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ABSTRACT 

Increasingly computer science research has been 

done using workstations with high-resolution bitmap display 
systems. Smalltalk-B0t is a very attractive programming 
language for such computation environments, since it has 
very sophisticated graphical systems and programming 

environments. Unfortunately there arc still very few 
computer systems on which Smalltalk-80 can run with 

satisfactory speed, and furthermore they are quite expensive. 
In order to make Smallt.alk-80 accessible to a large group of 

people at low cost. we have developed compiler techniques 
useful to generate efficient code for standard register 

machines such as MC6B000. We have also extended 
Smalltalk-80 to include type expressions, which allow 
compilers to generate eff icient code 

generally very expensive and only a very few researchers can 
afford them. In order to make Smalltalk-80 programming 
systems widely available, they have to run on standard 
microprocessors such as MC68000. As the prel iminary 
process fo r  releasing Smalltalk-80, Xerox  licensed Smalltalk- 
80 to a number  of  companies, which tried to implement i t  on 
a standard machines such as V A X  and MC68000 based 
machines. These experiments [6] were generally very 
disappointing. 

Therefore,  we decided to put our  efforts in generating 
eff icient systems on MC68000. Even though most of  the 
attempts in [6] to put Smalltalk-80 on convent ional  
computers are not successful, they have obtained extensive 
performance measurements, which are very useful to the 
people like us who want to implement  Smalltalk-80 systems. 

1. INTRODUCTION 

More and more computer science research has been 
conducted on high-performance personal workstations, The 
reasons are that we can in general get more computat ion 
power per person if we use workstations instead of crowded 
time-sharing systems, and workstations generally have 
bitmap display screens that allow us to communicate with 
computers  with much higher bandwid th  

There are, however,  very few excel lent programming 
systems that util ize the ful l  capabilities of the workstations. 

,Smalltalk-80 is one of  such programming systems; it has a 
number  of attractive features for  experimental  programming 
such as polymorphism, late bindi .g,  and object-oriented 
system structures. 

Smalltalk-80 has only beell successfully implemented 
on a very few computer systems, most of which are 
microcoded machines. These Tnicroeoded machines are 
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They have found out  that  there are three major 
bottlenecks in the Smalltalk-80 sys tems  that have been 
implemented according to the Vir tual-Machine specification 
written in [4]; the bottlenecks are caused by the necessity to 
find the method,  which cor responds  to a procedure,  for each 
message send, which cor responds  to a procedure call, 
dynamically, by the cost of context allocation and 
deallocation since the contexts, which are the execution 
environments of procedures, are allocated on the heap, and 
by the cost of reference counting garbage collection used for 
memory management. 

We have invented techniques to solve these 
problems; we allocate contexts on the stack as long as the 
retent ion of contexts is not necessary, we e l i d e m u c h  of 
reference counting by using a transaction-based garbage 
collection, and we avoid method search by compare and 
branch and l ink instructions exploi t ing some statistical 
evidence. 

We have also concluded that type information is 
absolutely necessary fo r  both documentat ion and generating 
efficient code. Type in format ion may be obtained both by 
declarations [2] and compiler inference [7]. We allow the 
p rog rammer  to supply as many type declarations as they 
wish• This  new language and the system is called Kiku 

( ch rysan themum) .  

We will describe the problems and the outline of the 
Lechniques Lo solve these problems in section 2. In section 3 
we describe the language features of Kiku. In section 4 we 
describe the details of the compilation techniques• 

t Smalltalk-80 is a trademark of Xerox Corporation. 
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2. B O T T I . E N E C K S  A N D  S O L U T I O N S  

T h e r e  a r e  t h r e e  m a j o r  p e r f o r m a n c e  b o t t l e n e c k s  ill t h e  
S m a l l t a l k - 8 0  s y s t e m s  t h a t  a r e  i m p l e m e n t e d  a c c o r d i n g  Lo t h e  
Vir tua l  Machine specif ication wriLl.en in [5] .  They  arc the 
dynamic method search, the c o n t e x t  al locat ion in the heap. 
a n d  t h e  r e f e r e n c e  c o u n t i n g  g a r b a g e  c o l l e c t i o n .  

E. l .  D y n a m i c  Method S e a r c h  O v e r h e a d  

The pr im i t i ve  compu ta t i on  mechanism of Smal l ta lk-  
80 is called a message send. For  example,  an expression to 
tell a table Lo be moved  f rom locat ion locA to locat ion loeb 

is 

table m o v e F r o m :  l o c A  to:  loeb 

w h e r e  t a b l e  p o i n t s  to  a n  o b j e c t ,  w h i c h  is c a l l ed  t h e  r e c e i v e r  
of  t h e  m e s s a g e ,  a n d  m o v e F r o m :  locA to:  l oeb  is t h e  m e s s a g e  
s e n t  to  t ab le .  T h e  e n t i r e  e x p r e s s i o n  is c a l l ed  a m e s s a g e  s e n d .  

T h e  c o n c a t e n a t e d  s t r i n g  m o v e F r o m : t o :  is c a l l ed  t h e  m e s s a g e  
s e l e c t o r .  T h e  p r o g r a m  t h a t  is g o i n g  to  be  a c t i v a t e d  f o r  t h i s  

m e s s a g e  s e n d  is n o t  d e t e r m i n e d  a t  c o m p i l e  t i m e .  

These special concepts and jargons of Smal l ta lk -80 
can be described in terms of o rd inary  p rog ramming  language 
concepts. A message send is a procedure call. a rece iver  of a 
message is the first a rgumen t  of  a procedure call. a message 
selector is a procedure name, and a method  is a procedure.  
There fore ,  the above Smal l ta lk-80 message send can be 
wr i t ten as 

moveFrom: to : ( t ab l c .  IocA, loci ] )  

in Pascal. 

