
Creating Elticient Systems for
Object-Oriented Languages

N o r i h i s a S u z u k i a n d M i n o r u T e r a d a

T h e U n i v e r s i t y of T o k y o

7-3-1 l l o n g o , B u n k y o - k u ,
T o k y o , J a p a n 113

ABSTRACT

Increasingly computer science research has been

done using workstations with high-resolution bitmap display
systems. Smalltalk-B0t is a very attractive programming
language for such computation environments, since it has
very sophisticated graphical systems and programming

environments. Unfortunately there arc still very few
computer systems on which Smalltalk-80 can run with

satisfactory speed, and furthermore they are quite expensive.
In order to make Smallt.alk-80 accessible to a large group of

people at low cost. we have developed compiler techniques
useful to generate efficient code for standard register

machines such as MC6B000. We have also extended
Smalltalk-80 to include type expressions, which allow
compilers to generate eff icient code

generally very expensive and only a very few researchers can
afford them. In order to make Smalltalk-80 programming
systems widely available, they have to run on standard
microprocessors such as MC68000. As the prel iminary
process fo r releasing Smalltalk-80, Xerox licensed Smalltalk-
80 to a number of companies, which tried to implement i t on
a standard machines such as V A X and MC68000 based
machines. These experiments [6] were generally very
disappointing.

Therefore, we decided to put our efforts in generating
eff icient systems on MC68000. Even though most of the
attempts in [6] to put Smalltalk-80 on convent ional
computers are not successful, they have obtained extensive
performance measurements, which are very useful to the
people like us who want to implement Smalltalk-80 systems.

1. INTRODUCTION

More and more computer science research has been
conducted on high-performance personal workstations, The
reasons are that we can in general get more computat ion
power per person if we use workstations instead of crowded
time-sharing systems, and workstations generally have
bitmap display screens that allow us to communicate with
computers with much higher bandwid th

There are, however, very few excel lent programming
systems that util ize the ful l capabilities of the workstations.

,Smalltalk-80 is one of such programming systems; it has a
number of attractive features for experimental programming
such as polymorphism, late bindi .g, and object-oriented
system structures.

Smalltalk-80 has only beell successfully implemented
on a very few computer systems, most of which are
microcoded machines. These Tnicroeoded machines are

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a f¢¢ and/or specific permission.

© 1983 ACM 0-89791-125-3/84/001/0290 $00.75

They have found out that there are three major
bottlenecks in the Smalltalk-80 sys tems that have been
implemented according to the Vir tual-Machine specification
written in [4]; the bottlenecks are caused by the necessity to
find the method, which cor responds to a procedure, for each
message send, which cor responds to a procedure call,
dynamically, by the cost of context allocation and
deallocation since the contexts, which are the execution
environments of procedures, are allocated on the heap, and
by the cost of reference counting garbage collection used for
memory management.

We have invented techniques to solve these
problems; we allocate contexts on the stack as long as the
retent ion of contexts is not necessary, we e l i d e m u c h of
reference counting by using a transaction-based garbage
collection, and we avoid method search by compare and
branch and l ink instructions exploi t ing some statistical
evidence.

We have also concluded that type information is
absolutely necessary fo r both documentat ion and generating
efficient code. Type in format ion may be obtained both by
declarations [2] and compiler inference [7]. We allow the
p rog rammer to supply as many type declarations as they
wish• This new language and the system is called Kiku

(ch rysan themum) .

We will describe the problems and the outline of the
Lechniques Lo solve these problems in section 2. In section 3
we describe the language features of Kiku. In section 4 we
describe the details of the compilation techniques•

t Smalltalk-80 is a trademark of Xerox Corporation.

290

2. B O T T I . E N E C K S A N D S O L U T I O N S

T h e r e a r e t h r e e m a j o r p e r f o r m a n c e b o t t l e n e c k s ill t h e
S m a l l t a l k - 8 0 s y s t e m s t h a t a r e i m p l e m e n t e d a c c o r d i n g Lo t h e
Vir tua l Machine specif ication wriLl.en in [5] . They arc the
dynamic method search, the c o n t e x t al locat ion in the heap.
a n d t h e r e f e r e n c e c o u n t i n g g a r b a g e c o l l e c t i o n .

E. l . D y n a m i c Method S e a r c h O v e r h e a d

The pr im i t i ve compu ta t i on mechanism of Smal l ta lk-
80 is called a message send. For example, an expression to
tell a table Lo be moved f rom locat ion locA to locat ion loeb

is

table m o v e F r o m : l o c A to: loeb

w h e r e t a b l e p o i n t s to a n o b j e c t , w h i c h is c a l l ed t h e r e c e i v e r
of t h e m e s s a g e , a n d m o v e F r o m : locA to: l oeb is t h e m e s s a g e
s e n t to t ab le . T h e e n t i r e e x p r e s s i o n is c a l l ed a m e s s a g e s e n d .

T h e c o n c a t e n a t e d s t r i n g m o v e F r o m : t o : is c a l l ed t h e m e s s a g e
s e l e c t o r . T h e p r o g r a m t h a t is g o i n g to be a c t i v a t e d f o r t h i s

m e s s a g e s e n d is n o t d e t e r m i n e d a t c o m p i l e t i m e .

