
Functional Parallels of Sequential Imperatives (Short Paper)

Tiark Rompf ∗ Kevin J. Brown†

∗Purdue University, USA: {firstname}@purdue.edu
†Stanford University, USA: kjbrown@stanford.edu

Abstract

Symbolic parallelism is a fresh look at the decade-old problem
of turning sequential, imperative, code into associative reduction
kernels, based on the realization that map/reduce is at its core
a staging problem: how can programs be separated so that part
of the computation can be done before loop-carried dependencies
become available? Previous work has investigated dynamic ap-
proaches that build symbolic summaries while the actual data is
processed. In this short paper, we approach the problem from the
static side, and show that with simple syntax- or type-driven trans-
formations, we can readily transform large classes of imperative
groupby-aggregate programs into map/reduce parallelism with de-
terministic overhead.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Parallelism, DSLs, staging, map/reduce

1. Introduction

Automatic parallelization of imperative programs is a decade-old
and well-studied problem. In the general case, there is only limited
success. However, there is mounting evidence that automatic par-
allelization is tractable for an increasing number of restricted, but
practically highly relevant, classes of applications. The Polyhedral
Model, for example, works well for applications that are dominated
by loop nests over dense arrays [2].

The present work is prompted by a recent paper [36] that uses sym-
bolic execution to effectively parallelize a large class of sequen-
tial groupby-aggregate programs, which commonly occur in ana-
lytics pipelines that process log files, financial transaction streams,
or other time series data. The key idea is to treat stateful variables,
which give rise to loop-carried dependencies, as symbolic instead
of actual data (e.g. of a symbolic type SymInt instead of Int). The
input data is processed in parallel, and for each chunk a symbolic
result is computed, which describes the result of processing the
chunk as a formula over the symbolic state variables. These sym-
bolic results are then merged in a parallel tree reduction, replacing
the symbolic inputs of chunk n + 1, with the symbolic outputs
of chunk n, and simplifying. While this approach is completely
general, it is of course only viable if the summaries are quick to
compute and orders of magnitude smaller than the input data, ide-
ally of small and bounded size. Thus, care is taken to avoid blow-
up of formulas: first, by efficient decision procedures that simplify,

canonicalize, and merge symbolic results, and second, by restrict-
ing the available operations on symbolic values to avoid some that
are known to be problematic.

We draw two key lessons from this work [36]: First, map-reduce
style processing gives rise to a staging problem, where input for
the reduce phase becomes available only after the map phase com-
pletes. Hence, if future data is required by the map phase, it must
be treated symbolically, and the map phase must compute a staged,
symbolic result, to be evaluated in the reduce phase. Second, by re-
stricting the types of the symbolic values and their available opera-
tions, we can control the shapes of the resulting symbolic formulas.

Armed with these insights, the question bears asking whether one
can improve on this model. Traversing a very large dataset and
performing symbolic operations, running decision procedures, and
simplifying formulas for each data element is certainly more ex-
pensive than running a tight loop over the data and performing the
native operations directly. And can we really be sure that formu-
las do not explode in size without airtight static guarantees? So, in
concrete terms, we ask: if we keep the stage distinction, and the re-
stricted types and operations, is it really necessary to compute the
symbolic summaries based on the actual dynamic data values, or
couldn’t we obtain comparable results through a static transforma-
tion, just by looking at the program text?

In this paper, we show that indeed we can. We extend the approach
of [36] to also treat the input data symbolically, but separate from
the aggregation variables. We make the following contributions:

• We define a small language for user-defined aggregation ker-
nels that syntactically separates map-phase expressions from
reduce-phase expressions. Reduce-phase expressions are (with
few exceptions) monoid operations, so that we obtain static
guarantees that the programs can be parallelized with determin-
istic overhead. We do not rely on sophisticated decision proce-
dures and delicate formal reasoning, but phrase our translation
as a straightforward syntactic mapping (Section 2).

