
Software Protection for Dynamically-Generated Code

Sudeep Ghosh Jason Hiser Jack W. Davidson
{sudeep, hiser, jwd}@virginia.edu

Department of Computer Science, University of Virginia, Charlottesville, VA-22903, USA.

Abstract
Process-level Virtual machines (PVMs) often play a crucial
role in program protection. In particular, virtualization-based
tools like VMProtect and CodeVirtualizer have been shown
to provide desirable obfuscation properties (i.e., resistance
to disassembly and code analysis). To be efficient, many
tools cache frequently-executed code in a code cache. This
code is run directly on hardware and consequently may be
susceptible to unintended, malicious modification after it has
been generated.

To thwart such modifications, this work presents a novel
methodology that imparts tamper detection at run time to
PVM-protected applications. Our scheme centers around the
run-time creation of a network of software knots (an instruc-
tion sequence that checksums portions of the code) to detect
tamper. These knots are used to check the integrity of cached
code, although our techniques could be applied to check any
software-protection properties. Used in conjunction with es-
tablished static techniques, our solution provides a mecha-
nism for protecting PVM-generated code from modification.

We have implemented a PVM system that automatically
inserts code into an application to dynamically generate
polymorphic software knots. Our experiments show that
PVMs do indeed provide a suitable platform for extending
guard protection, without the addition of high overheads to
run-time performance and memory. Our evaluations demon-
strate that these knots add less than 10% overhead while pro-
viding frequent integrity checks.

Keywords Process-level Virtual Machines, Tamper detec-
tion, Obfuscation, Polymorphism

1. Introduction
Today, software has become an essential component of
many critical systems, e.g., transportation control systems,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPREW ’13 Jan 26, 2013 Rome, Italy
Copyright c© 2013 ACM 978-1-4503-1857-0/13/01. . . $15.00

banking and medical devices, communications systems, etc.
Such critical software systems are potential targets by ad-
versaries equipped with advanced reverse engineering tools.
Any unauthorized modification could lead to extensive dis-
ruption of services and loss of life and property.

A variety of schemes have been developed to protect
critical software from unauthorized analysis [1, 2, 8, 23].
However, these obfuscation techniques suffer from a variety
of weaknesses.

• Much of the previous research has targeted making the
application hard to analyze statically [11, 30]. For exam-
ple, an opaque predicate is a predicate that is difficult to
analyze statically. However, dynamic attacks drastically
reduce the effectiveness of such static schemes and pro-
vide useful information to enable reverse engineering of
protected applications. [32, 46].

• The use of additional hardware is required by some so-
lutions [29]. This extra hardware adds an additional cost
that will have to be borne by the end user, and might re-
strict the software to a particular set of platforms.

• A number of schemes have an impractical overhead con-
straint or provide only a partial solution. The Proteus
system involves overheads between 50X-3500X, which
is too high for most applications [1]. Remote tamper-
proofing techniques, although widely used among em-
bedded devices [40], require strict Quality-of-Service
guarantees [7]. A realistic solution must not incur signif-
icant overhead, otherwise developers will be unwilling to
deploy such measures on a large scale.

Recently, software developers have turned to process-
level virtualization to safeguard applications from analysis.
Process-level virtualization involves the introduction of an
extra layer of software (called the process-level virtual ma-
chine or PVM) between the guest application and the host
hardware [38]. At run time, the PVM assumes control and
mediates the execution of the guest application. The grow-
ing use of PVMs for program obfuscation can be attributed
to the following reasons:

• Virtualizing a guest application makes static analysis
very hard. During software creation, the encoding of the
guest application binary is transformed to either a secret

Instruction Set Architecture (ISA) or encrypted using a
secret key. Only the PVM possesses the ability to execute
the application. This transformation effectively renders
traditional disassemblers and static analyzers useless.

• Even analyzing the run-time instruction trace is harder,
because the execution of the PVM and the application is
interleaved. Any adversary trying to reverse engineer the
application will first have to identify and remove portions
of the code belonging to the PVM.

• It is advantageous to have the obfuscation techniques
closely integrated with the application, yet keep the im-
plementations separate. This modular approach enables
easier testing and debugging of the system, and it allows
legacy systems to be retrofitted with new schemes with-
out the need for modification and recompilation. PVMs
can be used to provide such a flexible capability.

• As mentioned previously, overhead is an important con-
cern for security researchers. Widespread adoption of se-
curity techniques is dependent upon the associated per-
formance and memory penalties. Extensive research has
already been done that enables PVMs to incur low over-
heads [21, 22, 44]. Thus, the efficient implementation of
PVMs makes them suitable to be co-opted for research in
program obfuscation.

VMs have been used successfully in the area of code ob-
fuscation. A number of commercial products have been de-
signed that provide protection from disassembly and anal-
ysis via the use of PVMs, such as VMProtect [47], Code
Virtualizer [34], Themida [33]. To maintain efficiency, VMs
often use dynamic binary translation and software caching
of frequently-executed code [43]. SecureQEMU is a soft-
ware protection mechanism based on binary translation and
caching [25]. It uses a system-level VM, QEMU [4], to run
encrypted guest applications. During execution, the guest
application instructions are copied to the host OS, decrypted
and stored in a software cache. Although the application in-
structions never appear in plain text in the guest OS, the ad-
versary can attack the host OS and tamper with the code in
the cache. There are no protection techniques that safeguard
the cached code.

This work presents a novel method that applies tam-
per protection to applications running under the control of
a PVM that uses dynamic binary translation. The basic
premise behind this methodology is that the PVM can con-
tinually inspect and monitor the guest application code and
use software caching of application instructions to speed up
execution [31, 39]. At randomly-selected points during exe-
cution, the PVM emits dynamic knots, that maintain the in-
tegrity of translated and cached code. The knots are struc-
turally similar to the checksumming guards, first proposed
by Chang and Atallah [8]. Guards are inserted statically and
protect the code present in the application binary. Knots, on

the other hand, are generated by the VM at run time, and
focus on protecting the code that is cached by the PVM.

