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1. Introduction 
Easy as the task may seem, many 

compilers generate rather inefficient code. 
Some of the difficulty of generating good 
code may arise from the lack of realistic 
models for programming language and 
machine semantics. In this paper we show 
that the computational complexity of gen- 
erating efficient code in realistic situations 
may also be a major cause of difficulty in 
the design of good compilers. 

We consider the problem of generat- 
ing optimal code for a set of expressions. If 
the set of expressions has no common sub- 
expressions, then a number of efficient op- 
timal code generation algorithms are known 
for wide classes of machines [SU, AJ, BL]. 

In the presence of common subex- 
pressions, however, Bruno and Sethi have 
shown that the problem of producing op- 
timal code for a set of expre~ssions is NP- 
complete, even on a single register machine 
[BS, S1]. However, Bruno and Sethi's proof 
of NP-completeness uses rather complex 
expressions, so it leaves some hope of being 
able to find efficient algorithms for generat- 
ing optimal code for restricted classes of ex- 
pressions with common subexpressions. 
Unfortunately, we show in this paper that 
the problem of optimal code generation 
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remains NP-complete even for expressions 
in which no shared term is a subexpression 
of any other shared term. We also show 
that the optimal code generation problem is 
NP-complete for these expressions on two- 
address machines, even when the number 
of registers is unlimited. 

Faced with these negative results, we 
consider both heuristic and exact solutions 
for generating code. First, we investigate 
the worst case performance of a collection 
of fast heuristics for single and multiregister 
machines. One seemingly reasonable 
heuristic is shown to produce code that is in 
the worst case three times as long as op- 
timal; other heuristics are given which have 
a worst case of 3/2 for one-register 
machines. 

Then, we present for the single regis- 
ter machine an algorithm which generates 
optimal code and whose time complexity is 
linear in the size of an expression and ex- 
ponential only in the amount of sharing. 
Since the number of common subexpres- 
sions in expressions tends to be limited in 
practical situations, this approach appears at- 
tractive. Finally, after discussing code gen- 
eration for commutative machines, we con- 
clude with a list of open problems. 
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2. Background and Definitions 

2.1 Dags 

For the purposes of this paper we can 
assume we have a compiler of the form 

. ~  F r o n t ' ~  Dag ~ Code 

End I M a ~  !Generator[ 

The front end translates a source program 
into a sequence of straight-line intermediate 
code segments, called basic blocks, along 
with information that identifies the flow of 
control among basic blocks. Within a basic 
block the flow of control is sequential. 

Each basic block consists of a se- 
quence of assignment statements of the 
form 

a ~ - b o p c  

where a, b, and c are distinct variables and 
op is any binary operator for which there 
exists a corresponding machine operation. 
Since we shall concentrate on generating 
code for basic blocks in this paper, the flow 
of control information will not be men- 
tioned further. 

The dag maker transforms the basic 
blocks into a directed acyclic graph (dag, for 
short) that represents the computations of 
the expressions in the block. (See [AU] or 
[CS] for algorithms to construct a dag from a 
basic block.) We shall not consider the use 
of algebraic identities to transform dags to 
make them easier to compute; this has been 
discussed in [Brl, [Fa]. 

Fig. 1 shows a basic block and its 
corresponding dag. 

We call node 2 a right child of node 3, 
and a le f t  chi ld of node 4. For symmetry, 
we call node 4 a right parent  of node 2, and 
node 3 a/ef t  parent  of node 2. 

We say node x uses a node y if y is ei- 
ther a left or right child of x. We say x lef t  

uses (resp. right uses) y if y is a left (resp. 
right) child of x. 

u 1 *'--c - - d  
u 2 * - b  + u  1 
u3 " - a  * u 2 
U4 ~- 'U2 * U 1 

U 5 ~ U 3 + U 4 

Basic Block 

Dag 

Fig. 1 Basic Block and its Dag 

A node with no children is called a 
leaf. A node with no parents is called a root. 

Nodes that are not leaves are often referred 
to as interior nodes. 

We assume for simplicity that all 
operations are binary. We ignore con- 
straints that may be introduced into the dag 
because of side effects. For example, sup- 
pose two nodes of a dag represent the 
operation of indirect assignment through a 
pointer. If the two pointers could point to 
the same datum, and the source code 
specified an order for the two assignments, 
then an edge in the dag connecting the two 
nodes in the proper order must be intro- 
duced. 

