
Axiomatic Definability and Completeness

for Recursive Programs

Albert R. Meyer and John C. Mitchell

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambt irfge, MA 02139

Abstract

The termination assertion p<S>q means that whenever the formula

p is true, there is an execution of the possibly nondeterministic

program S which terminates in a state in which q is true.

Termination assertions are more tractable technically than the

partial correctness assertions usually treated in the literature.

Termination assertions are studied for a programming language

which includes local variable declarations, calls to undeclared

global procedures, and nondeterministic recursive procedures

with call. by-address and call. by.vaiue parameters. By allowing

formulas p and q to place conditions on global procedures, we

provide a method for reasoning about programs with calls to

global procedures based on hypotheses about procedure input-

output behavior. The set of first-order termination assertions valid

over all interpretations is completely axiomatizable without

reference to the theory of any interpretation. Although

uninterpreted assertions have limited expressive power, the set of

valid termination assertions defines the semantics of recursive

programs in the sense of Meyer and Halpern [10]. Thus the

axiomatization constitutes an axiomatic definition of the semaniics

of recursive programs.

Introduction

Many formal systems for proving properties of programs consist of

rules for deriving partial correctness assertions. The first. order

partial correctness assertion p{S}q means that if the first. order

formula p holds initially, and if the possibly nondeterministic

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the tide of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1982ACM 0-89791-065-6/82/001/0337 $00.75

program S halts, then the first-order formula q holds after each

possible halting computations of S. For even a very simple set of

programs, the set of valid partial correctness assertions is not

recursively enumerable [i’]. In contrast, the set of valid termination

assertions about while programs has a simple axiomatization

[10]. The termination assertion p<S>q means that if p is true

initially, then there is a possible computation of S which

terminates in a state Fr which q is true. If S is deterministic, then

the termination assertion p<S>q is equivalent to the partial

correctness assertion p{S}q along with the assurance that S halts

whenever p is true initially. Termination assertions are statements

of tots/ correctness for deterministic programs.

A natural approach to the modular design of software is to specify

the input. output behavior of all procedures. The correctness of a

procedure P should then follow from the assumption that the

procedures called by P meet their specifications; it should not

depend on how these procedures might be written. We consider

recursive programs with calls to undeclared global (accessible

everywhere) procedures. We propose as a reasonable

“specification language” for proving first. order termination

assertions about recursive programs the class of first. order

formulas extended to include termination assertions about global

procedure calls.

We present a complete axiomafization of termination assertions

about programs which include local variable declarations, calls to

undeclared global procedures, and nondeterministic recursive

procedures with call-by-address and call. by-value parameters,

The axioms and rules of inference are sufficient to prove all

termination assertions which are valid over all interpretations. In

this respect, our completeness theorem contrasts with the usual

“relative completeness” theorems for partial correctness

assertions (e.g. [3]). We consider only assertions true of all

337

structures and do not assume that the first. order theory of any

structure is given as axioms. As a result, Theorem 1

(completeness) demonstrates that the valid termination assertions

for recursive programs are recursively enumerable. This theorem

extends the similar completeness theorem (Theorem 6.4) of Meyer

and Halpern [10] for while programs without procedures.

The fact that the valid terminations assertions are so constructive

suggests that they may suffer limitations in providing information

about programs. The following example suggests the uses and

shortcomings of first. order termination assertions. Let AX denote

the conjunction of axioms for addition, proper subtraction and

multiplication for natural numbers using constants O and 1. Let ~

denote the numeral for n, i.e. n= 1 + 1 + ...+ 1 where 1 appears n

times. For any natural number n, the assertion

(AX A X = fj <Sfact> (Y= ~)

is provable from the axioms of Theorem 1, where Sfact is the

recursive program

proc P(u,v) = (if u= Othen v:= 1

else P(u-l,v); v: =V*U fi);

call P(x,y).

However, the more general termination assertion SJltin9 that Sfact

computes the factorial function cannot be derived from these

axioms and indeed is not valid under any set of first-order

hypotheses about natural numbers. That is, let p be

f(0) = 1 A Vx[i(x + 1) =(x+1)’f(x)]. Then the termination assertion

(AXAP) <SfaC1>(y = f(x)) is valid whenever the variables are

interpreted as ranging over natural numbers and the arithmetic

operations are given their usual meaning. But this assertion is not

valid over arbitrary interpretations, even if AX is allowed to be any

infinite set of first-order formulas true about natural numbers. In

particular, there is a nonstandard interpretation that satisfies all

first. order formulas true of natural numbers, but in which x maybe

an “infinite” integer. In this interpretation, the program SfaCtwill

not terminate since it cannot produce O by subtracting 1 from x

anyJinite number of times. Hence (AXAP) <SfaCt>(Y= f(x)) cannot

be proved using sound inference rules. This inherent limitation of

uninterpreted firstorder assertions is emphasized in the well.

known paper of Hitchcock and Park [8].

Despite their shortcomings, valid uninterpreted termination

assertions express many useful properties of programs. In

particular, Theorem 2 shows that termination assertions suffice to

define the semantics of recursive programs in the sense of Meyer

and Halpern [1O]. This theorem extends Theorem 5.1 of [10] to

programs with calls to global procedures and lends support to the

thesis that practical programming languages may be defined

axiomatically. Furthermore, the relative simplicity of our proofs

when compared with proofs of analogous theorems for partial

correctness assertions suggests that termination assertions are

more suitable than partial correctness assertions for axiomatic

definitions of semantics.

