Axiomatic Definability and Completeness
for Recursive Programs

Albert R. Meyer and John C. Mitchell
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

The termination assertion p<S>q means that whenever the formula
p is true, there is an execution of the possibly nondeterministic
program S which terminates in a state in which g is true.
Termination assertions are more tractable technically than the
partial correctness assertions usually treated in the literature.
Termination assertions are studied for a programming language
which includes local variable declarations, calls to undeclared
global procedures, and nondeterministic recursive procedures
with call-by-address and call-by-value parameters. By allowing
formulas p and q to place conditions on global procedures, we
provide a method for reasoning about programs with calls to
global procedures based on hypotheses about procedure input-
output behavior. The set of first-order termination assertions valid
over all interpretations is completely axiomatizable without
Although

uninterpreted assertions have limited expressive power, the set of

reference to the theory of any interpretation.

valid termination assertions defines the semantics of recursive
programs in the sense of Meyer and Halpern [10]. Thus the
axiomatization constitutes an axiomatic definition of the semaniics

of recursive programs.

Introduction

Many formal systems for proving properties of programs consist of
rules for deriving partial correctness assertions. The first-order
partial correctness assertion p{S}q means that if the first-order

formula p holds initially, and if the possibly nondeterministic

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-065-6/82/001/0337 $00.75

337

program S halts, then the first-order formula g holds after each
possible halting computations of S. For even a very simple set of
programs, the set of valid partial correctness assertions is not
recursively enumerable [7]. In contrast, the set of valid termination
assertions about while programs has a simple axiomatization
f10}.

initially, then there is a possible computation of S which

The termination assertion p<S>q means that if p is true

terminates in a state in which q is true. If S is deterministic, then
the termination assertion p<{S>q is equivalent to the partial
correctness assertion p{S}q along with the assurance that S halts
whenever p is true initially. Termination assertions are statements

of total correctness for deterministic programs.

A natural approach to the modular design of software is to specify
the input-output behavior of all procedures. The correctness of a
procedure P should then follow from the assumption that the
procedures called by P meet their specifications; it should not
depend on how these procedures might be written. We consider
recursive programs with calls to undeclared global (accessible
everywhere) procedures. We propose as a reasonable

"specification language" for proving first-order termination

assertions about recursive programs the class of first-order
formulas extended to include termination assertions about global

procedure cails.

We present a complete axiomatization of termination assertions
about programs which include local variable declarations, calls to
undeclared global procedures, and nondeterministic recursive
procedures with call-by-address and call-by-value parameters.
The axioms and rules of inference are sufficient to prove all
termination assertions which are valid over all interpretations. In
this respect, our completeness theorem contrasts with the usual
"relative completeness” theorems for

partial correctness

assertions (e.g. [3]). We consider only assertions true of all

structures and do not assume that the first-order theory of any

structure is given as axioms. As a result, Theorem 1
(completeness) demonstrates that the valid termination assertions
for recursive programs are recursively enumerable. This theorem
extends the similar completeness theorem (Theorem 6.4) of Meyer

and Halpern [10] for while programs without procedures.

The fact that the valid terminations assertions are so constructive
suggests that they may suffer limitations in providing information
about programs. The following example suggests the uses and
shortcomings of first-order termination assertions. Let AX denote
the conjunction of axioms for addition, proper subtraction and
multiplication for natural numbers using constants 0 and 1. Let n
denote the numeral for n, ie. p=1+1+...+1 where 1 appears n
times. For any natural number n, the assertion
(AX A x=1) S (y=0l)

is provable from the axioms of Theorem 1, where S, is the
recursive program

proc P(u,v) = (ifu=0thenv:=1
else P(u-1,v); v: =v*u fi);
Catl P(x.y).

However, the more general termination assertion stating that Sy,
computes the factorial function cannot be derived from these
axioms and indeed is not valid under any set of first-order
hypotheses about natural numbers. That is, let p be
f(0) =1 A Ux[i(x+ 1) = {x + 1)*f(x)]. Then the termination assertion
(AXAP) €Sy (y=f(x)} is valid whenever the variables are
interpreted as ranging over natural numbers and the arithmetic
operations are given their usual meaning. But this assertion is not
valid over arbitrary interpretations, even if AX is allowed to be any
infinite set of first-order formulas true about natural numbers. In
particular, there is a nonstandard interpretation that satisfies all
first-order formulas true of natural numbers, but in which x may be
an "infinite" integer. In this interpretation, the program S, will
not terminate since it cannot produce 0 by subtracting 1 from x
any-finite number of times. Hence (AXAp) <Sy,ep {y = f(X)) cannot
be proved using sound inference rules, This inherent limitation of
uninterpreted first-order assertions is emphasized in the well-

known paper of Hitchcock and Park [8].

Despite their shortcomings, valid uninterpreted termination
assertions express many useful properties of programs. In
particular, Theorem 2 shows that termination assertions suffice to

define the semantics of recursive programs in the sense of Meyer

338

and Halpern [10]. This theorem extends Theorem 5.1 of [10] to
programs with calls to global procedures and lends support to the
thesis that practical programming languages may be defined
axiomatically. Furthermore, the relative simplicity of our proofs
when compared with proofs of analogous theorems for partial
correctness assertions suggests that termination assertions are
more suitable than partial correctness assertions for axiomatic

definitions of semantics.