2.2 The Machine Model 

We assume the code generator is to 
produce code for a multiregister two-address 
machine. The instructions of the machine 
are of the form 

(1) r~ .-- r i op ~/ 
(2) r i " -  r i op m 
(3) r~ .-- r/ 
(4) r i ~ -  m 

/* op-instruction */ 
/* op-instruction */ 
/* register copy */ 
/* load */ 
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(5) m~-- -~  /* store */ 

Here r i and §. are any of  N >/ 1 registers, 
and m is any memory  location; op stands for 
any machine operation. When  a machine 
has only one register (i.e., N = 1), then 
there are only type (2), type (4), and type 
(5) instructions. 

A machine program is a sequence of  in- 
structions. The  length of  a program is the 
number  of  instructions it contains. 

Definition: The  optimal code generation prob- 
lem (OCG) is to produce from a dag a shor- 
test machine program that evaluates and 
stores all roots of  the dag. 

When  discussing single and multireg- 
ister machines, we assume the leaves of  the 
dag are labeled by memory locations and 
the interior nodes (non-leaves) by machine 
operations. We also assume for conveni-  
ence that a dag has no root that is a leaf. 

Example 1: The dag of  Figure 1 can be 
evaluated on a two-register machine and 
stored in memory  location m by the se- 
quence of  instructions: 

r 1 ~ c  / * l o a d c * /  
r I ,--- r 1 - d /* evaluate node 1 */ 
r 2 "-- b /* load b */ 
r 2 ,--- r 2 + r 1 /* evaluate 2 */ 
t ~---- r 1 /* store 1 */ 

r t ~--- a /* load a */ 
r I ,-- r 1 * r 2 /* evaluate 4 */ 
r 2 ~ r 2 * t /* evaluate 3 */ 
r I ~--- r 1 + r 2 /* evaluate 5 */ 
m ~ q /* store root */ [] 

In Section 6, we shall discuss code 
generation for commutative machines; i.e., 
machines in which for every type (1) and 
(2) op-instruction above, thege is also an in- 
struction of  the form 

(1 ')  rj " -  ~ op ri 

(2 ')  r i .-'- m op r i 

Even for noncommutat ive  machines, OCG 
is a very difficult problem; the next  section 
discusses why. 

3. Why OCG is Hard  

Bruno and Sethi have shown that 
OCG is NP-complete  even  for one-register 
machines. Their  proof technique was to po- 
lynomially transform the satisfiability prob- 
lem with three literals per clause (see 
[AHU], e.g.) to OCG. Their  technique, 
however, resulted in rather complex dags. 
We begin by showing that OCG is NP- 
complete for one-register machines even on 
a rather simple class of  dags. 

A node both of  whose children are 
leaves is called a level-one node. A shared 
node in a dag is a node with more than one 
parent. A level-one dag is a dag in which 
every shared node is a level-one node. A 
l ea fdag  is a dag in which every shared node 
is a leaf [C]. 

Several code generation algorithms for 
one-register machines make use of  the no- 
tion of  a left chain, that is, a sequence of  in- 
terior nodes n t , n 2 . . . . .  n k such that n i is 
the left child of  hi+ 1 for 1 ~< i < k. For  
example, in the dag of  Figure 1, 3-5 and 2-4 
are the only nontrivial left chains. The first 
(lowest) node on a left chain is called its 
tail, and the last (highest) node its head. 

Definition: The feedback  node set problem 
(FNS) is: Given a directed graph G, find a 
smallest set of  nodes F (a feedback node set)  
such that removing F from G eliminates all 
cycles. FNS is a well-known NP-eomplete 
problem (see [AHU], e.g.). 

Theorem 1: OCG for level-one dags on a 
one-register machine is NP-complete.  

Proof." We show how to polynornially 
transform an instance of  FNS to OCG. Let  
G be the directed graph in the feedback 
node set problem. From G construct  a dag 
D as follows. For each node n in G of  out- 
degree d ~> 0 create a corresponding left 
chain of  d +  1 interior nodes n 0, n I . . . . .  n d 
in D; n o  is the tail and n d the head of  the 
chain. Make no a level-one node by giving 
it left and right children labeled by memory 
locations. 

The remaining edges of  D are deter- 
mined as follows. Suppose the out-edges of  
n are directed to nodes m I , m 2 . . . . .  m d in 
G. Make the tails of  the left chains 
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corresponding to m I , m 2 . . . . .  m d right 
children of  t l  I , I12 . . . . .  r i d ,  respectively, in 
D. 

Fig. 2(a) shows a directed graph G and 
Fig. 2(b) the dag resulting f rom G using the 
construction above. 