These special concepts and jargons of Smal l ta lk -80
can be described in terms of o rd inary p rog ramming language
concepts. A message send is a procedure call. a rece iver of a
message is the first a rgumen t of a procedure call. a message
selector is a procedure name, and a method is a procedure.
There fore , the above Smal l ta lk-80 message send can be
wr i t ten as

moveFrom: to : (t ab l c . IocA, loci])

in Pascal.

T h e b i n d i n g b e t w e e n a m e s s a g e and a method is
d o n e a t r u n t i m e . T h e r e f o r e . d e p e n d i n g o n t h e c l a s s e s of
t h e r e c e i v e r s of t h e m e s s a g e s , t h e m e s s a g e s a r e i n t e r p r e l c d

d i f f e r en t l y .

Each o b j e c t b e l o n g s to a c lass , which is a s p e c i f i c a t i o n
of a g r o u p of ob j ec t s . In p a r t i c u l a r a c l a s s h a s a m e t h o d

d i c t i o n a r y , w h i c h is a h a s h t a b l e wi th t h e m e s s a g e s e l e c t o r as
a k e y a n d t h e m e t h o d b o d y a s a va lue . W h e n a m e s s a g e is
s e n t to a r e c e i v e r , t h e m e t h o d d i c t i o n a r y o f t h e c l a s s o f t h e
r e c e i v e r is s e a r c h e d wi th t h e m e s s a g e s e l e c t o r . If it is f o u n d

in t h e m e t h o d d i c t i o n a r y , t h e m e t h o d b o d y t h a t is t h e v a l u e
of t h e m e s s a g e s e l e c t o r is i n v o k e d . If it is n o t f o u n d , t h e n

t h e s u p e r c l a s s o f t h e c l a s s o f t h e r e c e i v e r b e c o m e s t h e c l a s s
to be s e a r c h e d , a n d t h e m e t h o d d i c t i o n a r y is s e a r c h e d a g a i n .
T h u s , t h e m e t h o d b o d y to b e i n v o k e d f o r a m e s s a g e s e n d is
d e t e r m i n e d d y n a m i c a l l y .

T h e m e t h o d s e a r c h is o p t i m i z e d in S m a l l t a l k - I | 0
V i r t u a l M a c h i n e b y p r o v i d i n g a l a rge h a s h tab le . I"or e v e r y
m e s s a g e s e n d a h a s h k e y is c r e a t e d f r o m t h e m e s s a g e
s e l e c t o r a n d t h e h a s h t a b l e is l o o k e d up. E a c h e n t r y in t i le
h a s h t a b l e h a s t w o v a l u e s : t h e c l a s s a n d t h e m e t h o d b o d y . if
a n e n t r y wi th t h e s a m e s e l e c t o r ex i s t s , t h e c l a s s is c o m p a r e d
with t h e c l a s s o f t h e r e c e i v e r . If it is t h e s a m e , t h e m e t h o d
b o d y is a c t i v a t e d .

A n o t h e r optimizat ion in the current Smal l ta lk -80
Vi r tua l Machine is to speed up the method search for special
messages such as ar i thmet ic operators. W h e n an ar i thmet ic

o p e r a t o r + is s e n t , t h e p r o b a b i l i t y t h a t t h e c lass of t h e
r e c e i v e r is i n t e g e r is v e r y h i g h . W h e n t h e b y t e c o d e s f o r
a r i t h m e t i c m e s s a g e s a r c e x e c u t e d , t h e c l a s s e s of t h e r e c e i v e r s
a r c f i rs t c h e c k e d . If t h e y a r e I n t e g e r , a d d i t i o n is p e r f o r m e d

w i t h o u t i n v o k i n g a m e s s a g e s e n d .

O u r s t r a t e g i e s a r e t h e g e n e r a l i z a U o n of tlHs

phi losophy. W e assume t h a t in each m e s s a g e send classes of

the receivers that t i le receiver expression denotes are very
uneven l y d ist r ibuted, This assumpt ion is con f i rmed by many
stntisties taken at Xerox PAI~C. at (JC Berkeley, and by us.

A special case of tills is thal an expression always
d e n o t e s an o b j e c t f r o m a u n i q u e c l a s s In s u c h a ca se , we
can statically bind I.he rnessage send and the method so that
a 1TICSSilge send cal l be a simple branch and hnk operat ion
I [oweve r , w i thou t a power fu l type in ference a lgor i thm, Lhere
is no way for a compi le r to predict that an expression always
denotes objects of a un ique class There fore , we are
in t roduc ing type dec lara t ions We specify the classes of
wlrmhlcs, methods, and blocks By these declarat ions we can
tell the classes of expressions, and Lell Lhc methods in 'volvcd

ill. COUlpll(' I ilIl('

We are creat ing special object code if t i le m e s s a g e s

arc s e n t to p s e u d o - v a r i a b l e s . Pseudo-var iables are i d e n t i f i e r s
that always denote some special ob jects In Smal l ta lk-80 self
is a pseudo-var iab le that denotes, wi th in the method body,
the receiver of the message that has i nvoked the cu r ren t
method. A var iable super is ano ther pseudo-var iab le that
again denotes the receiver of the message that has i nvoked
the cu r ren t me thod , bu t forces the method search f rom the
superelass of the class where the method appears.