T h e  b i n d i n g  b e t w e e n  a m e s s a g e  and a method  is 
d o n e  a t  r u n  t i m e .  T h e r e f o r e .  d e p e n d i n g  o n  t h e  c l a s s e s  of 
t h e  r e c e i v e r s  of t h e  m e s s a g e s ,  t h e  m e s s a g e s  a r e  i n t e r p r e l c d  

d i f f e r en t l y .  

Each  o b j e c t  b e l o n g s  to a c lass ,  which is a s p e c i f i c a t i o n  
of  a g r o u p  of  ob j ec t s .  In p a r t i c u l a r  a c l a s s  h a s  a m e t h o d  

d i c t i o n a r y ,  w h i c h  is a h a s h  t a b l e  wi th  t h e  m e s s a g e  s e l e c t o r  as  
a k e y  a n d  t h e  m e t h o d  b o d y  a s  a va lue .  W h e n  a m e s s a g e  is 
s e n t  to  a r e c e i v e r ,  t h e  m e t h o d  d i c t i o n a r y  o f  t h e  c l a s s  o f  t h e  
r e c e i v e r  is s e a r c h e d  wi th  t h e  m e s s a g e  s e l e c t o r .  If it is f o u n d  

in t h e  m e t h o d  d i c t i o n a r y ,  t h e  m e t h o d  b o d y  t h a t  is t h e  v a l u e  
of  t h e  m e s s a g e  s e l e c t o r  is i n v o k e d .  If it is n o t  f o u n d ,  t h e n  

t h e  s u p e r c l a s s  o f  t h e  c l a s s  o f  t h e  r e c e i v e r  b e c o m e s  t h e  c l a s s  
to be  s e a r c h e d ,  a n d  t h e  m e t h o d  d i c t i o n a r y  is s e a r c h e d  a g a i n .  
T h u s ,  t h e  m e t h o d  b o d y  to b e  i n v o k e d  f o r  a m e s s a g e  s e n d  is 
d e t e r m i n e d  d y n a m i c a l l y .  

T h e  m e t h o d  s e a r c h  is o p t i m i z e d  in S m a l l t a l k - I | 0  
V i r t u a l  M a c h i n e  b y  p r o v i d i n g  a l a rge  h a s h  tab le .  I"or e v e r y  
m e s s a g e  s e n d  a h a s h  k e y  is c r e a t e d  f r o m  t h e  m e s s a g e  
s e l e c t o r  a n d  t h e  h a s h  t a b l e  is l o o k e d  up.  E a c h  e n t r y  in t i le  
h a s h  t a b l e  h a s  t w o  v a l u e s :  t h e  c l a s s  a n d  t h e  m e t h o d  b o d y .  if  
a n  e n t r y  wi th  t h e  s a m e  s e l e c t o r  ex i s t s ,  t h e  c l a s s  is c o m p a r e d  
with t h e  c l a s s  o f  t h e  r e c e i v e r .  If it  is t h e  s a m e ,  t h e  m e t h o d  
b o d y  is a c t i v a t e d .  

A n o t h e r  optimizat ion in the current  Smal l ta lk -80  
Vi r tua l  Machine  is to speed up the method search for  special 
messages such as ar i thmet ic  operators. W h e n  an ar i thmet ic  

o p e r a t o r  + is s e n t ,  t h e  p r o b a b i l i t y  t h a t  t h e  c lass  of t h e  
r e c e i v e r  is i n t e g e r  is v e r y  h i g h .  W h e n  t h e  b y t e c o d e s  f o r  
a r i t h m e t i c  m e s s a g e s  a r c  e x e c u t e d ,  t h e  c l a s s e s  of t h e  r e c e i v e r s  
a r c  f i rs t  c h e c k e d .  If t h e y  a r e  I n t e g e r ,  a d d i t i o n  is p e r f o r m e d  

w i t h o u t  i n v o k i n g  a m e s s a g e  s e n d .  

O u r  s t r a t e g i e s  a r e  t h e  g e n e r a l i z a U o  n of tlHs 

phi losophy.  W e  assume t h a t  in each m e s s a g e  send classes of 

the receivers that  t i le receiver expression denotes are very  
uneven l y  d ist r ibuted,  This assumpt ion is con f i rmed by many 
stntisties taken at Xerox  PAI~C.  at (JC Berkeley,  and by us. 

A special case of tills is thal an expression always 
d e n o t e s  an o b j e c t  f r o m  a u n i q u e  c l a s s  In s u c h  a ca se ,  we 
can statically bind I.he rnessage send and the method so that 
a 1TICSSilge send cal l  be a simple branch and hnk operat ion 
I [ oweve r ,  w i thou t  a power fu l  type in ference a lgor i thm,  Lhere 
is no way for  a compi le r  to predict  that  an expression always 
denotes objects of a un ique class There fore ,  we are 
in t roduc ing type dec lara t ions We specify the classes of 
wlrmhlcs, methods,  and blocks By these declarat ions we can 
tell the classes of expressions, and Lell Lhc methods in 'volvcd 

ill. COUlpll(' I ilIl(' 

We are creat ing special object  code if t i le m e s s a g e s  

arc s e n t  to p s e u d o - v a r i a b l e s .  Pseudo-var iables are i d e n t i f i e r s  
that  always denote some special ob jects  In Smal l ta lk-80 self 
is a pseudo-var iab le  that  denotes, wi th in the method body,  
the receiver  of the message that  has i nvoked  the cu r ren t  
method.  A var iable super is ano ther  pseudo-var iab le  that  
again denotes the receiver  of  the message that  has i nvoked  
the cu r ren t  me thod ,  bu t  forces the method  search f rom the 
superelass of  the class where the method appears. 