(a) Directed Graph  G 

2, 

(b) Resulting Dag D 

Fig. 2 Graph and Corresponding Dag 

We must  now show that we can con- 
struct a minimal feedback node set F for G 
from an optimal program P for D and con- 
versely. It can be shown that an optimal 
program for a one-register  machine does not 
store and load any uniquely left-used interi- 
or nodes of  a dag (interior nodes with exact- 
ly one left use and no right uses). Thus  ex- 
cept for the loads of  leaves, the only loads 
in P are loads of  some level-one nodes. It 
can be seen that these level-one nodes 
identify a feedback node set F in G. Con- 
versely, given a minimal feedback node set 
F of  G we can construct  an optimal program 
for D by first evaluating and storing the tails 
in D of the left chains corresponding to the 
nodes in F. 

For example,  {d} is a minimal feed- 
back node set for the directed graph G of 
Fig. 2(a). The  optimal program P 
corresponding to this feedback node set first 
computes  node d o of  D in Fig. 2(b). Then  

P evaluates c 0, c I , b 0, b I , b 2, a o, a I , d I . To 
evaluate d 1, P needs to load do; this is the 
only level-one node loaded by P. [] 

To appreciate the difficulty of  generat-  
ing optimal code for dags, let us assume we 
are generat ing code for an in f ini te  register 
machine,  a machine  in which the n u m b e r  
of  registers is unbounded.  To eliminate the 
problem of  deciding what to store or load, 
let us fur ther  assume the leaves of  the dag 
are labeled by register names rather than by 
memory  locations; similarly, let us assume 
we need not store the roots. The  relevant 
instructions of  the infinite register machine  
then become 

ri ,--- ri op  ri 

ri ,--- fi 

Even in this highly simplified env i ronment ,  
the optimal code generat ion problem is 
NP-complete .  

The ore m  2: OCG for leaf dags on an infinite 
register machine  is NP-complete .  

Prool? Similar to that of  Theo rem 1. [] 

Thus,  even if the problems of  code 
selection and storage of  intermediate values 
are made trivial, just  finding an optimal 
evaluation order for the nodes of  a dag is an 
NP-comple te  problem. On the other  hand, 
if we perturb the infinite register machine  
architecture by permitt ing arbitrary three- 
address instructions of  the form 
r i ~---- rj op  r k ,  then we can generate optimal 
code for arbitrary dags in linear time. We 
simply evaluate the dag bot tom up, level by 
level, assigning a distinct register to each 
node. 

The  three main problems in code gen- 
eration are what instructions to use, in what 
order to do the computat ions,  and what 
values to keep in registers. The  results of  
this section indicate that, for two-address 
machines,  just deciding the order in which 
instructions are to be executed is an NP- 
complete  problem. 
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4. Heuristic Techniques 

Since even simple versions of the op- 
timal code generation problem are NP- 
complete, it is not surprising that in the past 
code generation algorithms for dags usually 
have made several restricting assumptions. 
One approach has been to ignore sharing by 
representing a set of expressions as a forest 
of trees. For this case a number of optimal 
code generation algorithms have been 
developed [SU], [A J], [BL], [Was]. Another 
approach has been to avoid the problem of 
finding an optimal evaluation order by tak- 
ing some fixed order for the nodes of a dag 
and then concentrating on optimal utiliza- 
tion of registers ([Bea], [HKMW], 
[WJWHG], [Fr], e.g.). Optimal code cannot 
be guaranteed, however, without consider- 
ing sharing and retaining the freedom to 
reorder code that is inherent in the source 
program. 

When faced with an NP-complete 
problem, there are two standard approaches: 

(1) develop and analyze heuristics, and 

(2) look for useful special cases that 
have polynomial time algorithms. 

We shall consider both approaches here. 
For the analysis of heuristics we use the 
worst case measure, a time-honored way of 
measuring the goodness of a heuristic which 
may be applied to various populations of 
data. For our purposes, we define the worst 
case of an algorithm to be the supremum 
over all dags of the ratio of the length of 
the code produced by that algorithm to the 
length of the optimal code for the dag. 

4.1 Two Methods of Accounting for Costs 

There is a usual way .of charging the 
interior nodes of a dag for the cost of their 
evaluation. Charge a node one unit of cost 
for each of: (1) performing its operation, (2) 
storing its value, and (3) loading its left 
child or copying its left child from another 
register. 

We call a program semi-intelligent if 

(1) it performs no useless instructions, 
i.e., instructions which can be deleted 
without changing the value of the program, 

(2) it never moves (via loads or 
register-to-register transfers) a value into a 
register without subsequently left using that 
value, and 

(3) it never stores the same value 
more than once. 

It is easy to check that a semi- 
intelligent program will have each of its in- 
structions assigned to some one node by the 
above scheme. Formally, we may show the 
following. 

