
Code Generation for Expressions with. Common Subexpressions

EXTENDED ABSTRA CT

A. V. Aho and S. C. Johnson
Bell Laboratories,

Murray Hill, New Jersey 07974

J. D. Ullman*
Princeton University

Princeton, New Jersey 08540

1. Introduction
Easy as the task may seem, many

compilers generate rather inefficient code.
Some of the difficulty of generating good
code may arise from the lack of realistic
models for programming language and
machine semantics. In this paper we show
that the computational complexity of gen-
erating efficient code in realistic situations
may also be a major cause of difficulty in
the design of good compilers.

We consider the problem of generat-
ing optimal code for a set of expressions. If
the set of expressions has no common sub-
expressions, then a number of efficient op-
timal code generation algorithms are known
for wide classes of machines [SU, AJ, BL].

In the presence of common subex-
pressions, however, Bruno and Sethi have
shown that the problem of producing op-
timal code for a set of expre~ssions is NP-
complete, even on a single register machine
[BS, S1]. However, Bruno and Sethi's proof
of NP-completeness uses rather complex
expressions, so it leaves some hope of being
able to find efficient algorithms for generat-
ing optimal code for restricted classes of ex-
pressions with common subexpressions.
Unfortunately, we show in this paper that
the problem of optimal code generation

* Work partially supported by NSF grant DCR74-15255.

remains NP-complete even for expressions
in which no shared term is a subexpression
of any other shared term. We also show
that the optimal code generation problem is
NP-complete for these expressions on two-
address machines, even when the number
of registers is unlimited.

Faced with these negative results, we
consider both heuristic and exact solutions
for generating code. First, we investigate
the worst case performance of a collection
of fast heuristics for single and multiregister
machines. One seemingly reasonable
heuristic is shown to produce code that is in
the worst case three times as long as op-
timal; other heuristics are given which have
a worst case of 3/2 for one-register
machines.

Then, we present for the single regis-
ter machine an algorithm which generates
optimal code and whose time complexity is
linear in the size of an expression and ex-
ponential only in the amount of sharing.
Since the number of common subexpres-
sions in expressions tends to be limited in
practical situations, this approach appears at-
tractive. Finally, after discussing code gen-
eration for commutative machines, we con-
clude with a list of open problems.

19

2. Background and Definitions

2.1 Dags

For the purposes of this paper we can
assume we have a compiler of the form

. ~ F r o n t ' ~ Dag ~ Code

End I M a ~ !Generator[

The front end translates a source program
into a sequence of straight-line intermediate
code segments, called basic blocks, along
with information that identifies the flow of
control among basic blocks. Within a basic
block the flow of control is sequential.

Each basic block consists of a se-
quence of assignment statements of the
form

a ~ - b o p c

where a, b, and c are distinct variables and
op is any binary operator for which there
exists a corresponding machine operation.
Since we shall concentrate on generating
code for basic blocks in this paper, the flow
of control information will not be men-
tioned further.

The dag maker transforms the basic
blocks into a directed acyclic graph (dag, for
short) that represents the computations of
the expressions in the block. (See [AU] or
[CS] for algorithms to construct a dag from a
basic block.) We shall not consider the use
of algebraic identities to transform dags to
make them easier to compute; this has been
discussed in [Brl, [Fa].

Fig. 1 shows a basic block and its
corresponding dag.

We call node 2 a right child of node 3,
and a le f t chi ld of node 4. For symmetry,
we call node 4 a right parent of node 2, and
node 3 a/ef t parent of node 2.

We say node x uses a node y if y is ei-
ther a left or right child of x. We say x lef t

uses (resp. right uses) y if y is a left (resp.
right) child of x.

u 1 *'--c - - d
u 2 * - b + u 1
u3 " - a * u 2
U4 ~- 'U2 * U 1

U 5 ~ U 3 + U 4

Basic Block

Dag

Fig. 1 Basic Block and its Dag

A node with no children is called a
leaf. A node with no parents is called a root.

Nodes that are not leaves are often referred
to as interior nodes.

We assume for simplicity that all
operations are binary. We ignore con-
straints that may be introduced into the dag
because of side effects. For example, sup-
pose two nodes of a dag represent the
operation of indirect assignment through a
pointer. If the two pointers could point to
the same datum, and the source code
specified an order for the two assignments,
then an edge in the dag connecting the two
nodes in the proper order must be intro-
duced.