In combination with traditional static protection mecha-
nisms, our scheme provides the application with a robustly
protected environment that is resistant to static and dynamic
attacks. The major contributions of out work are as follows:

• This work proposes a novel methodology, in which a
PVM introduces program protection techniques at run
time. We use knots as the example technique, although
the approach can be extended to include other protection
mechanisms such as software watermarking.

• In many cases, the virtualization process generates code
at run time, which cannot be protected by existing tech-
niques. For example, PVMs implemented using binary
translation [42] often generate and store the translated
code in a software cache (e.g., Strata [39], Pin [31], HD-
Trans [44]). The described methodology addresses the
protection of such PVM-generated code.

• Using a prototype implementation of the methodology
on the Linux platform, we demonstrate that applying
dynamic protections is both feasible and can provide
increased protection of applications.

• The results indicate that PVMs hold great potential with
regard to dynamic program protection. Preliminary re-
sults pave the way for further advancements in this area.

The rest of the paper is organized as follows. Section 2 de-
scribes the hostile environment in which an application op-
erates. Section 3 gives an overview of process-level virtual
machines. The concept of knots is explained in Section 4.
The evaluation of these techniques is described in Section 5.
Previous work in the area of virtual machine-based security
is discussed in Section 7. Finally, our conclusions are pre-
sented in Section 8.

2. Threat Model
We begin by describing the trusted environment used to
create software applications. The software developer uses
numerous, trusted, tools (compilers, optimizers and assem-
blers) to convert high-level source code or specifications into
applications. To help safeguard the application’s static im-
age, the developer applies various static code obfuscation
and tamper-detection mechanisms to the application. At this
point, we assume the application is safe from static-only
reverse-engineering or tampering attacks. While such an as-
sumption is likely not reasonable in practice, we make this
assumption to focus on dynamic attacks against the applica-
tion.

The application is then released for public use. An at-
tacker can use various tools (debuggers, simulators and em-
ulators) to run, observe and modify the program in a num-
ber of ways. For example, Skype, the popular VoIP tool,
was reverse engineered by researchers using a debugger [5].

Even the operating system can be modified to return incor-
rect information, thereby thwarting any protection features
that depend on the OS [50]. Furthermore, hardware can be
emulated to return forged results to the application. Conse-
quently, we consider all hardware and other software on the
host machine as potentially malicious, and the entire pro-
tected application (including any virtual machine distributed
with said application) is a target of attack.

In essence, the adversary is mounting a white-box attack.
The adversary can inspect, modify, or forge any informa-
tion in the system. Given enough time and resources, the
adversary can succeed in inspecting and making modifica-
tions to the program. However, human adversaries have dif-
ficulty directly solving problems involving large data sets.
As such, they rely on algorithmic solutions to perform vari-
ous analyzes on the application packages (e.g., program dis-
assembly, determining instruction locations, generating pre-
cise flow graphs, etc.) and use that information to disable
protection features. Our goal is to make automatic analyses
computationally more expensive.

3. Process-level Virtualization
Before describing the concept of knots, we give a brief intro-
duction to software virtualization. A software application is
a sequence of instructions that execute on a particular com-
puting system. Virtualization is a software layer that encap-
sulates the application and its associated platform from the
native computing system, allowing the application to exe-
cute on different platforms. Virtualization has been used to
overcome the barriers imposed by new hardware [14, 38],
or to improve security [6, 15, 27]. Formally, virtualization
involves the construction of an isomorphism that maps a vir-
tual system (called the guest) onto the native system (called
the host). It is the responsibility of the virtual machine to run
the application compiled for the guest (called the guest ap-
plication) on the host system. Some of the necessary tasks
include converting the guest application’s instructions to run
on the host, and mediating communication between the ap-
plication and the host platform.

Virtualization can be done at the system level (i.e., oper-
ating system), or at the process level (a single application).

A system VM provides a complete system environment
that can support an operating system and associated ap-
plication programs [43]. Examples of system VMs include
VMWare [48] and Xen [3]. System VMs are rarely used to
provide software protection for an individual application.

On the other hand, a process-level virtual machine vir-
tualizes a single user-level application [43], and it is more
suited to providing software protection. Figure 1 illustrates
a typical process-level virtual machine environment, where
the guest application runs under the control of the PVM,
giving it the outward appearance of a native host process.
PVMs have been used to mediate the execution a wide-
ranging of applications including GUI-based applications,

multi-threaded applications, and high-performance server
programs. This work focuses on a widely implemented form
of process-level virtualization called dynamic binary trans-
lation (DBT) [42]. Examples of PVMs implemented using
DBT include Strata [39], Pin [31] and HDTrans [44].

PVMs operate as follows: during program startup, the
PVM assumes control and starts decoding the application’s
instructions in program order, one basic block at a time. The
decoded instructions are then translated to the Instruction Set
Architecture (ISA) of the host machine, and cached in soft-
ware. Control is then transferred to the cached block. After
the block executes, control returns to the PVM, which then
proceeds to translate the next basic block of the application.
The PVM can regularly monitor the application code dur-
ing this translation process, and therefore, it can serve as a
platform for applying protection schemes dynamically.

4. Polymorphic Knots
Knots are small sequences of instructions that checksum
application instructions over a range of memory addresses.
They are similar to software guards, first proposed by Chang
and Atallah [8]. In that work, the authors proposed designing
and placing the guards in the application at software-creation
time. However, as we described in Section 3, PVMs generate
code for the host machine at run-time. Consequently, check-
summing guards for the translated code cannot be created
post compilation and they remain vulnerable to tamper.