1. Global Procedures

First-order hgic with global procedures will be seen to be a

syntactic variant of standard first-order logic. A first-order

~lgnafure is a set of function symbols f, ,f2,.. and relation symbols

R1,R2,.., each of some specific arity. A signature for first-order

/ogic with g/oba/ procedures, or more simply signature, is a first.

order signature augmented with a disjoint set PI ,P2,... of

procedure variab/es. Each P has an associated number of value

parameters VPand address Parameters ap. First-order assertions

about global procedure caks q are defined by the grammar

q:: = first”order~mti f- I qlvqz I w I
Vx[cl,l I Wt,x)xl

where P is a procedure variable, t = t, ,...,tvp are first. order termS,

and x = Xl,...,xap are variables. The construct <P(t,x)>q is

intended to express that formula q is true after calling global

procedure P with value parameters t and address parameters x.

Additional symbols such as A, 3, ~ and 3 are considered

abbreviations for the appropriate combinations of V, _I and V.

A few words cf motivation are in order before presenting the

formal semantics of assertions about procedure calls. To

demonstrate the axiomatizability of termination assertions about

programs with recursive procedures with parameters, we have

chosen to consider recursive procedures with call-by-value and

cal 1.by-address parameters. Axioms for assertions about

programs which declare procedures with other parameter passing

mechanisms such as call-by-value/result and call-by-name may

be obtained by making slight changes in the “macro-expansion”

rule presented in Section 2. To be consistent in the design of our

programming language, we also provide call. by.vakre and call-by

address parameters to undeclared global procedures.

The possible meanings of undeclared procedures should be as

general as possible so as to include procedures written in any

reasonable language. However, in order to prove common

338

properties of procedures with value and address parameters, it is

necessary to restrict the ways in which procedures may depend

upon their parameters. It might be possible for a procedure in

some language to test the length of an identifier passed as a

parameter or to determine the lexicographical ordering between a

pair of actual parameter names, If a procedure can recognize the

names of its parameters, then simple properties such as

Vx<P(x)>true 3-Vy<P(y)>true

may fail. Such capabilities go beyond the apparent intentions of

call-by-value and call. by-address, and we prohibit them, For

simplicity, we also insist that undeclared global procedures be

explicitly parametrized, i.e. the meaning of a procedure call is

independent of the values of any variables other than the actual

parameters,

Thewaythe behavior ofaprocedure maydependon its address

parameters indifferent from the wayitmay depend on its value

parameters. Forexample, suppose procedure Phas~.vocall.by

value parameters, andthe contents of x1 and x2areequal to the

contents of y, and Y2, respectively. Then the call P(x1,x2) should

have the same effect as P(y1,y2), To see that call. by.address is

different, consider the procedure

proc P(u,v) = (u:=O; v:= 1; if U= 1 then v:=O)

If both parameters are passed by address, then the call P(x,y)

returns with y = O iff x and y share the same location. This shows

that a procedure may detect and hence may depend arbitrarily

upon which of the call-by-address actual parameters share

locations. In summary, we assume that the behavior of a

procedure call depends only on the values of the actual call-by-

value parameters and the values and sharing of addresses of the

actual call-by-address parameters.

The ~osaible behavior of procedures with address parameters

may be characterized using equivalence relations on finite sets of

integers, For any vector of variables x =x1 ,.,.xk (not necessarily

distinct), define the address sharing re/ation Ex on {“f ,.,.,k} by

i Ex j iff xi and xi are the same variable.

It is also useful to define the congruence of vectors of variables

x =Xl,...,Xk and Y= Yl,...,ym by

XSY iff k=mand EX=EY.

The number of distinct variables in x is the number of equivalence

classes of Ex, i.e. the index of Ex, If procedure P has k address

parameters and x and y are both vectors of variables gf length k,

then P(x) necessarily produces the same result ss P(y) iff E, = EY

and xi has the same value as yi for 1~i~k. When x = X1,...,XaPiS’

a vector of distinct variables and t = tl ,...,tvF,a vector of terms, the

possible results of a call P(t ,x) to a nondeterministic procedure P

may be characterized by an “input-output” relation. Informally, a

tuple <t,x,y>, where YN:K, is in the input-output relation of P iff the

call P(t,x)” can return with the address Parameters equal to Y.

Since a procedure P can distinguish between any pair of possible

address sharing pattern% we use a set of input-output relations to

describe the behavior of P, one for each possible address sharing

relation among the add ress parameters.

The precise semantics of first-order logic with global procedures

is most easily defined by associating a first. order signature with

each signature that contains procedure names.. Let P be a

procedure name. The as.sociafed set of input-output relations

‘3JP = {PE I E is an equivalence relation on {1 ,...,aP}}

is a set of first. order relation symbols, one for each address

sharing relation. The arity of each pE is Vp+ 2ap. If pl and pz are

procedure names in signature L, then %Pl and %P2 are assumed

to be disjoint. Furthermore, each is disjoint from the first. order

relations in L. If L is a signature, then the associated first-order

signature I.p consists of all function and relation symbols of L,

together with all relations in %P for each F) in l.. Note that LP

contains no procedure names.