2.2 The Machine Model

We assume the code generator is to
produce code for a multiregister two-address
machine. The instructions of the machine
are of the form

(1) r~ .-- r i op ~/
(2) r i " - r i op m
(3) r~ .-- r/
(4) r i ~ - m

/* op-instruction */
/* op-instruction */
/* register copy */
/* load */

20

(5) m~-- -~ /* store */

Here r i and §. are any of N >/ 1 registers,
and m is any memory location; op stands for
any machine operation. When a machine
has only one register (i.e., N = 1), then
there are only type (2), type (4), and type
(5) instructions.

A machine program is a sequence of in-
structions. The length of a program is the
number of instructions it contains.

Definition: The optimal code generation prob-
lem (OCG) is to produce from a dag a shor-
test machine program that evaluates and
stores all roots of the dag.

When discussing single and multireg-
ister machines, we assume the leaves of the
dag are labeled by memory locations and
the interior nodes (non-leaves) by machine
operations. We also assume for conveni-
ence that a dag has no root that is a leaf.

Example 1: The dag of Figure 1 can be
evaluated on a two-register machine and
stored in memory location m by the se-
quence of instructions:

r 1 ~ c / * l o a d c * /
r I ,--- r 1 - d /* evaluate node 1 */
r 2 "-- b /* load b */
r 2 ,--- r 2 + r 1 /* evaluate 2 */
t ~---- r 1 /* store 1 */

r t ~--- a /* load a */
r I ,-- r 1 * r 2 /* evaluate 4 */
r 2 ~ r 2 * t /* evaluate 3 */
r I ~--- r 1 + r 2 /* evaluate 5 */
m ~ q /* store root */ []

In Section 6, we shall discuss code
generation for commutative machines; i.e.,
machines in which for every type (1) and
(2) op-instruction above, thege is also an in-
struction of the form

(1 ') rj " - ~ op ri

(2 ') r i .-'- m op r i

Even for noncommutat ive machines, OCG
is a very difficult problem; the next section
discusses why.

3. Why OCG is Hard

Bruno and Sethi have shown that
OCG is NP-complete even for one-register
machines. Their proof technique was to po-
lynomially transform the satisfiability prob-
lem with three literals per clause (see
[AHU], e.g.) to OCG. Their technique,
however, resulted in rather complex dags.
We begin by showing that OCG is NP-
complete for one-register machines even on
a rather simple class of dags.

A node both of whose children are
leaves is called a level-one node. A shared
node in a dag is a node with more than one
parent. A level-one dag is a dag in which
every shared node is a level-one node. A
l ea fdag is a dag in which every shared node
is a leaf [C].

Several code generation algorithms for
one-register machines make use of the no-
tion of a left chain, that is, a sequence of in-
terior nodes n t , n 2 n k such that n i is
the left child of hi+ 1 for 1 ~< i < k. For
example, in the dag of Figure 1, 3-5 and 2-4
are the only nontrivial left chains. The first
(lowest) node on a left chain is called its
tail, and the last (highest) node its head.

Definition: The feedback node set problem
(FNS) is: Given a directed graph G, find a
smallest set of nodes F (a feedback node set)
such that removing F from G eliminates all
cycles. FNS is a well-known NP-eomplete
problem (see [AHU], e.g.).

Theorem 1: OCG for level-one dags on a
one-register machine is NP-complete.

Proof." We show how to polynornially
transform an instance of FNS to OCG. Let
G be the directed graph in the feedback
node set problem. From G construct a dag
D as follows. For each node n in G of out-
degree d ~> 0 create a corresponding left
chain of d + 1 interior nodes n 0, n I n d
in D; n o is the tail and n d the head of the
chain. Make no a level-one node by giving
it left and right children labeled by memory
locations.

The remaining edges of D are deter-
mined as follows. Suppose the out-edges of
n are directed to nodes m I , m 2 m d in
G. Make the tails of the left chains

21

corresponding to m I , m 2 m d right
children of t l I , I12 r i d , respectively, in
D.

Fig. 2(a) shows a directed graph G and
Fig. 2(b) the dag resulting f rom G using the
construction above.

(a) Directed Graph G

2,

(b) Resulting Dag D

Fig. 2 Graph and Corresponding Dag

We must now show that we can con-
struct a minimal feedback node set F for G
from an optimal program P for D and con-
versely. It can be shown that an optimal
program for a one-register machine does not
store and load any uniquely left-used interi-
or nodes of a dag (interior nodes with exact-
ly one left use and no right uses). Thus ex-
cept for the loads of leaves, the only loads
in P are loads of some level-one nodes. It
can be seen that these level-one nodes
identify a feedback node set F in G. Con-
versely, given a minimal feedback node set
F of G we can construct an optimal program
for D by first evaluating and storing the tails
in D of the left chains corresponding to the
nodes in F.