• Beyond pure monoid operations, we follow [36] in allowing
data dependent control flow on symbolic values of bounded do-
main. Recognizing that we are dealing with a staging problem,
we point out that the intuitive solution of [36] and others is an
instance of “The Trick” [9, 23], a classic programming pattern
in staging and partial evaluation also known as bounded static
variation, which computes results from multiple control-flow
paths, if the branching decision depends on future-stage values
which can be exhaustively enumerated in an earlier stage (Sec-
tion 3).

• We report on our ongoing work on implementing this model
as a DSL on top of Delite and LMS, and provide preliminary
performance results. The syntactic restrictions in the formal
model translate to data types in the embedded DSL, similar
to the symbolic types (e.g. SymInt) in the dynamic symbolic
execution approach [36] (Section 4).

We survey related work in Section 5.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PEPM’17, January 16–17, 2017, Paris, France
ACM. 978-1-4503-4721-1/17/01...$15.00
http://dx.doi.org/10.1145/3018882.3018891

83

2. A Core Language for Aggregation Kernels

The epitome of imperative programming are loops with destructive
updates, for example:

var n = 0

for (d < data)

n += d

In general, such programs are hard to parallelize, because of the
inherent loop-carried dependencies.

Wearing our functional programming glasses, of course, it is easy
to see that we could also write this program as:

data.reduce(0)(_ + _)

Written in this way, the loop-carried dependency has gone away,
and reduce can be efficiently parallelized: either across multiple
CPU cores, using SIMD instructions, and even on GPUs.

The underlying realization is that (Int,+) forms a monoid, and
therefore the statement n += d, taken as syntactic sugar for the
assignment n = n + d, does not have to be executed from left to
right over the input. Instead, since + is associative, loop iterations
can be executed, and partial results combined, in any order.

2.1 Formal Syntax and Semantics

Let us make things a bit more formal. For starters, we consider the
language syntax shown in Figure 1. We let n denote accumulator
variables, d loop variables, and c constants. We use Map[K,V] to
mean the type of efficient map data structures from type K to type
V, and we use Map(k > v, ...) to represent the construction of a
map by enumeration of key value pairs, and s(k > v) by updating
an existing map s with a new binding. We use A => B to denote
(partial) functions from A to B. Throughout this paper, we assume
syntactically well-formed terms.

We go ahead and assign a sequential semantics to this language in
terms of fold, following the usual idea that statements are state
transformers. The state we compute is a mapping from variable
names to integers. The result is shown in Figure 2.

So for our example we have:

data.fold(Map(n>0)) { (s,d) => s(n > s(n) + d) }

Now for parallel execution, we would like to rephrase this as:

data

.map(d => Map(n>d))

.reduce(Map(n>0)) { (l,r) => Map(n > l(n) + r(n)) }

What is the difference between fold and reduce? Fold has type
(A,E)=>A, Reduce has type (A,A)=>A.

In general, any map/reduce comination can be written as a fold:

data.map(m).reduce(z)(r)

= data.fold(z)((s,d) => r(s,m(d)))

So, to go the other way, from fold to reduce, we need a way
of breaking apart a fold function f:(A,E)>A into m:E>A and
r:(A,A)>A such that

f(s,d) = r(s,m(d))

and r is associative. Crucially, m cannot make use of s anymore!

In our language this property is enforced syntactically since n can
never occur in expressions.

We can thus define a parallel semantics in terms of map and reduce

instead of fold. The result is shown in Figure 3, and it is easy to
verify that the new semantics coincides with the one in Figure 2.
Note that sequential composition is just reduce.

P ::= var n = c; ...; for (d < data) S Programs

S ::= n += E | S; S | skip Statements

E ::= d | c Expressions

Figure 1. Initial Syntax

type Name; type Elem; type State = Map[Name, Int]

I: State = Map(n > c, ...)

[[P]]: State

[[var n = c; ...; for (d < data) S]] =

data.fold(I) { (s,d) => [[S]](s,d) }

[[S]]: (State,Elem) => State

[[n += E]](s,d) = s(n > s(n) + [[E]](d))
[[S1; S2]](s,d) = [[S2]]([[S1]](s,d),d)
[[skip]](s,d) = s

[[E]]: Elem => Int

[[d]](d) = d

[[c]](d) = c

Figure 2. Sequential Semantics: fold

type Name; type Elem; type State = Map[Name, Int]

I: State; Z: State; R: (State,State) => State

I = Map(n > c, ...)