A first-order state U1 for a first. order signature is a domain D&l

with functions f“l and relations Rot of appropriate arities on D“l

corresponding to each function and relation symbol of the

signatut’e, and with elements X“l for each variable symbol x. A

state with procedure environment (or more simply state) m for a

signature L with Procedure names is a first-order state for the

associated first-order signature -Lp, with the added restriction that

If <b, c,d>6PE” with Icl = Idl =aP,

then iEj+di=diandci=ci.

We use a{d/x} to denote the state u’ that is identical to u except

possibly at x and such that X9’= d. Satisfaction of a first. order

assertion q about global procedure CSIIS by a state u is defined

inductively as usual, with

&=<P(t,x)>q iff 3d =d ,,...,daPCDO such that

(t”,xU,d)CPEX” and o{d/x] f= q

Note that if <P(t,x)>q is interpreted as meaning that q is true after

calling P with t and x, then this definition forces the output of

P(t, x) to depend only on the values of explicit parameter’s Lx and

address sharing pattwn Ex and only allows P(t,x) to alter me

values of address pm’amelers x.

339

As for ordinary predicate calculus, the axiomatization of

assertions about global procedure calls includes a universal

instantiation axiom which involves substitution of terms for

variables The substitution of terms in first. order assertions about

global procedure calls raises a few extra complications. Since the

construct <P(t,x)>q is well. formed only if x is a.vector of variables,

it is impossible to substitute terms for address parameters directly.

In addition, substituting some address parameter xi for another, xi,

may change the address sharing relation. As a consequence,

rep/acemerrf of one address parameter by another has a different

semantic effect frolm first. order subsfitufior?. For example,

Vx,yR(x,y) 3 VXR(X,X)

is a valid first. order sentence. But since a procedure P may detect

sharing, Vx,y<P(x,y)>true does not imply Vx<P(x,x)>true if both

parameters are call-by-address. We circumvent this problem by

defining a substitution on assertions with global procedure calls

which differs from strict syntactic replacement but which has the

same semantics as regular firstorder substitution.

The substitution of a term t for a variable z in an assertion q about

global procedure calls, written q[t/z], is defined inductively on

assertions as usual for all cases other than <P(s, x)>q. If t is a

simple variable not among x = xl,...,xk or Z is not among xl,...,xk

then substitution is straightforward replacement, i.e.

(s1) (<P(s,x)>q)[t/z] = <P(s[t/z],x[t/z])>(q[t/z]).

Otherwise, we define

(s2) (<P(s,x)>q)[t/z] = Vw(t = w 3 (<P(s,x)>q)[w/z])

where w is a fresh variable which does not occur in t or <P(s,x)>q.

By choice of w, the substitution (<P(s.x)>q)[w/z] may be done

according to rule (S1). Note that in general q[t/z] may have more

connective:? and quantifiers than q, However, if v is a variable

which does Iiot appear in q, then the assertion q[v/z] is the same

length as the assertion q. l-his is critical to proofs by induction on

the length of assertions. Furthermore, if v does not occur in q,

then q[v/z][z/v] = q. This is easily proved by induction on

formulas, A straightforward consequence of the definition of

substitution is

Lerwtna 1 ! (Substitution) Let q be a first-order

assertion about global procedures, t a term and z a
variable. Then for any state u, u*q[t/z] iff

u{tu/x}l=q!

This lemma is critical to soundness of the instantiation and

substitution axioms presented in Lemma 2 as well as the

assignment axiom in Theorem 1.

The axioms for first. order logic of Enderton [5], for example, may

be augmented to a complete system for first. order logic with

global procedures.

Lemma 2: All generalizations of the following axioms,

together with inference rule modus ponens, form a

sound and complete proof system for first-order logic

with global procedures.

PI, Propositional Tautologies.

P2. Vxq 2 q[t/x] whenever no variable of t

becomes bound in q[t/x]

P3. Vx(p 3 q) 3 (Vxp 3 Vxq)

P4. q 3 Vxq for x not free in q

P5. x=x

P6. x = y 3 (r ~ r’) where r is a first-order atomic

formula and r’ is the formula r

with zero or more occurrences of

x replaced by y

P7, (s=t Ax=y Au=v A<P(s,x)>x=u) 3

<P(t,y)>y = v where XRY,

P8. <P(t,x)>q e 3y(<P(t,x)>x = y A q[y/x]))

where y is a vector of variables which

are not free in t,x orq and y m x.

The proof of Lemma 2, given in the appendix, follows the usual

Henkin.style construction of a state satisfying a given set of

formulas.

2. Recursive Programs

Recursive programs have abstract syntax

s::= x:= t I p? I P(t,v) I sl;s~ I S,US* I
decl D do S end

where declaration D is given by

D::= (xinitt) I Pt=B

and procedure abstract B has form

B ::= ((val x, addr y): S}.

The statements are assignment, test, procedure call,

concatenation, union and declaration. Union denotes

nondeterministic choice of S1 or S2 (i.e. do S1 or SZ but not both)

and p? denotes the test which allows execution to continue iff P is

true. Many statements common to Algol-like languages may be

considered “syntactic sugar” for recursive programs. For

example, the statement if..then.. elsfi.fi maybe written

if p then S1 else S2 fi - (P’W1) t-J(l P’?S2)

Thus the axioms of Theorem 1 may be considered complete for

recursive programs with if ..then..else. .fi in addition to the

340

statements listed in the grammar above.