For example, {d} is a minimal feed-
back node set for the directed graph G of
Fig. 2(a). The optimal program P
corresponding to this feedback node set first
computes node d o of D in Fig. 2(b). Then

P evaluates c 0, c I , b 0, b I , b 2, a o, a I , d I . To
evaluate d 1, P needs to load do; this is the
only level-one node loaded by P. []

To appreciate the difficulty of generat-
ing optimal code for dags, let us assume we
are generat ing code for an in f ini te register
machine, a machine in which the n u m b e r
of registers is unbounded. To eliminate the
problem of deciding what to store or load,
let us fur ther assume the leaves of the dag
are labeled by register names rather than by
memory locations; similarly, let us assume
we need not store the roots. The relevant
instructions of the infinite register machine
then become

ri ,--- ri op ri

ri ,--- fi

Even in this highly simplified env i ronment ,
the optimal code generat ion problem is
NP-complete .

The ore m 2: OCG for leaf dags on an infinite
register machine is NP-complete .

Prool? Similar to that of Theo rem 1. []

Thus, even if the problems of code
selection and storage of intermediate values
are made trivial, just finding an optimal
evaluation order for the nodes of a dag is an
NP-comple te problem. On the other hand,
if we perturb the infinite register machine
architecture by permitt ing arbitrary three-
address instructions of the form
r i ~---- rj op r k , then we can generate optimal
code for arbitrary dags in linear time. We
simply evaluate the dag bot tom up, level by
level, assigning a distinct register to each
node.

The three main problems in code gen-
eration are what instructions to use, in what
order to do the computat ions, and what
values to keep in registers. The results of
this section indicate that, for two-address
machines, just deciding the order in which
instructions are to be executed is an NP-
complete problem.

22

4. Heuristic Techniques

Since even simple versions of the op-
timal code generation problem are NP-
complete, it is not surprising that in the past
code generation algorithms for dags usually
have made several restricting assumptions.
One approach has been to ignore sharing by
representing a set of expressions as a forest
of trees. For this case a number of optimal
code generation algorithms have been
developed [SU], [A J], [BL], [Was]. Another
approach has been to avoid the problem of
finding an optimal evaluation order by tak-
ing some fixed order for the nodes of a dag
and then concentrating on optimal utiliza-
tion of registers ([Bea], [HKMW],
[WJWHG], [Fr], e.g.). Optimal code cannot
be guaranteed, however, without consider-
ing sharing and retaining the freedom to
reorder code that is inherent in the source
program.

When faced with an NP-complete
problem, there are two standard approaches:

(1) develop and analyze heuristics, and

(2) look for useful special cases that
have polynomial time algorithms.

We shall consider both approaches here.
For the analysis of heuristics we use the
worst case measure, a time-honored way of
measuring the goodness of a heuristic which
may be applied to various populations of
data. For our purposes, we define the worst
case of an algorithm to be the supremum
over all dags of the ratio of the length of
the code produced by that algorithm to the
length of the optimal code for the dag.

4.1 Two Methods of Accounting for Costs

There is a usual way .of charging the
interior nodes of a dag for the cost of their
evaluation. Charge a node one unit of cost
for each of: (1) performing its operation, (2)
storing its value, and (3) loading its left
child or copying its left child from another
register.

We call a program semi-intelligent if

(1) it performs no useless instructions,
i.e., instructions which can be deleted
without changing the value of the program,

(2) it never moves (via loads or
register-to-register transfers) a value into a
register without subsequently left using that
value, and

(3) it never stores the same value
more than once.

It is easy to check that a semi-
intelligent program will have each of its in-
structions assigned to some one node by the
above scheme. Formally, we may show the
following.

Theorem 3: Let P* be an optimal program for
some dag D, and let P be any semi-
intelligent program for D. Then the ratio of
the length of P to that of P* is at most 3.

Proof." Using the above costing scheme,
every interior node of D is assigned at least
one instruction, but never more than three
instructions (a load, an operation, and a
store). []

Obviously there are an infinite
number of programs to evaluate any dag.
We shall restrict ourselves to semi-
intelligent programs. Doing so serves only
to rule out blatantly inetiicient programs.
There is little loss of generality since we can
construct from any program P an equivalent
semi-intelligent program in time proportion-
al to the length of P.

There is a second cost accounting
scheme which we find quite useful. This
scheme gives the same overall cost as the
scheme above but the cost units are appor-
tioned differently amongst the nodes. We
now charge each node for every instruction
that affects its value, i. e., for the operation
that computes its value, a n d any loads,
stores, or register-to-register copies of that
value. We call this cost accounting scheme
the use-cost.