Theorem 3: Let P* be an optimal program for 
some dag D, and let P be any semi- 
intelligent program for D. Then the ratio of 
the length of P to that of P* is at most 3. 

Proof." Using the above costing scheme, 
every interior node of D is assigned at least 
one instruction, but never more than three 
instructions (a load, an operation, and a 
store). [] 

Obviously there are an infinite 
number of programs to evaluate any dag. 
We shall restrict ourselves to semi- 
intelligent programs. Doing so serves only 
to rule out blatantly inetiicient programs. 
There is little loss of generality since we can 
construct from any program P an equivalent 
semi-intelligent program in time proportion- 
al to the length of P. 

There is a second cost accounting 
scheme which we find quite useful. This 
scheme gives the same overall cost as the 
scheme above but the cost units are appor- 
tioned differently amongst the nodes. We 
now charge each node for every instruction 
that affects its value, i. e., for the operation 
that computes its value, a n d  any loads, 
stores, or register-to-register copies of that 
value. We call this cost accounting scheme 
the use-cost. 

If n is a node of a dag, let i (n)  and 
r(n) be the number of times n is used as a 
left and right child, respectively, of some 
other node. In the dag of Figure 1, for ex- 
ample, /(1) - - 0  and r(1) z 2 .  Also, 
/(2) -- r(2) = 1. 

Lemma 1: The following costs are upper and 
lower bounds on the use-cost of a node n 
with respect to any semi-intelligent program 
on a one-register machine. 
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case lower upper 

(1) n is a leaf / (n)  / (n)  

n is not a leaf and: 
(2) / (n)  = 0 2 2 

(3) / (n )  > 1 / ( n ) + l  / ( n ) + 2  

(4) / (n)  = 1 1 3 
and r (n )  = 0 

(5) /(17) = 1 2 3 
and r (n )  > 0 

Prool? Let us consider case (3) as an exam- 
ple. Surely an op-instruction evaluating n is 
necessary. Since n is used more than once 
and there is only one register, one store in- 
struction is also necessary. Every time n is 
left used, its value in the register is des- 
troyed, and it. must  be reloaded the next 
t ime it is left used. Thus,  / (n )  - 1 load in- 
structions are necessary, and I(n) load in- 
structions are sufficient by condition (2) in 
the definition of  semi-intelligent.  There-  
fore, a total of  / ( n ) +  1 or / ( n ) + 2  instruc- 
tions is needed. [] 

Lemma 2: For a multiregister machine,  Lem- 
ma 1 holds with the lower bound set to 1 in 
cases (2) and (5) and t o / ( n )  in case (3). 

Prooj? Omitted. [] 

We observe from L e m m a  1 that it is 
only interior nodes with one left parent and 
no right parent that could give us a worst 
case ratio of  3 for the one-register  machine.  
Interestingly, it is quite easy to handle such 
cases. I f  node n is uniquely left-used, we 
can a lwaysa r r ange  to have n evaluated im- 
mediately before its parent. Thus  it is un- 
necessary to load or store n, and it achieves 
a use-cost of  1. Therefore ,  we can state the 
following. 

Theorem 4: Any. algorithm for a one-register  
machine  which generates semi-intell igent 
programs that avoid storing uniquely left- 
used nodes has a worst case no greater than 
3/2. 

Note that Theo rem  4 fails to hold in 
the multiregister case, since / (n )  = 1, 
r (n )  > 0 is another  case that can yield a 
worst case ratio of  3, and some other  cases 

yield a ratio of  2. 

We must  also point out that the use- 
cost can, in some cases, underest imate  the 
cost of  an optimal program on a one-register  
machine by a factor of  3/2. Fig. 3, for ex- 
ample, shows a dag whose lower bound 
use-cost is 6 + 2 p .  This lower bound,  how- 
ever, is not achievable since any program 
evaluating this dag must  store and subse- 
quently load each of  the +-nodes.  The  cost 
of  an optimal program for the dag is 6 + 3p. 

'p  nodes 

Fig. 3 Underes t imated Dag 

Thus,  if we found an algorithm with a 
worst case ratio less than 3/2, the proof  of  
that worst case bound must use a more so- 
phisticated cost analysis than the above. 

4.2 Heuristics for One Register Machines 

An evaluation order for a dag is any to- 
pological sort of  the interior nodes of  the 
dag. For a one-register  machine,  from an 
evaluation order we can easily construct  a 
program that is as short as any other  which 
computes  the dag in that order. Thus  an al- 
gori thm that produces an evaluation order 
for a dag is in effect a code generation algo- 
r i thm for a single register machine.  In this 
section we analyze the performance of some 
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simple heuristics for creat ing evaluat ion ord- 
ers for single register machines .  