I f  a message is sent to self or super, it is re la t ive ly  
s t ra igh t fo rward  to f ind the corresponding method at compi le  
Lime. Suppose a m e s s a g e  

se l f  f: a r g  

appears in the class A.  then it is easy to t h ink  that  f: has to 
i nvoke  a method  in the class A,  or  in the superclasses of A 
if f: does no t  appear in A This  is, however ,  no t  true. 
Suppose this message is def ined in the method body of g: in 
the class A.  as 

g: a l l  II self f: arg 

and this me thod  is i nvoked  by sending a message g: to an 
object  of the class B tha t  is a subclass of A,  bu t  g: is no t  
d e f i n e d  in B. 

class A- -f~ .... 

I" superclass 

class 13 " f' ----I I_2_ I 

T h e n  g: i n v o k e d  is t h e  m e t h o d  in c lass  A ,  b u t  t h e  se l f  in t h e  

b o d y  of  g: d e n o t e s  Lhe o b j e c t  of c l a s s  B. so  f: i n v o k e d  is t h e  
o n e  in c l a s s  B. T h e r e f o r e ,  if f: is d e f i n e d  in t h e  s u b c l a s s e s  of  
c l a s s  A,  it is n o t  a l w a y s  t r u e  t h a t  f: s e n t  to self  i n v o k e s  t h e  
m e t h o d  d e f i n e d  in A o r  in t h e  s u p e r c l a s s e s  of  A.  
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The compiler strategy is. therefore, as follows. Any 

messages sent to self are compiled to direct branch and link 

instructions, if the methods are not defined in the 

subclasses, Whcnew:r a method with the same name is 

defined in a subclass, all the message sends with the same 

message selector to self in the superclasses have to be 

recompiled. 

On the o the r  hand message  sends  to super  can be 
compiled easily. Suppose  the re  is a message  send 

super f: x 

in the class A, Then f: has to be in the superclasses of A. 

We can trace the superclass chain starting from the 

superclass of A at compile time. and can find the location of 

the method f:. 

As we exp la ined  before,  in order  to genera te  efficient 
code for message  sends  to self, we need to main ta in  a 
database  of m e t h o d s  and to per form recompi la t ion  Lime to 
t ime.  This  can be done,  but  may requi re  a lot  of 
computa t ion .  We, therefore ,  in t roduced  a n o t h e r  pseudo-  
var iable  her~ which s tands  for the  p rev ious  rece iver  jus t  l ike 
se l f  or  super: bu t  forces the me thod  search to s tar t  f rom the  
class where  the pseudo-var iab le  here appears.  We can 
statically d e t e r m i n e  the  binding and do not  have  to 
recompile .  

The  third t echn ique  to speed up ~rnethod invocat ion is 
to explo i t  s tat is t ical  facts. 1t was repor ted  by the  
m e a s u r e m e n t s  a t  Berkeley tha t  it is very likely tha t  the 
message  s ends  in a class will i nvoke  m e t h o d s  in the  s a m e  
class. We descr ibe  Lhe code  genera t ion  t echn iques  tha t  
exploit this  fact in sect ion 4. 

2.2. C o n t e x t  A l loca t ion  and Dea l loca t ion  Overhead 

In Smal l ta lk-80 a local execu t ion  e n v i r o n m e n t  created 
every Lime a method is invoked is called a context. I t  
contains a pointer to the previous context called a caller, a 

po in te r  to the object code of the method, an instruction 
coun te r ,  parameters, local variables, which are called 
temporary variables, and an evaluation stack. These 
information are stored in the execution slack in the 
implementation of ordinary languages, but in SmallLalk-80 
con tex t s  are t reated as objects  and al located in the  heap. 

There  are a n u m b e r  of advan t ages  for doing th is  way. 
Complex  cont ro l  s t ruc tu re s  such as p rocesses  and  co rou t ine s  
can very easily be i m p l e m e n t e d  because c o n t e x t s  are objects. 
Utility sys t ems  such as a debugger  can be easily 

imp lemen ted ,  because  the his tory of the execu t ion  can be 
easily traced and manipu la ted  by send ing  messages  to 
contexts. 

However. all the overhead associated with object 
creation and destruction has to be paid by a method 
activation and return. For each method activation, a storage 
area with the size of a context is allocated, and the reference 
count is incremented; for each method return the reference 
count is decremented and the storage is returned to the free 
list. 

It was repor ted  tha t  more  than  80% of objects  

allocated are  contexts in the Smalltaik-80 Virtual Machine 
implementation [6]. Therefore, the overall overhead 
associated with context allocation and deallocation is 
tremendous. 

Our philosophy in solving this problem is to allocate 
contexts linearly in the stack as long as possible. When it 
becomes necessary to treat the current context, which is the 
Lop context in the stack, as an object, or to change the 
current context because of a process switch, we make all the 
contexts in the slack objects in the heap. 

2.3. Reference C o u n t i n g  Overhead  

Automatic allocation and deallocation of objects is a 
must for  easy to use object-oriented languages. However, 
the ordinary mark-and-sweep garbage collection has a long 
pause when the garbage collector starts, and is not suited for 
real-time, interactive applications. 

SmallLalk-t30 Virtual Machine uses reference counting 
garbage collection in order to improve the real-time 
response. Reference counting garbage collection generally 
performs better than mark-and-sweep garbage collection 
since it r equ i res  less disk I /O. 

However ,  the overhead associated with reference 
counting is substantml. In a slack machine like SmallLalk-60 
Virtual Machine most of the operations are stack pushes end 
pops. In order to push an object, the reference count of the 
object must be incremented, and in order to pop and object 
the reference count must be decremented, According to our 
calculation,  807. of the  c o m p u t a t i o n  t ime  for pushes  and  
pops spent in reference counting. 

We reduce the reference counting overhead by not 
counting if the pointers are in the stack. This is a 
modificaLion to Deutseh and Bobrow [3] transaction garbage 
collection algoriLhm, The details will he explained in a later 
section, 

3. L A N G U A G E  F E A T U R E S  OF K I K U  

The syntax of Kiku is similar to Smalltslk-80; 
however, we fel l  Lhat parentheses-less syntax of message 
send expressions is very confusing if message sends are 
nested. Therefore, we adopted conventional notations with 
parentheses. However, our compiler will accept both syntax. 