Z = Map(n > 0, ...)

R(l,r) = Map(n > l(n) + r(n), ...)

[[P]]: State

[[var n = c; ...; for (d < data) S]] =

I R data.map(d => [[S]](d)).reduce(Z)(_ R _)

[[S]]: Elem => State

[[n += E]](d) = Z(n > [[E]](d))
[[S1; S2]](d) = [[S1]](d) R [[S2]](d)
[[skip]](d) = Z

[[E]]: Elem => Int

[[d]](d) = d

[[c]](d) = c

Figure 3. Parallel Semantics: map/reduce

How can we enrich the language and keep the property of translat-
ing to map/reduce reductions?

First, it is straightforward to add state variables that use other
monoids than (Int,+). In the formal semantics, we can partition
the set of names according to the monoid, and thus syntactically
restrict the available operations.

2.2 Conditionals

We first add conditionals:

S ::= ... | if (B) S else S

B ::= E < E | E = E | ...

The translation rule is:

[[if (B) S1 else S2]](d) =

if ([[B]](d)) [[S1]](d) else [[S2]](d)

84

The rules for boolean expressions [[B]](d) are standard.

If we have (taking a missing branch as skip):

for (d < data)

if (b(d)) n += m(d)

Then the result will be:

data.map(d => if (b(d)) Map(n > m(d)) else Map(n > 0))

.reduce(Z)(_ R _)

2.3 Inter-Dependent Variables

So far, we can use variables only in isolation. We cannot, for
example, assign the value of one variable to another as part of
the loop. Fortunately, there are well-known ways to extend the
language in this direction [19, 32]. Let us consider computing
Fibonacci numbers as an example, and let us assume for a moment
that we evaluate assignments in parallel instead of sequentially, i.e.
we do not overwrite a variable before the end of a loop iteration:

var n0 = 0

var n1 = 1

for (d < data) {

n0 := n1

n1 += n0 // bulk synchronous semantics

}

Now we have accumulator variables on the right hand side of sums
and assignments. This is not something that is supported so far.

First, observe what happens when we run the program on symbolic
inputs n0,n1. We get the following sequence:

n0, n1, n1+n0, 2n1+n0, 3n1+2n0, 5n1+3n0, ...

Perhaps surprisingly, the Fibonacci numbers occur as coefficients,
independent of the starting values of n0, n1. This means that we
can easily parallelize computation. Compute, say, 2 chunks. Set n0,
n1 = 0,1 for the first chunk, to obtain n0’, n1’ on the right of this
chunk, and then use those values as n0, n1 for the second chunk.

In fact, since we do not use the input d from data, there is noth-
ing to be gained from parallelism. We can just compute on a single
core and use the same result multiple times, which, as one reviewer
pointed out, generalizes the repeated-squaring method of comput-
ing power. But then again, we could also use the closed form for-
mulation for Fibonacci.

How can we make this systematic? We can generalize from here:

for (d < data) {

n0 := n1

n1 += n0

}

To computing linear combinations of accumulator variables:

for (d < data) {

n0 := 0 * n0 + 1 * n1

n1 := 1 * n0 + 1 * n1

}

We can observe that this corresponds to a matrix-vector multiplica-
tion:

[

n0
′

n1
′

]

=

[

0 1

1 1

]

∗

[

n0

n1

]

Every loop iteration is a multiplication by a matrix. Thus, if we
want to combine multiple loop iterations, we need to build the
matrix product.

Fortunately, we know that this is an associative operation, so we
can translate it to a reduction!

type State = Map[Name, Int]

type RState = Map[Name, Map[Name, Int]]

I: State; F: (State, RState) => State

Z: RState; R: (RState,RState) => RState

I = Map(n > c, ...)

