Creating Efficient Systems for
Object-Oriented Languages

Norihisa Suzuki and Minoru Terada

The Universily of Tokyo
7-3-1 Hongo, Bunkyo-ku,
Tokyo, Japan 113

ABSTRACT

Increasingly computer science research has been
done using workstalions with high-resolution bitmap display
systems. Smalltalk-80t is a very allractive programming
language for such computalion environments, since il has
very sophisticated graphical systems and programming
environments. Unfortunately there are still very few
computler systems on which Smalllalk-80 can run with
satisfactory speed, and furthermore they are quite expensive.
In order to make Smalltalk-80 accessible to a large group of
people at low cost, we have developed compiler techniques
useful to generate efficient code for standerd register
machines such as MC68000. We have also extended
Smalltalk-80 to include lype expressions, which allow
compilers to generate efficienl code.

1. INTRODUCTION

More and more computer science research has been
conducted on high-performance personal workstations. The
reasons are Lhal we can in gencral gelt more computation
power per person if we use workslations instead of crowded
lime-sharing systems. and workslalions gencrally have
bitmap display screens that allow us lto communicale with
computers wilh much higher bandwidth

There are, however, very few excellent programming
systems thal utilize the full capabilities of the workstations.
-Smalitalk-80 is onc of such programming systems; it has a
number of attractive features for experimental programming
such as polymorphism, lale binding, and object-oriented
system slructures.

Smalltalk-80 has only been successfully implemented
on a very few compuler systems, most of which are
microcoded machines. These Microcoded machines are

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fec and/or specific permission.

© 1983 ACM 0-89791-125-3/84/001/0290 $00.75

290

generally very expensive and only a very few researchers can
afford them. In order to make Smalltalk-80 programming
systems widely available, they have to run on standard
microprocessors such as MC68000. As the preliminary
process for releasing Smalltalk-80, Xerox licensed Smalltalk-
80 Lo a number of companies, which tried to implement it on
a standard machines such as VAX and MC68000 based
machines. These experiments [6] were generally very
disappointing.

Therefore, we decided to put our efforts in generating
efficient systems on MC68000. Even though most of the
allempts in {6] to put Smalltalk-B0 on conventional
computers are nol successful, they have obtained extensive
performance measurements, which are very useful to the
people like us who want to implement Smalltalk-80 systems.

They have found out that there are three major
bottlenecks in the Smalltalk-80 systems that have been
implemented according to the Virtual -Machine specification
written in [4]; the bottlenecks are caused by the necessity to
find the method, which corresponds to a procedure, for each
message send, which corresponds to a procedure call,
dynamically, by the cost of context allocation and
deallocation since the contexts, which are the execution
environments of procedures, are allocated on the heap, and
by the cosl of reference counting garbage collection used for
memory management.

We have invented techniques to solve these
problems; we allocate contexts on the stack as long as the
retention of contexts is not necessary, we elide much of
reference counling by using a transaction-based garbage
collection, and we avoid method search by compare and
branch and link instructions exploiting some statistical
evidence.

We have also concluded that type information is
absolutely necessary for both documentation and generating
efficient code. Type informalion may be obtained both by
declarations {2] and compiler inference [7]. We allow the
programmer to supply as many Llype declarations as they
wish. This new language and the system is called Kiku

(chrysanthemum).

We will describe the problems and the outline of the
Leéhniques to solve these problems in section 2. In section 3
we describe the language features of Kiku. In section 4 we
describe the details of the compilation techniques.

1 Smalltalk-80 is a trademark of Xerox Corporation.

2. BOTTLENECKS AND SOLUTIONS

‘There are three major performance bottlenecks in the
Smalltalk-80 systems that are implemented according to the
Virtual Machine specification written in [5]. They are the
dynamic method search, the context allocation in the heap,
and the reference counting garbage collection.

2.1. Dynamic Mcthod Search Overhead

The primitive computation mechanism of Smalltalk-
80 is called a message send. For example, an expression to
tell a table to be moved from location locA to localion locB
is

table moveFrom: locA to: locB

where table points to an object, which is called Lhe receiver
of the message, and moveFrom: locA to: locB is the message
sent Lo table. The entire expression is called a message send.
The concatenated string moveFrom:to: is called the message
selector. The program Lhat is going to be activated for this
message send is not determined al compile time.