The syntax for a message send is 

<express ion> ! <se lec to r>  [ ( <.parameter l is t> ) ] 

where the <se lec to r>  is an identif ier and the <parameLer 
l is t> has the following BNF-syntax: 

< pa rame te r  list > :: --- < pa rame te r  > 
< p a r a m e t e r  list.> :: = < p a r a m e t e r >  , < p a r a m e t e r  l i s t >  

3.1. T y p i n g  

Some work have been done to introduce types to 
Smalltalk. Borning and lngalls [2] introduced type 
expressions; their compiler understands types and checks 
type consistency, but it does not use the information for 
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code generat ion. Suzuki  [7]  has devised an a lgor i thm to 
infer types f rom the complete ly  unlyped programs. His goal 
was to create eff ieient code as well as to locate potent ial  bugs 
I~y type inference. This research, however ,  showed that if~ 
the language l ike Smal l ta lk-80 that al lows union types, many 
inferences are not  t ight  enough Lo be useful fo r  generating 
opt imized code. We sti l l  believe, however, thaL in 
Small talk-80 the u l t imate optimization for message sending 
can only be attained by knowing the classes of the 
expressions at compi le  Lime ei ther  by type inference or by 
expl ic i t  typing. So we decided to in t roduce type expressions 
into Small tslk-80. 

Smal l talk-80 gels much of  its power  f rom the type 
hierarchy system, po lymorph ism,  and funct ion overloading. 
We would not  l ike Lo destroy the f lex ib i l i ty  by introducing a 
rigid type system. Therefore ,  Lhe declarat ions are opLional in 
our  system; objects stil l carry Lype codes wiLh them. Type 

expressions are decorat ions to the program, They ar~ used 
by an opt imiz ing compi le r  to create a t ight ly bound code. 

The locations where we put  type expressions are with 
variable declarations, me thod  declarations, and block 
statements. 

3. i .I .  Type Expressions 

A type .expression can be a class name or a set of 
class names. A seL of  class names is used Lo denote a union 
type. To be precise, a type expression is a name of a class, 
or  subclasses of  a class, or  a union of  them. BNF'-syntsx fo r  
type expressions are: 

< p r i m i t i v e  type exp ress ion>  :: = 
<class n a m e >  I sub <class n a m e >  

< type expression > :: = < pr im i t i ve  type expression > I 
( <  pr imi t ive  type expression > . . . . .  
< p r i m i t i v e  type expression > ) 

3.1.2. Type Designations 

We associate type expressions with variable 
declarations, method declarations, and block statements. We 
call the declarat ions wi th type expressions type designations. 

We f irst explain the syntax fo r  type designaLions by 
some examples. A declaration of Class Ar ray  is: 

Class Ar ray  
ev -- list of  class variables -- 
era -- list of  class methods -- 
iv -- l ist of instance variables -- 
ira a t ( index:  Smal l inLeger ) I I  

-- method body to extract  an e lement  
-- of the array 

o- the rest of  instance methods. 

I le re  Ar ray  is the class name, The header im marks 
the beginning of  the declarat ions of  instance messages An 
instance message "at" is declared wiLh type designations. I t  
lakes a parameter  " index" of  type "Smal l lnteger",  which 
declares that " index"  can only denote an instance of Class 
Smal l ln teger  In addi t ion to being a class, Small lnLeger 

serves as a type expression. 

We may want to declare the class of  the value 
returned by this call, which is the class of the e lement  of the 
array. However ,  Smal l ts lk A r ray  can take any objects as its 
elements; therefore,  we cannot  specify the resul t ing type of 
at. The besL we can do is to specify that the result  wil l  
belong Loa subclass of  Class Object: 

aL(index: Small lnLeger): sub Object, 

which is equiva lent  Lo have not  type expression at all. 
In order  to create an array which takes 

objects of  one class we have to define special classes such as 
Clas.~ Smal l ln tegerAr ray ,  and specify that  the resul t  of array 
access is of  Class Smal l ln teger  and that the value to be 
assigned in Lhe array assignment is of Class Small lnteger.  

l l oweve r ,  since the number  of  classes that may be 
defined is unbounded,  i t  is no t  practical to in t roduce array 
classes for  all the e lement  classes. Therefore ,  we have to 
introduce parameLerized classes in order  to cover  all the 
eases Then the result  type of at can be defined by the 
parameter of the class name used when Lhe object is created. 
We have, however ,  not  imp lemented parameter ized classes, 
beca~Jse we have Lo in t roduce new-  mechanisms to the 
compi ler  and Lhe run-Lime system. In the near fu tu re  we 
will be incorporat ing this feaLure. 

BNF-syntax for type designations are: 

<class variable dec lara t ions> :: = 
e v l e v  <va r iab le  des ignat ions> 

< variable des ignat ions> :: = 
< t yped  va r iab le>  J 
<Lyped var iab le>  < variable des ignat ions> 

< t yped  var iab le> :: = 
< i d e n t i f i e r >  I 
~. idenLi f ier> : < type expression > 

<inst~luce wlr iable dec lara t ions> :: = 
iv l=v  <var iab le  des ignat ions> 

<cl~=s.~ method declar~Jtions> :: = 
eln J(:lu < m e t h o d  declaraLions> 

< m(;thod d( ;c larat ions> :: = 
~.~ method header>  

J < w~ri~ble des ignat ions> J <express ion l i s t>  

wherry, tlu~ rc'gular vertical bar (J) is a metasymbol  denot ing 
~m ~lll.crn~dlv¢~ choice, ~lnd the bold verLieal bar (I) is a symbol  
th~ll ;=pp(,nr.~ in Smal l ta lk- I I0 programs. Blocks also have type 
cxprf~sslons, since they receive arguments  and returns 
resulL~ The syntax is: 