1. Global Procedures

First-order logic with global procedures will be seen to be a
syntactic variant of standard first-order logic. A first-order
signature is a set of function symbols f,f,,.. and relation symbols
R4,R,,... each of some specific arity. A signature for first-order
logic with global procedures, or more simply signature, is a first-
order signature augmented with a disjoint set P4,P,,... of
procedure variables. Each P has an associated number of value
parameters vp and address parameters ap. First-order assertions
about global procedure calls q are defined by the grammar

first-order atomic formula | qVa, | —q |
Vxlasd | <PltxPa

gu=

where P is a procedure variable, t=t,,...,t, _ are first-order terms,

2

and X = XqperXg, ArE variables. The construct <P(t,x)>q is
intended to express that formula q is true after calling global
procedure P with value parameters t and address parameters x.
Additional symbols such as A, 2, = and 3 are considered

abbreviations for the appropriate combinations of V, —rand V.

A few words cf motivation are in order before presenting the
To

demonstrate the axiomatizability of termination assertions about

formal semantics of assertions about procedure calls.

programs with recursive procedures with parameters, we have
chosen to consider recursive procedures with call-by-value and
call-by-address parameters. Axioms for assertions about
programs which declare procedures with other parameter passing
mechanisms such as call-by-value/result and call-by-name may
be obtained by making slight changes in the "macro-expansion”
rule presented in Section 2. To be consistent in the design of our
programming language, we also provide call-by-value and cail-by-

address parameters to undeclared global procedures.

The possible meanings of undeclared procedures should be as
general as possible so as to include procedures written in any

reasonable language. However, in order to prove common

properties of procedures with value and address parameters, it is

necessary to restrict the ways in which procedures may depend
upon their parameters. It might be possible for a procedure in
some language to test the length of an identifier passed as a
parameter or to determine the lexicographical ordering between a
pair of actual parameter names, If a procedure can recognize the
names of its parameters, then simple properties such as
Vx<P(xPDtrue D Yy<P(yPtrue

may fail. Such capabilities go beyond the apparent intentions of
call-by-value and call-by-address, and we prohibit them. For
simplicity, we also insist that undeclared global procedures be
explicitly parameterized, i.e. the meaning of a procedure call is
independent of the values of any variables other than the actual
parameters.

The way the behavior of a procedure may depend on its address
parameters is different from the way it may depend on its value
parameters. For example, suppose procedure P has two call-by-
value parameters, and the contents of x; and x, are equal to the
contents of y; and y,, respectively. Then the call P(x,,x,) should
have the same effect as P(y,,y,). To see that call-by-address is
different, consider the procedure

procP(uv) = (:=0;vi=1;ifu=1thenv:=0)

If both parameters are passed by address, then the call P(x,y)
returns with y = 0 iff x and y share the same location. This shows
that a procedure may detect and hence may depend arbitrarily
upon which of the call-by-address actual parameters share
locations. In summary, we assume that the behavior of a
procedure call depends only on the vaiues of the actual call-by-
value parameters and the values and sharing of addresses of the

actual call-by-address parameters.

The possible behavior of procedures with address parameters
may be characterized using equivalence relations on finite sets of
integers. For any vector of variables x = x;,..x, (not necessarily
distinct), define the address sharing relation E, on {1,....k} by

1E4J iff x;and x; are the same variable.
It is also useful to define the congruence of vectors of variables
X = Xqpeo Xy ANA Y = Y50, DY

xzzy iff k=mandE,=E,.
The number of distinct variables in x is the number of equivalence
classes of E,, i.e. the index of E,. If procedure P has k address

parameters and x and y are both vectors of variables of length K,

then P(x) necessarily produces the same result as P(y) iff E,=E,

339

and x; has the same value as y, for 1<i<k. When x = Xqr-eeXap, ist

a vector of distinct variables and t = ty,...t, , a vector of terms, the

AN
possible results of a call P(t,x) to a nondet;rministic procedure P
may be characterized by an "input-output” relation. Informaily, a
tuple <t,x,y>, where y~x, is in the input-output relation of P iff the
call P(t,x) can return with the address parameters equal to y.
Since a procedure P can distinguish between any pair of possible
address sharing patterns, we use a set of input-output relations to
describe the behavior of P, one for each possible address sharing

relation among the address parameters.

The precise semantics of first-order logic with global procedures
is most easily defined by associating a first-order signature with
Let P be a

procedure name. The associated set of input-output relations

each signature that contains procedure names.

%p = {Pg | E is an equivalence relation on {1,....ap}}
is a set of first-order relation symbols, one for each address
sharing relation. The arity of each Pg is vp + 2ap. If Py and P, are
procedure names in signature L, then %p_ and %pz are assumed
to be disjoint. Furthermore, each is disjoint from the first-order
relations in L. If L is a signature, then the associated first-order
signature Lp consists of all function and relation symbols of £,
together with all relations in %p for each P in L. Note that Lp

contains no procedure names.