These special concepls and jargons of Smalitalk-80
can be described in terms of ordinary programming language
concepts. A message send is a procedure call, a receiver of a
message is the first argument of a procedure call, a message
selector is a procedure name, and a mcthod is a procedure.
Therefore, the above Smalltalk-80 message send can be
writlen as

moveFrom:to:(table, locA, locB)
in Pascal.

The binding between a message and a method is
done at run time. ‘Therefore. depending on the classes of
the rcceivers of the messages, the messages are interpreled
differently.

Each object belongs to a class, which is a spccification
of a group of objects. In parlicular a class has a method
dictionary, which is a hash table with the message selector as
a key and the method body as a value. When a message is
sent to a receiver, the method dictionary of the class of the
receiver is searched with the message selector. If il is found
in the method dictionary, the method body thal is the value
of the message selector is invoked. If it is not found, then
the superclass of the class of Lthe recciver becomes the class
to be searched, and the method dictionary is searched again.
Thus, the method body to be invoked for a message send is
determined dynamically.

The method search is oplimized in Smalltalk-80
Virtual Machine by providing a large hash table. Ior every
message send a hash key is created from the message
selector and the hash table is looked up. Each entry in the
hash table has Ltwo values: the class and the method body. If
an entry with the same selector exists, the class is compared
with the class of the receciver. If it is the same, the method
body is aclivated.

Anotlher optimization in the current Smalltalk-80
Virtual Machine is to speed up the method search for special
messages such as arithmetic operators. When an arithmetic

291

operator + is sent, the probability that the class of the
receiver is Integer is very high. When the bytecodes for
arithmeclic messages are executed, the classes of the receivers
are first checked. If they are Integer, addition is performed
without invoking a message send.

Our strategies are Llhe generalizaion of this
philosophy. We assume thal in cach message send classes of
the receivers that Lhe receiver expression denotes are very
uncvenly distributed. This assumption is confirmed by many

statistics taken at Xerox PARC, at UC Berkeley, and by us.

A special case of Lhis is thal an expression always
denoles an object from a unique class. In such a case. we
can statically bind Lthe message send and the method so that
a message send can be a simple branch and hink operation
However, without a powerful Lype inference algorithm, there
is no way for a compiler to predict that an expression always
denotes objecls unique class Therefore, we are
introducing type declarations. We specify the classes of
variables, methods, and blocks. By these declarations we can
tell the classes of expressions, and tell the methods involved

of a

al compile time

We are crealing special object code 1If the messages
are sent to pseudo-variables. Pseudo-variables are identifiers
that always denole some special objects. In Smalllalk-80 self
is a pscudo-variable that denotes, within the method body,
the receiver of the message that has invoked the current
method. A variable super is another pscudo-variable that
again denotes the receiver of the message that has invoked
the current method, but forces the method search from the
superclass of the class where the method appears.

If a message is sent to self or super, it is relatively
straightforward to find the corresponding method at compile
Llime. Suppose a message

self I arg

appears in the class A, then it is easy to think that [: has to
invoke a method in the class A, or in the superclasses of A
if f: does not appear in A. This is, however, not true.
Suppose this message is defined in the method body of g: in
the class A, as

g aB ”sel[f: arg

and this mecthod is invoked by sending a message g: to an
object of the class B that is a subclass of A, bul g: is not
defined in B.

class A f.
g:

t superclass

class B[“ f:

Then g: invoked is Lhe method in class A, but the self in the
body of g: denotes Lhe objecl of class B, so {: invoked is the
one in class B. Therefore, if f: is defined in the subclasses of
class A, it is not always true that f: sent to self invokes the
method defined in A or in the superclasses of A.

The compiler strategy is. therefore. as follows. Any
messages senl to sell are compiled to direct branch and link
instructions, if lthe methods are not defined in Lhe
subclasses. Whenever a melhod wilh Lhe same hame is

defined in a subclass, all the message sends with the same
message seleclor to self in the superclasses have to be
recompiled. -

On the other hand message sends to super can be
compiled easily. Suppose therc is a message send

super f: x

in the class A. Then {: has to be in the superclasses of A.
We can Lrace the superclass chain starling from the
superclass of A at compile time, and can find the location of
" the method f:. :

As we explained before, in order to generate efficient
code for message sends to self we need to maintain a
database of methods and to perform recompilation time to
time. This can be done, but may require a lot of
compulation. We, Lherefore, introduced another pseudo-
variable here which stands for the previous receiver just like
self or super, but forces the method search to slart from the
class where the pseudo-variable here appears. We can
statically determine the binding and do not have to
recompile.