F(l,r) = Map(n > l dot r(n), ...) // dot product

Z = Map(n > Map(n > 1), ...) // id matrix

R(l,r) = Map(n > ...) // matrix mult

[[P]]: State

[[var n = c; ...; for (d < data) S]] =

I F data.map(d => [[S]](d)).reduce(Z)(_ R _)

[[S]]: Elem => RState

[[n := E*n2, ...]](d) = Z(n > Map(n2 > [[E]](d),...))
[[S1; S2]](d) = [[S1]](d) R [[S2]](d)
[[skip]](d) = Z

Figure 4. Inter-dependent data flow

The running state for n0 will be the row vector [n0 > 0, n1 > 1],
and the row vector [n0 > 1, n1 > 1] for n1.

While we have previously made the assumption of evaluating as-
signments in parallel, we actually want to treat assignments sequen-
tially. Therefore, we need to change the Fibonacci implementation
as follows:

var n0 = 0

var n1 = 1

var n2 = 1

for (d < data) {

n0 := n1

n1 := n2

n2 += n0 // sequential

}

The modified formal semantics is shown in Figure 4. Literals as in
n += 1 require using an auxiliary variable.

3. Data-Dependent Control Flow

As an example, we may want to find the first element that matches
a predicate and return its index.

var found = false

var n = 0

for (d < data)

if (!found)

if (p(d))

found = true

else

n += 1

For simplicity, we ignore the possibility of early aborts.

The first option, if we are only interested in the result of found,
would be to rewrite the program to use an associative operation:

for (d < data)

found |= p(d)

The second option is to extend the computational model to support
mutable state directly. The problem is that the map function needs
to access state that is computed only during reduction.

We recognize that this is essentially a staging problem, and in fact
it is so common that the partial evaluation community refers to the
usual solution plainly as “The Trick” [9, 23]. The technique is also

85

and more accurately described as bounded static variation, and it
amounts to pre-computing results from multiple control-flow paths
when faced with a control-flow decision that depends on future-
stage values.

We go on to allow this now in restricted ways, and use type
Bool => (Bool, RState) as the type of our monoid. The map
function in this example becomes (count is the delta added):

data

.map(d => (found =>

if (found) (found = true, count = 0),

else (found = if (p(d)) true else false,

count = if (p(d)) 0 else 1)))

.reduce((l,r) =>

/* reduce both paths independently */)

Reduction is basically function composition. If we stick to func-
tions Bool => RState’, then evaluation will be very inefficient, as
there is one function composition per element in the data. Essen-
tially we’re processing all the data in sequence, as the final step!

Fortunately we can do better: we materialize functions into map
data structures Map[Bool, RState’], through an operation similar
to eta-expansion: f becomes

Map(true > f(true), false > f(false)).

This ensures that each ‘function call’, i.e. map lookup, completes
in constant time.

The result is a data structure that corresponds to a binary tree. Cru-
cially, the value of found after a reduction is uniquely determined
by the value of found before, so all binary trees will have height
one (for one variable).

The semantics with data dependent control flow (on a single
boolean variable) are shown in Figure 5. Generalization to mul-
tiple variables is straightforward.

4. Outlook and Preliminary Results

Given the approach described, we can almost, but not quite, handle
the motivating example given by Raychev et al. and supported in
their SYMPLE system [36]:

for (e < events) {

// look for a search event

if (!srch_found && is_search(e)) {

// start counting reviews

srch_found = true;

count = 0;

}

// count reviews

if (srch_found && is_review(e))

count++;

// on a purchase event

if (srch_found && is_purchase(e)) {

// report if count > 10

if (count > 10)

ret.push_back(e.item);

// look for the next search

srch_found = false;

}

}; return ret;

The two missing bits are symbolic vectors (ret.push_back) and
inequality comparisons on aggregation variables (count > 10).