We propose a novel scheme of program protection, in
which the PVM generates knots during translation. At
randomly-selected points during the application code trans-
lation, the PVM will generate checksumming code that will
safeguard translated code that is located in the software
cache. The focus of these dynamic knots is to protect the
code located in the software cache, but the protection domain
can be extended to include the PVM and the guest applica-
tion as well. At random points during translation, the PVM
creates a checksum over randomly chosen range of memory
addresses, using a pre-determined hash function, and stores
the value. It then creates a sequence of instructions that per-
form the same operation over the same range of memory and
places the block in the software cache. The PVM then con-
tinues to translate application instruction blocks as per norm.
When control is transferred to the software cache, the knot
executes and ensures no modification of the translated block
has taken place.

An appropriate strategy for creation and placement of
knots is essential to low performance overhead as well as
good protection coverage. A trivial strategy for placing knots
is to randomly insert them during application execution.
However, if the knot is placed in a hot loop (i.e., a se-
quence of code that executes numerous times), run-time per-
formance can be negatively affected. Another strategy in-
volves assigning each block a probability inverse to it’s ex-
ecution count (obtained by profiling the application). When

OS

HARDWARE

 PVM V

HOST PROCESS
P

PV

GUEST APP.
G

Figure 1. High-level overview of process-level virtualization. The guest application runs under the mediation of the process-
level VM, giving an outward appearance of a process that is native to the underlying platform.

implemented, we observed that this strategy led to inconsis-
tent rates of knot execution (i.e., periods of high knot execu-
tion followed by periods of little or no knot execution).

Consequently, we decided to use predicated knots. Pred-
icated knots can be placed randomly during program exe-
cution. However the checking mechanism is only triggered
when a predicate is satisfied. If the predicate is not true, the
knot does not trigger and normal program execution contin-
ues.

An important aspect of the security provided of this
scheme is the knot network. Each address range is pro-
tected by multiple knots, which in turn are protected by other
knots. The connectivity, K, is defined as the number of dis-
tinct knots checking a memory location. Associated with
the connectivity is the RangeSize; the size of the block of
code checked by each knot. To increase K without chang-
ing the frequency of knot insertion, RangeSize is increased
to achieve the specified connectivity.

K provides a knob to control the trade-off between secu-
rity and performance overhead. As K is increased, each byte
in the program is protected by more knots, but each knot
takes longer to execute because of the larger address range
checked by each knot. Section 5 provides measurements of
the run-time overhead when K is 7.

4.1 Knot Polymorphism
A standard knot consists of four main components: a pream-
ble, a loop, a checker, and tamper response. To thwart auto-
matic scanners, the PVM uses a database of instructions to
construct these components. During knot creation, the PVM
chooses random instructions from this database to form the
knot. Figure 2 shows code for two such knots created using
a random selection of instructions. To further increase the

level of obfuscation, the instruction database is placed along
with other program data variable.

The knots also do not immediately report a tampering at-
tack. Instead, whenever an attack is detected, control trans-
fers do a different location and the tamper response is de-
layed till a later time when it is unclear as to the reasons
behind its occurrence.

4.2 Fluctuating Protection Network
PVMs can provide a fluctuating execution environment for
the application. For example, Ghosh et al. have shown that
PVMs can be configured such that the translated code ex-
ecutes from random locations in memory, which cannot be
determined a-priori [17]. This shifting environment is pri-
marily achieved through the use of periodic software cache
flushing [20]. As mentioned in Section 3, the PVM stores
the translated host machine instructions in a software cache.
Over periodic intervals, the PVM is configured to delete this
cache and re-translate and store the instructions. We now
show that this fluctuation can be used to strengthen knots
as well.

Chang et al. postulated that statically inserting a collec-
tion of static guards that mutually reinforce each other as
well as application code is more resilient to attacks than pro-
tection from a single guard [8]. However, once a guard net-
work has been created statically, it cannot be changed and
an adversary could be successful in disabling the network.
Our work utilizes periodic flushing to create a dynamic net-
work of knots. Each time the cache is flushed, a new network
of knots that cyclically reinforce each other will be created.
The networks would differ in number of of knots, their lo-
cations, and their protection range. They could also differ
in their formations, ranging from simple trees to directed
graphs with cycles. Compared to current static tamper de-

preamble:

mov edx , -checksum

mov eax , range_start

loop:

cmp ebx , range_end

jg checker

add edx , dword[ebx]

add eax , 4

jmp loop

....

checker:

cmp edx , 0

je app_code

jmp tamper_response

....

tamper_response:

...
(a) Assembly listing of a knot. The check-
sum is calculated using the add operation.

preamble:

push checksum

pop ecx

mov eax , range_start

loop:

cmp eax , range_end

jg checker

xor ecx , dword[eax]

lea eax , [eax + 4]

jmp loop

....

checker:

jecxz app_code

sub esp , 4

mov esp , tamper_response

ret

....

tamper_response:

...
(b) Assembly listing of another knot. The check-
sum is calculated using the xor operation.

Figure 2. Two examples of knots, created using a random selection of instructions.

tection techniques, this dynamism makes it harder for the
adversary to locate and disable the protection network.

5. Evaluation
We have designed a prototype that implements knots, using a
process-level virtual machine, called Strata [39]. Strata runs
as a co-routine with the application, making modifications
as it is running. Figure 3 displays a flowchart describe the
mechanism of Strata. At program startup, Strata seizes con-
trol and begins to mediate execution by dynamically examin-
ing and translating application instructions, one basic block
at a time. The translated blocks are placed in an area of mem-
ory, called the fragment cache. Strata then cedes control to
this translated block. This block executes and then transfer
control back to Strata, which then proceeds to translate the
next application block. To ensure a changing attack surface,
Strata periodically flushed the software cache and retrans-
lated the application’s instructions. Ghosh et al. have done
extensive studies on the effectiveness of periodic flushing
in providing an altering environment [17]. We decided on a
rate of one flush every two seconds, as this rate gave a good
trade-off in terms of low performance overhead and good
fluctuation.