The third technique to speed up method invocation is
to exploit statistical facts. It was reported by the
measurements al Berkeley that it is very likely thal the
message sends in a class will invoke methods in the same
class. We describe the code generation techniques that
exploit this fact in section 4.

2.2. Conlext Allocation and Deallocation Overhead

In Smalltalk-80 a local execution environment created
cvei'y time a method is invoked is called a context. It
contains a pointer Lo the previous context called a caller, a
"pointer to the object code of the method, an instruction

counter, . paramecters, local variables. which are called
lemporary variables, and an evaluation stack. These
information are stored in the execulion stack in the

implementation of ordinary languages, bul in Smalltalk-80
contexts are treated as objects and allocated in the heap.

There are a number of advantages for doing this way.
Complex control structures such as processes and coroutines
can very easily be implementied because contexts are objects.
Utility as a debugger can be ecasily

implemented, because Lthe history of the execution can be
easily traced and manipulaled by sending messages to
contexts.

systems such

However, all the overhead associated with object
creation and destruction has to be paid by a method
activation and return. For each method activation, a storage
area with the size of a context is allocated, and the reference
count is incremented; for each method return the reference
count is decremented and the storage is returned to the free
list.

It was reported that more than 80% of objects

292

allocated are contexts in the Smalltalk-80 Virtual Machine

implementation [8]. Therefore, the overall overhead
associated with context allocation and deallocation is
tremendous.

Our philosophy in solving this problem is to allocate
contexts linearly in the stack as long as possible. When it
becomes necessary to treat the current context, which is the
top context in the stack, as an object, or to change the
current context because of a process switch, we make all the
contexts in the stack objects in the heap.

2.3. Reference Counling Overhead

Automatic allocation and deallocation of objects is a
must for easy to use object-oriented languages. However,
the ordinary mark-and-sweep garbage collection has a long
pause when the garbage collector starts, and is not suited for
reai-time, interactive applications.

Smalltalk-80 Virtual Machine uses reference counting
garbage collection in order to improve the real-time
response. Reference counting garbage collection generally
performs better than mark-and-sweep garbage collection
since it requires less disk 170.

However, the overhead associated with reference
counling is substantial. In a stack machine like Smalitalk-80
Virtual Machine most of the operations are stack pushes and
pops. In order to push an object, the reference count of the
object must be incremented, and in order to pop and object
the reference count must be decremented. According to our
calculation, 80% of the computation time for pushes and
pops spent in reference counting.

We reduce the reference counting overhead by not
counting if the pointers are in the .stack. This is a
modification to Deutsch and Bobrow [3] transaction garbage
collection algorithm. The details will be explained in a later
section,

3. LANGUAGE FEATURES OF KIKU

The syntax of Kiku is similar to Smaliltalk-80;
however, we felt that parentheses-less syntax of message
send expressions is very confusing if message sends are
nested. Therefore, we adopted conventional notations with
parentheses. However, our compiler will accept both syntax.

The syntax for a message send is
<expression> ! <selector> [(<parameter list>)]

where the <selector> is an identifier and the <parameter
list> has the following BNF-syntax:

= < parameler>

< parameter> , <parameter list>

<parameler list> ::
<parameter list> 1=

3.1. Typing
Some work have been done to introduce types to
Smalltalk. Borning and Ingalls [2] introduced type

expressions; their compiler understands types and checks
type consistency, but it does not use the information for

code generation. Suzuki [?7] has devised an algorithm to
infer Lypes from the completely untyped programs. His goal

was to create efficient code as well as to locate potential bugs

by type inference. This research, however, showed that in
the language like Smalltalk-80 that allows union types, many
inferences are not tight enough to be useful for generating
optimized code. We still believe, however, that in
Smalllalk-80 the ultimate optimization for message sending
can only be allained by knowing the classes of the
expressions al compile time either by type inference or by
explicit typing. So we decided to introduce type expressions
into Smalltalk-80.

Smalltalk-80 gels much of its power from the type
hicrarchy system, polymorphism, and function overloading.
We would not like to destroy the flexibility by introducing a
rigid Lype system. Therclore, the declarations are optional in
our system: objects still carry type codes with them. Type
expressions are decorations to the program. They are used
by an optimizing compiler to create a tightly bound code.

‘'he locations where we put type expressions are with
variable declarations, method declarations, and block
statements.