Symbolic data structures are beyond the scope of this paper, but it
is interesting to look at relational comparison operators.

type State’ = (b:Bool, ns:State)

type RState’ = (b:Bool, ns:RState)

type MRState = Bool => RState’

I’: State’; F: (State’, MRState’) => State’

Z’: MRState; R’: (MRState,MRState) => MRState

I’ = (false, I)

F’(l,r) = (r(l.b), F(l.ns,r(l.b).ns))

Z’ = st => (st, Z)

R’(l,r) = st => val st’ = l(st).b

(r(st’).b, l(st).ns R r(st’).ns)

eta f = Map(true > f(true), false > f(false))

[[P]]: State

[[var b; var n = c; ...; for (d < data) S0]] =

I F’ data.map(d => eta([[S0]](d)))
.reduce(Z)(l,r => eta(l R’ r))

[[S]]: Elem => RState

[[b := B]](d) = st => Z’([[B]](d))
[[S1; S2]](d) = [[S1]](d) R’ [[S2]](d)
[[skip]](d) = Z’

[[if (b) S1 else S2]](d) =

st => if (st) [[S1]](d)(st) else [[S2]](d)(st)

Figure 5. Data-Dependent Control Flow

4.1 Future Work: Relational Operators

Boolean state is always precise: it can only be one out of two al-
ternatives. We can generalize this to other values of small, bounded
domains, for example integers less than 10.

Another interesting class of state are variables that can partake in
relational comparisons, for example:

for (d < data)

if (d < min)

min = d

This gives rise to the following transfer function for the map phase:

data.map(d => (min =>

if (d < min) d

else min))

While of course computing the minimum is well known to be an
associate operation, it is less clear what restrictions should be put
on inequality comparisons in general.

For the minimum operator, a useful input abstraction is to treat min
as an unknown dynamic value with a known static upper bound d.
When combining the results during reduction, we have min <= d1

on the left, and then the next input has to compare min <= d2. If
we know that min <= (d1 min d2) we know that none of the tests
will trigger, and min will be passed on unmodifed.

We can thus represent the partial summaries as a binary tree data
structure, dispatching on the upper bound d. Reduction becomes
a merge operation on binary trees. But given such a model, what
operations are permitted on variables that are compared with in-
equalities, if we want to insist on being able to bound the depth of
such trees statically?

We believe this is an instance of a more general challenge, namely
adapting patterns like “The Trick” to scenarios where we have some

86

partial static knowledge about dynamic data, but cannot enumerate
all values exhaustively. In the partial evaluation domain, some
related work exists on partially static structures [31], partially static
operations [49], and more general partial compution methods such
as supercompilation [51].

Sato and Iwasaki [42] tackle a similar problem in their work on
automatic parallelization, which is also based on matrix multipli-
cation, and proposes a technique to extract the max operator from
user code with conditionals on inequality operators. However, they
do not consider bounded static variation in their work.

4.2 Preliminary Performance Results

We have run two preliminary performance experiments with our
implementation.

First, we calculate Fibonacci numbers (fib(230)). The sequential
fold version takes 535ms on a 2012 MacBook Pro (4-core Intel Ivy
Bridge at 2.7 GHz). The map/reduce version on a single core takes
548ms, and scales linearly to 4 cores. Thus, the parallel version
achieves a speedup of 3.9 over the best sequential version on 4
cores.

Despite having to execute more arithmetic operations (a small
sparse matrix multiplication instead of scalar addition), the over-
all arithmetic intensity is very low, and by generating code with
only primitive operations, a compiler can perform many standard
optimizations.

Our second benchmark is to search a collection of strings, first for
a given string A, and when that is found, switch to look for a string
B, and return how many times string B is found. In this scenario, the
comparisons are relatively costly: we use strings of length 10, and
they are set up to fail only on the last character, every time. The
sequential fold version takes 176ms, the sequential reduce version
336ms, since on every iteration it must look for both string A and
string B.

This is a kind of worst-case benchmark. In many cases we expect
that some computation can be shared between different branches
of computation. For example if we are searching for the same
string, a clever compiler such as LMS [39] will perform common
subexpression elimination across the branches and perform the
string comparison only once. In this case we get the same about
176ms as the sequential version.

5. Related Work

There is a large body of work on automatic parallelization of
sequential loops. Some notable works that consider conditionals
and other expressive features include [14, 53]. Another line of
work has considered the extraction of list homomorphisms [17],
which can be uniquely decomposed into map/reduce. Approaches
for deriving map/reduce implementations have also been studied
in a calculational setting through the notion of filter embedding
and semiring fusion [13]. We believe that our work is the first to
approach the problem from the angle of defining a language that is
parallelizable by construction, and providing a dual sequential and
parallel semantics.

