work

We have presented COSTABS, a cost analyzer of ABS concurrent
programs. All existing resource usage analysis tools to-date han-
dle sequential code, namely SPEED [7] analyzes sequential C pro-
grams, RAML [8] functional programs and COSTA [2] sequential
Java bytecode programs. The only common part between COSTA
and COSTABS is that both systems use the same solver to generate
upper bounds from the cost relations. However, the main part of the
analysis which builds from the original program a system of cost
relations is totally new and independent. Therefore, in spite of the
name, COSTABS cannot be considered an extension of COSTA
to handle concurrency, but rather a new system. In the context of
termination analysis, Terminator [4] is the only tool to handle con-
current Java programs. COSTABS not only proves termination of
programs, but it also solves the more difficult problem of generat-
ing upper bounds for their resource consumption.

We plan to improve COSTABS in two main directions. We want
to infer the shape of the deployment configurations to determine
the different cost centers that a particular system has, rather than
assigning them to classes, as the system currently does. Also, we
want to be able to infer the invariants on the class fields which
are necessary to obtain the upper bounds in a fully automatic way.
Currently, only very simple cases can be inferred automatically.

References

[1] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and G. Puebla.
Cost Analysis of Concurrent OO programs. In Proc. of APLAS’11,
LNCS. Springer, 2011. To appear.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost
Analysis of Object-Oriented Bytecode Programs. Theoretical Com-

puter Science, 2011. To appear.

[3] A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic
Programs by Exploiting Term Properties. In Proc. of TAPSOFT’91,
LNCS 494, pages 153–180. Springer, 1991.

[4] B. Cook, A. Podelski, and A. Rybalchenko. Proving Thread Termina-
tion. In Proc. of PLDI’07, pages 320–330. ACM, 2007.

[5] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Re-
straints among Variables of a Program. In Proc. of POPL’78, pages
84–97. ACM Press, 1978.

[6] F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide to the
Future. In Proc. of ESOP’07, volume 4421 of LNCS, pages 316–330.
Springer, 2007.

[7] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Precise and
Efficient Static Estimation of Program Computational Complexity. In
Proc. of POPL’09, pages 127–139. ACM, 2009.

[8] M. Hofmann J. Hoffmann, K. Aehlig. Multivariate Amortized Re-
source Analysis. In Proc. of POPL’11, pages 357–370. ACM, 2011.

[9] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS:
A Core Language for Abstract Behavioral Specification. In Proc. of

FMCO’10, LNCS. Springer, 2011. To appear.

[10] E. B. Johnsen and O. Owe. An Asynchronous Communication Model
for Distributed concurrent objects. Software and Systems Modeling,
6(1):35–58, 2007.

[11] J. Schäfer and A. Poetzsch-Heffter. Jcobox: Generalizing Active
Objects to Concurrent Components. In Proc. of ECOOP’10, volume
6183 of LNCS, pages 275–299. Springer, 2010.

[12] B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM,
18(9), 1975.

154

	Introduction
	The ABS Language
	The Cost and Termination Analyzer
	Cost Models
	Size Analysis
	Cost Centers

	Conclusions and Future Work