3.1.1. Type Expressions

A type expression can be a class name or a set of
class names. A set of class names is used to denote a union
type. To be precise, a type expression is 8 name of a class,
or subclasses of a class, or a union of them. BNF-syntax for
Lype expressions are:

< primitive type expression> :: =
< class name> |sub < class name>

<type expression> 1= <primitive type expression>
(<primitive Lype expression> , ...,
< primitive type expression>)

3.1.2. Type Designalions

We associale type expressions with variable
declarations, method declerations, and block statements. We
call the declarations with type expressions type designations.

We first explain the syntax for type designatlions by
some cxamples. A declaration of Class Array is:

Class Array

ev -- list of class variables --

cm -- list of class methods --

iv -- list of instance variables --

im at(index: Smallinteger) ||
-- method body Lo extract an element
-- of the array

-- the rest of instance methods.

licre Array is the class name. The header im marks
the beginning of the declarations of instance messages. An
inslance message "at” is declared with type designations. Jt
takes a parameter “index™ of type "Smalllnteger”, which
declares that “index” can only denote an instance of Class
Smalllnteger. In addilion to being a class, Smalllnteger

293

serves as a Lype expression.

We may wanlt te declare the class of the value
relurned by this call, which is the class of the element of the
array. However, Smalltalk Array can take any objects as its
clements; therefore. we cannotl specify the resulting type of
al. The besl we can do is to specify that the result will
belong to a subclass of Class Object:

al(index: Smalllnteger): sub Object,

which is cquivalent to have not type expression at all
In order to create an array which takes
objecls of one class we have to define special classes such as
Class SmalllntegerArray, and specify that the result of array
access is of Class Smalllnteger and that the value to be
assigned in the array assignment is of Class Smalllnteger.

However, since the number of classes thal may be
defined is unbounded, it is not practical to introduce array
classes for all the element classes. Therefore, we have to
introduce paramelerized classes in order to cover all the
cases. Then the result type of at can be defined by the
paramecter of the class name used when the object is created.
We have, however, not implemented parameterized classes,
because we have to introduce new - mechanisms to the
compiler and the run-time system. In the near future we
will be incorporating this feature.

BNF-syntax for type designations are:

<class variable declaralions> ;.=
cvlev <variable designations>
<variable designations> 1=
<lyped variable > |
<lyped variable> < variable designations>
<ltyped variable> =
<idenlifier> |
<identifier> | <type expression>
<linstance variable declarations> =
ivl v <variable designations>
< class method declarations> 1=
em [em <method declaralions >
< method declarations> 0 =
<.method header> -
| < variable designalions>> | <expression list >
where Lhe regular vertical bar (|) is a metasymbol denoling
an allernalive choice, sand the bold vertical bar (]) is a symbol
Lthal appears in Smalllalk-80 programs. Blocks also have type
expressions, since they receive arguments and relurns
resulls. The syntax is:

< Block > ::- | <expressions list> <result type> 11
| <parameter declarations>
| <expression list> <result type>]
< parameler declarations> ;.=
< parameler> |
<parameler> ,
< parameler> o~
. <identifier> |
: <lidentifier> : <lype expression>
<resull type>
<result type> .= :

< parameter declarations >

<lype expression >

3.2. Pseudo-variables

There are Lwo variables, "self” and “"super,” which
have special meanings in Smalltalk-80. "Self" points to the
receiver, when Lthe method is executed. For example, if we
use recursion to implement mulliplication, it can be written
as:

multiply: n ||
(n=0) if True: [tself].
t(self + (self mulliply: (n-1)}))

in Smalltalk-80. Then, we execute 5 multiply: 3 to obtain 15.
The same method is written in Kiku as:

multiply(n: sub Integer) ||
(n = 0) !ifTrue([1self]).
t(self + (self ! multiply(n - 1)))

‘The method to be invoked for the message sent to
self cannot be determined stalically if the method is
redefined in Lhe subclasses because of the reasons explained
in section 2, thus, we have still to use slow method look up.
We introduced a pseudo-variable "here" to force the search
from Lhe class where the message send occurs. Thus, the
static binding is always possible.

3.3. Mulliple Valuc Returns from Methods

It is imporlant for any programming languages lo
have mulliple-value-returning functions Lo simplify programs
and lo make programs cflicient. PASCAL allows resuils to
be relurncd through parameters, thus multiple value returns
are possible.