I f a message is sent to self or super, it is re la t ive ly
s t ra igh t fo rward to f ind the corresponding method at compi le
Lime. Suppose a m e s s a g e

se l f f: a r g

appears in the class A. then it is easy to t h ink that f: has to
i nvoke a method in the class A, or in the superclasses of A
if f: does no t appear in A This is, however , no t true.
Suppose this message is def ined in the method body of g: in
the class A. as

g: a l l II self f: arg

and this me thod is i nvoked by sending a message g: to an
object of the class B tha t is a subclass of A, bu t g: is no t
d e f i n e d in B.

class A- -f~

I" superclass

class 13 " f' ----I I_2_ I

T h e n g: i n v o k e d is t h e m e t h o d in c lass A , b u t t h e se l f in t h e

b o d y of g: d e n o t e s Lhe o b j e c t of c l a s s B. so f: i n v o k e d is t h e
o n e in c l a s s B. T h e r e f o r e , if f: is d e f i n e d in t h e s u b c l a s s e s of
c l a s s A, it is n o t a l w a y s t r u e t h a t f: s e n t to self i n v o k e s t h e
m e t h o d d e f i n e d in A o r in t h e s u p e r c l a s s e s of A.

291

The compiler strategy is. therefore, as follows. Any

messages sent to self are compiled to direct branch and link

instructions, if the methods are not defined in the

subclasses, Whcnew:r a method with the same name is

defined in a subclass, all the message sends with the same

message selector to self in the superclasses have to be

recompiled.

On the o the r hand message sends to super can be
compiled easily. Suppose the re is a message send

super f: x

in the class A, Then f: has to be in the superclasses of A.

We can trace the superclass chain starting from the

superclass of A at compile time. and can find the location of

the method f:.

As we exp la ined before, in order to genera te efficient
code for message sends to self, we need to main ta in a
database of m e t h o d s and to per form recompi la t ion Lime to
t ime. This can be done, but may requi re a lot of
computa t ion . We, therefore , in t roduced a n o t h e r pseudo-
var iable her~ which s tands for the p rev ious rece iver jus t l ike
se l f or super: bu t forces the me thod search to s tar t f rom the
class where the pseudo-var iab le here appears. We can
statically d e t e r m i n e the binding and do not have to
recompile .

The third t echn ique to speed up ~rnethod invocat ion is
to explo i t s tat is t ical facts. 1t was repor ted by the
m e a s u r e m e n t s a t Berkeley tha t it is very likely tha t the
message s ends in a class will i nvoke m e t h o d s in the s a m e
class. We descr ibe Lhe code genera t ion t echn iques tha t
exploit this fact in sect ion 4.

2.2. C o n t e x t A l loca t ion and Dea l loca t ion Overhead

In Smal l ta lk-80 a local execu t ion e n v i r o n m e n t created
every Lime a method is invoked is called a context. I t
contains a pointer to the previous context called a caller, a

po in te r to the object code of the method, an instruction
coun te r , parameters, local variables, which are called
temporary variables, and an evaluation stack. These
information are stored in the execution slack in the
implementation of ordinary languages, but in SmallLalk-80
con tex t s are t reated as objects and al located in the heap.

There are a n u m b e r of advan t ages for doing th is way.
Complex cont ro l s t ruc tu re s such as p rocesses and co rou t ine s
can very easily be i m p l e m e n t e d because c o n t e x t s are objects.
Utility sys t ems such as a debugger can be easily

imp lemen ted , because the his tory of the execu t ion can be
easily traced and manipu la ted by send ing messages to
contexts.

However. all the overhead associated with object
creation and destruction has to be paid by a method
activation and return. For each method activation, a storage
area with the size of a context is allocated, and the reference
count is incremented; for each method return the reference
count is decremented and the storage is returned to the free
list.

It was repor ted tha t more than 80% of objects

allocated are contexts in the Smalltaik-80 Virtual Machine
implementation [6]. Therefore, the overall overhead
associated with context allocation and deallocation is
tremendous.

Our philosophy in solving this problem is to allocate
contexts linearly in the stack as long as possible. When it
becomes necessary to treat the current context, which is the
Lop context in the stack, as an object, or to change the
current context because of a process switch, we make all the
contexts in the slack objects in the heap.

2.3. Reference C o u n t i n g Overhead

Automatic allocation and deallocation of objects is a
must for easy to use object-oriented languages. However,
the ordinary mark-and-sweep garbage collection has a long
pause when the garbage collector starts, and is not suited for
real-time, interactive applications.

SmallLalk-t30 Virtual Machine uses reference counting
garbage collection in order to improve the real-time
response. Reference counting garbage collection generally
performs better than mark-and-sweep garbage collection
since it r equ i res less disk I /O.

However , the overhead associated with reference
counting is substantml. In a slack machine like SmallLalk-60
Virtual Machine most of the operations are stack pushes end
pops. In order to push an object, the reference count of the
object must be incremented, and in order to pop and object
the reference count must be decremented, According to our
calculation, 807. of the c o m p u t a t i o n t ime for pushes and
pops spent in reference counting.

We reduce the reference counting overhead by not
counting if the pointers are in the stack. This is a
modificaLion to Deutseh and Bobrow [3] transaction garbage
collection algoriLhm, The details will he explained in a later
section,

3. L A N G U A G E F E A T U R E S OF K I K U

The syntax of Kiku is similar to Smalltslk-80;
however, we fel l Lhat parentheses-less syntax of message
send expressions is very confusing if message sends are
nested. Therefore, we adopted conventional notations with
parentheses. However, our compiler will accept both syntax.