The declaration decl D do S end declares a local variable or

recursive procedure with scope S. Variable declaration (x ir?it t)

defines a new local variable x with initial value t. Procedure

declaration P - ((val x, addr y) : S) declares a possibly recursive

procedure P with formal value parameters x = Xl,...,xvp formal

address parameters y = yl,.., ,yap and body S. A procedure

declaration P==B is considered syntactically well-formed only if B

has exactly VPvalue parameters and ap address parameters. The

while statement may be expressed using recursion by

while pdo Sod s

decl P G ((P?;S;P) U 7P) do P end

Other iterative ccmstructs such as repeat S until p may also be

considered abbreviations for similar recursive programs. In

addition, declarations may be nested as deeply as desired so that

any number of local variables and procedures may be defined. A

statement declaring variables Xl,.,.,xn with initial values tl ,...,tn

may be considered an abbreviation for a sequence of nested

declarations, i.e.

decl (Xl,...,Xn init tl,...,tn) do Send =

decl (ZI init t,) do

decl (Z2 init t2) do

,,,

decl (zn init tn) do

s
end

,,.

end

end.

Although somewhat more involved, mutually recursive procedures

may also be declared as nested procedures. For example, the

program with mutually recursive procedures

decf PIC=(S1),P2C=(S2) do S end

may be written as

decl P, ~=-(decl P2 c= (S2) do S1) do

d-eel P2 = (decl PI - (St) do S2) do

s
end

end.

As a result, Theorems 1 and 2 apply to recursive programs with

mutually recursive procedures.

The meaning m(S) of a nondeterministic program S is a mapping

from “initial” states to sets of “final” states as in Harel [6].

define the meaning of programs inductively as usual, with

We

m(P(t,x))ff = {u{a,’x} I (t’’, x”,a) C PEX”}

and

m(decl (x init t) do S end)u = (m(S) u[t”/x}){xU/x}.

The right hand side of the variable declaration definition denotes

the set of states m(S)u{t’’/x} with the replacement {x’’/x} applied

to each one. It should be noted that our state semantics are

entirely consistent with the more usual environment and store

semantics as in deBakker [4] and Apt [1]. However, the proof of

Theorem 1 and, especially, the statement and proof of Theorem 2

are simplified by choosing state semantics.

Following Apt [1], we treat procedure calls by syntactic means. In

keeping with the convention for Algol-like languages, recursive

programs have statically scoped vat-iables. Dynamic scoping, as

well as alternative parameter mechanisms such as call-by-

value/result and call-b~-name may also be handled using

variations of the macro. expansion definition below. The

definitions of program S with variable x substituted for y and with

procedure name PI substituted for P2, written S[y/x] and SIP1/P2]

respectively, are straightforward (see deBakker [4]). We define

the rnacro-exparrsion of CaKS to Pin S using procedure abstract B

= ((vat x, addr y) : S,l), written S<<B/P>>, by induction on

program structure:

(i) (x : = t)<< B/P>> = (x:= t). p? is similar.

(ii) P(t,v)<B/P>> = decl (z init t) do So[z/x][v/y] end
where z, ,...,zVPdo not appear in t, v or B.

(iii) S1;S2<B/P> = S1<<B/P> ; S2<<B/P;>. S1US2 is similar.

(iv) decl (x init t) do S end< B/p>> =
decl (z init t) do S[z/x]<<B/P> end

where z is not free in S or B,

(v) clecl P, e S1 do S end -@3/P> =

decl P2 == S1 do S[P2/P1]<<B/P> end

where P2 is not free in S or B.

The declaration of a vector z of new variables with initial value tin

(ii) produces call-by .value. Value/result may be obtained by

resetting the actual parameters (which must then be variables) to

z before block exit. Other mechanisms may also be handled by

altering (ii) (see Apt [1]). Renaming of bwnd variables and

procedure names in (iv) and (v) give static scoping. Dynalnic

scoping in recutsive Drograms can be treated by changing (iv) to

get dynamically scoped variables or (v) to get dynamically scoped

procedure names. The syntacric expansions of a procedure

341

abstract B = (val x, add r y : S) with respect to P are defined

inductively by

BO = (val x, addr y : fake?)

B‘+’ = (val x, addr y : S<<B’/P> }

The (i+ 1)-st expansion of B with respect to P is the procedure

abstract whose body is the macro-expansion of P in S using Bi.

The meaning of a program with procedure declaration is then

defined using macro-expansions by

m(decl (P~B) do S end)u = Ui m(S<<Bi/P>>)u

This syntactic definition suggests inference rule A? used in

Theorem 1.

3. Completeness

The termination assertion pC3q means that if some state u

satisfies p, then some computation of S from u halts in a state that

satisfies q. More precisely, a state o satisfies p<S>q, written

ol=p<S>q, if U*P implies Efu’Em(S)u such that u’~q. The

termination assertion p<S>q is valid, written f=p<S>q, if every state

u satisfies p<S>q It is a straightforward consequence of the

definitions that a state u satisfies the termination assertion

<P(t,v)>q iff u satisfies the first. order assertion about global

prOCedLlre calls <P(t,v)>q. Thus the use of identical syntax for first-

order assertions about procedure calls and termination assertions

about procedure calls should not be confusing. All valid

termination assertions about recursive programs are provable

using the axirxms and rules of inference of Theorem 1 befow.

Theorem 1: The following axioms are sound and

complete for proving termination assertions p<S>q

where p,q are first. order assertions about global

procedure calls and S is a recursive program.