It is difficull Lo introduce this feature inlo Smalltatk-
80, since we cannot tell whether a particular message returns
a single resull or muiliple resulls because messages are
overloaded.

What we did was to introduce a different concept apd
solved Lhis problem. We introduced array constructors and
array extractors. When we want to return multiple values.

we write

1.(x.y)
which creales a Lwo-clement array with x and y as elements
and returns il. We can obtain multiple results from a
message by using an array extractor as follows:

(x, y) + point coordinates

The expression poinl coordinates returns a two-clement
array, and the first element is assigned to x and the second
clement is assigned to y. Semantically this solution is
differenl from the mulliple-value-returning functions, but
Lthe synlax is very similar.

‘This feature has crcated a nice side-product. We often
nest the calls such thalt muitiple values have to returned up
several levels. If we have not treated resulls as one object,
we may have to extract results and construct resulls
repeatedly. For example. we can compule the remainder and
quolient simuitaneously by the following method:

294

divMod: n || tself divMod: 0 by: n
divMod: q by: n il
(self < n) ifTrue: [1.(q. seif)].
t(sell - n) divMod: (sum + 1) by: n

The last call relurns multiple resulls as an array, so they are

relurned through all the levels of divMod'by: without
disassembling and assembling.
1. CODE GENERATION AND RUN-TIME

TECHNIQUES

In Lhis scclion we describe the code generation and
run-time system implemenlalion techniques we are using to
solve the system bottlenecks described in section 2.

4.1. Avoiding Lthe Dynamic Secarch of Mecthods

In Smalltalk-80 a message and a method are bound
dynamically. The basic mechanism for binding a message
and a mecthod is defined in the book [5]. The expression is
of the form

rsel e

where r is a recciver, and sel: e is a message. First, scl: is
looked up in the method dictionary of the class of r. If it
exists then the method is executed with the supplied
argumenls. If it does not exisl, then the dictionary of the
superclass of the class of r is searched. This process of
looking up in Lhe successive superclasses is repeated until we
comc to a class which does not have a superclass, and then
Lhe message produces a dynamic error. Our code generation
technique for the message is to speed up by avoiding the
search whenever possible.

4.1.1. Arithmetlic and Other Primitive Methods

In Smalllalk-80 arithmetic operators such as + are
overloaded just as all the other methods. However, it would
be very inefficient to use dynamic binding for common
arithmelic operators. The probability thal the receivers of
the arithmetic operators are integers is higher than 95% [6].
Smalllalk-80 bytecodes for arithmetic operators exploit this
fact; they first check the classes of the receivers. If they are
class Smalllnteger, arithmetic operations are executed. We
use this technique to create open compiled code. We
dedicate one register receiverClassReg to hold the class of
the receiver, and the code is

il receiverClassReg - Class Smalllnteger
then branch{GeneralSearch)
else <in-line code for integer addition>.

4.1.2. Techniques Usecful for Gencral Messages

IFor all the other messages we use lhe following
slatistical facls More than 90% of Lhe messages invoke
methods Lhal are in Lhe class where the messages are wrilten.
We can exploil this facl lo produce the lollowing code.

il receiverClassReg = methodClassReg
then branch{GeneralSearch)
clse <jump Lo the place where (sel:) is defined > .

where recciverClassRReg is a dedicaled register which always
haolds the class of the receiver and methodClassReg holds
the class of the method, that is the class where the message
is written. Then the statistics tells us thal the last leg of the
condilional is taken more than 90% of the cases; thus, we
can eliminale most of the expensive method look up.

4.1.3. Messages Scnl Lo Pscudo-variables
n Kiku there are three pseudo-variables “self”,
"super”, and- "hcre". As explained in section 2, messages
sent Lo "super” and "here” can be bound statically. Messages
sent to "self” can be statically bound, if no methods with the
same sclector are defined in Lhe subclasses.

4.1.4. Messages Senl to Typed Expressions

The effecls of Lype designations are that we will
guarantee that the objects that are pointed to by the typed
instances of the classes that the type
expressions denote. When a message is sent to a typed
variable, we know exactly which method we should invoke.
If a variable is declared to be of type Integer, the method to
be invoked must be declared in the class Integer or in ils
superclasses. If a variable is declared as a union of Integer
and Float, the object code created is

variables are

if receiverClassReg = Class Integer
then <directly call a function in Class Integer>
else <directly call a funclion in Class Float>,

where receiverClassReg is a register dedicated to hold the
class of the receiver.