5.1 Experimental Setup
We tested the proposed approach by building a proof-of-
concept implementation that targets the 32-bit Intel x86 plat-
form, although the concepts described in this work apply to
any binary translation system. Overhead and protection were
evaluated using the C-language applications of the SPEC
CPU2000 benchmark suite, running on a Linux system. Our
preliminary investigation revealed that predicated knots in-
serted at the rate of 2 per 100 dynamic application blocks

(2%) offer a good trade-off between performance overhead
and protection. As such, for our analysis, we chose this rate
for predicate guards. Finally, for the purposes of our proof-
of-concept, we set the connectivity, K, to 7.

5.2 Dynamic Tamper Resistance
Low performance overhead is an encouraging attribute, but
we need to examine the protection offered by these knots
closely. Low overhead could be explained by infrequent
execution of knots, which will hamper the tamper resistance
of the application. In this section, we analyze some of the
run-time properties.

First, we investigate the frequency of knots execution.
Figure 4 displays the number of knots executing per sec-
ond for two of the benchmarks, 175.vpr and 176.gcc, which
displayed the lowest and highest rate of knots invocation, re-
spectively. The plots indicate that knots are executing consis-
tently for both benchmarks. Thus, predicated knots achieve
a good trade-off between performance overhead and knots
execution rate. We observed a similar trade-off in the other
benchmarks as well.

Figure 5 displays the average checks on each application
byte occurring every second. This statistic gives an idea on
the duration that a malicious modification can persist. The
graph shows that predicated knots give a good trade-off be-
tween protection and overhead. For most benchmarks, code
cache bytes are checked multiple times every second. Some
benchmarks like 256.bzip2 have a higher rate of checking.
256.bzip2 is a compression application, with a few blocks
that execute very frequently, and other blocks which execute
infrequently. Some of the knots were placed inside the fre-
quently executing blocks. Such knots contributed to the high
checking rate. The high standard deviation indicates that the

STRATA VM

insn1

CONTEXT
SWITCH

QUIT?

NO

YES

TRANSLATED CODE

FETCH

DECODE

TRANSLATE

NEXT PC

insn1

insn2

insn3

insn4

….

….

insn2

jmp translator

insn4

insn5

jmp translator

APPLICATION

KNOT

KNOT

Figure 3. Flowchart displaying the translation mechanism of Strata VM. Strata translates application instructions as it is
running. The translated instructions are stored in a code cache. At random points, it inserts knots that protect these translated
instructions.

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41

175.vpr

176.gcc

Time (in seconds) Time (in seconds)

N
u

m
b

er
 o

f
K

n
o

ts

Figure 4. Number of knots invoked per second for 175.vpr and 176.gcc, which have the lowest and highest rate of knots
activity, respectively.

checking was not uniform for all the bytes. We can draw
similar conclusions for 181.mcf and 177.mesa.

We also investigate the structure of the knot created. If
all the knots possess the same form (i.e., are composed of
the same instructions), it would be trivial for the adversary
to craft a regular-expression based attack to identify and dis-
able knots. Figure 6 shows the percentage of unique knots
created for each benchmark. For our proof of concept, the
knots database allows for tens of thousands of unique knots.
During evaluation, we observed that the PVM placed several

hundreds of knots for each benchmark. For all the bench-
marks, our design achieved upwards of 90% unique knots
for every benchmark. The database can be tuned further to
achieve even greater occurrence of unique knots. Polymor-
phic knots increase the difficulty of carrying out a successful
regular expression-based attack.

5.3 Performance
Figure 7 displays the performance overhead of Strata and
the protection features normalized to native (i.e., application

-10

0

10

20

30

40

50

1
6

4
.g

zi
p

1
7

5
.v

p
r

1
7

6
.g

cc

1
8

1
.m

cf

1
9

7
.p

ar
se

r

2
5

3
.p

er
lb

m
k

2
5

4
.g

ap

2
5

6
.b

zi
p

2

3
0

0
.t

w
o

lf

1
7

7
.m

es
a

1
7

9
.a

rt

1
8

3
.e

q
u

ak
e

1
8

8
.a

m
m

p

N
u

m
b

e
r

o
f

ch
e

ck
s

p
er

 s
e

co
n

d

Figure 5. Average number of checks per second on each byte of the application, along with the standard deviation. This
statistic gives an idea on how long a modification can exist before it is detected. The error bars correspond to the standard
deviation.

running natively on the platform). Strata itself adds around
17% overhead to the run time. Previous work has investi-
gated techniques to reduce this overhead [22]. Research in
this area is still ongoing.

Inserting predicated knots dynamically into the code
cache, using the calculations mentioned above, adds an ad-
ditional overhead of 7% over native. The predicates that trig-
ger knot execution are based on the exponential back-off
method [12]. Initially the knot executes immediately when
the predicate is triggered. Every time the knot is executed,
the predicate is reconfigured such that it will have to be
triggered twice more than the previous predicate value be-
fore the knot will execute, subject to a threshold value. This
scheme multiplicatively reduces the rate of knot execution
(and consequently, performance overhead) to gradually find
an acceptable rate.

The final set of bars show the performance overhead
when cache flushing is also enabled. At periodic inter-
vals (every two seconds), all the translated code blocks are
deleted and program translation proceeds at the next instruc-
tion to be schedule for execution. Flushing adds an extra 2%
overhead to the run time.

6. Discussion
This section describes some of the protective aspects of the
polymorphic knots, as well as vulnerabilities inherent to
PVM-based security measures.