< l ) l o e k >  ::-. ( <express ions  l i s t>  < r e s u l t  t ype>  ]J 
[ <pa rame te r  dec lara t ions> 
I <express ion  l i s t>  < resu l t  t y p e >  ] 

< parumeter dec lara t ions> :: = 
<pa rameLe r>  I 
< p a r a m e L e r > ,  <pa rame te r  dec lara t ions> 

< p a r a m e t e r >  :::- 
: < i d e n t i f i e r >  I 
: .c ' ident. i f ier> : < t ype  express ion> 

<r ( ;su l t  t ype>  : : - '  
<resulL t ype>  :: ; :  : < t ype  express ion>  
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3.2 .  P s e u d o - v a r i a b l e s  

There are two variables, "self" and "super," which 
have special meanings in Smalltalk-80. "Self" points to the 
receiver, when the method is executed, leer example,  if we 
use recursion to imp lemen t  mult ip l icat ion,  it can be wri t ten 
as:  

mul t i p ly :  n I I  
( n ~ O )  i fTrue :  I t s e l f ] .  
t ( s e l f  + ( se l f  mu l t i p ly :  ( n - l ) ) )  

in S m a l l t a l k - 8 0 .  T h e n ,  we e x e c u t e  5 mu l t i p ly :  3 to o b t a i n  15. 
T h e  s a m e  m e t h o d  is wr i t t en  in K i k u  as: 

m u l t i p l y ( n :  s u b  I n t e g e r ) I I  
(n = 0) ! i f T rue ( [ t se l f ] ) .  
t ( se l f  + (self ? mulLiply(n - I ) ) )  

The method Lo be invoked for  the message sent to 
self cannot  be determined staLically if the method is 
redefined in the subclasses bccause of the reasons explained 
in section 2; thus, we have sti l l  to use slow method look up. 
We int roduced a pseudo-var iable "here" to force the search 
f r o m  the  c lass  w h c r c  t h e  m e s s a g e  s e n d  occurs .  T h u s ,  t he  
s ta t ic  b i n d i n g  is a l w a y s  p o s s i b l e  

3.3.  M u l t i p l e  V a l u e  R e t u r n s  f r o m  M e t h o d s  

It is i m p o r l ~ m t  for  a n y  p r o g r a m m i n g  l a n g u a g e s  to 
h a v e  m u l L i p l c - w d u e - r e t u r n i n g  f u n c t i o n s  Lo s i m p l i f y  p r o g r a m s  
and  to m a k e  p r o g r a m s  c l l i c i en t .  P A S C A l ,  a l l o w s  r e s u l t s  to 
bc reLurned  t h r o u g h  p a r a m e t e r s ,  t h u s  m u l t i p l e  v a l u e  r e t u r n s  

art:  poss ibh: .  

I t  is d i f f i cu l t  to i n t r o d u c e  th i s  f e a t u r e  in to  Smal l ta lk*  
80, s i n c e  we c a n n o t  te l l  w h e t h e r  a p a r t i c u l a r  m e s s a g e  r e t u r n s  
a s i n g l e  r e s u l t  o r  m u l U p l c  r e s u l t s  b e c a u s e  m e s s a g e s  a re  

o v e r l o a d e d .  

W h a t  we d id  was to  i n t r o d u c e  a d i f f e r e n t  c o n c e p t  a,pd 

s o l v e d  thi.'; p r o b l e m .  W e  i n t r o d u c e d  a r r a y  c o n s t r u c t o r s  a n d  
a r r ay  e x t r a c t o r s .  W h e n  we w a n t  to r e t u r n  m u l t i p l e  v a l u e s ,  

we wr i te  

'r.(x. y) 
which  c r e a t e s  a t w o - e l e m e n t  a r r a y  wi th  x a n d  y as  e l e m e n t s  
a n d  r e t u r n s  it. W e  can  o b t a i n  m u l t i p l e  r e s u l t s  f r o m  a 
message by using an array ex t rac tor  as fo l lows: 

(x,  y) ~- po in t  coordinates 

The expression po in t  coordinates returns a two-e lement  
array, and the f irst e lement  is assigned to x and the second 
e lement  is assigned to y. Semantical ly this so lut ion is 
dilTerent f rom the mul t ip le -va lue- re turn ing funct ions,  but  
the syntax is very similar.  

This feature has created a nice side-product.  We of ten 
nest the calls such that mul t ip le  values have to re turned up 
several levels. I f  we have not  treated results as one object, 
we may have to ext ract  results and const ruct  results 
repeatedly. For  example,  we can compute  the remainder  and 
quot ient  s imul taneously  by the fo l lowing method:  

d i vMod :  n I I  tse l f  d i vMod :  0 by: n 

d ivMod :  q by: n I I  
(self < n) i f ' t rue:  f t . (q ,  sel t ) ] .  
i t se l f  - n) d i vMod :  (sum + 1) by: n 

Tb(; last call rel.urns mulLiple results as an array, so they are 
returned through all the levels of d i vMod 'by :  w i thou t  
d i s a s s e m b l i n g  and  a s s e m b l i n g .  

4. CODE GENERATION A N D  
T E C l l N I Q I J E S  

R I J N - T I M E  

In th i s  s e c t i o n  we d e s c r i b e  t he  c o d e  g e n e r a t i o n  a n d  
run-Lin le  sysl .em i m p l e m e n t a t i o n  t e c h n i q u e s  we a re  us ing  to 
s o l v e  t he  s y s t e m  b o t t l e n e c k s  d e s c r i b e d  in s e c t i o n  2. 