Multi-stage programming (MSP, staging for short), as established
by Taha and Sheard [48] enables programmers to delay evalua-
tion of certain expressions to a generated stage. MetaOCaml [4]
implements a classic staging system based on quasi-quotation.
Lightweight Modular Staging (LMS) [39] uses types instead of
syntax to identify binding times, and generates an intermediate rep-
resentation instead of target code [38]. LMS draws inspiration from

earlier work such as TaskGraph [1], a C++ framework for program
generation and optimization. Delite is a compiler framework for
embedded DSLs that provides parallelization and heterogeneous
code generation on top of LMS [3, 27, 40, 41, 46].

Partial evaluation [23] is an automatic program specialization tech-
nique. Some notable systems include DyC [18], for C, JSpec/Tempo
[43], the JSC Java Supercompiler [24], and Civet [44]. Bounded
static variation (“The Trick”) is discussed in the book by Jones,
Gomard, and Sestoft [23], and has been related to eta-expansion by
Danvy, Malmkjær, and Palsberg [9].

Embedded languages have a long history [26]. Hudak introduced
the concept of embedding DSLs as pure libraries [21, 22]. Steele
proposed the idea of “growing” a language [45]. The concept of
linguistic reuse goes back to Krishnamurthi [25]; Language virtu-
alization to Chafi et al. [7]. The idea of representing an embedded
language abstractly as methods (finally tagless) is due to Carette
et al. [5] and Hofer et al. [20], going back to much earlier work
by Reynolds [37]. Compiling embedded DSLs through dynami-
cally generated ASTs was pioneered by Leijen and Meijer [28]
and Elliot et al. [12]. All these works greatly inspired the devel-
opment of LMS. Haskell is a popular host language for embedded
DSLs [16, 47], examples being Accelerate [30], and Nikola [29].
Recent work presents new approaches around quotation and nor-
malization for DSLs [8, 33]. Other performance oriented DSLs in-
clude Firepile [34] (Scala), Terra [10, 11] (Lua). Copperhead [6]
(Python). Rackets macros [50] provide full control over the syntax
and semantics.

Program generators for high-performance code include for exam-
ple ATLAS [52] (linear algebra), FFTW [15] (discrete fourier trans-
form), and Spiral [35] (general linear transformations).

Acknowledgments

We thank the anonymous reviewers for their helpful suggestions.
This research was supported by NSF through awards 1553471 and
1564207.

References

[1] O. Beckmann, A. Houghton, M. R. Mellor, and P. H. J. Kelly. Runtime
code generation in C++ as a foundation for domain-specific optimisa-
tion. In Domain-Specific Program Generation, pages 291–306, 2003.

[2] M. Benabderrahmane, L. Pouchet, A. Cohen, and C. Bastoul. The
polyhedral model is more widely applicable than you think. In CC,
volume 6011 of Lecture Notes in Computer Science, pages 283–303.
Springer, 2010.

[3] K. J. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun. A heterogeneous parallel framework for domain-
specific languages. In PACT, 2011.

[4] C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing multi-
stage languages using asts, gensym, and reflection. GPCE, pages 57–
76, 2003.

[5] J. Carette, O. Kiselyov, and C. chieh Shan. Finally tagless, partially
evaluated: Tagless staged interpreters for simpler typed languages. J.

Funct. Program., 19(5):509–543, 2009.

[6] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: compiling
an embedded data parallel language. In Proceedings of the 16th

ACM symposium on Principles and practice of parallel programming,
PPoPP, pages 47–56, New York, NY, USA, 2011. ACM.

[7] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan,
M. Odersky, and K. Olukotun. Language Virtualization for Heteroge-
neous Parallel Computing. Onward!, 2010.

[8] J. Cheney, S. Lindley, and P. Wadler. A practical theory of language-
integrated query. In G. Morrisett and T. Uustalu, editors, ACM

SIGPLAN International Conference on Functional Programming,

87

ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages 403–
416. ACM, 2013.

