
Probabilistic Coherence Spaces are
Fully Abstract for Probabilistic PCF ∗

Thomas Ehrhard Christine Tasson
Laboratoire PPS - CNRS - Université Paris Diderot

thomas.ehrhard@pps.univ-paris-diderot.fr
christine.tasson@pps.univ-paris-diderot.fr

Michele Pagani
Laboratoire LIPN - Université Paris 13
michele.pagani@lipn.univ-paris13.fr

Abstract
Probabilistic coherence spaces (PCoh) yield a semantics of higher-
order probabilistic computation, interpreting types as convex sets
and programs as power series. We prove that the equality of inter-
pretations in PCoh characterizes the operational indistinguishabil-
ity of programs in PCF with a random primitive.

This is the first result of full abstraction for a semantics of
probabilistic PCF. The key ingredient relies on the regularity of
power series.

Along the way to the theorem, we design a weighted intersec-
tion type assignment system giving a logical presentation of PCoh.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory - Semantics

Keywords Full Abstraction, Probabilistic PCF

1. Introduction
Probabilistic behaviors appear in many places in the study of pro-
graming languages, for instance if the environment of a program
behaves randomly or if the program uses probabilistic constructs.

To understand how the introduction of probabilities changes
the computational landscape, we use Semantics. Indeed, in the last
decades [24, 27, 30], semantics has succeeded in giving insights on
the way programs compute. More precisely, operational semantics
allows one to formalize a program by the sequence of its execu-
tion steps, while denotational semantics represents programs by
functions in some mathematical space relating the interpretations
of inputs and outputs in a compositional way. If this last mathe-
matical representation is correct and accurate enough, then deno-
tational properties lead to computational features. A key example
is full abstraction [23], stating that operational indistinguishability
(i.e. behaving in the same way in any context) is characterized by
denotational equivalence (i.e. having the same interpretation). So
semantics is useful both to give a precise meaning to syntactical
constructs and to separate non-equivalent programs.

∗ Partially founded by French ANR project COQUAS (number 12 JS02 006
01) and CNRS chair “Logique linéaire et calcul”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535865

Of course, probabilistic semantics have already been inves-
tigated. First, the domain-theoretic approach has led to a prob-
abilistic powerdomain [19, 29] which is a sibling of the non-
deterministic power domain [27]. This approach follows the com-
putational monad method [25]: programs are interpreted as func-
tions from the input domain to the powerdomain of the output
domain. Intuitively, a program takes an input and returns a proba-
bility distribution on outputs. This line of work has been continued
by the continuous random variable construction [15], introducing
standard tools of probability theory into semantics. Secondly, the
game-theoretic approach [1, 18] has been extended with probabilis-
tic features [5]. Intuitively, probabilistic programs are interpreted
as probabilistic strategies, that are stochastic processes on the plays
of the games associated with the types of the programs.

Quantitative semantics follows another tradition stemming
from Linear Logic models [10, 11]. From the very beginning, Lin-
ear Logic has been associated with intuitions coming from calculus
and linear algebra [7, 8, 12]. Indeed, programs are interpreted as
entire series between mathematical spaces or as analytic functors
between sets [17], and programs that use their resources only once
are interpreted as linear functions. This connection with resource
consumption has been fruitful in the last decade with the intro-
duction of differential nets and resource calculus [2, 9]. Recently,
quantitative semantics has been explicitly related to the study of
quantitative properties such as time or space consumed by a com-
putation [22]. This illustrates a new paradigm where a semiring
of scalars allows one to encode non-deterministic or probabilistic
computations as opposed to the domain paradigm where monads
are used. Another important tenet of Linear Logic is the perfect du-
ality between programs and environments since a program can be
seen as the environment of other programs. Therefore, represent-
ing probabilistic environments or programs will boil down to the
same study. Probabilistic coherence spaces provide a quantitative
semantics [4, 14] which model probabilistic computations.

The main contribution of the present work is to show that proba-
bilistic coherence spaces provide a fully abstract model of PPCF, a
probabilistic extension of the functional programing language PCF
[28]. Although the proof follows the general pattern that consists in
finding a definable context that separates two terms, the key in-
gredient is based on Calculus (see Lemma 25) since programs are
interpreted as power series.

To our knowledge, no known model of probabilistic PCF has yet
been proved to be fully abstract. Games semantics provide fully ab-
stract models of standard PCF via an extensional collapse [1, 18].
This technique has been adapted to probabilistic game seman-
tics, providing a fully abstract model of probabilistic idealized
ALGOL [5] (an extension of probabilistic PCF with references). Our
result characterizes the operational indistinguishability without the

309

need of an extensional collapse and deals with a functional proba-
bilistic language with no references.

Section 2 is devoted to an insight on the way programs and
data are interpreted in probabilistic coherence spaces. Section 3
is devoted to the syntax and the operational semantics. Next, in
Section 4, we describe the key notions of probabilistic coherence
spaces that will be useful to prove, in Section 5, full abstraction.
Along the way to the theorem, we define an intersection type as-
signment system (Figure 3) giving a logical presentation to the
model. This system has an interest by its own, allowing one to turn
a question of computing the semantics of a term (and hence its oper-
ational behavior) into a proof search problem. Finally, in Section 6,
we show that inequational full abstraction fails, i.e. the semanti-
cal order does not coincide with the operational one. For this, we
achieve a context lemma for probabilistic PCF (Proposition 31).