A first-order state g4 for a first-order signature is a domain D1
with functions {1 and relations R®1 of appropriate arities on D°1
corresponding to each function and relation symbol of the
signature, and with elements x°1 for each variable symbol x. A
state with procedure environment (or more simply state) o for a
signature £ with procedure names is a first-order state for the
associated first-order signature Ly, with the added restriction that

if <b,c,d>€P’ with|c|=|d|=ap,
then iEj=>d;=djand¢;=c;

We use o{d/x} to denote the state ¢’ that is identical to o except
possibly at x and such that x” =d. Satisfaction of a first-order
assertion g about global procedure calls by a stale o is defined
inductively as usual, with

o=<Pt,x)>q iff d= d1,.‘.,d3P€D° such that
(t”,x“,d)EPEx" and o{d/x} k= q

Note that if <P(t,x)>q is interpreted as meaning that q is true after
calling P with t and x, then this definition forces the output of
P(t,x) to depend only on the values of explicit parameters t,x and
address sharing pattern E, and only allows P(t,x) to alter the

values of address parameters x.

As for ordinary predicate calculus, the axiomatization of
assertions about global procedure calls includes a universal
instantiation axiom which involves substitution of terms for
variables. The substitution of terms in first-order assertions about
global procedure calls raises a few extra complications. Since the
construct <P(t,x)>q is well-formed only if x is a vector of variables,
it is impossible to substitute terms for address parameters directly.
In addition, substituting some address parameter x; for another, x;,
may change the address sharing relation. As a consequence,
replacement of one address parameter by another has a different
semantic effect from first-order substitution. For example,
Vx,yR(x,y} D VxR(x,x)

is a valid first-order sentence. But since a procedure P may detect
sharing, Yx,y<P(x,y)true does not imply Yx<P(x,x)>true if both
parameters are call-by-address. We circumvent this problem by
defining a substitution on assertions with global procedure calls
which differs from strict syntactic replacement but which has the

same semantics as regular first-order substitution.

The substitution of a term t for a variable z in an assertion g about
global procedure calls, written q[t/z)], is defined inductively on
assertions as usual for all cases other than <P(s,x}>q. Hftis a
simple variable not among X = Xy,...,X, OF Z is not among Xy,...,Xy
then substitution is straightforward replacement, i.e.

(S1) (KP(s,xpPq)[t/z] = <P(s[t/z] x[t/z])>(gt/z]).
Otherwise, we define

(S2) (KP(s,xPq)[t/z] = Vw(t=w D (KP(s,x}>q)[w/z])
where w is a fresh variable which does not occur in t or <P(s,x)>q.
By choice of w, the substitution ({P(s.x)>a)[w/z] may be done
according to rule (S1). Note that in general g[t/z] may have more
connectives and quantifiers than q. However, if v is a variable
which does not appear in g, then the assertion g{v/z] is the same
length as the assertion g. This is critical to proofs by induction on
the length of assertions. Furthermore, if v does not occur in q,
then g[v/z][z/v] = q.This is easily proved by induction on
formulas. A straightforward consequence of the definition of
substitution is

femma 1: (Substitution) Let ¢ be a firet-order
assertion about global procedures, t a term and z a
variable. Then for any state o, ok=qft/z] iff
o{t?/x}F=q.

This lemma is critical to soundness of the instantiation and
substitution axioms presented in Lemma 2 as well as the

assignment axiom in Theorem 1.

The axioms for first-order logic of Enderton [5], for example, may

340

be augmented to a complete system for first-order logic with
globat procedures.

Lemma 2: All generalizations of the following axioms,
together with inference rule modus ponens, form a
sound and complete proof system for first-order logic
with global procedures.

P1. Propositional Tautologies.

P2. V¥xag 2 dlt/x] whenever no variable of t
becomes bound in gt/x}

P3. Vx{pDq) D(Vxp D V¥xq)

P4. qDVxq for xnotfreeing

P5, x=x

P6. x=y D(r2r) whererisa first-order atomic
formula and r’ is the formular
with zero or more occurrences of
X replaced by y

P7. (s=tAx=yAu=vA<P(sxPx=u) D

<Pit,y)>y=v where x>~y.
P8. <P{txpg= AyKPxPx=y A aly/x})

where y is a vector of variables which
arenotfreeint,xorgand y o~ x.

The proof of Lemma 2, given in the appendix, follows the usual
Henkin-style construction of a state saiisfying a given set of

formulas.

2. Recursive Programs
Recursive programs have abstract syntax

Su= x:=t] p? | PtV | S48, | SUS, |
decl D do S end

where declaration D is given by
D:= (xinitf) | P=B

and procedure abstract B has form

Bi:= ({(valx, addry):S).
The statements are assignment, test, procedure call,
concatenation, union and declaration. Union denotes

nondeterministic choice of S, or 8, (i.e. do 8; or §, but not both)
and p? denotes the test which allows execution to continue iff p is
true. Many statements common to Algol-like languages may be
considered "syntactic sugar" for recursive programs. For
example, the statement if..then..else..fi may be written

(P59 U (mp?Sy)

Thus the axioms of Theorem 1 may be considered complete for

ifpthen S eise S, fi =

recursive programs with if..then..else..fi in addition to the

statements listed in the grammar above.