6.1 Protection of Generated Code
The primary goal of the knots involves protecting the trans-
lated code from tamper. To our knowledge, our scheme is
the first attempt at tamper-proofing the software code cache.
Any static techniques can only protect the guest application
code and the PVM. Previously, the adversary could make
modifications to the code cache with fear of detection. Flush-
ing the code cache periodically provides some protection, as
any changes made by the adversary will be removed and the
correct application code translated again. However, flushing
too frequently adds a serious performance overhead [17]. As
such, knots add an additional layer of protection from tam-
pering. Taken together, flushing and knots provide strong
protection run-time protection against tampering.

6.2 Effectiveness against OS-based Attacks.
Modified operating systems have been used to mount suc-
cessful attacks against software guards. Guard systems work
on the assumption that the underlying hardware follows
the von Neumann architecture (data reads and instruction
fetches go to the same memory structure, called a page).
Wurster, et al. showed a quick workaround to guards: sep-
arate data and instruction memory [50]. Each page of the
application was duplicated and modifications were applied
to it. The kernel was modified such that data reads would go
to the unmodified application, whereas instruction fetches
would bring in instructions from the tampered copy.

Giffin et al. designed an effective solution to this split-
memory attack, which involves the use of self-modifying
code [18]. Self-modifying code is possible only on systems

90

92

94

96

98

100

1
6

4
.g

zi
p

1
7

5
.v

p
r

1
7

6
.g

cc

1
8

1
.m

cf

1
9

7
.p

ar
se

r

2
5

3
.p

er
lb

m
k

2
5

4
.g

ap

2
5

6
.b

zi
p

2

3
0

0
.t

w
o

lf

1
7

7
.m

es
a

1
7

9
.a

rt

1
8

3
.e

q
u

ak
e

1
8

8
.a

m
m

p

P
er

ce
n

ta
ge

 o
f

U
n

iq
u

e
 K

n
o

ts

Figure 6. Percentage of unique knots for each benchmark. This statistic indicates that a simple regular expression will fail to
locate all the knots in the cache.

implementing the Von Neumann architecture. This solution
is inherently present in PVM systems implementing binary
translation. The PVM continually translates, stores and then
executes the application code. As such, the split memory
attack will not succeed against knots.

The protection schemes described in this work rely heav-
ily on randomness. For example, in our proof of concept, the
placement of the knots in the code cache, and the structure
of the knots themselves are decided by a random number
generator (RNG) that is part of the standard library (libc).
An adversary could modify the OS such that this RNG gen-
erates a predictable sequence. This modification could then
allow the adversary to anticipate the locations and structures
of the knots, and launch regular expression-based attacks.
To thwart this type of attack, we chose a custom RNG al-
gorithm that was part of the PVM itself. All decisions that
are dependent on a randomizer, are based on its generated
output sequence.

Finally, the altering nature of the PVM is driven by code
cache flushing. This flushing is triggered by a periodic signal
from the underlying OS. Again, an adversary could modify
the OS such that this signal is never generated. Ghosh et al.
have shown that flushing can also be triggered by using pro-
gram properties, e.g., number of indirect jumps, or number
of function calls [17]. The success of PVM-based protec-
tions depends heavily on relying as little as possible on enti-
ties external to the PVM and the application.

6.3 Effectiveness against PVM Attacks
Knots thwart tamper attacks on code that is resident in the
internal cache of the PVM. An adversary can attempt to alter

key functionalities of the PVM itself, thereby invalidating
protection features such as knots. Ghosh et al. proposed a
replacement attack on PVMs, which involves replacing a
PVM applying protections with a benign VM [16]. Knots do
not protect the PVM from such attacks. As such, additional
security measures need to be established that protect the
PVM from tamper.

Other classes of attacks have attempted to reverse engi-
neer the application and remove code that belongs to the
PVM. Coogan et al. designed a data analysis-based attack
on the trace of a PVM-protected application, which desig-
nates the instructions belonging to the application[?]. Sub-
sequent analyses on the marked instructions can reveal the
relevant portions of the application (i.e., the critical algo-
rithms). Sharif et al. devised an attack which attempts to
identify PVM structures and remove them from the trace. J.
Kinder presented encouraging preliminary results of a static
analysis of VM-protected applications [26]. These types of
attacks are focused more towards reverse engineering, rather
than tamper-detection avoidance. Therefore, our solution is
orthogonal to these classes of attack as well.

6.4 Side-channel Attacks
Recently, adversaries have started exploring indirect tech-
niques, or side-channel attacks to break protections and tam-
per with software (e.g., memory access patterns, timing at-
tacks etc.). The advent of sophisticated analysis techniques
along with the increased complexity of the underlying mi-
croarchitecture, which has exposed more side channels to
attack [28], has increased the incidence of such attacks. In
general, all software systems are vulnerable to such attacks,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1
6

4
.g

zi
p

1
7

5
.v

p
r

1
7

6
.g

cc

1
8

1
.m

cf

1
9

7
.p

a
rs

e
r

2
5

3
.p

e
rl

b
m

k

2
5

4
.g

a
p

2
5

6
.b

zi
p

2

3
0

0
.t

w
o

lf

1
7

7
.m

e
sa

1
7

9
.a

rt

1
8

3
.e

q
u

a
k

e

1
8

8
.a

m
m

p

A
v

e
ra

g
e

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce

Strata

Knots (2%)

Knots with flushing

(once every 2 secs.)

Figure 7. Performance overhead for the protection features, normalized to native application run. Flushing once every 2
seconds adds negligible overhead to the run time.

as such, we do not address this class of attacks in our work.
Prior research has investigated solutions to side-channel at-
tacks [19, 35].