4.2. Lincarization of Contexts

Procedure activation environments, which are called
contexls in Smalllalk-80, are also objects. Therefore,
contexts can be assigned to variables and be senl messages.
Smalllalk-80 gains much power and flexibility because of this
feature. Various control mechanisms like coroutines and
processes are implemented using this mechanism; various
important svstemm software such as debuggers can be very
However, this mechanism disallows the
use of o sunple linear slack Lo allocale contexts. Therefore,
most. of the existing Smalltalk-80 implementalions allocate
conlexls from the heap. However, contexts are relerence-
counled and garbage-collected, thus, substantial part of the
execution time is spent in contexts allocation and
deallocation. In Smalltalk-80 Virtual Machine 83% of objects
allocaled are contexts (McthodContext) [6].

casily implemented.

One candidate dala structure for contexts is a
spaghetli stack [t]. It is used in Interlisp Lo realize processes
and coroulines. However, this mechanism is nol flexible
enough for Smalltalk-80 which Lreals contexls as objects.

We invented a mechanism called a “delayed
retention” of contexts. We have a fixed size area to be used
a slack. This area may be able to hold at mosl 10
contexls. When a new conlexl is necessary, il is always
allocaled on this stack. As long as a conlexl is on the stack,
it is nol an object; il is not reference-counted, and it cannot
Furthermore, all Lhe contexts in the stack

as

be sent messages.

295

are lincarly ordered so that the callee is always on top of the
caller. Therefore, when a method returns and there is a
conlext in the stack, context deallocation is simply a stack
pointer change.

The underlying assumptions for this mechanism to
work much more efficiently than ordinary heap allocation are
that message sends and returns alternate frequently, so that
it is rare thal many contexts are allocated without any
deallocation in the middle. Furthermore, operations that
require conlext retention such as creation of Block contexts
and message sends to contexts occur quile infrequently so
that if we allocale contexts in a stack, we rarely have to
reorganize the stack.

Therefore, contexts on the stack behave just like
frames in the Pascal stack. In order to maintain this property
we have Lo perform some operations. When the stack
becomes full, contexts have to be swapped out in FIFO
manner to make room for new contexts. Space are allocated
i the heap to hold the contexts being swapped oul
However, the conlexts are nol swapped into Lhe stack from
the heap even though the slack becomes emply by the
message return from the last context in the stack.
Therefore, Lhe current context can be either on the stack or
in Lhe heap.

When a contexl is nceded to be retained, all the
contexts in the slack are swapped out from the stack. Then
the current context is pushed on the stack. This always
occurs wilh the execution of the bytecode
pushActivbConchL, we only need to modify this bylecode.

This is the reason why we limit the size of the stack. We
can pul an upper bound on the pushActiveContext execution
lime.

When there is a process swilch all the contexts in the
stack have to be swapped out also, since a process switch
may violale the property thal the callee is on top of the caller
in the stack.

Whether this technique is practical or not depends on
the percentage of contexts that must be relained among all
the contexts. This can be estimated by the number of
contexts allocated on the stack (MethodContexl) versus the
number of BlockContexts, which have pointers to them.
This ratio is 20 to 1 [6], so we predict that retention is
required rarely.

4.3. Improving Reference Counting Garbage Collection

Smalitalk-80 uses reference counting garbage
collection in order to improve the real-time response.
However, it siows down the average operations significantly.
Consider, as an example, the most frequently used bytecode
"PushTemporaryVariables,” which obtains a local variable
and pushes it onto the stack. This simple operation requires
Lwo reference counting operations: first, the reference count
of the object pushed on the stack must be incremented, then
the relerence count of the object replaced is decremented.
In our implementation on MC68000 reference count up and
down take 10 instructions each. Since obtaining the value
and pushing it on the stack takes 5 instructions, 80 % of the
time is spent in reference counting.

The key observations are Lthat most of the objects are
short lived, and that the references to them are only from
stacks or from some system defined variables. Therefore,
we try to eliminate reference counting if the objects are
pointed from the stack. The statistics on four major stack
bytecodes are:

Relative Number of

dynarmic Ref countls

frequencies
PushTemporaryVariables 20 2
PushReceiverVariables 7 2
PopAndStoreTemporaryVariables 4 2
PopAndStoreReceiverVariables 2 2

If no reference counting is done from the stack

Number of

Ref counts
PushTemporaryVariables 0
PushReceiverVariables 0
PopAndStoreTemporaryVariables 0
PopAndStoreReceiverVariables 2

Simply not counting does not work, because an objecl may
be. pointed from some other object, too. Even if the
reference count of an object is decremented to 0 it may not
be deallocated, since the pointer from the stack still exists.