4.1. Avoiding the Dynamic Search of Methods 

In Smalltalk-80 a m(:ssagc and a method are bound 

dynamically. The basic mechanism for binding a message 

and a method is defined in the book [5}. The expression is 

of the fo rm 

r sol: e 

w h e r e  r is a r e c e i v e r ,  a n d  sel:  e is a m e s s a g e .  Fi rs t ,  scl:  is 
l o o k e d  up in t he  m e t h o d  d i c t i o n a r y  of t h e  c lass  of r. If it 
e x i s t s  t h e n  t he  m e t h o d  is e x e c u t e d  wi th  the  s u p p l i e d  
a r g u m e n t s .  If it d o e s  n o t  ex i s t ,  t h e n  t h e  d i c t i o n a r y  of the  
s u p a r c l a s s  of t he  c lass  of r is s e a r c h e d .  T h i s  p r o c e s s  of 
l o o k i n g  up m t h e  s u c c e s s i v e  s u p e r c l a s s c s  is r e p e a t e d  un t i l  we 
c o m e  to a c l a s s  which  d o e s  n o t  h a v e  a s u p e r c l a s s ,  and  t h e n  
the  m a s s a g e  p r o d u c e s  a d y n a m i c  e r ro r .  O u r  c o d e  g e n e r a t i o n  
t e c h n i q u e  for  t h e  m e s s a g e  is to s p e e d  up  by a v o i d i n g  the  
sea rch  w h e n e v c r  pos s ib l e .  

4. I . I .  A r i t h m e t i e  and O the r  P r i m i t i v e  Me thods  

In Smal l ta lk-80 ar i thmet ic  operators such as + are 
ovcr loaded just  as all the o the r  methods. However ,  i t  would 
be very inef f ic ient  Lo use dynamic binding fo r  c o m m o n  
arit.hmetic operators. The probabi l i ty  that  the receivers of 
the ar i thmet ic  operators are integers is h igher  than 95Z [6].  
Bmal l talk-80 byteeodes fo r  a r i thmet ic  operators exp lo i t  this 
fact; they f irst check the classes of  the receivers. I f  they are 
class Smal l |ntegcr,  a r i thmet ic  operat ions are executed. We 
use this technique to create open compi led code. We 
dedicate one register receiverClassReg to hold the class of 
the receiver, and the code is 

if reeeiverClassReg .= Class Smal l ln teger  
then b r a n c h  ( G e n e r a l S e a r c h )  
else < i n - l i n e  code for  integer addiLion > .  

4.1 .2 .  T e c h n i q u e s  U s e f u l  for  G e n e r a l  M e s s a g e s  

l,'or all the other messages we use the followm~ 

sl.aListieal facts More than 90% of l.hc messages invoke 

methods Lhat arc in the class where the mcssages arc written. 

We can exploit this fact Lo produce the following rode. 

if receiverClassReg =- methodClassRcg 

thcn branch (G cneralSearch) 

else <jump to tlme place where (sel:) is defined>. 
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w h e r e  rec( : iv(~rClass l~cg is a d ( ,d i ea l ed  r e g i s t e r  w h i c h  a l w a y s  
h o l d s  t h e  c l a s s  of  t i le  r ( : c e w e r  a l ld  i H e t h o d C l a s s l ¢ e g  l,lolds 

t h e  c l a s s  of  t h e  m e t h o d ,  t h a t  is t h e  c l a s s  w h e r e  t h e  m e s s a g e  
is w r i t t e n  T h e n  t h e  s t a t i s t i c s  te l ls  us  t h a t  t h e  las t  leg of  t h e  
c o n d i U o n a l  is I~lkcn m o r e  t h a n  907. of t h e  ca se s ;  t h u s ,  we 
c a n  e l i m i n a t e  m o s t  of  Lhe e x p e n s i v e  m e t h o d  l ook  up.  

4 . 1 . 3 .  M e s s a g e s  S e n t  to  P s e u d o - v a r i a b l e s  

In K i k u  t h e r e  a r e  t h r e e  p s e u d o - v a r i a b l e s  "se l f" ,  
" s u p e r " ,  a n d  " h e r e " .  A s  e x p l a i n e d  in s e c t i o n  2, m e s s a g e s  
.'-;cut to " s u p e r "  a n d  " h e r e "  (:an be  b o u n d  s ta t ica l ly .  M e s s a g e s  
s e n t  to "se l f"  c a n  be  s t a t i ca l l y  b o u n d ,  it n o  m e t h o d s  wi th  t h e  
s a m e  s e l e c t o r  a r e  d e f i n e d  in t h e  s u b c l a s s e s .  

4.1.4.  Messages Sent to Typed Expressions 

' l 'hc '  e l f c c l s  of  t y p e  d e s i g n a t i o n s  are t h a t  we will 
g u a r a n t e e  t h a t  t h e  o b j e c t s  t h a t  a r c  p o i n t e d  to by t h e  t y p e d  
v a r i a b l e s  a r e  i n s t a n c e s  of  I.he c l a s s e s  t h a t  t h e  t y p e  
e x p r e s s i o n s  d e n o t e .  W h e n  a m e s s a g e  is s e n t  to  a t y p e d  

v a r i a b l e ,  we k n o w  e x a c t l y  w h i c h  m e t h o d  we s h o u l d  i n v o k e .  
It a v a r i a b l e  is d e c l a r e d  to  be  o f  t y p e  I n t e g e r ,  t h e  m e t h o d  to  
be  i n v o k e d  m u s t  b e  d e c l a r e d  in t h e  c l a s s  I n t e g e r  o r  in its 
s u p e r e l a s s e s .  If a v a r i a b l e  is d e c l a r e d  as  a u n i o n  of  I n t e g e r  
a n d  F l o a t ,  t h e  o b j e c t  c o d e  e r e a t e d  is 

if r e c e i v e r C l a s s R e g  = C l a s s  I n t e g e r  
t h e n  < d i r e c t l y  cal l  a f u n c t i o n  in C l a s s  I n t e g e r >  

e lse  < d i r e c t l y  call  a f u n c t i o n  in C l a s s  P l e a t > ,  

w h e r e  r e e e i v e r C l a s s R e g  is a r e g i s t e r  d e d i c a t e d  to  ho ld  t h e  

c l a s s  of  t h e  r e c e i v e r .  