7. Related work
Software applications are increasingly being used to perform
critical tasks. As such, their protection against malicious
modifications is of paramount important. Much research has
been done in the area of tamper resistance. Significant work
in this area is based on the seminal research by Aucsmith [2].
Program protection techniques can broadly be classified into
hardware and software approaches.

Software-based program-protection approaches typically
have a lower monetary cost and can be prototyped rapidly.
Chang and Atallah proposed one such software-based solu-
tion, which explored the idea of a network of checksumming
guards protecting the integrity of the application [8]. Subse-
quently, Horne et al. introduced the concept of testers, which
consisted of sequences of code that computed a hash over a
range of addresses, and compared the hash value to a cor-
rector [23]. Any miscompare would trigger an appropriate
response.

Oblivious hashing is a tamper-detection technique that
computes hash values based on the actual execution path of
the application [24]. Since static checksums are vulnerable
to the split-memory attack [50], care must be taken to ensure
that the assumptions about the underlying platform hold true
during application execution.

A number of tamper-resistance technique utilize software
obfuscation to make it harder for the adversary to analyze
and understand the code. Linn et al. devised novel techniques

to hamper disassembly of code [30]. Wang et al. proposed
the use of indirect branches to obfuscate the control flow for
the application [49]. Collberg et al. have also devised several
techniques to obscure code [10, 11]. Code encryption is also
a useful technique against static analysis. The code can be
decrypted by hardware (i.e., a secure co-processor [51], but
this method can add substantially to the cost of the product.
Unfortunately, a number of these static techniques can be
vulnerable to dynamic analysis [5].

Researchers have started using virtualization to improve
program protections, specially at run time. A number of
commercial PVMs have been created, such as VMPro-
tect [47] and Themida [33]. These tools obscure the appli-
cation using a secret Instruction Set Architecture and at run
time, execute the code using the just-in-time interpretation
model [43].

System-level virtual machines have also been utilized to
provide tamper resistance. The Terra system implements a
trusted virtual machine monitor with can be used to create
closed-box platforms where the developer can tailor the soft-
ware stack to meet security requirements [15]. However, this
scheme requires hardware support to validate the software
stack. Chen et al. discuss Overshadow, a system that crypto-
graphically isolates the application insides a VMM from the
guest OS it is running on. This system offers another layer
of tamper resistance, even in the case of OS compromise [9].

Hardware-based approaches typically involve a higher
cost in terms of resources, but are harder to break than
software-only solutions. Many hardware-based solutions
have been proposed that protect systems against physical and
software attacks. One class of hardware solution involves

using dongles [37]. A dongle is a hardwired token that is
distributed along with the copy of the software and can be
attached to a computer. At run time the program intermit-
tently invokes a routine in the dongle and if the reply is
not validated, ceases to run. The premise is that it is more
difficult to copy the dongle than the software so any user
possessing the dongle is legitimate. However any adversary
who can extract the security function from the dongle can
bypass the protection using emulation. Modern processors
also provide protection functionality in hardware (e.g., the
Cell Broadband Engine, which provides the Runtime Se-
cure Boot feature, which verifies that an application has not
been tampered with, at start up [41]) Other hardware solu-
tions involve the use of trusted computing platforms such
as TPM and Microsoft’s NGSCB [13, 36]. Finally there are
customized hardware techniques to prevent tampering, such
as execute-only memory [29] and systems based on secure
processors [45].

8. Conclusions
Process-level Virtual Machines are increasingly being used
in the area of software protection. This work presents a novel
use of PVMs in the area of tamper detection. The scheme
uses a PVM to create a dynamic network of polymorphic
knots (i.e., sequence of instructions created dynamically by
the PVM that checksum a range of program addresses, simi-
lar in concept to guard proposed by Chang [8]) that maintain
the integrity of cached code from malicious modifications.
The knots are created at run time and protect the code lo-
cated in the software cache of the PVM. Periodic flushing
of translated code creates a fluctuating protection network.
Combined with predicates, dynamic knots achieve a good
balance between execution rate and overhead. When used
in conjunction with techniques that protect the static binary,
knots provide strong tamper resistance. These results indi-
cate that PVMs can provide a platform for different program
protection techniques.

Acknowledgements
This research is supported by National Science Founda-
tion (NSF) grant CNS-0811689, the Army Research Office
(ARO) grant W911-10-0131, and the Air Force Research
Laboratory (AFRL) contract FA8650-10-C-7025. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or im-
plied, of the NSF, AFRL, ARO, or the U.S. Government.

References
[1] ANCKAERT, B., JAKUBOWSKI, M., AND VENKATESAN,

R. Proteus: virtualization for diversified tamper-resistance.
In DRM ’06: Proceedings of the ACM Workshop on Digi-
tal Rights Management (New York, NY, USA, 2006), ACM
Press, pp. 47–58.

[2] AUCSMITH, D. Tamper-resistant software: An implemen-
tation. In Proceedings of the 1st International Workshop
on Information Hiding (London,U.K, 1996), Springer-Verlag,
pp. 317–333.

[3] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND

WARFIELD, A. Xen and the art of virtualization. In Pro-
ceedings of the 19th ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2003), SOSP ’03, ACM,
pp. 164–177.

[4] BELLARD, F. QEMU, a fast and portable dynamic translator.
In ATEC ’05: Proceedings of the USENIX Annual Technical
Conference (Berkeley, CA, USA, 2005), USENIX Associa-
tion, pp. 41–41.

[5] BIONDI, P., AND FABRICE, D. Silver needle in the skype. In
Black Hat Europe (Amsterdam, the Netherlands, 2006).

[6] BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An
infrastructure for adaptive dynamic optimization. In CGO
’03: Proceedings of the IEEE/ACM International Symposium
on Code Generation and Optimization (Los Alamitos, CA,
USA, 2003), IEEE Computer Society, pp. 265–275.