Axioms

Al. Q[t/x] <X := t>q

A2, (rAq) <r?> q

A3. (<P(t,v)>q) <P(t,v)> q

Rules of Inference

A4.

A5.

A6.

A7.

p<S1 >r, r<S2>q > p<S, ;S~>q

(a) p<Sl>q t-- p<Sl~JS2>q
(b) p<S1>q f- p<S.#S1>q

p<y: = t; S[y/x]>q i-- p<ctecl (x init t) do S end>q

where y does not occur in p,t,S or q.

p<s<<Bi/P~,>q f-- p<decl (P~B) do S end>q

A8. p<S>q 1- r<S>q whenever f- r~p by the

rules of Lemma 2.

A9, p<S>q, r<S>q f-- (pVr) <S>q

Note that Theorem 1 is not a relative completeness theorem of the

sort typical for partial correctness assertions, If a termination

assertion is valid, i.e. true under all interpretations of the function,

predicate and global procedure variables, then it is provable from

axioms PI.8 of Lemma 2 and Al.9 above without appeal to further

axioms. In particular, the valid termination assertions are

recursively enumerable, whereas the vafid partial correctness

assertions are not. Theorem 1 generalizes Theorem 6.4 of Meyer

and Halpern [1O].

The proof of Theorem 1 uses

Lemma 3: For every recursive program S and formula

q, there is a set {qi} of first-order assertions about
procedure calls such that C3>qa Viqi. Furthermore, if S

has no procedure declarations, then there is a single

such assertion q’ with <S>qsq’.

The lemma is ploved by induction on programs, using the fact that

decl (P,sB) do S end is equivalent to the union of programs

S<<Bi/P>> and hence to the disjunction of the corresponding

formulas, As a consequence of Lemma 2, we also have a

compactness theorem for first-order logic with global procedure

calls. Thus if p<S>q is valid, and <S>q- Viqi, then there is some

firrite disjunction q’= qlV... Vqm such that p 2 q’ is vafid. This

fact is critical to the proof below.

Proof of Theorem 1: Suppose f=p<S>q. We show

that p<S>q is provable from Al -9 by induction on the

structure of S.

(a) ff p<x : = t>q is valid, then uf=p implies u{t’’/x}f==q,

By the Substitution Lemma, f=p3q[t/x] and therefore

kp3q[t/x] by the rules of Lemma 2. By Al, we have

l-q[x/t]<x : = t>q and so t--p<x : = t>q by A8,

(b) If f=p<r?>q, then f==p3(rAq) and hence

f-p2(rAq). Since t-(rA@<r?>q by A2, we have

I--p<r?>q by A8.

(c) Assume b=p<P(t,x)>q. Then the first-order

asserPon about global procedure calls p~(P(t, x)>q is

valid and hence provable by the rules of Lemma 2.
Therefore l-p< P(t,x)>q by A3 and A6.

(d) Suppose k=p<Sl ;S2>q. There exist sets of formulas

{pi} and {qi,j) such that ~<S2>qG Vjpj and
l==<S1>pia Viqi,j. Since l=p2Vi,iqi,i, it fellows from the

compactness theorem of first-order Ioglc (with global
procedure cafls) tnat there is some finite set M = MiXMj

SUCh that t= p3V(i,j)eMqi,j. Let r denote Vi<rdipj. Then

since for any j,

342

‘bvi~MiqiJ ~ Viqi,jand ~(viqi,)<sl>pj reformulation of that in [1O]. The theorem holds, In fact, for any

we have programs S and T which are equivalent to arbitrary unions of

b(v(i,j)CMq,,j ..) <S,>r schemes, provided thi~t for each scheme Si and first-order

and hence t=p<S1>r. By similar reasoning we obtain assertion about procedure ca!ls q, <Si>q is equivalent to another

*r<S2>q, From the inductive assumption we have such assertion. In pailicular, Theorem 2 holds for any set of
f-p<S1>r and l-r<S2>q which allow us to conclude

hP<S1 ;S2>q by A4.
arbitrary, not even recur’sivel y enumerable, infinite flowcharts (see

[10]).
(e) Union is similar to composition. Assume

k=p<S1US2>q. As above, there is a set of formulas

{qi,i}j>o,i= 1,2with ~ <Si>q ~ Vjqi,j. Then ~p~Vi,j%,j
The main idea of the proof of Theorem 2 is that if u’ C m(S)u—

and so by compactness there is a finite set M with m(T)u, then we can find some pair of formulas p and q with the

kp~vj<M, i= l,2qi,j. Since l==qi,j<Si>q, we have

kqi,J<Si>q and so by A9 and A5,

‘vj6M, i . I,zqj,l<sl US2>q Thus by A8, Kp<S1US2>q.

(f) Assume +p<decl (x init t) do S end>q. A simple

induction on programs shows that for any variable y

that does not occur in p, t, S or q,

I=p<decf (x init t) do S end>q

iff

!=p<y : = t s[y/x]>q

Therefore f-p<y: = t; S[y/x]>q by the inductive

hypothesis. Thus I--p<decl (x init t) do S end>q by A6.