The syntax for a message send is

<express ion> ! <se lec to r> [(<.parameter l is t>)]

where the <se lec to r> is an identif ier and the <parameLer
l is t> has the following BNF-syntax:

< pa rame te r list > :: --- < pa rame te r >
< p a r a m e t e r list.> :: = < p a r a m e t e r > , < p a r a m e t e r l i s t >

3.1. T y p i n g

Some work have been done to introduce types to
Smalltalk. Borning and lngalls [2] introduced type
expressions; their compiler understands types and checks
type consistency, but it does not use the information for

292

code generat ion. Suzuki [7] has devised an a lgor i thm to
infer types f rom the complete ly unlyped programs. His goal
was to create eff ieient code as well as to locate potent ial bugs
I~y type inference. This research, however , showed that if~
the language l ike Smal l ta lk-80 that al lows union types, many
inferences are not t ight enough Lo be useful fo r generating
opt imized code. We sti l l believe, however, thaL in
Small talk-80 the u l t imate optimization for message sending
can only be attained by knowing the classes of the
expressions at compi le Lime ei ther by type inference or by
expl ic i t typing. So we decided to in t roduce type expressions
into Small tslk-80.

Smal l talk-80 gels much of its power f rom the type
hierarchy system, po lymorph ism, and funct ion overloading.
We would not l ike Lo destroy the f lex ib i l i ty by introducing a
rigid type system. Therefore , Lhe declarat ions are opLional in
our system; objects stil l carry Lype codes wiLh them. Type

expressions are decorat ions to the program, They ar~ used
by an opt imiz ing compi le r to create a t ight ly bound code.

The locations where we put type expressions are with
variable declarations, me thod declarations, and block
statements.

3. i .I . Type Expressions

A type .expression can be a class name or a set of
class names. A seL of class names is used Lo denote a union
type. To be precise, a type expression is a name of a class,
or subclasses of a class, or a union of them. BNF'-syntsx fo r
type expressions are:

< p r i m i t i v e type exp ress ion> :: =
<class n a m e > I sub <class n a m e >

< type expression > :: = < pr im i t i ve type expression > I
(< pr imi t ive type expression >
< p r i m i t i v e type expression >)

3.1.2. Type Designations

We associate type expressions with variable
declarations, method declarations, and block statements. We
call the declarat ions wi th type expressions type designations.

We f irst explain the syntax fo r type designaLions by
some examples. A declaration of Class Ar ray is:

Class Ar ray
ev -- list of class variables --
era -- list of class methods --
iv -- l ist of instance variables --
ira a t (index: Smal l inLeger) I I

-- method body to extract an e lement
-- of the array

o- the rest of instance methods.

I le re Ar ray is the class name, The header im marks
the beginning of the declarat ions of instance messages An
instance message "at" is declared wiLh type designations. I t
lakes a parameter " index" of type "Smal l lnteger", which
declares that " index" can only denote an instance of Class
Smal l ln teger In addi t ion to being a class, Small lnLeger

serves as a type expression.

We may want to declare the class of the value
returned by this call, which is the class of the e lement of the
array. However , Smal l ts lk A r ray can take any objects as its
elements; therefore, we cannot specify the resul t ing type of
at. The besL we can do is to specify that the result wil l
belong Loa subclass of Class Object:

aL(index: Small lnLeger): sub Object,

which is equiva lent Lo have not type expression at all.
In order to create an array which takes

objects of one class we have to define special classes such as
Clas.~ Smal l ln tegerAr ray , and specify that the resul t of array
access is of Class Smal l ln teger and that the value to be
assigned in Lhe array assignment is of Class Small lnteger.

l l oweve r , since the number of classes that may be
defined is unbounded, i t is no t practical to in t roduce array
classes for all the e lement classes. Therefore , we have to
introduce parameLerized classes in order to cover all the
eases Then the result type of at can be defined by the
parameter of the class name used when Lhe object is created.
We have, however , not imp lemented parameter ized classes,
beca~Jse we have Lo in t roduce new- mechanisms to the
compi ler and Lhe run-Lime system. In the near fu tu re we
will be incorporat ing this feaLure.

BNF-syntax for type designations are:

<class variable dec lara t ions> :: =
e v l e v <va r iab le des ignat ions>

< variable des ignat ions> :: =
< t yped va r iab le> J
<Lyped var iab le> < variable des ignat ions>

< t yped var iab le> :: =
< i d e n t i f i e r > I
~. idenLi f ier> : < type expression >

<inst~luce wlr iable dec lara t ions> :: =
iv l=v <var iab le des ignat ions>

<cl~=s.~ method declar~Jtions> :: =
eln J(:lu < m e t h o d declaraLions>

< m(;thod d(;c larat ions> :: =
~.~ method header>

J < w~ri~ble des ignat ions> J <express ion l i s t>

wherry, tlu~ rc'gular vertical bar (J) is a metasymbol denot ing
~m ~lll.crn~dlv¢~ choice, ~lnd the bold verLieal bar (I) is a symbol
th~ll ;=pp(,nr.~ in Smal l ta lk- I I0 programs. Blocks also have type
cxprf~sslons, since they receive arguments and returns
resulL~ The syntax is:

< l) l o e k > ::-. (<express ions l i s t> < r e s u l t t ype>]J
[<pa rame te r dec lara t ions>
I <express ion l i s t> < resu l t t y p e >]