[9] O. Danvy, K. Malmkjær, and J. Palsberg. Eta-expansion does the trick.
ACM Trans. Program. Lang. Syst., 18(6):730–751, 1996.

[10] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek. Terra: a
multi-stage language for high-performance computing. In H. Boehm
and C. Flanagan, editors, ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI ’13, Seattle, WA,

USA, June 16-19, 2013, pages 105–116. ACM, 2013.

[11] Z. DeVito, D. Ritchie, M. Fisher, A. Aiken, and P. Hanrahan. First-
class runtime generation of high-performance types using exotypes. In
M. F. P. O’Boyle and K. Pingali, editors, ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’14,

Edinburgh, United Kingdom - June 09 - 11, 2014, page 11. ACM,
2014.

[12] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages.
J. Funct. Program., 13(3):455–481, 2003.

[13] K. Emoto, S. Fischer, and Z. Hu. Filter-embedding semiring fusion for
programming with mapreduce. Formal Asp. Comput., 24(4-6):623–
645, 2012.

[14] A. L. Fisher and A. M. Ghuloum. Parallelizing complex scans and
reductions. In PLDI, pages 135–146. ACM, 1994.

[15] M. Frigo. A fast fourier transform compiler. In PLDI, pages 169–180,
1999.

[16] A. Gill. Domain-specific languages and code synthesis using haskell.
Queue, 12(4):30:30–30:43, Apr. 2014.

[17] S. Gorlatch. Extracting and implementing list homomorphisms in
parallel program development. Sci. Comput. Program., 33(1):1–27,
1999.

[18] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers.
Dyc: an expressive annotation-directed dynamic compiler for c. Theor.

Comput. Sci., 248(1-2):147–199, 2000.

[19] W. D. Hillis and G. L. S. Jr. Data parallel algorithms. Commun. ACM,
29(12):1170–1183, 1986.

[20] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic
embedding of DSLs. In Y. Smaragdakis and J. G. Siek, editors, GPCE,
pages 137–148. ACM, 2008.

[21] P. Hudak. Building domain-specific embedded languages. ACM

Computing Surveys, 28, 1996.

[22] P. Hudak. Modular domain specific languages and tools. In Proceed-

ings of Fifth International Conference on Software Reuse, pages 134–
142, June 1998.

[23] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial evaluation and

automatic program generation. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993.

[24] A. V. Klimov. A java supercompiler and its application to verifica-
tion of cache-coherence protocols. In A. Pnueli, I. Virbitskaite, and
A. Voronkov, editors, Ershov Memorial Conference, volume 5947 of
Lecture Notes in Computer Science, pages 185–192. Springer, 2009.

[25] S. Krishnamurthi. Linguistic reuse. PhD thesis, Computer Science,
Rice University, Houston, 2001.

[26] P. J. Landin. The next 700 programming languages. Commun. ACM,
9(3):157–166, 1966.

[27] H. Lee, K. J. Brown, A. K. Sujeeth, H. Chafi, T. Rompf, M. Oder-
sky, and K. Olukotun. Implementing domain-specific languages for
heterogeneous parallel computing. IEEE Micro, 31(5):42–53, 2011.

[28] D. Leijen and E. Meijer. Domain specific embedded compilers. In
DSL, pages 109–122, 1999.

[29] G. Mainland and G. Morrisett. Nikola: embedding compiled GPU
functions in Haskell. In Proceedings of the third ACM Haskell sym-

posium on Haskell, Haskell ’10, pages 67–78, New York, NY, USA,
2010. ACM.

[30] T. L. McDonell, M. M. Chakravarty, G. Keller, and B. Lippmeier.
Optimising purely functional GPU programs. In Proceedings of the

18th ACM SIGPLAN International Conference on Functional Pro-

gramming, ICFP ’13, pages 49–60, New York, NY, USA, 2013. ACM.

[31] T. A. Mogensen. Partially static structures in a self-applicable partial
evaluator. 1988.