(g) SuPPOse f=p<decf (Pc=B) do S end>q. Then by

definition of m(decl (P-B) do S end), we hrwe

F=pS/,<S<Bi/P>>q, As above, there is a set of

formulas {qi,i} with <S<<Bi/P>>q e Vjqi,i for each

i. From compactness, we know that there must be a

finite set M with *p3v(i,i)EMqi,i and so

*Po~’(i,i)~MqL,i from PI -8. Since f=qi,i <S< Bi/P>>q

for any i and j, it follows from the inductive hypothesis

that I-qi,j <S<<Bi/P>>q. By A7, 1- qi,j<decl (PGB) do

S end>q and so from A9, t-V(i,i)cMqi,j< decl (Pc=B) do

S end>q. Therefore, by A8, I-p<decl (P=B) do S

end>q. E

4. Axiomatic Semantics

Many useful properties of programs may be proved using

uninterpreted termination assertions, In particular, termination

assertions determine the semantics of programs in the sense

discussed in Meyer and Halpern [10], Namely, the termination

assertions valid for a program distinguish it from al! inequivalent

programs. More precisely, for any program S, the termination

theory of S, written T(S), is the set of all pairs (p,q) of first-order

assertions about procedure calls such that p<S>q is valid. Two

programs have the same termination theory precisely when they

are equivalent, i.e.

Theorem 2: (Semantical Determination) For any

programs S and T, !J’(S) = 9’(T) iff m(S) = m(T).

Thecrrem 2 generalizes Theorem 5.1 of [1 O] to programs with CaIIS

to global procedures and the proof is a straightforward

property that for any program To, p<TO>q is valid iff there is some

u“Cm(TO)u which is identical to u’ on the free variables of SUT. It

follows that p<S>q is valid but p<T>q is not. Therefore S and T

have different termination theories.

Proof of Theorem 2: We may assume without loss of

generality that mlS)—m(T)*O. Let o’Em(S)u-m(T)u

and let x = Xl,...,xn include all free variables of SUT.

Since S is equivalent to a union of Iprograms without

procedure declarations, UiSi, there is some such

program Sk with u’Cm(Sk)u, Let x“ =X1’,,,,,Xn’ be a

vector of fresh variables. By Lemma 3, there is a
formula p with

p = <Sk>x = x’.

Since m(Sk) ~ m(S), we have f=p<S>x = x’.

It remains to be shown that W p<T>x = x’, Let u. =

u{x”’/y} and note that since thq variables of x’ do not

appear in S or T, m(S)ao = (m(S) u){x”’/x’} and

similarly for T. In particular, Uo’ = u’{x’’’/x’} is in

m(Sk)uo but differs from each state in m(T)ao on some

variable of x, By choice of (x’)”o, we have Uof=p but

Oo~ <T>x = x’. Therefore p<T>x = x’ fails at U. and the
theorem is proved, I

5. Conclusion

We have shown that the semantics of uninterpreted recursive

programs may be defined axiomatically using first-order

termination assertions. The set of valid termination assertions

defines program semantics, and all valid termination assertions

are derivab!e from axioms: This provides support for the general

thesis that practicaf programming languages may be defined

axiomatically,

The fact that first-order termination assertions are easily

axiomatized depends heavily on the compactness of first-order

logic. Compactness ensures that whenever a first-order assertion

p implies that a program S halts, it is because p implies a fixed

bound on the depth of recursive procedure calls in S in all

interpretations. As a consequence, there are many termination

343

assertions p<S>q which are valid over specific interpretations

such as the integers, but which cannot be proved in 9eneral since

S may not always terminate, Nonetheless, uninterpreted first-

orcter termination assertions provide enough information about

programs to distinguish between any pair of inequivalent

programs.

The extension of first-order logic to include calls to global

procedures has several applications. In addition to providing a

convenient “specification language” for procedures called by

recursive programs, first-order logic with global procedures may

be used as a starting point for stronger Iogics of programs such as

full Dynamic Logic [6]. Lemma 2 suggests that firstorder

reasoning about programs with calls to undeclared global

procedures is essentially no more difficult than for programs

without global procedures. A possible direction for further work

might be to extend our system to include specifications for more

complicated “black.box” modules such as abstract data types.

Our completeness theorem shows that all valid termination

assertions are provabie. A stronger statement would be a

deductive completeness theorem, i.e. if any set of assertions r

semantically implies p<S>q, then p<S>q is provable from I’. As a

consequence of compactness, this is possible if I’ contains only

first-order assertions, More precisely, if l%p<S>q for any set r of

first-order assertions about global procedure calls, then there is a

single first-order assertion r which is a conjunction of assertions

from r such that f-(pAr)<S>q by the axioms presented in

Theorem 1, However, if r is a set of termination assertions, then it

will not in general be possible to prove all consequences of r from

any recursively enumerable set of axioms. In fact, even if we

consider only single termination assertions, deductive

completeness is not ~ossible. This is because the assertion

true<S>lrue semantically implies fa/se iff the program S never

halts. Since the set of totally divergent programs is not recursively

enumerable [9], the set of termination assertions p<S>q such that

(p<S>q)#=false is not recursively enumerable.

Two directions for further investigation are to enrich the

programming language and to expand the assertion language.

Programs with procedures as parameters or more complicated

data objects are two possibilities. Our assumption that all

undeclared global procedures are explicitly parameterized might

also be relaxed by adding predicates to the assertion language

which allow the global variables used by a procedure to be

identified, For example, a predicate INDEPP(x) might be used to

state that the behavior of procedure P is independent of x. This is

an adaptation of the “interference” concePt discussed by

Reynolds [11]. Another possibility, following the direction of

Trachtenbrot [12]. is to add relations to the language which would

allow sharing of addresses to be treated explicitly. We do not

foresee any fundamental difficulties arising from these possible

extensions.