The declaration dec! D do S end declares a local variable or
recursive procedure with scope S. Variable declaration (x init t)
defines a new local variable x with initial value t. Procedure
declaration P <= {(val x, addr y) : S} declares a pcssibly recursive
procedure P with formal value parameters x=Xy,..X, P formal
address parameters y =Y1eeYap and body S.A procedure
declaration P«=B is considered syntactically well-formed only if B
has exactly vp value parameters and ap address parameters. The
while statement may be expressed using recursion by

whilepdoSod =
decl P = ((p?;S;P) U —p) do P end

Other iterative conatructs such as repeat S until p may also be
considered abbreviations for similar recursive programs. In
addition, declarations may be nested as deeply as desired so that
any number of local variables and procedures may be defined. A
statement declaring variables xy,...,X,, with initial values ty,....t,
may be considered an abbreviation for a sequence of nested

declarations, i.e.
decl {xy,... x,init t;,..t,)doSend =

decl (z4 init t,) do
decl (z, init t,) do

decl (z, init ty) do
end
end
end.
Although somewhat more involved, mutually recursive procedures
may also be declared as nested procedures. For example, the
program with mutually recursive procedures
declPy=(S,),P,=(S,) do S end

may he written as

decl Py & (decl P, == (S,) do S,) do
decl P, = (decl Py = (S;) do S,) do
S
end
end.

As a result, Theorems 1 and 2 apply to recursive programs with

mutually recursive procedures.

The meaning m(S) of a nondeterministic program S is a mapping

from "initial" states to sets of "final" states as in Harel [6). We

define the meaning of programs inductively as usual, with

341

m(P(t,x))o = {c{a/x}|(t°x%,a) € PEX"}
and

m(decl (x init f) do S end)e = (M(S)a{t°/x}P{x/x}.
The right hand side of the variable declaration definition denotes
the set of states m(S)a{t°/x} with the replacement {x°/x} applied
to each one. It should be noted that our state semantics are
entirely consistent with the more usual environment and store
semantics as in deBakker [4] and Apt [1]. However, the proof of
Theorem 1 and, especially, the statement and proof of Theorem 2

are simplified by choosing state semantics.

Following Apt [1], we treat procedure calls by syntactic means. In
keeping with the convention for Aigol-like languages, recursive
programs have statically scoped variables. Dynamic scoping, as
well as alternative parameter mechanisms such as call-by-
value/result and call-by-name may also be handled using
variations of the macro-expansion definition below. The
definitions of program S with variable x substituted for y and with
procedure name P, substituted for P, written S[y/x] and S[P/P,]
respectively, are straightforward (sece deBakker [4]). We define

the macro-expansion of calls to P in S using procedure abstract B
= {((val x, addr y) : Sp), written S&B/P>>, by induction on

program structure:

i) (x:= HKB/P> = (x:=1). p?issimilar.

(ii) P(t,v)KB/P>» = decl(zinitt) do Syfz/x][v/y] end
where ZypenZyg do notappearint, v or B.

(i) S48, &KB/P> = S;KB/P> ; S,&B/P>. S,US, is similar,

(iv) decl (x initt) do SendKB/P>» =
decl (z init t) do S[z/x]<«B/P>> end
where z is not free in S or B.

(v)decl Py =S, doSend <B/P>» =

decl P, &= S do S[P,/P,]«B/P>» end

where P, is not free in S or B.
The declaration of a vector z of new variables with initial value t in
(i) produces call-by-value. Value/result may be obtained by
resetting the actual parameters (which must then be variables) to
z before block exit. Other mechanisms may also be handled by
altering (i) (see Apt [1]). Renaming of bound variables and
procedure names in (iv) and {v) give static scoping. Dynainic
scoping in recuisive programs con be treated by changing (iv) to
get dynamically scoped variables or (v) to get dynamically scoped

procedure names. The syntactic expansions of a procedure

abstract B = (val x, addr y : S) with respect to P are defined
inductively by

Bf’ = {valx, addry:faise?)
B*1 = (valx, addry:S<B/P>)

The (i+ 1)-st expansion of B with respect to P is the procedure
abstract whose body is the macro-expansion of P in S using B
The meaning of a program with procedure declaration is then
defined using macro-expansions by

m(decl (P=B) do S end)o = U; m(SKB/P>)c
This syntactic definition suggests inference rule A7 used in

Theorem 1.

3. Completeness

The termination assertion p<S>q means that if some state ¢
satisfies p, then some computation of S from o halts in a state that
satisfies q. More precisely, a state ¢ satisties p<{S>q, written
ok=p<S>qy, if ok=p implies Ac’€m(S)e such that ¢'F=q. The
terminalion assertion p<S>q is valid, written F=p<{S>q, if every state
o satisfies p<S>q. It is a straightforward consequence of the
definitions that a state ¢ satisfies the termination assertion
<P(tv)q iff o satisfies the first-order assertion about global

procedure calls <P(t,v)>g. Thus the use of identical syntax for first-

order assertions about procedure calls and termination assertions
about procedure calls should not be confusing. Al valid
termination assertions about recursive programs are provable
using the axioms and rules of inference of Theorem 1 below.