< parumeter dec lara t ions> :: =
<pa rameLe r> I
< p a r a m e L e r > , <pa rame te r dec lara t ions>

< p a r a m e t e r > :::-
: < i d e n t i f i e r > I
: .c ' ident. i f ier> : < t ype express ion>

<r (;su l t t ype> : : - '
<resulL t ype> :: ; : : < t ype express ion>

293

3.2 . P s e u d o - v a r i a b l e s

There are two variables, "self" and "super," which
have special meanings in Smalltalk-80. "Self" points to the
receiver, when the method is executed, leer example, if we
use recursion to imp lemen t mult ip l icat ion, it can be wri t ten
as:

mul t i p ly : n I I
(n ~ O) i fTrue : I t s e l f] .
t (s e l f + (se l f mu l t i p ly : (n - l)))

in S m a l l t a l k - 8 0 . T h e n , we e x e c u t e 5 mu l t i p ly : 3 to o b t a i n 15.
T h e s a m e m e t h o d is wr i t t en in K i k u as:

m u l t i p l y (n : s u b I n t e g e r) I I
(n = 0) ! i f T rue ([t se l f]) .
t (se l f + (self ? mulLiply(n - I)))

The method Lo be invoked for the message sent to
self cannot be determined staLically if the method is
redefined in the subclasses bccause of the reasons explained
in section 2; thus, we have sti l l to use slow method look up.
We int roduced a pseudo-var iable "here" to force the search
f r o m the c lass w h c r c t h e m e s s a g e s e n d occurs . T h u s , t he
s ta t ic b i n d i n g is a l w a y s p o s s i b l e

3.3. M u l t i p l e V a l u e R e t u r n s f r o m M e t h o d s

It is i m p o r l ~ m t for a n y p r o g r a m m i n g l a n g u a g e s to
h a v e m u l L i p l c - w d u e - r e t u r n i n g f u n c t i o n s Lo s i m p l i f y p r o g r a m s
and to m a k e p r o g r a m s c l l i c i en t . P A S C A l , a l l o w s r e s u l t s to
bc reLurned t h r o u g h p a r a m e t e r s , t h u s m u l t i p l e v a l u e r e t u r n s

art: poss ibh: .

I t is d i f f i cu l t to i n t r o d u c e th i s f e a t u r e in to Smal l ta lk*
80, s i n c e we c a n n o t te l l w h e t h e r a p a r t i c u l a r m e s s a g e r e t u r n s
a s i n g l e r e s u l t o r m u l U p l c r e s u l t s b e c a u s e m e s s a g e s a re

o v e r l o a d e d .

W h a t we d id was to i n t r o d u c e a d i f f e r e n t c o n c e p t a,pd

s o l v e d thi.'; p r o b l e m . W e i n t r o d u c e d a r r a y c o n s t r u c t o r s a n d
a r r ay e x t r a c t o r s . W h e n we w a n t to r e t u r n m u l t i p l e v a l u e s ,

we wr i te

'r.(x. y)
which c r e a t e s a t w o - e l e m e n t a r r a y wi th x a n d y as e l e m e n t s
a n d r e t u r n s it. W e can o b t a i n m u l t i p l e r e s u l t s f r o m a
message by using an array ex t rac tor as fo l lows:

(x, y) ~- po in t coordinates

The expression po in t coordinates returns a two-e lement
array, and the f irst e lement is assigned to x and the second
e lement is assigned to y. Semantical ly this so lut ion is
dilTerent f rom the mul t ip le -va lue- re turn ing funct ions, but
the syntax is very similar.

This feature has created a nice side-product. We of ten
nest the calls such that mul t ip le values have to re turned up
several levels. I f we have not treated results as one object,
we may have to ext ract results and const ruct results
repeatedly. For example, we can compute the remainder and
quot ient s imul taneously by the fo l lowing method:

d i vMod : n I I tse l f d i vMod : 0 by: n

d ivMod : q by: n I I
(self < n) i f ' t rue: f t . (q , sel t)] .
i t se l f - n) d i vMod : (sum + 1) by: n

Tb(; last call rel.urns mulLiple results as an array, so they are
returned through all the levels of d i vMod 'by : w i thou t
d i s a s s e m b l i n g and a s s e m b l i n g .

4. CODE GENERATION A N D
T E C l l N I Q I J E S

R I J N - T I M E

In th i s s e c t i o n we d e s c r i b e t he c o d e g e n e r a t i o n a n d
run-Lin le sysl .em i m p l e m e n t a t i o n t e c h n i q u e s we a re us ing to
s o l v e t he s y s t e m b o t t l e n e c k s d e s c r i b e d in s e c t i o n 2.

4.1. Avoiding the Dynamic Search of Methods

In Smalltalk-80 a m(:ssagc and a method are bound

dynamically. The basic mechanism for binding a message

and a method is defined in the book [5}. The expression is

of the fo rm

r sol: e

w h e r e r is a r e c e i v e r , a n d sel: e is a m e s s a g e . Fi rs t , scl: is
l o o k e d up in t he m e t h o d d i c t i o n a r y of t h e c lass of r. If it
e x i s t s t h e n t he m e t h o d is e x e c u t e d wi th the s u p p l i e d
a r g u m e n t s . If it d o e s n o t ex i s t , t h e n t h e d i c t i o n a r y of the
s u p a r c l a s s of t he c lass of r is s e a r c h e d . T h i s p r o c e s s of
l o o k i n g up m t h e s u c c e s s i v e s u p e r c l a s s c s is r e p e a t e d un t i l we
c o m e to a c l a s s which d o e s n o t h a v e a s u p e r c l a s s , and t h e n
the m a s s a g e p r o d u c e s a d y n a m i c e r ro r . O u r c o d e g e n e r a t i o n
t e c h n i q u e for t h e m e s s a g e is to s p e e d up by a v o i d i n g the
sea rch w h e n e v c r pos s ib l e .