Definition: T h e  Bottom-up Greedy Algorithm 
(BUG) creates an evaluat ion order  for a dag 
by repeatedly listing the nodes  o f  a longest 
left chain that can be current ly  evaluated. 
To evaluate a node,  both its chi ldren must  
have been previously evaluated. Note  that 
it is permissible for the right child o f  a node 
in a chain to be an uneva lua ted  node  which 
is lower on the same chain.  

Example 3." Retu rn  to the dag of  Figure 1. 
The  only left chain that carl be listed initial- 
ly is 1. T h e n  the chain 2-4 can be listed, 
and finally the chain 3-5, giving an evalua- 
tion order  o f  12435. In this case the code 
is: 

r I * - -c  
r 1 ~-- r I -- d 
t *"-r  1 

r 1 *---b 
r I *---r 1 + t 
u *--'r 1 
r I *"- r I * t 
v *---r 1 
r I , ---a 
r I *--- r I * u 
r I ~ r 1 -I- v 

m ,---r I 

By L e m m a  1, this program is optimal. []  

Theorem 5." BUG has a worst case ratio o f  3. 

Proof" Figure 4 shows how the worst case o f  
3 can be approached  arbitrarily closely. At 
the right we show p nodes c 1, c 2 . . . . .  Cp, 
called "cont ro l le rs , "  whose  initial evaluat ion 
is necessary for optimal code. I f  we evalu- 
ate the control lers  first and store them,  at a 
cost o f  3p, we can go up each o f  the p left 
chains  with a cost o f  p + 2 per chain,  for a 
total o f  p 2 + 5p. 

However ,  BUG c~3uld select c 1, then 
the bo t tom node of  each chain,  then c 2, 
then  the next  node  o f  each chain,  then c 3, 
and so on,  using three instruct ions per inte- 
rior node. T he  worst case ratio for this ex- 
ample i s 3 ( p  + 1 ) / ( p  + 5) .  []  

p 

Fig.  4 B U G  B u g g e r e r  

Definition: The  Top-down Greedy Algorithm 
(TDG)  ([AU], p. 866; see also [Wai]) works 
by listing left chains  in the reverse order  o f  
their evaluation.  Repeatedly  select a node n 
all o f  whose  parents,  if any,  have already 
been listed. T h e n  list n and as many  nodes 
o f  the left chain with head n as may be list- 
ed. Note  that a node may be listed only if 
all o f  its parents have already been listed, as 
we are genera t ing  the evaluat ion sequence  
in reverse. Also, once  an unlistable node is 

e n c o u n t e r e d ,  we do not proceed fur ther  
down the chain. After  sequenc ing  all interi- 
or nodes,  reverse the list to get the evalua- 
tion order. 

Example 4: In the dag o f  Figure 1, we would 
select the root 5 first and find we may list it 
and its left child 3. T h e n  we could select 4, 
since its parent,  5, has already been  listed. 
We could proceed to 2, the left child o f  4, 
since its parents,  namely  3 and 4, have been  
listed. Finally we list 1. Revers ing  the list 
gives 12435 again, so the same code as for 
BUG is produced in this case. [] 

T D G  and BUG, however ,  are quite 
different in their worst case performance.  
T D G  produces  optimal code for Fig. 2 for 
which BUG produced the worst case code. 
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Theorem 6: TDG has a worst case ratio of 
3/2. 

Proof." To see that it is no worse than 3/2, 
note that if n is uniquely left-used by m, 
then n must be listed immediately after m, 
and therefore n is evaluated immediately be- 
fore m. Thus case (4) of Lemma 1 is always 
handled correctly; the lower bound of one 
instruction charged to n is attained. All oth- 
er cases in Lemma 1 have a ratio of 3/2 or 
less. 

For the proof that 3/2 can be ap- 
proached from below, consider the grid of 
Figure 5. The optimal sequence of evalua- 
tion goes up (the slanted) left chains, start- 
ing at the bottom right, storing each value 
with the exception of those on the leftmost 
chain. Roughly two instructions per node 
are used in this evaluation sequence. On 
the other hand, TDG could list nodes row 
by row, from the right, taking three instruc- 
tions per node. [] 

Fig. 5 Grid 

It is also .worth noting that TDG al- 
ways handles the case r(n) -~ O, I(n) > 1 
correctly, since n will be listed immediately 
after the last of its left parents to be listed. 
Thus the generated code will have only 
I(n) -- 1 loads of n. 