If n is a node of a dag, let i (n) and
r(n) be the number of times n is used as a
left and right child, respectively, of some
other node. In the dag of Figure 1, for ex-
ample, /(1) - - 0 and r(1) z 2 . Also,
/(2) -- r(2) = 1.

Lemma 1: The following costs are upper and
lower bounds on the use-cost of a node n
with respect to any semi-intelligent program
on a one-register machine.

23

case lower upper

(1) n is a leaf / (n) / (n)

n is not a leaf and:
(2) / (n) = 0 2 2

(3) / (n) > 1 / (n) + l / (n) + 2

(4) / (n) = 1 1 3
and r (n) = 0

(5) /(17) = 1 2 3
and r (n) > 0

Prool? Let us consider case (3) as an exam-
ple. Surely an op-instruction evaluating n is
necessary. Since n is used more than once
and there is only one register, one store in-
struction is also necessary. Every time n is
left used, its value in the register is des-
troyed, and it. must be reloaded the next
t ime it is left used. Thus, / (n) - 1 load in-
structions are necessary, and I(n) load in-
structions are sufficient by condition (2) in
the definition of semi-intelligent. There-
fore, a total of / (n) + 1 or / (n) + 2 instruc-
tions is needed. []

Lemma 2: For a multiregister machine, Lem-
ma 1 holds with the lower bound set to 1 in
cases (2) and (5) and t o / (n) in case (3).

Prooj? Omitted. []

We observe from L e m m a 1 that it is
only interior nodes with one left parent and
no right parent that could give us a worst
case ratio of 3 for the one-register machine.
Interestingly, it is quite easy to handle such
cases. I f node n is uniquely left-used, we
can a lwaysa r r ange to have n evaluated im-
mediately before its parent. Thus it is un-
necessary to load or store n, and it achieves
a use-cost of 1. Therefore , we can state the
following.

Theorem 4: Any. algorithm for a one-register
machine which generates semi-intell igent
programs that avoid storing uniquely left-
used nodes has a worst case no greater than
3/2.

Note that Theo rem 4 fails to hold in
the multiregister case, since / (n) = 1,
r (n) > 0 is another case that can yield a
worst case ratio of 3, and some other cases

yield a ratio of 2.

We must also point out that the use-
cost can, in some cases, underest imate the
cost of an optimal program on a one-register
machine by a factor of 3/2. Fig. 3, for ex-
ample, shows a dag whose lower bound
use-cost is 6 + 2 p . This lower bound, how-
ever, is not achievable since any program
evaluating this dag must store and subse-
quently load each of the +-nodes. The cost
of an optimal program for the dag is 6 + 3p.

'p nodes

Fig. 3 Underes t imated Dag

Thus, if we found an algorithm with a
worst case ratio less than 3/2, the proof of
that worst case bound must use a more so-
phisticated cost analysis than the above.

4.2 Heuristics for One Register Machines

An evaluation order for a dag is any to-
pological sort of the interior nodes of the
dag. For a one-register machine, from an
evaluation order we can easily construct a
program that is as short as any other which
computes the dag in that order. Thus an al-
gori thm that produces an evaluation order
for a dag is in effect a code generation algo-
r i thm for a single register machine. In this
section we analyze the performance of some

24

simple heuristics for creat ing evaluat ion ord-
ers for single register machines .

Definition: T h e Bottom-up Greedy Algorithm
(BUG) creates an evaluat ion order for a dag
by repeatedly listing the nodes o f a longest
left chain that can be current ly evaluated.
To evaluate a node, both its chi ldren must
have been previously evaluated. Note that
it is permissible for the right child o f a node
in a chain to be an uneva lua ted node which
is lower on the same chain.

Example 3." Retu rn to the dag of Figure 1.
The only left chain that carl be listed initial-
ly is 1. T h e n the chain 2-4 can be listed,
and finally the chain 3-5, giving an evalua-
tion order o f 12435. In this case the code
is:

r I * - -c
r 1 ~-- r I -- d
t *"-r 1

r 1 *---b
r I *---r 1 + t
u *--'r 1
r I *"- r I * t
v *---r 1
r I , ---a
r I *--- r I * u
r I ~ r 1 -I- v

m ,---r I

By L e m m a 1, this program is optimal. []

Theorem 5." BUG has a worst case ratio o f 3.

Proof" Figure 4 shows how the worst case o f
3 can be approached arbitrarily closely. At
the right we show p nodes c 1, c 2 Cp,
called "cont ro l le rs , " whose initial evaluat ion
is necessary for optimal code. I f we evalu-
ate the control lers first and store them, at a
cost o f 3p, we can go up each o f the p left
chains with a cost o f p + 2 per chain, for a
total o f p 2 + 5p.