4 . 2 .  i . i nea r i za t i on  of  C o n t e x t s  

J)rocedure acLivaLJon envJro l ln tcn ls ,  wJlJch are called 
eonLexL~ in Small l .alk-80, are also objects. There fore ,  
c o n t e x t s  can be  a s s i g n e d  to v a r i a b l e s  a n d  be  s e n t  m e s s a g e s .  
S m a l l t a l k - 8 0  g a i n s  m u c h  p o w e r  a n d  f lex ib i l i ty  b e c a u s e  el, t h i s  
f e a t u r e .  V~lr ious c o n t r o l  m e c h a n i s m s  like c o r o u t i n e s  a n d  
p r o c e s s e s  a r e  i m p l e m e n t e d  u s i n g  t h i s  m e c h a n i s m :  v a r i o u s  
i l n p o r t a n t  s v s [ c l n  s o f t w a r e  s u c h  as  d e h u g g e r s  c a n  be  v e r y  
eas i ly  i n l p l e m ( : n l e d .  I I o w e v c r ,  t h i s  i n t . ' chan i sm d i s a l l o w s  t h e  
use  of  a s m l p l e  l i n e a r  s t a c k  to a l l o c a t e  c o n t e x t s  T h e r e f o r e ,  
m o s t  of  t h e  e x i s t i n g  S I n a l l l a l k - 8 0  i m p l e n l e n t a l i o n s  a l l o c a t e  

(:onLcxts f ro l i l  t i le heap, I l o w e v e r ,  conLcxl.s arc r l : f e r e n c e -  

c o u n t e d  a n d  g a r b a g e - c o l l e c t e d ;  t h u s ,  s u b s t a n t i a l  p a r t  of t h e  
exect l t ion I.ime is spent in contex ts  al locat ion and 
deal loeation. In SmallLalk-80 V i r lua l  Mach ine  8:1% of  objects 
al located are con tex ts  ( M c t h o d C o n L e x t )  16]. 

O n e  c a n d i d a t e  d a t a  s t r u c t u r e  f o r  c o n t e x t s  is a 
s p a g h e t t i  s t a c k  [1] .  I t  is u s e d  in h i t e r l i s p  to  r ea l i ze  p r o c e s s e s  
a n d  c o r o u t i n e s .  H o w e v e r ,  t h i s  m e c h a n i s m  is n o t  f l ex ib le  

e n o u g h  f o r  S m a l l L a l k - 8 0  w h i c h  t r e a t s  c o n t e x t s  as  ob j ec t s .  

We inven ted  a mechanism called a "delayed 
re ten l ion"  of contexts .  We have a f ixed size area to be used 
as a stack. This area may be able to hold at mos t  t0 
c o n t e x t s .  W h e n  a n e w  context is n e c e s s a r y ,  it is a l w a y s  
a l l o c a t e d  o n  t h i s  s t a c k .  A s  l o n g  as  a c o n t e x t  is o n  t h e  sLack, 
it is n o t  a n  ob j ec t :  it is n o t  r e f e r e n c e - c o u n t e d ,  a n d  it c a n n o t  
be  s e n t  m e s s a g e s .  F u r t h e r m o r e ,  all t h e  c o n t e x t s  in t h e  s t a c k  

are l inear ly ordered so that  the eallee is always on top  of the 
caller. There fore ,  when a method  re tu rns  and there is a 
con tex t  in t i le stack, con tex t  deal loeat ion is s imply  a slack 

po in ter  change. 

The  under ly ing  assumpt ions fo r  this mechanism to 
work much more ef f ic ient ly  than o rd ina ry  heap al locat ion are 
I.haL message sends and re tu rns  al ternate f requent ly ,  so tha t  
it is rare that  many  contex ts  are al located w i t h o u t  any 
deal loeation in the middle.  Fu r the rmore ,  operat ions that  
requi re con tex t  retenJ.ion such as creat ion of  Block con tex ts  
and message sends to con tex ts  occur qu i te  i n f requen t l y  so 
that  if we allocate con tex ts  in a stack, we rarely have to 

reorganize the stack. 

There fore ,  contex ts  on the slack behave just  l ike 
I'ramcs in the Pascal s tsek  In order  to mainta in  this p roper ty  
we have to per fo rm some operat ions. When the stack 
becomes ful l ,  con tex ts  have to be swapped ou t  in F IFO 
manner  to make room fo r  new contexts.  Space are al located 
m the heap to hold the contex ts  being swapped o u t  
I l o w e v e r ,  the conLexts are no t  swapped into lhe stack f rom 
the heap even t hough  lhe stack becomes empty  by the 
me.~sage r e l u r ,  ffrom the last con tex t  in the stack. 
Thcrel,ore, the cu r ren t  con tex t  can be e i ther  on the stack or  

in the heap  

When a c o n t e x t  is needed to be reta ined,  all the 
contex ts  in the st~lck are swapped ou t  f rom the s lack  Then 
the cu r ren t  con tex t  is pushed on the stack. This always 
occurs wi th the execut ion  of the bytecode 
pushAc l i v ' oCon lexL  we on ly  need Lo mod i f y  this bytecode. 

This is the reason why we l im i t  the size of the stack. We 
can pi t t  an upper bound  on the p u s h A c t i v e C o n t e x l  execut ion 
lime. 

When there is a process switch all the contex ts  in the 
stack have to be swapped ou t  also, since a process switch 
may v io late the p roper ty  that  the callee is on top of  the caller 
in t i le stack. 