[32] T. Mytkowicz, M. Musuvathi, and W. Schulte. Data-parallel finite-
state machines. In ASPLOS, pages 529–542. ACM, 2014.

[33] S. Najd, S. Lindley, J. Svenningsson, and P. Wadler. Everything old
is new again: Quoted domain specific languages. Technical report,
University of Edinburgh, 2015.

[34] N. Nystrom, D. White, and K. Das. Firepile: run-time compilation
for GPUs in Scala. In Proceedings of the 10th ACM international

conference on Generative programming and component engineering,
GPCE, pages 107–116, New York, NY, USA, 2011. ACM.

[35] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. A.
Padua, M. M. Veloso, and R. W. Johnson. Spiral: A generator for
platform-adapted libraries of signal processing alogorithms. IJHPCA,
18(1):21–45, 2004.

[36] V. Raychev, M. Musuvathi, and T. Mytkowicz. Parallelizing user-
defined aggregations using symbolic execution. In SOSP, pages 153–
167. ACM, 2015.

[37] J. Reynolds. User-defined types and procedural data structures as
complementary approaches to data abstraction. 1975.

[38] T. Rompf. Lightweight Modular Staging and Embedded Compilers:

Abstraction Without Regret for High-Level High-Performance Pro-

gramming. PhD thesis, EPFL, 2012.

[39] T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs. Commun.

ACM, 55(6):121–130, 2012.

[40] T. Rompf, A. K. Sujeeth, N. Amin, K. Brown, V. Jovanovic, H. Lee,
M. Jonnalagedda, K. Olukotun, and M. Odersky. Optimizing data
structures in high-level programs. In POPL, 2013.

[41] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Odersky,
and K. Olukotun. Building-blocks for performance oriented DSLs.
DSL, 2011.

[42] S. Sato and H. Iwasaki. Automatic parallelization via matrix multipli-
cation. In PLDI, pages 470–479. ACM, 2011.

[43] U. P. Schultz, J. L. Lawall, and C. Consel. Automatic program
specialization for java. ACM Trans. Program. Lang. Syst., 25(4):452–
499, 2003.

[44] A. Shali and W. R. Cook. Hybrid partial evaluation. OOPSLA, pages
375–390, 2011.

[45] G. Steele. Growing a language. Higher-Order and Symbolic Compu-

tation, 12(3):221–236, 1999.

[46] A. K. Sujeeth, T. Rompf, K. J. Brown, H. Lee, H. Chafi, V. Popic,
M. Wu, A. Prokopec, V. Jovanovic, M. Odersky, and K. Olukotun.
Composition and reuse with compiled domain-specific languages. In
ECOOP, 2013.

[47] B. J. Svensson, M. Sheeran, and R. Newton. Design exploration
through code-generating DSLs. Queue, 12(4):40:40–40:52, Apr. 2014.

[48] W. Taha and T. Sheard. MetaML and multi-stage programming with
explicit annotations. Theor. Comput. Sci., 248(1-2):211–242, 2000.

[49] P. Thiemann. Partially static operations. In PEPM, pages 75–76, 2013.

[50] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen. Languages as libraries. In Proceedings of the 32nd

ACM SIGPLAN conference on Programming language design and im-

plementation, PLDI ’11, pages 132–141, New York, NY, USA, 2011.
ACM.

[51] V. F. Turchin. The concept of a supercompiler. ACM Trans. Program.

Lang. Syst., 8(3):292–325, 1986.

[52] R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical op-
timizations of software and the ATLAS project. Parallel Computing,
27(1-2):3–35, 2001.

[53] D. N. Xu, S. Khoo, and Z. Hu. Ptype system: A featherweight
parallelizability detector. In APLAS, volume 3302 of Lecture Notes

in Computer Science, pages 197–212. Springer, 2004.

88

	Introduction
	A Core Language for Aggregation Kernels
	Formal Syntax and Semantics
	Conditionals
	Inter-Dependent Variables

	Data-Dependent Control Flow
	Outlook and Preliminary Results
	Future Work: Relational Operators
	Preliminary Performance Results

	Related Work