[7] CASTELLUCCIA, C., FRANCILLON, A., PERITO, D., AND

SORIENTE, C. On the difficulty of software-based attestation
of embedded devices. In CCS ’09: Proceedings of the 16th
ACM Conference on Computer and Communications Security
(New York, NY, USA, 2009), ACM, pp. 400–409.

[8] CHANG, H., AND ATALLAH, M. Protecting software code by
guards. In Proceedings of the ACM Workshop on Security and
Privacy in Digital Rights Management (2000), pp. 160–175.

[9] CHEN, X., GARFINKEL, T., LEWIS, E. C., SUBRAH-
MANYAM, P., WALDSPURGER, C. A., BONEH, D.,
DWOSKIN, J., AND PORTS, D. R. Overshadow: A
virtualization-based approach to retrofitting protection in
commodity operating systems. In ASPLOS XIII: Proceedings
of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (New
York, NY, USA, 2008), ACM Press, pp. 2–13.

[10] COLLBERG, C., THOMBORSON, C., AND LOW, D. A taxon-
omy of obfuscating transformations. University of Auckland
Technical Report (1997), 170.

[11] COLLBERG, C., THOMBORSON, C., AND LOW, D. Manu-
facturing cheap, resilient and stealthy opaque constructs. In
POPL’98: Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (New
York, NY, USA, 1998), ACM Press, pp. 184–196.

[12] COMER, D. E., AND STEVENS, D. L. Internetworking with
TCP/IP, Vol 2: Design, Implementation, and Internals, 2 ed.
Prentice Hall, 1994.

[13] COMPUTING GROUP, T. TCG TPM specification version 1.2
revisions 62-94.

[14] DEHNERT, J. C., GRANT, B. K., BANNING, J. P., JOHNSON,
R., KISTLER, T., KLAIBER, A., AND MATTSON, J. The
Transmeta code morphing software: using speculation, recov-
ery, and adaptive retranslation to address real-life challenges.
In CGO ’03: Proceedings of the International Symposium on

Code Generation and Optimization (Washington, DC, USA,
2003), IEEE Computer Society, pp. 15–24.

[15] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M.,
AND BONEH, D. Terra: a virtual machine-based platform
for trusted computing. In SOSP ’03: Proceedings of the
19th ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2003), ACM Press, pp. 193–206.

[16] GHOSH, S., HISER, J., AND DAVIDSON, J. W. Replacement
attacks against VM-protected applications. In VEE ’12: Pro-
ceedings of the 8th ACM SIGPLAN/SIGOPS conference on
Virtual Execution Environments (New York, NY, USA, 2012),
VEE ’12, ACM, pp. 203–214.

[17] GHOSH, S., HISER, J. D., AND DAVIDSON, J. W. A secure
and robust approach to software tamper resistance. In IH ’10:
Proceedings of the 12th International Conference on Infor-
mation Hiding (Berlin, Heidelberg, 2010), Springer-Verlag,
pp. 33–47.

[18] GIFFIN, J. T., CHRISTODORESCU, M., AND KRUGER,
L. Strengthening software self-checksumming via self-
modifying code. In ACSAC ’05: Proceedings of the 21st An-
nual Computer Security Applications Conference (Washing-
ton D.C., U.S.A, 2005), IEEE Computer Society, pp. 23–32.

[19] GOLDREICH, O., AND OSTROVSKY, R. Software protection
and simulation on oblivious RAMs. Journal of the ACM 43, 3
(May 1996), 431–473.

[20] HAZELWOOD, K., AND SMITH, M. D. Code cache man-
agement schemes for dynamic optimizers. In Sixth Annual
Workshop on Interaction between Compilers and Computer
Architectures (Boston, MA, February 2002), pp. 102–110.

[21] HISER, J. D., WILLIAMS, D., FILIPI, A., DAVIDSON, J. W.,
AND CHILDERS, B. R. Evaluating fragment construction
policies for SDT systems. In VEE ’06: Proceedings of the 2nd
International Conference on Virtual Execution Environments
(New York, NY, USA, 2006), ACM Press, pp. 122–132.

[22] HISER, J. D., WILLIAMS, D., HU, W., DAVIDSON, J. W.,
MARS, J., AND CHILDERS, B. R. Evaluating indirect branch
handling mechanisms in software dynamic translation sys-
tems. In CGO ’07: Proceedings of the International Sym-
posium on Code Generation and Optimization (Washington,
DC, USA, 2007), IEEE Computer Society, pp. 61–73.

[23] HORNE, B., MATHESON, L. R., SHEEHAN, C., AND TAR-
JAN, R. E. Dynamic self-checking techniques for improved
tamper resistance. In Digital Rights Management Workshop
(London, U.K., 2001), pp. 141–159.

[24] JACOB, M., JAKUBOWSKI, M. H., AND VENKATESAN, R.
Towards integral binary execution: Implementing oblivious
hashing using overlapped instruction encodings. In MM&Sec
’07: Proceedings of the 9th Workshop on Multimedia & Secu-
rity (New York, NY, USA, 2007), ACM Press, pp. 129–140.

[25] KIMBALL, W. SecureQEMU: Emulation-based Software
Protection Providing Encrypted Code Execution and Page
Granularity Code Signing. Air Force Institute of Technology,
2008.

[26] KINDER, J. Towards static analysis of virtualization-
obfuscated binaries. In WCRE ’12: Proceedings of the 19th
Working Conference on Reverse Engineering (2012), IEEE.

[27] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. P.
Secure execution via program shepherding. In USENIX ’02:
Proceedings of the 11th USENIX Security Symposium (Berke-
ley, CA, USA, 2002), USENIX Association, pp. 191–206.

[28] LAWSON, N. Side-channel attacks on cryptographic software.
IEEE Security and Privacy 7, 6 (Nov. 2009), 65–68.