Whe the r  this techn ique is practical o r  no t  depends on 
the percentage of  con tex ts  that  mus t  be reta ined among all 
the contexts.  This can be est imated by the n u m b e r  of 
conlexLs al located on the stack ( M e t h o d C o n t e x t )  versus the 
n u m b e r  of B lockContex ts ,  which have pointers  to them.  
']'his rat io is 20 to 1 [6], so we predic t  tha t  re ten t ion  is 
required rarely. 

4.3. Improving Reference Counting Garbage Collection 

Smalltalk-80 uses reference counting garbage 
collection in order to improve the real-Lime response. 
However,  it slows down the average operations significantly. 
Consider, as an example, the most frequently used bytecode 
"PushTemporaryVariables," which obtains a local variable 
and pushes it onto the stack. This simple operation requires 
two reference counting operations: first, the reference count 
of tile object pushed on the stack must be incremented,  then 
the rel,erence count of the object replaced is decremented. 
In our implementat ion on M C 6 8 0 0 0  reference count up and 
down take 10 instructions each. Since obtaining the value 
and pushing il  on the stack takes 5 instructions. 80 % of the 
Lime is spent in reference counting. 
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The key observations are that most of the objects are 

short lived, and that the references to them are only from 

stacks or from some system defined variables. Therefore, 
we try to eliminate reference counting if the objects are 

pointed from the stack. The statistics on four major stack 
bytecodes are: 

Relative 
dynamic 
frequencies 

PushTemporaryVariables 20 2 
Push ReceiverVaria bles ? 2 
PupA ndStoreTem poraryVaria bles 4 2 
P u p a  ndSto reRece ive rVar iab les  2 2 

Number or 
R.ef counts 

If no reference count ing is done f rom the slack 

Number  of 
Ref counts 

PushTemporaryVar iables 0 
Push Receiv erVariables 0 
PupA ndStoreTemporaryVar ia bles 0 
PupA ndStoreReeeiverVariables 2 

Simpl); not count ing does not  work. because an object may 
be. pointed f rom some other object, too. Even if the 
reference count  of  an object is deerement.ed to 0 i t  may not 
be deailocated, since the pointer  f rom the stack stil l exists. 

So what we will use is a variation of a transaction- 
based garbage collection by Deutsch and Bobrow [3]. I f  a 
reference count  becomes 0, the pointer  is stored in a ZCT 
(zero count  table), and the correct reference counting is 
done at the end of a transaction. The entire algori thm is: 

( t )  The transacLion begins: ZCT contains all the objects 
whose reference counts are 0 but  are pointed f rom the 
stack. These are the only objects contained in ZCT. 

(2) If  the reference count  becomes 0, the pointer is stored 
in ZCT.  

(3) Poin ter  ope ra t ions  Lo push  and  pop or copy f rom the  
stack are not  counted. 

(4) We complete a transaction at some point, eiLher because 
it runs too long since the beginning of the transaction, 
or ZCT becomes full. 

A t  the complet ion of the transaction, we scan 
the stack and put all the pointers in a hash table. For  each 
pointer in ZCT, check whether the reference count  is zero. 
I f  it is not  zero, just remove it f rom ZCT. i f  iL is still zero, 
check whether it is in the hash table. If  so, just leave it in 
ZCT. Otherwise  deallocate.  

Now let us  cons ide r  tile pe r fo rmance .  According to 
our  implementat ion, push and pop take 5 steps in all the 
cases, the reference count ing 10 sLaps, and ZCT store 5 
steps. Then, 

Steps Steps 

for the for the 
New Method Old Method 

PushTem poraryVariables 5 25 
PushReceiverVariables 5 25 
P u p a  ndS to reTempora ryVar i ab le s  5 25 
PopAndS to reRece ive rVar i ab l e s  25 + a*5  25 

(2 ref count. I possible ZCT store) 

where c~ is t i le ratio or decrements which result in zero 
reference count. Empirical data is obtained for  this ratio is 
a = 0 . 0 4  [6]. Therefore,  the overal l  improvements excluding 
the transaction close procedure can be computed by 
mult iplying ti le number  of steps in the above table by the 
relative frequencies of operat ions in the previous table- 

20,5 + 7,5 + 4,5 + 2, (25 + 0.2) 
= 0.25 

( 2 0 + 7 + 4  +2 ) , 25  

We can estimate the t ime fo r  creating the hash table and 
scanning ZCT aL the end of a transaction f rom the ratio of 
the dynamic frequencies of pushes and pops against the 
storage creation which is the upper bound of the number  of 
eontexts created. From the book [6]. pushes and pops are 
55X of the bytecode, whereas the message send byLecode fo r  
"new" is 0.35X. So the transaction close operation overhead 
is negligible compared with the reference count ing operat ions 
eliminated f rom pushes and pops. 

5. C O N C I . U S I O N  

We exLended Smalltalk-80 to create Kiku;  we 
described features of K iku which help to, generate eff icient 
objeet code. We are creating an optimizing compi ler  and a 
run-Lime system for  Kiku. Three major performance 
bot t lenecks  or Smal l ta lk-80 s y s t e m s  are: m e t h o d  search,  
con t ex t  allocation and  deal locat ion,  and  re fe rence  coun t ing  
garbage collection. We  inven t ed  compi l ing  and r u n - t i m e  
sys t em construcl~ion t e c h n i q u e s  to so lve  t he se  problems .  We 
analyzed ti le performance or these techniques using statistics 
~=vailable oil the cur rent  Smalltalk-80 implementat ion and 
concluded that each of the technique improves the system 
performance significantly. 

We learned f rom Peter DeuLsch [4] that he has 
created a native code compi ler  for  MC68000, which runs 
very fast. Alan Burning told me that it is very eff icient and 
uses techniques simi lar to ours. However,  we did not get a 
copy of Deutsch's paper in Lime to compare with our  

techniques. 

We are grateful  to the comments by lchiro Ogata who 
is another  implementer  or the compiler, and Alan Burning. 
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