However , BUG c~3uld select c 1, then
the bo t tom node of each chain, then c 2,
then the next node o f each chain, then c 3,
and so on, using three instruct ions per inte-
rior node. T he worst case ratio for this ex-
ample i s 3 (p + 1) / (p + 5) . []

p

Fig. 4 B U G B u g g e r e r

Definition: The Top-down Greedy Algorithm
(TDG) ([AU], p. 866; see also [Wai]) works
by listing left chains in the reverse order o f
their evaluation. Repeatedly select a node n
all o f whose parents, if any, have already
been listed. T h e n list n and as many nodes
o f the left chain with head n as may be list-
ed. Note that a node may be listed only if
all o f its parents have already been listed, as
we are genera t ing the evaluat ion sequence
in reverse. Also, once an unlistable node is

e n c o u n t e r e d , we do not proceed fur ther
down the chain. After sequenc ing all interi-
or nodes, reverse the list to get the evalua-
tion order.

Example 4: In the dag o f Figure 1, we would
select the root 5 first and find we may list it
and its left child 3. T h e n we could select 4,
since its parent, 5, has already been listed.
We could proceed to 2, the left child o f 4,
since its parents, namely 3 and 4, have been
listed. Finally we list 1. Revers ing the list
gives 12435 again, so the same code as for
BUG is produced in this case. []

T D G and BUG, however , are quite
different in their worst case performance.
T D G produces optimal code for Fig. 2 for
which BUG produced the worst case code.

25

Theorem 6: TDG has a worst case ratio of
3/2.

Proof." To see that it is no worse than 3/2,
note that if n is uniquely left-used by m,
then n must be listed immediately after m,
and therefore n is evaluated immediately be-
fore m. Thus case (4) of Lemma 1 is always
handled correctly; the lower bound of one
instruction charged to n is attained. All oth-
er cases in Lemma 1 have a ratio of 3/2 or
less.

For the proof that 3/2 can be ap-
proached from below, consider the grid of
Figure 5. The optimal sequence of evalua-
tion goes up (the slanted) left chains, start-
ing at the bottom right, storing each value
with the exception of those on the leftmost
chain. Roughly two instructions per node
are used in this evaluation sequence. On
the other hand, TDG could list nodes row
by row, from the right, taking three instruc-
tions per node. []

Fig. 5 Grid

It is also .worth noting that TDG al-
ways handles the case r(n) -~ O, I(n) > 1
correctly, since n will be listed immediately
after the last of its left parents to be listed.
Thus the generated code will have only
I(n) -- 1 loads of n.

In truth there is no magic about "top
down" vs. "bottom up" algorithms; by ex-
ercising care in the selection of chains it is
easy to construct a modification of BUG

that has the same performance as TDG.

Another 3/2 worst case algorithm can
be obtained using depth first search.

Definition: The Depth-first Search Algorithm
(DFS) performs a depth-first search (see
[AHU], e.g.) of the rag, preferring to move
to the right child rather than the left when
there is a choice. Nodes are then evaluated
in order of last visit.

Theorem 7: The worst case ratio for DFS is
3/2.

4.3 Heuristics for Multlregister Machines
The Top-down Greedy Algorithm can

be generalized to the case of an N register
machine. For a multiregister machine, how-
ever, it is no longer sufficient to specify only
an evaluation order; we must also specify in
which register a computation is to be done.
The following procedure lists the interior
nodes of a dag in reverse evaluation order.
The register assigned to a node is the regis-
ter in which that node is to be computed.
Stores and loads of registers are performed
as needed.

procedure TDG(n, k) ; /* n is a node, k is the
number of registers available */
if k >/ 1 and n is an interior node all of
whose parents have been listed then

begin
list n and assign it register k;
TDG(right child of n, k - 1) ;
TDG(left child of n, k)

end;
/* main program */
while not all interior nodes have been listed
do

select an interior node n, all of whose
parents have been listed, and perform
TDG(n, N)

Although TDG performs well in many
cases, the worst case performance of TDG
approaches 3 as Ngets large.

Theorem 8: The worst case ratio for the TDG
Algorithm with N registers is no less than
3N/(N + 1).

26

ProoJ? The grid of Figure 5 provides the
essence of the proof. []

Demers [D] has considered a generali-
zation of DFS to multiregister machines in
which a depth-first search is used to obtain
an ordering of the nodes, and then
Beladay's algorithm [Bel] is used to allocate
registers.

5. An Optimal Algorithm for the One Regis-
ter Machine

We define s (n) , the sharing of a node
n in a dag, to be

s (n) = / (n) + 1 i l l (n) > 1
s (n) = 2 i f / (n) = 1 and

r (n) > 0
s (n) = 0 otherwise

The sharing, s, for a dag is the sum of the
s (n) over all interior nodes n in the dag.