[29] LIE, D., THEKKATH, C., MITCHELL, M., LINCOLN, P.,
BONEH, D., MITCHELL, J., AND HOROWITZ, M. Architec-
tural support for copy and tamper resistant software. In ASP-
LOS ’00: Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Op-
erating Systems (New York, NY, USA, 2000), vol. 35, ACM
Press, pp. 168–177.

[30] LINN, C., AND DEBRAY, S. Obfuscation of executable code
to improve resistance to static disassembly. In CCS ’03:
Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS) (Washington D.C., U.S.A,
2003), ACM Press, pp. 290–299.

[31] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND

HAZELWOOD, K. Pin: Building customized program analysis
tools with dynamic instrumentation. In PLDI ’05: Proceed-
ings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY, USA,
2005), ACM Press, pp. 190–200.

[32] MADOU, M., ANCKAERT, B., DE SUTTER, B., AND

DE BOSSCHERE, K. Hybrid static-dynamic attacks against
software protection mechanisms. In DRM ’05: Proceedings of
the 5th ACM workshop on Digital Rights Management (New
York, NY, USA, 2005), ACM Press, pp. 75–82.

[33] OREANS TECHNOLOGIES. Themida. http://oreans.com/
themida.php, 2009.

[34] OREONS TECHNOLOGY. Codevirtualizer. http://oreans.
com/codevirtualizer.php, 2009.

[35] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache at-
tacks and countermeasures: The case of AES. In Proceedings
of the 2006 The Cryptographers’ Track at the RSA confer-
ence on Topics in Cryptology (Berlin, Heidelberg, 2006), CT-
RSA’06, Springer-Verlag, pp. 1–20.

[36] PEINADO, M., P.ENGLAND, AND Y.CHEN. An overview of
NGSCB. Trusted Computing, Chapter 4 (2005).

[37] PHIPPS, J. Physical protection devices. In The protection
of computer software—its technology and applications (New
York, NY, USA, 1989), Cambridge University Press, pp. 57–
78.

[38] POPEK, G. J., AND GOLDBERG, R. P. Formal requirements
for virtualizable third generation architectures. Communica-
tions of the ACM 17 (July 1974), 412–421.

[39] SCOTT, K., KUMAR, N., VELUSAMY, S., CHILDERS, B.,
DAVIDSON, J. W., AND SOFFA, M. L. Retargetable and
reconfigurable software dynamic translation. In CGO ’03:
Proceedings of the International Symposium on Code Genera-
tion and Optimization (Washington D.C., U.S.A, 2003), IEEE
Computer Society, pp. 36–47.

[40] SESHADRI, A., LUK, M., SHI, E., PERRIG, A., VAN

DOORN, L., AND KHOSLA, P. Pioneer: Verifying code in-

tegrity and enforcing untampered code execution on legacy
systems. In SOSP ’05: Proceedings of the 20th ACM Sympo-
sium on Operating Systems Principles (New York, NY, USA,
December 2005), vol. 39, ACM Press, pp. 1–16.

[41] SHIMIZU, K., NUSSER, S., PLOUFFE, W., ZBARSKY, V.,
SAKAMOTO, M., AND MURASE, M. Cell Broadband En-
gine: Processor security architecture and digital content pro-
tection. In Proceedings of the 4th ACM International Work-
shop on Contents Protection and Security (New York, NY,
USA, 2006), MCPS ’06, ACM, pp. 13–18.

[42] SITES, R. L., CHERNOFF, A., KIRK, M. B., MARKS, M. P.,
AND ROBINSON, S. G. Binary translation. Communcations
of the ACM 36 (February 1993), 69–81.

[43] SMITH, J., AND NAIR, R. Virtual Machines: Versatile Plat-
forms for Systems and Processes (The Morgan Kaufmann Se-
ries in Computer Architecture and Design). Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2005.

[44] SRIDHAR, S., SHAPIRO, J. S., NORTHUP, E., AND BUN-
GALE, P. P. HDTrans: an open source, low-level dynamic
instrumentation system. In VEE ’06: Proceedings of the 2nd
International Conference on Virtual Execution Environments
(New York, NY, USA, 2006), ACM, pp. 175–185.

[45] SUH, G. E., CLARKE, D., GASSEND, B., VAN DIJK, M.,
AND DEVADAS, S. AEGIS: Architecture for tamper evident
and tamper resistant software. In Proceedings of the 17th
Annual International Conference on Supercomputing (2003),
ACM Press, pp. 161–171.

[46] UDUPA, S., DEBRAY, S., AND MADOU, M. Deobfuscation:
Reverse engineering obfuscated code. In WCRE ’05: Proceed-
ings of the International Working Conference on Reverse En-
gineering (Los Alamitos, CA, USA, Nov. 2005), vol. 0, IEEE
Computer Society, pp. 45–54.

[47] VMPROTECT SOFTWARE. VMProtect. http://vmpsoft.

com/, 2008.

[48] WALTERS, B. VMware virtual platform. Linux Journal 1999,
63es (July 1999).

[49] WANG, C., HILL, J., KNIGHT, J., AND DAVIDSON, J. Soft-
ware tamper resistance: Obstructing static analysis of pro-
grams. Tech. rep., Charlottesville, VA, USA, 2000.

[50] WURSTER, G., OORSCHOT, P. C. V., AND SOMAYAJI, A. A
generic attack on checksumming-based software tamper resis-
tance. In SP ’05: Proceedings of the 2005 IEEE Symposium on
Security and Privacy (Washington D.C., U.S.A, 2005), IEEE
Computer Society, pp. 127–138.

[51] ZAMBRENO, J., CHOUDHARY, A., SIMHA, R., NARAHARI,
B., AND MEMON, N. SAFE-OPS: An approach to embedded
software security. Transactions on Embedded Computing
Systems 4, 1 (2005), 189–210.