4. I . I . A r i t h m e t i e and O the r P r i m i t i v e Me thods

In Smal l ta lk-80 ar i thmet ic operators such as + are
ovcr loaded just as all the o the r methods. However , i t would
be very inef f ic ient Lo use dynamic binding fo r c o m m o n
arit.hmetic operators. The probabi l i ty that the receivers of
the ar i thmet ic operators are integers is h igher than 95Z [6].
Bmal l talk-80 byteeodes fo r a r i thmet ic operators exp lo i t this
fact; they f irst check the classes of the receivers. I f they are
class Smal l |ntegcr, a r i thmet ic operat ions are executed. We
use this technique to create open compi led code. We
dedicate one register receiverClassReg to hold the class of
the receiver, and the code is

if reeeiverClassReg .= Class Smal l ln teger
then b r a n c h (G e n e r a l S e a r c h)
else < i n - l i n e code for integer addiLion > .

4.1 .2 . T e c h n i q u e s U s e f u l for G e n e r a l M e s s a g e s

l,'or all the other messages we use the followm~

sl.aListieal facts More than 90% of l.hc messages invoke

methods Lhat arc in the class where the mcssages arc written.

We can exploit this fact Lo produce the following rode.

if receiverClassReg =- methodClassRcg

thcn branch (G cneralSearch)

else <jump to tlme place where (sel:) is defined>.

294

w h e r e rec(: iv(~rClass l~cg is a d (,d i ea l ed r e g i s t e r w h i c h a l w a y s
h o l d s t h e c l a s s of t i le r (: c e w e r a l ld i H e t h o d C l a s s l ¢ e g l,lolds

t h e c l a s s of t h e m e t h o d , t h a t is t h e c l a s s w h e r e t h e m e s s a g e
is w r i t t e n T h e n t h e s t a t i s t i c s te l ls us t h a t t h e las t leg of t h e
c o n d i U o n a l is I~lkcn m o r e t h a n 907. of t h e ca se s ; t h u s , we
c a n e l i m i n a t e m o s t of Lhe e x p e n s i v e m e t h o d l ook up.

4 . 1 . 3 . M e s s a g e s S e n t to P s e u d o - v a r i a b l e s

In K i k u t h e r e a r e t h r e e p s e u d o - v a r i a b l e s "se l f" ,
" s u p e r " , a n d " h e r e " . A s e x p l a i n e d in s e c t i o n 2, m e s s a g e s
.'-;cut to " s u p e r " a n d " h e r e " (:an be b o u n d s ta t ica l ly . M e s s a g e s
s e n t to "se l f" c a n be s t a t i ca l l y b o u n d , it n o m e t h o d s wi th t h e
s a m e s e l e c t o r a r e d e f i n e d in t h e s u b c l a s s e s .

4.1.4. Messages Sent to Typed Expressions

' l 'hc ' e l f c c l s of t y p e d e s i g n a t i o n s are t h a t we will
g u a r a n t e e t h a t t h e o b j e c t s t h a t a r c p o i n t e d to by t h e t y p e d
v a r i a b l e s a r e i n s t a n c e s of I.he c l a s s e s t h a t t h e t y p e
e x p r e s s i o n s d e n o t e . W h e n a m e s s a g e is s e n t to a t y p e d

v a r i a b l e , we k n o w e x a c t l y w h i c h m e t h o d we s h o u l d i n v o k e .
It a v a r i a b l e is d e c l a r e d to be o f t y p e I n t e g e r , t h e m e t h o d to
be i n v o k e d m u s t b e d e c l a r e d in t h e c l a s s I n t e g e r o r in its
s u p e r e l a s s e s . If a v a r i a b l e is d e c l a r e d as a u n i o n of I n t e g e r
a n d F l o a t , t h e o b j e c t c o d e e r e a t e d is

if r e c e i v e r C l a s s R e g = C l a s s I n t e g e r
t h e n < d i r e c t l y cal l a f u n c t i o n in C l a s s I n t e g e r >

e lse < d i r e c t l y call a f u n c t i o n in C l a s s P l e a t > ,

w h e r e r e e e i v e r C l a s s R e g is a r e g i s t e r d e d i c a t e d to ho ld t h e

c l a s s of t h e r e c e i v e r .