We shall now present an algorithm for
the one register case that is optimal and is
of time complexi ty O (p 2 S) , where p is the
number of nodes in the dag and s is the
amount of sharing. To introduce this algo-
rithm, we note that any dag can be parti-
tioned in various ways into left chains.
Given a program for a dag, we can create a
partition by looking for maximal sequences
of one or more consecutive operations unin-
terrupted by loads. Each such consecutive
sequence forms a left chain, and the set of
left chains so formed partitions the interior
nodes of a dag.

We can obtain a partial converse of
the above. We say that a partition of the
interior vertices of a dag D is legal if the fol-
lowing holds: Form a graph G whose nodes
correspond to the left chains of D and with
an edge from c I to c 2 whenever there is a
path in D from some node of c l to some
node of c 2. Then there must be no cycles
in G. We may thus state the following.

L e m m a 3: There is an evaluation order pro-
ducing a given partition of a dag into left
chains if and only if that partition is legal.

More importantly, we can relate the
cost of evaluation sequences to the costs of
the heads of the left chains.

Theorem 9: Let D be a dag. Then there is a
constant c o with the following property:
Suppose P is any semi-intelligent program
evaluating D. Let the partition induced by
P have k I chains whose heads are left used
at least once. Let k 2 of these be uniquely
left-used. Then the length of P is
c D + k 1 + k 2. Conversely, if there is a
program for D of cost c, then we can find a
legal partition into left chains with parame-
ters k I and k 2 such that
c = c D + k 1 + k 2 .

ProoJ? c D is the sum over all interior nodes
of D of the lower bound on cost given in
L e m m a 1. k 1 accounts for excess loads of
left-used nodes, that is, the /th load of a
node left used / times. Note that a node
will be loaded / rather than / - 1 times if
and only if it is the head o f a c h a i n , k 2 ac-
counts for stores of uniquely left-used
nodes. []

We intend to reduce the problem of
finding an optimal program to that of
finding a set of heads of chains. Clearly any
node with / (n) = 0 must be the head of a
chain. A node with r (n) = 0 and
/ (n) = 1 can always be attached to its left
parent in a chain, as claimed in the follow-
ing lemma.

L e m m a 4." If zr is a legal partition of dag D,
and there is a uniquely left-used node n
which heads a chain, then the partition
formed from zr by removing n from its
current chain and attaching it to the chain
of its parent is also legal.

Prooj? If there is a path to n in D, it must go
through the unique parent of n. []

We thus see that the question of
whether or not a node is the head of a
chain in an optimal program is only un-
resolved for those interior nodes with more
than one parent, at least one of which is a
left parent. We may thus try all subsets of
these nodes, selecting those which are not

the head of a chain. For each selected node
with more than one left parent, we must
also select the left parent to whose chain it
is attached. The number of these selections
can be shown not tO exceed 2 s, where s is
the sharing. We may thus test each selec-
tion, in order of lowest cost, until we find

2 7

one that is legal. The test for legality is
seen to be O (p) on a p node dag. Thus:

The orem 10: There is an O (p 2 s) algorithm
for obtaining an optimal program for a dag.

6. Commutative Machines

A c o m m u t a t i v e m a c h i n e is one in which
for each instruction of the form r i ~ - r i op r/
or r i ~-- r i o p m there is also an instruction
of the form r i ` - - ri op r i or r i ` - - m op r r

That is, the register used to hold the result
can be the same as as either the left or the
right register operand. This arrangement al-
lows us to think of the order of the children
of any node as being permutable, as far as
code generation is concerned, although the
operator itself may not be commutative.

For one-register commutative
machines the analog of a left-chain is a
worm. A worm is any path in a dag, exclud-
ing the leaves. We define a partition of a
dag D into worms to be l ega l if the graph
whose nodes are the worms of D, with an
edge from w I to w 2 if and only if some
node of worm w 1 has a path in D t o s o m e
node of worm w 2, is acyclic. The following
is an analog to Theorem 9.

T h e o r e m 11: Let D be a dag. Then there is a
constant c D with the following property.
Suppose D has a legal partition into worms
such that there are k I worms whose heads
are used (either left- or right-used), k 2 of
which are uniquely used. Then there is a
program for D on a commutative machine
of cost c D -~ k I + k 2. Conversely, if there
is a program for D with cost c, then we can
find a legal worm partition with parameters
k I and k 2 as above, such that
c = c D + k 1 + k 2 .