Theorem 1: The following axioms are sound and
complete for proving termination assertions p<S>q
where p,q are first-order assertions about global
procedure calls and S is a recursive program.

Axioms

Al. qt/x]<x:= Pq

A2, (rAQ)<rdq

A3, (KPEVPRa) <P V> q

Rules of Inference

A4, p<SPr, kS>q - pl8i8>q

A5, (a) péSppq = pd§USNq
(b) p<S>q b= p<S,US>q

AB. py: =t Sly/xPq - pldec! (x init t) do S enddq
where y does not occur in p,t,S or q.

A7. p<S<B/P3>q - pldect (Pe=B) do Senddq

342

A8. piS>q k- KS>gq whenever rOp by the
rules of Lemma 2.

A9, p<S>q, KS>g - (pVr)<S>q

Note that Theorem 1 is not a relative completeness theorem of the
sort typical for partial correctness assertions. If a termination
assertion is valid, i.e. true under all interpretations of the function,
predicate and global procedure variables, then it is provable from
axioms P1-8 of Lemma 2 and A1-9 above without appeal to further
axioms. In particular, the valid termination assertions are
recursively enumerable, whereas the valid partial correctness
assertions are not. Theorem 1 generalizes Theorem 6.4 of Meyer

and Halpern [10].

The proof of Theorem 1 uses

Lemma 3: For every recursive program S and formula
q, there is a set {q;} of first-order assertions about
procedure calls such that <8>q= Vq;. Furthermore, if S
has no procedure declarations, then there is a single
such assertion g’ with <S>q=q’.

The lemma is proved by induction on programs, using the fact that
decl (P«==B) do S end is equivalent to the union of programs
S<«B/P> and hence to the disjunction of the corresponding

formulas. As a consequence of Lemma 2, we also have a

compactness theorem for first-order logic with global procedure
calls. Thus if p<{S>q is valid, and <S>q=Vg;, then there is some
finite disjunction q'=q,V...Vq,, such that p D g’ is valid. This
fact is critical to the proof below.

Proof of Theorem 1: Suppose E=p<S>q. We show
tnat p<{S>q is provable from A1-9 by induction on the
structure of S.

(a) If p<x : = t>qis valid, then ok=p implies o{t°/x}k=q.
By the Substitution Lemma, F=pDq[t/x] and therefore
FpDq[t/x] by the rules of Lemma 2. By A1, we have
Falx/t)<x : = g and so p<x:= t>q by A8.

by I EpirDg, then EpD(rAq) and hence
FpD(rAg). Since H(rAq)Xr>q by A2, we have
—p<r>g by A8.

(c) Assume EpdP(t,x)>q. Then the first-order
assertion about global procedure calls p2XP(t,x)>q is

valid and hence provable by the rules of Lemma 2.
Therefore Fp<P(1,x)>q by A3 and AS.

(d) Suppose F=p{S,;S,>q. There exist sets of formulas
{p} and {q;;} such that EG q=Vp; and
F=(SpPp=Via;;. Since FpDVq;;, it follows from the
compactness theorem of first-order logic (with globat
procedure calls) tnat there is some finite set M = MiXMj
such that B= p2V ;. epa; ;- Let r denate VjEMjpj. Then
since for any j,

;I=Vi€Miqi»i D Viqi,j and |=(V,q|’l)<S1>p,
we have
h(v(i,i)qui,i) <S1)f

and hence E=p<S>r. By similar reasoning we obtain
F=r{8,>q. From the inductive assumption we have
Fp<Sor and H1<8,>q which allow us to conclude
Fp<S84;S,0q by A4

() Union is similar to composition. Assume
k=p<8;US,>q. As above, there is a set of formulas
{8 }i>0i=1,2 With = <S>a = Vq;;. Then E=pIV,q;;
and so by compactness there is a finite set M with
E=pDVieMm, i=129i; Since F=g;<Spq, we have
F-q; <Spa and S0 by A9 and A5,
FViem, i=1,29$8,US8>q. Thus by A8, ~p<8,US>q.

(f) Assume E=p<{decl (x init t) do S end>q. A simple
induction on programs shows that for any variable y
that does not occurinp,t,Soraq,

E=pldecl (x init 1) do S end>q
iff
E=pdy =t S[y/xPq
Therefore Fp<y:= t;S[y/x]>q by the inductive
hypathesis. Thus F-p<{decl (x init t) do S end>q by A8.

(g} Suppose F=pddecl (P=B) do S end>q. Then by
definition of m{decl (P=B) do S end), we bhave
E=pDV(SKB/P»>q. As above, there is a set of
tormulas {q;;} with <S<B'/P»>q = Vja;; for each

i. From compactness, we know that there must be a
finite set M with E=pDVi)eyq; and so
Fp2Vy;])CMq,l from P1-8. Since F=q; <s<B'/P3>>q
for any i and |, it follows from the inductive hypothesis
that k-q;; <SS<B/P»>q. By A7, - q; <decl (P=B) do
S end>q and so from Ag, FVipemtiKdecl (P«=B) do
S end)q Therefore, by A8, i—p<deci (P=B) do S
end>q. A

4. Axiomatic Semantics

Many useful properties of programs may be proved using
uninterpreted termination assertions. In particular, termination
assertions determine the semantics of programs in the sense
discussed in Meyer and Haipern [10]. Namely, the termination
assertions valid for a program digtinguish it from al! inequivalent
programs. More precisely, for any program S, the termination
theory of S, written T (8), is the set of all pairs {p,q) of first-order
assertions about procedure calls such that p<S>q is valid. Two
programs have the same termination theory precisely when they
are equivalent, i.e.