So whal we will use is a variation of a transaclion-
based garbage collection by Deutsch. and Bobrow [3]. If a
reference count becomes 0, the pointer is stored in a ZCT
(zero count table), and the correct reference counting is
done al the end of a transaction. The entire algorithm is:

(1) The transaction begins: ZCT contains all the objects
whose reference counts are 0 but are pointed from the
stack. These are the only objects contained in ZCT.

(@

1f the reference count becomes 0, the pointer is stored
in ZCT.
(3) Pointer operations to push and pop or copy from the

stack are not counted.

(4) We complete a transaction at some point, either because
it runs too long since the beginning of the transaction,

or ZCT becomes full.

At the completion of the transaction, we scan
the stack and put all the pointers in a hash table. For each
pointer in ZCT, check whether the reference count is zero.
If iL is not zero, just remove it from ZCT. If it is still zero,
check whether it is in the hash table. If so, just leave it in
ZCT. Otherwise deallocate.

Now let us consider the performance. According to
our implementation, push and pop take § steps in all the
cases, the reference counting 10 steps, and ZCT store 5
steps. Then,

Steps Steps

for the for the

New Method Old Method
PushTemporaryVariables ' 5 25
PushReceiverVariables 5 25
PopAndStoreTemporaryVariables 5 25
PopAndSloreReceiverVariables 25+ a¢d 25

(2 ref count, t possible ZCT store)

296

where o is the ralio of decremenis which result in zero
reference count. Empirical data is oblained for this ratio is
a=0.04 [6]. Therefore, the overall improverments excluding
the transaction close procedure can be computed by
mulliplying the number of steps in the above table by the
relative frequencies of operations in the previous table:

20054 745+ 445+ 24(25+0.2)

= 0.25
(20+7+ 4 +2)+25

We can estimale the time for crealing the hash table and
scanning ZCT at the end of a transaction from the ratio of
the dynamic frequencies of pushes and pops against the
storage creation which is the upper bound of the number of
canlexts created. From the book [6], pushes and pops are
55% of the bylecode, whereas the message send bylecode for
"new" is 0.35%. So the transaction close operation overhead
is negligible compared with the reference counting operations
eliminated from pushes and pops.

5. CONCLUSION

We extended Smalltelk-80 to create Kiku; we
described fealures of Kiku which help to. generate efficient
objecl code. We are crealing an oplimizing compiler and a
run-lime system for Kiku. Three major performance
bolllenecks of Smalltalk-80 systems are: method search,
context allocation and deallocation, and reference counting
garbage collection. We invented compiling and run-time
system construclion techniques to solve these problems. We
analyzed the performance of Lhese techniques using statistics
available on the currenl Smalltalk-80 implementation and
conciuded thal cach of the technique improves the system
performance significantly.

We learned from Peter Deutsch [4] that he has
cresled s nalive code compiler for MC68000, which runs
very fasl. Alan Borning told me that it is very eflicient and
uses techniques similar Lo ours. However, we did not get a
copy of Deutsch's paper in time to compare with our
techniques.

We are grateful to the comments by Ichiro Ogata who
is another implementer or Lhe compiler, and Alan Borning.

BIBLIOGRAPIY

[1] Bobrow, D. and Wegbreit, B., "A Model and Stack
Implementation of Multiple Environments,” CACM 186,

10 (October 1973), pp.591-603.

Borning, A., and Ingalls, D., "A Type Declaration and
Inference System for Smalitalk," Proceedings of POPL,
ACM, 1982

(2]

[3] Deutsch, P, and Bobrow, D., "An Efficient Incremental
Aulomatic Garbage Collector,” CACM, September
19786.

{4] Deutsch, P., Proc. of POPL, ACM, 1984,

[5] Goldberg, A. and Robson, D. "Smalltalk-80: The

Language and its Implementation,” Addison-Wesley,
Reading, Massachusetts, 1983.

[6] Krasner, G., "Smalltalk-80: Bits of History, Words of

Advice." Addison-Wesley, Reading, Massachusetts,
1983. '
[7] Suzuki, N., “Inferring Types in Smalltalk-76."

Proceedings of POPL, ACM, 1981.