We can generalize the top-down
greedy algorithm to commutat ive machines
by listing worms in reverse evaluation order.
If we always list a uniquely used child im-
mediately after its parent, then we can show
that 3/2 is a worst case ratio for this algo-
rithm for the commutat ive one-register
machine.

We can also produce an analog of the
optimal algorithm of Section 5 which is po-
lynomial in the size of the dag and ex-
ponential only in the sharing. The follow-

ing lemma is needed; it is not as strong a
result as could be proved about worm parti-
tions.

L e m m a 5: Let W be a legal worm partition
of a dag. Suppose node n I is the head of a
worm w = n l, n 2 n k in which
n 1, n 2 n k are all uniquely used. Then
there is another worm partition W' of D
with a worm of which n 1, n 2 n k is a
proper tail (that is, the new worm includes
at least the parent of n 1) such that the cost
of the program induced by W' is no greater
than the cost of the program induced by W.

ProoJ? Fig. 6 shows a fragment of a dag in
which node m is on some worm; perhaps n,
m's other child, is on the same worm.

Fig. 6 Worm Construction

Remove edge m-- . n from that worm
if it is there, and add the edge m--- ,n I.
This may make node n a head, but n I will
no longer be a head. It is easy to show that
the cost of the partition is not increased,
and the fact that n 1 , n 2 n k are unique-
ly used makes a proof of legality for the
new partition easy. []

T h e o r e m 12: There is an O (n 6 s) algorithm
for finding an optimal program on a com-
mutative machine for an n-node dag with
sharing s.

Prooj? The first step is to take the dag D and
divide it into trees, an idea discussed by
[Wai]. For each root or shared node n, we
do the following. Find the maximal subtree
with n as root which includes no other
shared nodes, except as leaves. An example

28

is shown in Fig. 7.

(a) Dag

(b) Trees

Fig. 7 Division of a Dag~into Trees

Note that each multiply-used node ap-
pears as a leaf in at most one tree per use.
If it is used by two nodes iri the same tree,
divide the shared node into as many leaves
as necessary so that no leaf is used more
than once. Note also that no non-shared
node appears in more than one tree.

The algorithm begins by determining
which edges of tile various trees belong to
worms. Later we shall combine the trees to
allow worms to cross tree boundaries. Ima-
gine worms proceeding upward from all
leaves in a given subtree. The fact that
worms do not actually reach the leaves can
be accounted for later by removing edges
from worms at the bottom. At each interior
node n we must decide which, if any, of the
worms reaching children of n include the
node n. If either or both of the children of
n are part of worms that begin at tree leaves
of D or interior nodes of D that are not
shared (recall some leaves of a tree here
may actually be shared nodes of D), then
Lemma 5 assures us that we may allow any
such worm to continue up to n. The only
uncertainty occurs when both worms reach-
ing the children of n originate at shared
nodes of D. Then we must try all three
possibilities - that either worm or neither
incorporates n. In the last case, n begins a
new worm, a situation which could be
necessary to achieve a legal worm partition.

We see from the above that the only
worms where there is uncertainty regarding
how far up to proceed are those which ori-
ginate al~ shared nodes of D. If tree T i has
k i leaves which are shared nodes of D, then
there are at most 3 ki outcomes for the
"contests" regarding which worm proceeds
upwards. Moreover, for each shared node n
that is a leaf of T i, n's worm in T/ may or
may not connect with that worm which in-
cludes n in the tree of which n is the root.
(Recall the edges from leaves to their
parents are not really parts of worms.) Thus,
we may either include or exclude the edges
from node n to its parent in T i from the set
of edges of D comprising worms.

Thus for tree T/ there are at most 6 ki
subsets of edges which could possibly be
the edges used in an optimal worm partition
of D. Not all subsets of edges need be con-
sistent. For example, some node could be
connected to two or more of its parents by
selected edges. The number of possible sets
of selected edges is no more than 116 k~

which is no greater than 6 s, where s is the
total sharing of D. Each such 'se t of selected

29

edges can be checked for consistency and
legality in O(n) time, where n is the
number of nodes of D. If legal, the cost of
the partition can easily be computed in
O(n) time by inspecting the worm heads.
We can therefore run through all the candi-
date worm partitions in O(n6 s) time and
select that one with the least cost. []

7. Summary and Open Questions
We have analyzed several simple

heuristics for generating code for a one-
register machine, showing them to have a
worst case of 3/2 or, in one case, 3. We
have also shown for the one-register
machine, both in the commutative and non-
commutative cases, that there are optimal
code generation algorithms which are linear
in the size of the dag and exponential only
in the sharing. Additionally, we have
shown that even some very simple code
generation problems are NP-complete.

We feel that this work only scratches
the surface of what can be learned about
the important area of code generation algo-
rithms. We therefore propose the following
questions as potentially fruitful areas for fu-
ture research.