In truth there is no magic about "top 
down" vs. "bottom up" algorithms; by ex- 
ercising care in the selection of chains it is 
easy to construct a modification of BUG 

that has the same performance as TDG. 

Another 3/2 worst case algorithm can 
be obtained using depth first search. 

Definition: The Depth-first Search Algorithm 
(DFS) performs a depth-first search (see 
[AHU], e.g.) of the rag, preferring to move 
to the right child rather than the left when 
there is a choice. Nodes are then evaluated 
in order of last visit. 

Theorem 7: The worst case ratio for DFS is 
3/2. 

4.3 Heuristics for Multlregister Machines 
The Top-down Greedy Algorithm can 

be generalized to the case of an N register 
machine. For a multiregister machine, how- 
ever, it is no longer sufficient to specify only 
an evaluation order; we must also specify in 
which register a computation is to be done. 
The following procedure lists the interior 
nodes of a dag in reverse evaluation order. 
The register assigned to a node is the regis- 
ter in which that node is to be computed. 
Stores and loads of registers are performed 
as needed. 

procedure TDG(n, k) ; /* n is a node, k is the 
number of registers available */ 
if k >/ 1 and n is an interior node all of 
whose parents have been listed then 

begin 
list n and assign it register k; 
TDG(right child of n, k - 1 ) ;  
TDG(left child of n, k) 

end; 
/* main program */ 
while not all interior nodes have been listed 
do 

select an interior node n, all of whose 
parents have been listed, and perform 
TDG(n, N) 

Although TDG performs well in many 
cases, the worst case performance of TDG 
approaches 3 as Ngets large. 

Theorem 8: The worst case ratio for the TDG 
Algorithm with N registers is no less than 
3N/(N + 1). 
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ProoJ? The grid of  Figure 5 provides the 
essence of  the proof. [] 

Demers  [D] has considered a generali- 
zation of  DFS to multiregister machines in 
which a depth-first  search is used to obtain 
an ordering of  the nodes, and then 
Beladay's algorithm [Bel] is used to allocate 
registers. 

5. An Optimal Algorithm for the One Regis- 
ter Machine 

We define s (n ) ,  the sharing of  a node 
n in a dag, to be 

s (n )  = / (n )  + 1 i l l ( n )  > 1 
s (n )  = 2  i f / ( n )  = 1 and 

r (n )  > 0 
s (n )  = 0 otherwise 

The sharing, s, for a dag is the sum of  the 
s (n )  over  all interior nodes n in the dag. 

We shall now present an algorithm for 
the one register case that is optimal and is 
of  time complexi ty O ( p 2 S ) ,  where p is the 
number  of  nodes in the dag and s is the 
amount  of  sharing. To introduce this algo- 
rithm, we note that any dag can be parti- 
tioned in various ways into left chains. 
Given a program for a dag, we can create a 
partition by looking for maximal sequences 
of  one or more consecutive operations unin- 
terrupted by loads. Each such consecutive 
sequence forms a left chain, and the set of  
left chains so formed partitions the interior 
nodes of  a dag. 

We can obtain a partial converse of  
the above. We say that a partition of  the 
interior vertices of  a dag D is legal if the fol- 
lowing holds: Form a graph G whose nodes 
correspond to the left chains of  D and with 
an edge from c I to c 2 whenever  there is a 
path in D from some node of c l to some 
node of c 2. Then there must  be no cycles 
in G. We may thus state the following. 

L e m m a  3: There  is an evaluation order pro- 
ducing a given partition of  a dag into left 
chains if and only if that partition is legal. 

More importantly,  we can relate the 
cost of  evaluation sequences to the costs of  
the heads of  the left chains. 

Theorem 9: Let D be a dag. Then  there is a 
constant  c o with the following property: 
Suppose P is any semi-intelligent program 
evaluating D. Let the partition induced by 
P have k I chains whose heads are left used 
at least once. Let k 2 of  these be uniquely 
left-used. Then  the length of  P is 
c D + k 1 + k 2. Conversely,  if there is a 
program for D of  cost c, then we can find a 
legal partition into left chains with parame- 
ters k I and k 2 such that 
c = c D + k 1 + k 2 . 

ProoJ? c D is the sum over  all interior nodes 
of  D of  the lower bound on cost given in 
L e m m a  1. k 1 accounts for excess loads of  
left-used nodes, that is, the /th load of  a 
node left used / times. Note that a node 
will be loaded / rather than / - 1  times if 
and only if it is the head o f a c h a i n ,  k 2 ac- 
counts for stores of  uniquely left-used 
nodes. [] 

We intend to reduce the problem of  
finding an optimal program to that of  
finding a set of  heads of  chains. Clearly any 
node with / (n )  = 0  must  be the head of  a 
chain. A node with r (n )  = 0 and 
/ (n)  = 1 can always be attached to its left 
parent in a chain, as claimed in the follow- 
ing lemma. 