4 . 2 . i . i nea r i za t i on of C o n t e x t s

J)rocedure acLivaLJon envJro l ln tcn ls , wJlJch are called
eonLexL~ in Small l .alk-80, are also objects. There fore ,
c o n t e x t s can be a s s i g n e d to v a r i a b l e s a n d be s e n t m e s s a g e s .
S m a l l t a l k - 8 0 g a i n s m u c h p o w e r a n d f lex ib i l i ty b e c a u s e el, t h i s
f e a t u r e . V~lr ious c o n t r o l m e c h a n i s m s like c o r o u t i n e s a n d
p r o c e s s e s a r e i m p l e m e n t e d u s i n g t h i s m e c h a n i s m : v a r i o u s
i l n p o r t a n t s v s [c l n s o f t w a r e s u c h as d e h u g g e r s c a n be v e r y
eas i ly i n l p l e m (: n l e d . I I o w e v c r , t h i s i n t . ' chan i sm d i s a l l o w s t h e
use of a s m l p l e l i n e a r s t a c k to a l l o c a t e c o n t e x t s T h e r e f o r e ,
m o s t of t h e e x i s t i n g S I n a l l l a l k - 8 0 i m p l e n l e n t a l i o n s a l l o c a t e

(:onLcxts f ro l i l t i le heap, I l o w e v e r , conLcxl.s arc r l : f e r e n c e -

c o u n t e d a n d g a r b a g e - c o l l e c t e d ; t h u s , s u b s t a n t i a l p a r t of t h e
exect l t ion I.ime is spent in contex ts al locat ion and
deal loeation. In SmallLalk-80 V i r lua l Mach ine 8:1% of objects
al located are con tex ts (M c t h o d C o n L e x t) 16].

O n e c a n d i d a t e d a t a s t r u c t u r e f o r c o n t e x t s is a
s p a g h e t t i s t a c k [1] . I t is u s e d in h i t e r l i s p to r ea l i ze p r o c e s s e s
a n d c o r o u t i n e s . H o w e v e r , t h i s m e c h a n i s m is n o t f l ex ib le

e n o u g h f o r S m a l l L a l k - 8 0 w h i c h t r e a t s c o n t e x t s as ob j ec t s .

We inven ted a mechanism called a "delayed
re ten l ion" of contexts . We have a f ixed size area to be used
as a stack. This area may be able to hold at mos t t0
c o n t e x t s . W h e n a n e w context is n e c e s s a r y , it is a l w a y s
a l l o c a t e d o n t h i s s t a c k . A s l o n g as a c o n t e x t is o n t h e sLack,
it is n o t a n ob j ec t : it is n o t r e f e r e n c e - c o u n t e d , a n d it c a n n o t
be s e n t m e s s a g e s . F u r t h e r m o r e , all t h e c o n t e x t s in t h e s t a c k

are l inear ly ordered so that the eallee is always on top of the
caller. There fore , when a method re tu rns and there is a
con tex t in t i le stack, con tex t deal loeat ion is s imply a slack

po in ter change.

The under ly ing assumpt ions fo r this mechanism to
work much more ef f ic ient ly than o rd ina ry heap al locat ion are
I.haL message sends and re tu rns al ternate f requent ly , so tha t
it is rare that many contex ts are al located w i t h o u t any
deal loeation in the middle. Fu r the rmore , operat ions that
requi re con tex t retenJ.ion such as creat ion of Block con tex ts
and message sends to con tex ts occur qu i te i n f requen t l y so
that if we allocate con tex ts in a stack, we rarely have to

reorganize the stack.

There fore , contex ts on the slack behave just l ike
I'ramcs in the Pascal s tsek In order to mainta in this p roper ty
we have to per fo rm some operat ions. When the stack
becomes ful l , con tex ts have to be swapped ou t in F IFO
manner to make room fo r new contexts. Space are al located
m the heap to hold the contex ts being swapped o u t
I l o w e v e r , the conLexts are no t swapped into lhe stack f rom
the heap even t hough lhe stack becomes empty by the
me.~sage r e l u r , ffrom the last con tex t in the stack.
Thcrel,ore, the cu r ren t con tex t can be e i ther on the stack or

in the heap

When a c o n t e x t is needed to be reta ined, all the
contex ts in the st~lck are swapped ou t f rom the s lack Then
the cu r ren t con tex t is pushed on the stack. This always
occurs wi th the execut ion of the bytecode
pushAc l i v ' oCon lexL we on ly need Lo mod i f y this bytecode.

This is the reason why we l im i t the size of the stack. We
can pi t t an upper bound on the p u s h A c t i v e C o n t e x l execut ion
lime.

When there is a process switch all the contex ts in the
stack have to be swapped ou t also, since a process switch
may v io late the p roper ty that the callee is on top of the caller
in t i le stack.

Whe the r this techn ique is practical o r no t depends on
the percentage of con tex ts that mus t be reta ined among all
the contexts. This can be est imated by the n u m b e r of
conlexLs al located on the stack (M e t h o d C o n t e x t) versus the
n u m b e r of B lockContex ts , which have pointers to them.
']'his rat io is 20 to 1 [6], so we predic t tha t re ten t ion is
required rarely.

4.3. Improving Reference Counting Garbage Collection

Smalltalk-80 uses reference counting garbage
collection in order to improve the real-Lime response.
However, it slows down the average operations significantly.
Consider, as an example, the most frequently used bytecode
"PushTemporaryVariables," which obtains a local variable
and pushes it onto the stack. This simple operation requires
two reference counting operations: first, the reference count
of tile object pushed on the stack must be incremented, then
the rel,erence count of the object replaced is decremented.
In our implementat ion on M C 6 8 0 0 0 reference count up and
down take 10 instructions each. Since obtaining the value
and pushing il on the stack takes 5 instructions. 80 % of the
Lime is spent in reference counting.