1. Is there an optimal algorithm for
multiregister machines which is polynomial
in the number of nodes and registers, and
exponential only in the amount of sharing?

2. How closely can the optimal code
generation problem be approximated by a
polynomial time heuristic on (a) single re-
gister, (b) multiregister, and (c) infinite re-
gister machines? In particular, can we, for
all e > 0, develop polynomial time algo-
rithms with a worst case ratio of 1 + e?
What about the same problems for commu-
tative machines?

3. On some machines certain opera-
tions such as multiplication require an
even-odd register pair. How do machine
anomalies such as these affect the computa-
tional complexity of code generation? Is
optimal code generation polynomial, even
for trees?

4. How difficult is it to generate code
for a tree in which some of the leaves are
labeled'by registers rather than memory 1o-

cations? The leaves whose values are in re-
gisters cause a register to be freed when
they are used. Sethi [$2] has shown that we
can without loss of generality evaluate any
subtree containing a leaf in a register, pro-
vided we can do so with no stores, replacing
that subtree by a leaf in a register. The
problem of what to, do when no such reduc-
tions are possible appears NP-complete. Is
it?

Acknowledgements
The authors wish to thank Brenda

Baker, Brian Kernighan, Doug Mcllroy, and
Elliot Pinson for their helpful comments on
the manuscript.

References
[AHU] A. V. Aho, J. E. Hopcroft and J. D.
Ullman, The Design and Analysis of Computer
Algorithms, Addison Wesley, 1974.

[AJ] A. V. Aho and S. C. Johnson, "Optimal
Code Generation for Expression Trees,"
Proc. Seventh Annual ACM Symposium on
Theory of Computing, May 1975, pp. 207-217.

[AU] A. V. Aho and J. D. Ullman, The
Theory of Parsing, Translation and Compiling,
Vol. II, Compiling, Prentice Hall, 1973.

[Bea] J. C. Beatty, "A Register Assignment
Algorithm for Generation of Highly Optim-
ised Object Code," IBM J. Res. Dev. 18,1
(January 1974), 20-39.

[Bel] L. A. Belady, "A Study of Replace-
ment Algorithms for Virtual Storage Com-
puters," IBMSyst. J., 5:2 (1966) 78-101.

[Br] M. A. Breuer, "Generation of Optimal
Code for Expressions via Factorization,"
Comm. ACM 12,6 (June 1969), 333-340.

[BL] J. L. Bruno and T. Lassagne, "The
Generation of Optimal Code for Stack
Machines," J. ACM 22,3 (July 1975), 382-
397.

[BS] J. L. Bruno and R. Sethi, "Register Al-
location for a One-Register Machine," TR-
157, Computer Science Dept., Penn State
Univ., University Park, Pa., Oct., 1974.

[C] S. Chen, "On the Sethi-Ullman Algo-

30

port #11, Bell Laboratories, Holmdel, N. J.,
May, 1973.

[CS] J. Cocke and J. T. Schwartz, Program-
mhlg Languages and their Compilers (second
edition) Courant Institute, NYU, New York,
1970.

[D] A. Demers, private communication.

[Fa] R. J. Fateman, "Optimal Code for Serial
and Parallel Computation," Comm. ACM
12,12 (December 1969), 694-695.

[Fr] R. A. Freiburghouse, "Register Alloca-
tion Via Usage Counts," Comm. ACM 17,11
(November 1974), 638-642.

[HKMW] L. P. Horowitz, R. M. Karp, R. E.
Miller and S. Winograd, "Index Register Al-
location," J. ACM 13,1 (January 1966), 43-
61.

[SI] R. Sethi, "Complete Register Allocation
Problems," SIAM J. Comput#tg 4,3 (Sep-
tember 1975), 226-248.

[$2] R. Sethi, private communication.

[SU] R. Sethi and J. D. Ullman, "The Gen-
eration of Optimal Code for Arithmetic Ex-
pressions," J. ACM 17,4 (October 1970),
715-728.

[Wai] W. M. Waite, "Optimization," In Com-
piler Construction: An Advanced Course, F. L.
Bauer and J. Eickel, eds., Springer-Verlag,
1974, pp. 549-602.

[Was] S. G. Wasilew, "A Compiler Writing
System with Optimization Capabilities for
Complex Order Structures," Ph.D. Thesis,
Northwestern Univ., Evanston, Ill., 1971.

[WJWHG] W. A. Wulf, R. K. Johnsson, C.
B. Weinstock, S. O. Hobbs and C. M.
Geschke, The Design of an Optimizing Com-
piler, Elsevier, 1975.

31