References

I. Apt., K.R. Ten Years of Hoare’s Logic, ASurveY, part

1,Proceedings 5th Scandinavian Logic Symposium, 1979, Pp. 1

44.

2. Chang, C.C.and H.J. Keisler. rVodel Theory. North. Holland,

1973.

3. Cook, S.A, Soundne% and Completeness ofan Axiom System

forprogram Verificatiorl. SIAM J. Computing 7(1978). PP129-

147.

4. deBakker, J.ltilatheinatical Tl]eory of Progr(~n] Cor/ecfness.

Prentice-Elan, 1980.

5. Enderton, l-f.Fl. AMaf/]enlti/ica/ /nftod~lcfion fo Logic.

Academic Press, 19’72.

6. Harel, f3. Lecture Notes in Computer Science. VoL68: First-

Order Dynamic Logic. Springer-Verlag, 1979.

7. Harel, D., A.R. Meyer and V. Pratt. Computability and

Completeness in Logics of Programs: Preliminary Report. 9-th

ACM Symposium on Theory of Computing, Boulder, Colorado,

May, 1977 JpP. 261-268. Revised version, M.l.TLab.f orComputer

Science TM.97, (Feb. 1978) 16 pp.

8. Hitchcock, P.and D. Park. induction Rules and Termination

Proofs, lnM. Nivat, Ed., Automata, Languages and Programming,

American Elsevier, New York, 1973, pp. 225-251.

9, Luckham, D.C., D.M Park and M.S. Patterson. On Formalized
Computer Programs, J. Computer System Sciences , 4(1970). PP

220-249.

10. Meyer, A.R. and Halpern, J.Y. Axiomatic Definitions of
programming Languages: A ?I?eore!ical .ksessmcrlt (Preliminary

Report). Proc. 7-th Annucd POPL Conf., January, 1980.

Massachusetts Institute of Technology Tech. Report
MIT/LGS/TM-l 63 (April 1380); to appear JACM (le81).

11. Reynolds, J.C. Idealized Algol and its Specification Logic,

Tech. Rep. 1-81, School of Computer and Information Science,

Syracuse University, 1981.

12. Trachtenbrot, B.A. On Denotational Semantics and

Axiomatization of Partial Correctness for Languages with

Procedures as Parameters and with Aliasing. Unpublished

Manuscript.

344

Appendix 1. Global Procedure Calls

We show that axioms PI -8 are complete by showing that any

consistent set of assertions is satisfiable. Two important

preliminaries are

Lemma 4: (Generalization) Let r be a set of

assertions and q an assertion. If t%q and z is not free

in r then lV-Vzq.

and

Lemma 5: (Deduction) If W{p} l-- q, then

rf-(p 3 q).

Both are proved by induction on proofs (cf. Enderton [5]).

Let r be a set of first. order assertions about global procedure

calls such that X*X is not provable from r using PI-8 and modus

ponens. Let L denote the signature of r and -Lp the associated

first-order signature. We can construct a state satisfying r from

constanls following the usual Henkin-st”le procedure for first-

order logic (see Enderton [5] or Chang and Keisler [2]). The

construction consists of the following five steps.

(1) Select an infinite set Tof fresh variables, The state o satisfying

r will have equivalence classes of variables from T’as its domain.

Usually constants are used, but since constants may not occur as

address parameters in procedure calls, variables work better for

assertions about global procedures calls.

(2) Construct a set of formulas r’ Q r such that for each formula q

of the expanded language (with variables from ‘i’j, r’ contains

formulas

(a) lVxq37q[v/x]

(b) <P(t,x)>q 3 (<P(t,x)>x = V) A q[v/x]

where v and v = Vi,,..,vk are new variables (from Step 1) and VC%X.

As each variable vET is added to r’, an infinite set of formulas

{v= Vj]j>o for fresh vj~~is also added. This is done in such a way

that V is not exhausted by any finite number of additions. The

purpose of the formulas {v= Vj}jzo are to provide infinite

equ~(alence classes of variables from K i.e. each equivalence

class will have infinitely many representatives in the model we

construct.

The construction proceeds in stages, starting from I’. = r. Let ri

be the result of the i.th stage q, x, P, t and x be the Lth formula,

variable, procedure variable, vector of terms and vector of

variables in some enumeration in which all necessary

combinations appear. Then to construct ri + I, pick variables v

and v =Vl,...,Vk (with vmx) from ‘~which do ,not occur in ri or q, p

or t. For each variable ~w~{v,vl,...,vk}, also form a set of formulas

r3W= {W = Wj}j>o such that SW has infinitely many fresh variables

wj~~and no Wj occurs in ri, p, t, x, q or any previous t3w, Let 8 =

UW Sw and let

ri+; = ri U {(a),(b)} U g.

If ri is consistent, then so is ri +, as follows. Suppose I’iU{(b)} is

inconsistent. Then by the Deduction Lemma and propositional

reasoning,

riI-<p(t ,x)>q

and

rif--q<p(t,xpx = v A q[v/x]).