Theorem 2: (Semantical Determination) For any
programs S and T, 9°(S) = F(T) iff m(S) = m(T).

Theorem 2 generalizes Theorem 5.1 of [10] to programs with calls

to global procedures and the proof is a straightforward

343

reformulation of that in [10]. The theorem holds, in fact, for any
programs S and T which are equivalent to arbitrary unions of
schemes, provided that for each scheme S; and first-order
assertion about procedure calls q, <Spq is equivalent to another
such assertion. In particular, Theorem 2 holds for any set of
arbitrary, not even recursively enumerable, infinite flowcharts (see

[10].

The main idea of the proof of Theorem 2 is that if 6’ € m(S)o—
m(T)o, then we can find some pair of formulas p and q with the
property that for any program T°, p<T%q is valid iff there is some
o”€m(T%o which is identical to o’ on the free variables of SUT. It
follows that p<S>q is valid but p<T>q is not. Therefore Sand T
have different termination theories.

Proof of Theorem 2: We may assume without loss of
generality that m(S)—m(T)=d. Let ¢'€m(S)o—m(T)o
and let x =xy,...,x,, include all free variables of SUT.
Since S is equivalent to a union of programs without
procedure declarations, U;S;, there is some such
program S, with o’€m(S)o. Let X’ =x,"..x," be a
vector of fresh variables. By Lemma 3, there is a
formula p with
p=<G O x=x".
Since m(S,) C m(8), we have F=pdSdx =x".

it remains to be shown that & p(T>x=x". Let gy =
af{x’ /y} and note that since the variables of x’ do not
appear in S or T, m(S)og = (M(S)o}{x’ /% } and
similarly for T.in particular, o5’ = o' {x°/x’} Is in
m(Sy)ey but differs from each state in m(T)oy on some
variable of x. By choice of (x*)?0. we have oglk=p but
ook~ <TOx = x’. Thaerefore p<T>x = x’ fails at oy and the
theorem is proved. 1

5. Conclusion

We have shown that the semantics of uninterpreted recursive
programs may be dsfined axiomatically using first-order
termination assertions. The set of valid termination assertions
defines program semantics, and all valid termination assertions
are derivable from axioms: This provides support for the general
thesis that practical programming languages may be defined

axiomatically.

The fact that first-order termination assertions are easily
axiomatized depends heavily on the compactness of first-order
logic. Compactness ensures that whenever a first-order assertion
p implies that a program S halls, it is because p implies a fixed
bound on the depth of recursive procedure calls in S in all

interpretations. As a consequence, there are many termination

assertions p<S>q which are valid over specific interpretations
such as the integers, but which cannot be proved in general since
S may not always terminate. Nonetheless, uninterpreted first-
order termination assertions provide enough information about
programs to distinguish between any pair of inequivalent

programs.

The extension of first-order logic to include calls to global
procedures has several applications. In addition to providing a
convenient "specification language" for procedures called by
recursive programs, first-order logic with global procedures may
be used as a starting point for stronger logics of programs such as
full Dynamic Logic [6]. Lemma 2 suggests that first-order
reasoning about programs with calls to undeclared global
procedures is essentially no more difficult than for programs
without global procedures. A possible direction for further work
might be to extend our system to include specifications for more

complicated "black-box" modules such as abstract data types.

Our completeness theorem shows that all valid termination
assertions are provabie. A stronger statement would be a
deductive completeness theorem, i.e. if any set of assertions T

semantically implies p<8>q, then p<S>q is provable from I'. As a

consequence of compactness, this is possible if I' contains only
first-order assertions. More precisely, if 'F=p<{S>q for any set I of
first-order assertions about global procedure calls, then there is a
single first-order assertion r which is a conjunction of assertions
from T such that F(pAr)XS>q by the axioms presented in
Theorem 1. However, if T is a set of termination assertions, then it
will not in general be possible to prove all consequences of I' from
any recursively enumerable set of axioms. In fact, even if we

consider only single termination assertions, deductive
completeness is not possible. This is because the assertion
true<S>frue semantically implies false iff the program S never
halts. Since the set of totally divergent programs is not recursively
enumerable [9], the set of termination assertions p<S>q such that

(p<8>g)F=false is not recursively enumerable.

Two directions for further investigation are to enrich the
programming language and to expand the assertion language.
Programs with procedures as parameters or more complicated
data objects are two possibilities. Our assumption that all
undeclared global procedures are explicitly parameterized might
also be relaxed by adding predicates to the assertion language

which allow the global variables used by a procedure to be

344

identified. For example, a predicate INDEPp(x) might be used to
state that the behavior of procedure P is independent of x. This is
an adaptation of the “interference" concept discussed by
Reynolds [11].