L e m m a  4." If  zr is a legal partition of  dag D, 
and there is a uniquely left-used node n 
which heads a chain, then the partition 
formed from zr by removing n from its 
current  chain and attaching it to the chain 
of  its parent is also legal. 

Prooj? If  there is a path to n in D, it must go 
through the unique parent of  n. [] 

We thus see that the question of  
whether  or not a node is the head of  a 
chain in an optimal program is only un- 
resolved for those interior nodes with more 
than one parent, at least one of  which is a 
left parent. We may thus try all subsets of  
these nodes, selecting those which are not 

the head of  a chain. For each selected node 
with more than one left parent, we must  
also select the left parent to whose chain it 
is attached. The  number  of  these selections 
can be shown not tO exceed 2 s, where s is 
the sharing. We may thus test each selec- 
tion, in order of  lowest cost, until we find 
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one that is legal. The test for legality is 
seen to be O ( p )  on a p node dag. Thus: 

The orem  10: There is an O ( p 2  s )  algorithm 
for obtaining an optimal program for a dag. 

6. Commutative Machines 

A c o m m u t a t i v e  m a c h i n e  is one in which 
for each instruction of the form r i ~ -  r i op r/ 
or r i ~-- r i o p  m there is also an instruction 
of  the form r i ` - -  ri op  r i or r i ` - -  m op  r r 

That is, the register used to hold the result 
can be the same as as either the left or the 
right register operand. This arrangement al- 
lows us to think of  the order of the children 
of  any node as being permutable, as far as 
code generation is concerned, although the 
operator itself may not be commutative. 

For one-register commutative 
machines the analog of  a left-chain is a 
worm. A worm is any path in a dag, exclud- 
ing the leaves. We define a partition of  a 
dag D into worms to be l ega l  if the graph 
whose nodes are the worms of D, with an 
edge from w I to w 2 if and only if some 
node of worm w 1 has a path in D t o s o m e  
node of worm w 2, is acyclic. The following 
is an analog to Theorem 9. 

T h e o r e m  11: Let D be a dag. Then there is a 
constant c D with the following property. 
Suppose D has a legal partition into worms 
such that there are k I worms whose heads 
are used (either left- or right-used), k 2 of  
which are uniquely used. Then there is a 
program for D on a commutative machine 
of  cost c D -~ k I + k 2. Conversely, if there 
is a program for D with cost c, then we can 
find a legal worm partition with parameters 
k I and k 2 as above, such that 
c = c D + k 1 + k 2 . 

We can generalize the top-down 
greedy algorithm to commutat ive machines 
by listing worms in reverse evaluation order. 
If  we always list a uniquely used child im- 
mediately after its parent, then we can show 
that 3/2 is a worst case ratio for this algo- 
rithm for the commutat ive one-register 
machine. 

We can also produce an analog of the 
optimal algorithm of Section 5 which is po- 
lynomial in the size of  the dag and ex- 
ponential only in the sharing. The follow- 

ing lemma is needed; it is not as strong a 
result as could be proved about worm parti- 
tions. 

L e m m a  5: Let W be a legal worm partition 
of a dag. Suppose node n I is the head of  a 
worm w = n l, n 2 . . . . .  n k in which 
n 1, n 2 . . . . .  n k are all uniquely used. Then  
there is another  worm partition W' of  D 
with a worm of which n 1, n 2 . . . . .  n k is a 
proper tail (that is, the new worm includes 
at least the parent of  n 1) such that the cost 
of  the program induced by W' is no greater 
than the cost of  the program induced by W. 

ProoJ? Fig. 6 shows a fragment of a dag in 
which node m is on some worm; perhaps n, 
m's other child, is on the same worm. 

Fig. 6 Worm Construction 

Remove edge m-- .  n from that worm 
if it is there, and add the edge m--- ,n I. 
This may make node n a head, but n I will 
no longer be a head. It is easy to show that 
the cost of  the partition is not increased, 
and the fact that n 1 , n 2 . . . . .  n k are unique- 
ly used makes a proof of legality for the 
new partition easy. [] 

T h e o r e m  12: There is an O ( n 6  s )  algorithm 
for finding an optimal program on a com- 
mutative machine for an n-node dag with 
sharing s. 

Prooj? The first step is to take the dag D and 
divide it into trees, an idea discussed by 
[Wai]. For each root or shared node n, we 
do the following. Find the maximal subtree 
with n as root which includes no other  
shared nodes, except as leaves. An example 
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is shown in Fig. 7. 