But since v is a vector of variables which do not appear in ri, it

fol!ows by Generalization (Lemma 4) that

rit-13v(<p(t,x)>X: = v A q[v/x]),

Therefore, by P8,

ri~~(<p(t,x)>q),

which contradicts the assumption that ri is consistent. By a

similar argument (see [2]), the consistency of rib{,} maybe

reduced to that of riU[(b)}. Clearly adding sets of the form

{w= Wj} does not destroy consistency since none of the Wj’s

appear in rib{,}. (If some set r“u{w =wk] is inconsistent,

then r“f--qw = w~) and .s0 by Generalization rw~vwkq(w = wk)f

i.e. r“ is inconsistent.) Thus if r is consistent, so are r,, r2,... and

therefore I“ = Uiri must be consistent.

(3) Extend r’ to a maximally consistent set A, i.e. for any formula

q, either qEA or -q CA. This is done in the usual manner [2].

(4) Define a state u whose domain D“ is the set of equivalence

classes of variables from K Define functions f“ and relations R“

according to the formulas in A.

For any terms t and t’, define t = = t’ iff (t = t’) E A and let [t] denote

{t’ It= =t’}. Let D“ = {[v] I v6V. Define v“ = [v] and to = [t]. Note

that t“CD” since 3y[t = y) is provable from P1-6 and

(Efy(t= y) 2 t = v)EA for come vET by construction of A. For

functions and relations, define

(a) f“~vl],...,[vn]) = (fvl...vn)”
(b) qV1],...,[Vn]> C Fl” iff RvT...vn C A for R in L, and

(c) <b,c,d> C PE” iff there exist vectors of variables u, v

and w from ‘Twith Ev= EW= E, b = [u], c = [v] and
d = [w] such that (<IP(u,v)>v = w)6A. Here [u]

denotes [Ul],...,[Uvp].

It is straightforward to verify that f“ and R“ are well-defined by (a)

and (b) as usual (see [2]). To see that (c) meets the restriction

345

posed in Section 1, note that if <b,c,d>EPEO then

iEj*vi=vjandwi=wj

and so

iEj-ci=cianddi=dj

(5) Show that ub=q iff qCA by induction orI the length of formulas.

For first-order atomic formulas, this is immediate from the

definition of O. The connective cases are also straightforward.

Forexampfe, uk=nq iff ui#q iff q $ A iff ~q C A.

Consider Vxq. Note that there is some formula 7Vxq 3 lq[vq/x]

in A with vqCT not appearing in q. If u@Vxq then certainly

fJ{[vql/xl%. By the substitution lemma, ul=q[vq/x]. Since Vq

does not appear in q, the formula q[v@] has the same length as q

and so by ihe inductive hypothesis q[~q/x]EA. It follows that Vxq

must be in A since otherwise ~Vxq would be in A and hence

-W[L@

For the converse, suppose uWVxq. Then for some vET u{[v]/x]b$

q. Therefore, by the substitution lemma, uf# q[v/x]. Since every

equivalence class [v] is infinite by construction of r’ (Step 2), it

may be assumed that v does not occur in q and hence q[v/x] has

the same length as q. Thus q[v/x] @A by the inductive hypothesis.

Therefore ~q[v/x]CA and Vxq cannot be in”A by P2.

The final case is <P(t,x)>q, We first consider q of the form x = y

with XSY. It follows from the definition of satisfaction that

uF=<P(t, x)>x = y iff (t”,x’’,yu)6PEx0.

By definition of o, (tO,x’’,yC)EPEx” iff

(*) There exist vectors of variables u, v
and w with [u]= [t], [v]= [x], [w]= [Y]
and Ev= EW= Ex such that (<P(u,v)>v = w) 6 A

It remains to be shown that (*) is equivalent to

(**) (<P(t,x)>x = y) C A

If (*), then by definition of the equivalence classes [] of terms,

A!-u=t Av=x Aw=y.

Thus from P7,

Ai- (< P(!,x)>x = y)

which implies (* *). Conversely, if (* *), then since 3Z(Z = t) is

provable from PI -6 for any term t, the construction of A ensures

that there exist vectors of variables u, v and w with vcxx such that

A1-u=t Av=x Aw=y.

Therefore, from P7, we conclude (*). Thus

&=(<P(t,x)>x = y) iff (<P(t, x)>x = y) E A,

In general, if &=<P(t,x)>q, then 3vE1’”with vmx and

(ta,xO,v’’)ePExa and u{v”/x}!==q

Since each equivalence class of variables in Vis infinite, each vi

may be chosen so as not to occur in q. By the Substitution Lemma,

al=q[v/x] and so by the inductive hypothesis, q[v/x]EA. Since

uf=(<P(t,x)>x = v), we have (<P(t,x)>x = v)CA and therefore

A1-<P(t,x)>q by P8. Since A is deductively closed, <P(t,x)>q C A.

For the converse, assume <P(t,x)>q CA. Then by the construction

of A,

<P(t,x)>x = v A q[v/x] C A

for some vE1’_not occurring in t, x or q and with vnx. Therefore

uF=<P(t,x)>x = v and so

(ta,xm,v~)cPExO

By the inductive hypothesis, ul=q[v/x] and so by the Substitution

Lemma, u{rv]/x}+q. Thus u&< P(t,x)>q, This shows that for any

first. order assertion about global procedures q, uf=q iff qEA.

From (5) and r ~ A it follows that al=r. Thus every consistent set

is satisfiable and the axiomatization is complete, ~

346