Trachtenbrot [12]. is to add relations to the language which would

Another possibility, foliowing the direction of

allow sharing of addresses to be treated explicitly. We do not
foresee any fundamental difficuities arising from these possible

extensions.

References

1. Apt.K.R. Ten Years of Hoare's Logic, A Survey, Part
I. Proceedings 5th Scandinavian Logic Symposium, 1979, pp. 1-
44,

2. Chang, C.C. and H.J. Keisler. Model Theory. North-Holland,
1973.

3. Cook, S.A. Soundness and Completeness of an Axiom System
for Program Verification. SIAM J. Gomputing 7 (1978). pp 129-
147,

4. deBakker, J. Matheinatical Theory of Program Correctness.
Prentice-Hall, 1980.

5. Enderton, H.B. A Mathematical Introduction to Logic.
Academic Press, 1972,

6. Harel, D. Lecture Notes in Computer Science. Vol. 68: First-
Order Dynamic Logic. Springer-Verlag, 1979,

7. Harel, D., A.R. Meyer and V. Pratt. Computability and
Completeness in Logics of Programs: Preliminary Report. 9-th
ACM Symposium on Theory of Computing, Boulder, Colorado,
May, 1977, pp. 261-268. Revised version, M.L.T. Lab. for Computer
Science TM-97, (Feb. 1978) 16 pp.

8. Hitchcock, P. and D. Park. Induction Rules and Termination
Proofs. In M. Nivat, Ed., Automata. Languages and Programming,
American Elsevier, New York, 1973, pp. 225-251.

9. Luckham, D.C., D.M Park and M.S. Patterson. On Formalized
Computer Programs. J. Computer System Sciences , 4 (1970). pp
220-249,

10. Meyer, A.R. and Halpern, J.Y. Axiomatic Definitions of
Programming Languages: A Theoretical Assessment (Preliminary
Report). Proc. 7-th Annual POPL Contf., January, 1980.
Massachusetts Institute of Technology Tech. Report
MIT/LCS/TM-163 (April 1980); to appear JACM (1981).

11. Reynolds, J.C. Idealized Algol and its Specification Logic.
Tech. Rep. 1-81, School of Computer and Information Science,
Syracuse University, 1981,

12. Trachtenbrot, B.A. On Denotational Semantics and
Axiomatization of Partial Correctness for Languages with
Procedures as Parameters and with Aliasing. Unpublished
Manuscript.

Appendix I. Global Procedure Calls

We show that axioms P1-8 are complete by showing that any
consistent set of assertions is satisfiable. Two important
preliminaries are

Lemma 4: (Generalization) Let I' be a set of
assertions and g an assertion. If '—q and z is not free
inI"then I'Vzq.

and

Lemma 5: (Deduction) If TU{p} - g, then
[—=(p Da).

Both are proved by induction on proofs (cf. Enderton [5]).

Let T be a set of first-order assertions about global procedure
calls such that x#x is not provable from I' using P1-8 and modus
ponens. Let L dencte the signature of I and £ the associated
first-order signature. We can construct a state satisfying I' from
constants following the usual Henkin-style procedure for first-
order logic (see Enderton [5] or Chang and Keisler [2]). The

construction consists of the following five steps.

(1) Select an infinite set 1 of fresh variables. The state ¢ satisfying
I’ will have equivalence classes of variables from Yas its domain.
Usually constants are used, but since constanis may not occur as
address parameters in procedure calls, variables work better for

assertions about global procedures calls.

{2) Construct a set of formulas I 2 T such that for each formula q
of the expanded language (with variables from %), I contains
formulas

(@) 2vxg D gfv/x]
(b)Y <P(t,x)>q D (KP(t,x)>x =v) A q[v/x]

where v and v =vy,...,v are new variables (from Step 1) and vaxx.
As each variable v€7'is added to I, an infinite set of formulas
{v=v}j>g for tresh vi€Tis also added. This is done in such a way
that ¥'is not exhausted by any finite number of additions. The
purpose of the formulas {v=vj}i_>_0 are to provide infinite
equivalence classes of variables from ¥, i.e. each equivalence
class will have infinitely many representatives in the model we

construct.

The construction proceeds in stages, starting from Iy = T'. Let T}
be the result of the i-th stage g, x, P, t and x be the i-th formula,
variable, procedure variable, vector of terms and vector of
variables in some enumeration in which all necessary

combinations appear. Then to construct T, 4, pick variables v
and v = Vy,...,v, (with vexx) from Y'which do not occurin I or g, P

or t. For each variable w€{v,v4....,v}, also form a set of formulas
Swz{w=wj}jzo such that &, has infinitely many fresh variables
wj€1’and no w; occurs in T, p, t, x, q or any previous €. Let8 =
U, 8, and let

Ti,i=Ti U {(ab)} U s
If I'; is consistent, then so is T}, 4 as follows. Suppose IU{(b)} is
inconsistent. Then by the Deduction Lemma and propositional
reasoning,

I<P(t,x)>q
and

T=—(<P(t,x>x = v A g[v/x]).
But since v is a vector of variables which do not appear in T, it
follows by Generalization (Lemma 4) that

Ii=—3vKPELx)>x = v A gfv/x]).
Therefore, by P8,

Fi-=(<P(t,x)Dq),
which contradicts the assumption that T is consistent. By a
similar argument (see [2]), the consistency of T;LU{(a),(b}} may be
reduced to that of IU{(b)}. Clearly adding sets of the form
{w=wi} does not destroy consistency since none of the wi's
appear in I;U{(a),(0)}. (If some set T U{w=w,} is inconsistent,
then F‘P—‘t(w:wk) and so by Generalization F'I—Vwk"l(w=wk).
ie.Tis inconsistent.) Thus if I is consistent, so are I'y, T',,... and

therefore I’ = U;T; must be consistent,

(8) Extend I to a maximally consistent set 4, i.e. for any formula

q, either g€A or 7g€A. This is done in the usual manner [2].