(a) Dag 

(b) Trees 

Fig. 7 Division of a Dag~into Trees 

Note that each multiply-used node ap- 
pears as a leaf in at most one tree per use. 
If  it is used by two nodes iri the  same tree, 
divide the shared node into as many leaves 
as necessary so that no leaf is used more 
than once. Note also that no non-shared 
node appears in more than one tree. 

The algorithm begins by determining 
which edges of tile various trees belong to 
worms. Later we shall combine the trees to 
allow worms to cross tree boundaries. Ima- 
gine worms proceeding upward from all 
leaves in a given subtree. The fact that 
worms do not actually reach the leaves can 
be accounted for later by removing edges 
from worms at the bottom. At each interior 
node n we must decide which, if any, of the 
worms reaching children of n include the 
node n. If either or both of the children of 
n are part of worms that begin at tree leaves 
of D or interior nodes of D that are not 
shared (recall some leaves of  a tree here 
may actually be shared nodes of  D), then 
Lemma 5 assures us that we may allow any 
such worm to continue up to n. The only 
uncertainty occurs when both worms reach- 
ing the children of n originate at shared 
nodes of D. Then we must try all three 
possibilities - that either worm or neither 
incorporates n. In the last case, n begins a 
new worm, a situation which could be 
necessary to achieve a legal worm partition. 

We see from the above that the only 
worms where there is uncertainty regarding 
how far up to proceed are those which ori- 
ginate al~ shared nodes of D. If tree T i has 
k i leaves which are shared nodes of D, then 
there are at most 3 ki outcomes for the 
"contests"  regarding which worm proceeds 
upwards. Moreover, for each shared node n 
that is a leaf of T i, n's worm in T/ may or 
may not connect  with that worm which in- 
cludes n in the tree of  which n is the root. 
(Recall the edges from leaves to their 
parents are not really parts of  worms.) Thus, 
we may either include or exclude the edges 
from node n to its parent in T i from the set 
of  edges of D comprising worms. 

Thus for tree T/ there are at most 6 ki 
subsets of edges which could possibly be 
the edges used in an optimal worm partition 
of  D. Not all subsets of  edges need be con- 
sistent. For example, some node could be 
connected to two or more of  its parents by 
selected edges. The number  of  possible sets 
of  selected edges is no more than 116 k~ 

which is no greater than 6 s, where s is the 
total sharing of  D. Each such 'se t  of  selected 
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edges can be checked for consistency and 
legality in O(n) time, where n is the 
number of nodes of D. If legal, the cost of 
the partition can easily be computed in 
O(n) time by inspecting the worm heads. 
We can therefore run through all the candi- 
date worm partitions in O(n6 s) time and 
select that one with the least cost. [] 

7. Summary and Open Questions 
We have analyzed several simple 

heuristics for generating code for a one- 
register machine, showing them to have a 
worst case of 3/2 or, in one case, 3. We 
have also shown for the one-register 
machine, both in the commutative and non- 
commutative cases, that there are optimal 
code generation algorithms which are linear 
in the size of the dag and exponential only 
in the sharing. Additionally, we have 
shown that even some very simple code 
generation problems are NP-complete. 

We feel that this work only scratches 
the surface of what can be learned about 
the important area of code generation algo- 
rithms. We therefore propose the following 
questions as potentially fruitful areas for fu- 
ture research. 

1. Is there an optimal algorithm for 
multiregister machines which is polynomial 
in the number of nodes and registers, and 
exponential only in the amount of sharing? 

2. How closely can the optimal code 
generation problem be approximated by a 
polynomial time heuristic on (a) single re- 
gister, (b) multiregister, and (c) infinite re- 
gister machines? In particular, can we, for 
all e > 0, develop polynomial time algo- 
rithms with a worst case ratio of 1 + e? 
What about the same problems for commu- 
tative machines? 

3. On some machines certain opera- 
tions such as multiplication require an 
even-odd register pair. How do machine 
anomalies such as these affect the computa- 
tional complexity of code generation? Is 
optimal code generation polynomial, even 
for trees? 

4. How difficult is it to generate code 
for a tree in which some of the leaves are 
labeled'by registers rather than memory 1o- 

cations? The leaves whose values are in re- 
gisters cause a register to be freed when 
they are used. Sethi [$2] has shown that we 
can without loss of generality evaluate any 
subtree containing a leaf in a register, pro- 
vided we can do so with no stores, replacing 
that subtree by a leaf in a register. The 
problem of what to, do when no such reduc- 
tions are possible appears NP-complete. Is 
it? 
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