295

The key observations are that most of the objects are

short lived, and that the references to them are only from

stacks or from some system defined variables. Therefore,
we try to eliminate reference counting if the objects are

pointed from the stack. The statistics on four major stack
bytecodes are:

Relative
dynamic
frequencies

PushTemporaryVariables 20 2
Push ReceiverVaria bles ? 2
PupA ndStoreTem poraryVaria bles 4 2
P u p a ndSto reRece ive rVar iab les 2 2

Number or
R.ef counts

If no reference count ing is done f rom the slack

Number of
Ref counts

PushTemporaryVar iables 0
Push Receiv erVariables 0
PupA ndStoreTemporaryVar ia bles 0
PupA ndStoreReeeiverVariables 2

Simpl); not count ing does not work. because an object may
be. pointed f rom some other object, too. Even if the
reference count of an object is deerement.ed to 0 i t may not
be deailocated, since the pointer f rom the stack stil l exists.

So what we will use is a variation of a transaction-
based garbage collection by Deutsch and Bobrow [3]. I f a
reference count becomes 0, the pointer is stored in a ZCT
(zero count table), and the correct reference counting is
done at the end of a transaction. The entire algori thm is:

(t) The transacLion begins: ZCT contains all the objects
whose reference counts are 0 but are pointed f rom the
stack. These are the only objects contained in ZCT.

(2) If the reference count becomes 0, the pointer is stored
in ZCT.

(3) Poin ter ope ra t ions Lo push and pop or copy f rom the
stack are not counted.

(4) We complete a transaction at some point, eiLher because
it runs too long since the beginning of the transaction,
or ZCT becomes full.

A t the complet ion of the transaction, we scan
the stack and put all the pointers in a hash table. For each
pointer in ZCT, check whether the reference count is zero.
I f it is not zero, just remove it f rom ZCT. i f iL is still zero,
check whether it is in the hash table. If so, just leave it in
ZCT. Otherwise deallocate.

Now let us cons ide r tile pe r fo rmance . According to
our implementat ion, push and pop take 5 steps in all the
cases, the reference count ing 10 sLaps, and ZCT store 5
steps. Then,

Steps Steps

for the for the
New Method Old Method

PushTem poraryVariables 5 25
PushReceiverVariables 5 25
P u p a ndS to reTempora ryVar i ab le s 5 25
PopAndS to reRece ive rVar i ab l e s 25 + a*5 25

(2 ref count. I possible ZCT store)

where c~ is t i le ratio or decrements which result in zero
reference count. Empirical data is obtained for this ratio is
a = 0 . 0 4 [6]. Therefore, the overal l improvements excluding
the transaction close procedure can be computed by
mult iplying ti le number of steps in the above table by the
relative frequencies of operat ions in the previous table-

20,5 + 7,5 + 4,5 + 2, (25 + 0.2)
= 0.25

(2 0 + 7 + 4 +2) , 25

We can estimate the t ime fo r creating the hash table and
scanning ZCT aL the end of a transaction f rom the ratio of
the dynamic frequencies of pushes and pops against the
storage creation which is the upper bound of the number of
eontexts created. From the book [6]. pushes and pops are
55X of the bytecode, whereas the message send byLecode fo r
"new" is 0.35X. So the transaction close operation overhead
is negligible compared with the reference count ing operat ions
eliminated f rom pushes and pops.

5. C O N C I . U S I O N

We exLended Smalltalk-80 to create Kiku; we
described features of K iku which help to, generate eff icient
objeet code. We are creating an optimizing compi ler and a
run-Lime system for Kiku. Three major performance
bot t lenecks or Smal l ta lk-80 s y s t e m s are: m e t h o d search,
con t ex t allocation and deal locat ion, and re fe rence coun t ing
garbage collection. We inven t ed compi l ing and r u n - t i m e
sys t em construcl~ion t e c h n i q u e s to so lve t he se problems . We
analyzed ti le performance or these techniques using statistics
~=vailable oil the cur rent Smalltalk-80 implementat ion and
concluded that each of the technique improves the system
performance significantly.

We learned f rom Peter DeuLsch [4] that he has
created a native code compi ler for MC68000, which runs
very fast. Alan Burning told me that it is very eff icient and
uses techniques simi lar to ours. However, we did not get a
copy of Deutsch's paper in Lime to compare with our

techniques.

We are grateful to the comments by lchiro Ogata who
is another implementer or the compiler, and Alan Burning.

BIBI , I O G R A P I I Y

[I] Bobrow. D. and Wegbreit. B., "A Mode l and Stack
I m p l e m e n t a t i o n of. Multiple E n v i r o n m e n t s , " C A C M 16,
l0 (October 1973), pp.591-603.

[2] Burning, A., and lngalls, D., "A Type Declarat ion and
Inference System fo r Smalltalk," Proceedings of POPL,
A C M , 1982.

[3] Deu t sch , P., and Bobrow, D., "An Efficient Inc remen ta l
A u t o m a t i c Garbage Collector," CACM, September
1976.

{4] [)euLsch, P., Prec. of POPL, A C M , r984.

[5] Goldberg , A. and R o b s o n , D. "Smalltalk-80: T h e
Language and its Imp lemen ta t i on , " Add i son -Wes l ey ,
Reading, Massachuse t t s , 1983.

[6] Krasner , G., "Small tslk-80: Bits of History, Wo rd s of
Advice." A d d i s o n - W e s l e y , Reading, Mas sach u se t t s ,
1983.

[7] Suzuki, N., " Inferr ing Types in Smalltslk-76."
Proceed ings of POPL, A C M , 1981.

296