(4) Define a state o whose domain D° is the set of equivaience
classes of variables from ¥. Define functions f° and relations RY

according to the formulas in A.

For any terms tand t, define t= =1t iff (t=t') € A and let [t] denote
{t'jt==t}. LetD® = {{v]| v€%}. Define v’ =[v] and t° = [t]. Note
that t°€D° since 3y(t=y) is provable from P1-6 and
(Fy(t=y) Dt=Vv)€EA for some vEY by construction of A. For
functions and relations, define

@ vy alv,)) = (vy.v)®

(b) [v4],---[v, > ERT iff Rvy..v, €A for Rin L, and
(c) <b,c,d> € P iff there exist vectors of variables u, v
and w from YwithE, =E,, =E, b={u], ¢ =[v] and

d =[w] such that (KP(u,v)>v = w)€A. Here [u]

denotes [u,],...,[uvpl.

It is straightforward to verify that f” and RY are well-defined by (a)

and (b) as usual (see [2]). To see that (c) meets the restriction

posed in Section 1, note that if <b,¢,d>€P then
iEj= vi=vjand w;=w;
and so

iEj=>¢=¢janddj=d;
(5) Show that ok=q iff €A by induction on the length of formulas.

For first-order atomic formulas, this is immediate from the
definition of ¢. The connective cases are also straightforward.
For example, ok="1q iff ak=q iff q € A iff =q € A.

Consider Vxq. Note that there is some formula =1¥xq 3 Tq[vg/x]
in A with vq€“f not appearing in q.lf gl=VYxq then certainly
o{lvgl/x}F=q. By the substitution lemma, oF=qlvy/x]. Since v,
does not appear in q, the formula q[vq/x] has the same length as g
and so by the inductive hypothesis q[vq/x]GA. it follows that Yxqg
must be in A since otherwise —1Vxq would be in A and hence

=glvy/x]

For the converse, suppose ob=Vxq. Then for some vEY, o{[v]/x}b=
q. Therefore, by the substitution lemima, ok g[v/x]. Since every
equivalence class [v] is infinite by construction of I (Step 2), it
may be assumed that v does not occur in g and hence g[v/x] has
the same length as q. Thus qfv/x] € A by the inductive hypothesis.
Therefore —1g{v/x]€A and VYxg cannot be in'A by P2,

The final case is <P(t,x)>q. We first consider q of the form x=y
with x=2y. [t follows from the definition of satisfaction that
a=Pt,xPx =y iff (t",x”,y")GPEx".
By definition of ¢, (t",x",y")EPEx" iff
(*) There exist vectors of variables u, v
and w with [u] = [t], [v]=[x], [w]=[y]
and £, =E,, =E, such that (KP{u,v)>v=w) € A

1t remains to be shown that (*) is equivalent to
**) KPRxpPx=y) € A
If (*), then by definition of the equivalence classes [] of terms,
Au=tAv=xAw=y.
Thus from P7,
A (KP{EXPx =Y)
which implies (**). Conversely, if (**), then since Jz{(z=t) is
provable from P1-6 for any term t, the construction of A ensures

that there exist vectors of variables u, v and w with v=~x such that

Au=tAv=xAw=y,
Therefore, from P7, we conclude (*). Thus
o= (KP(LxPx =y) iff KPExPx=y) €A,

346

in general, if al={P(t,x)>q, then IvETwith v~x and

(t",x",v")EPEx" and o{v’/x}k=q
Since each equivalence class of variables in V'is infinite, each v,
may be chosen so as not to occur in g. By the Substitution Lemma,
oF=q[v/x] and so by the inductive hypothesis, g[v/x]€A. Since
oF=(KP{txP>x=v), we have (KP(t,x>x=v)EA and therefore
AF<P(t,x)>q by P8. Since A is deductively closed, <P(t,x)>q € A.

For the converse, assume <P(t,x}>q € A. Then by the construction
of A,

P(txPx=v Aqg[v/x]€A
for some vEY not occurring in t, x or g and with v~x. Therefore
oF=<P(t,x)>x =v and so

(t",x"’,v"’)EPEX‘7
By the inductive hypothesis, sF=q[v/x] and so by the Substitution
Lemma, o{[v}/x}=q. Thus o=<P(1,x)>q. This shows that for any

first-order assertion about global procedures q, ok=q iff gEA.

From (5) and I' C A it follows that ot=T". Thus every consistent set

is satigfiable and the axiomatization is compiete.ll