Notation 1. We write N for the set of non negative integers, N∗

for the set of positive integers (N∗ ∆
=N\{0}), R+ for the set of non

negative real numbers and R+
∆
=R+ ∪{∞} for the completed real

half line. Let S be a set,]S denotes its cardinality. Multisets of
elements of S are identified with functions S → N. If m is such a
multiset, Supp (m) denotes its support set {a ∈ S s.t. m(a) 6= 0}.
A finite multiset is a multiset with a finite support. We writeMf (S)
for the set of all finite multisets of elements of S. We enumerate m
by using (a, i) ∈ m to denote a ∈ Supp (m) and 1 ≤ i ≤ m(a).
Whenever (a1, . . . , an) ∈ Sn, we write [a1, . . . , an] for the finite
multiset: a ∈ S 7→]{i s.t. ai = a}. The empty multiset is [] and]
is the multiset union: (m]p)(a)

∆
=m(a)+p(a). A vector v ∈ RS+

is given by its values va on any index a ∈ S. Given a multiset
m ∈ Mf (S), we define the power vm ∆

=
∏
a∈Supp(m) v

m(a)
a . For

any a ∈ S, let ea ∈ RS+ be the base vector (ea)b
∆
= δa,b, with δa,b

denoting the Kronecker symbol.
Let us fix our typographic conventions: a, b, c range over web

elements and m, p, q over multisets. v, w, u range over vectors,
φ, ψ, ξ over matrices, α, β, γ over monomials. A,B,C range over
simple types, Int being the integer type. x, y, z range over term
variables. M,N,P range over terms. Finally, κ, µ, ν range over
scalars in R+ and ~κ denotes a list of scalars and similarly for the
other metavariables.

2. Denoting Probabilistic Programing
Probabilistic programs use two levels of randomness: the first one
on data (i.e. terms of ground type), the second one on programs (i.e.
terms of higher-order type).

A probabilistic datum is a random variable whose outcome is
given to the program. Thus, a probabilistic datum will be character-
ized by its law, that will be its interpretation. Then, a probabilistic
program uses random instructions and behaves like a function from
probabilistic data to probabilistic data. Moreover, a program can
call several times its argument x. Each of its occurrences is repre-
sented by the outcome of an independent random variable with the
same distribution as x.

We consider two examples of probabilistic data of type Int.
The first one, Coin, is the toss of a 0/1 fair coin. The second one,
Rand(n), follows the discrete uniform distribution with outcomes
between 0 and n− 1.

If we are only interested in resulting values, then Int is inter-
preted by the set of non negative integers |Int| = N. First, we
consider Coin and Rand(n) as non deterministic data, and inter-
pret them by the range of the corresponding random variables:

|Coin| = {0, 1} and |Rand(n)| = {0, . . . , n− 1}.
Then, to take into account the randomized behavior of the da-

tum, we associate a coefficient to each outcome: its probability to

happen. The interpretation of a datum is now given by a sequence
of non-negative integers indexed by the possible outcomes:

JCoinK = (1
2
, 1

2
, 0, . . .) and JRand(n)K = (1

n
, . . . , 1

n︸ ︷︷ ︸
n

, 0 . . .).

In general, we will interpret the integer type by subprobability1

distributions over N:

P (Int) =
{

(κn)n∈N ∈ RN
+ s.t.

∑
n∈N κn ≤ 1

}
.

For probabilistic programs, we follow the same pattern as for
probabilistic data. First, their non deterministic behavior is de-
scribed. Then, coefficients are introduced in order to render their
quantitative behavior.

As an example, let us consider the program Rand : Int⇒ Int
that takes an input value n, and returns any non negative integer
strictly less than n with equal chances and make it interact with
probabilistic data (e.g. a probabilistic distribution over N).

Focusing on the association between input and output values,
its non deterministic behavior is described as a relation: |Rand| ⊆
|Int| × |Int|

|Rand| =
{

(n, a) s.t. n ∈ N, a ∈ {0, . . . , n− 1}
}
.

Then we associate a coefficient to each pair input-output. It rep-
resents the quantitative account of getting the given output know-
ing the input. The interpretation of the program is now turned into
a matrix indexed by the values interpreting inputs (column indices)
and outputs (raw indices)2: JRandK ∈ (R+)|Int|×|Int|

JRandK =

0
↓

1
↓

2
↓

··· n
↓

···

0 1 1
2
· · · 1

n
· · ·

0 0 1
2
· · · 1

n
· · ·

...
... 0

. . .
...

... 0 1
n

...
. . .

. . .

→0

→1

...
→n−1

...

(1)

The interaction between the program Rand and a probabilistic
datum x is then given by the product of the matrix interpreting the
program and of the sequence interpreting the datum. Besides, this
probabilistic program preserves subprobability distributions.

Actually, this approach is valid only if the program uses exactly
once its argument. Indeed, as a side effect of the call-by-name3 ex-
ecution strategy, each occurrence of a probabilistic datum behaves
as an independent sample of a random variable. So, if a program
makes several calls to a given probabilistic datum, then the out-
comes of the calls may differ due to the randomized setting.Thus,
we gather the input values into a finite multiset: finite, since if the
execution of a program terminates, then the number of resources
effectively used is finite; multiset rather than a sequence since this
model is not accurate enough to distinguish the order of the inputs.

To illustrate this point, we examine the probabilistic programs:

Once
∆
= λxInt.if(x, Coin, 42),

Twice
∆
= λxInt.if(x, if(x, Coin, 42), if(x, 42, 0)),

where if(x, ,) branches depending whether x evaluates to zero or
not. Notice that the two programs uses, among others, probabilistic

1 Since a call to a datum can fail, the total probability distribution over the
possible values may be less than 1.
2 JRandK is the transpose of a stochastic matrix and the image of a subprob-
ability distribution is the matrix product JRandK · v.
3 This phenomenon will also appear in a call-by-value setting, if every
probabilistic datum x is replaced by its CPS translation λaInt.x.

310

instructions and that they call once or twice their input. Their
interpretation is given by a matrix indexed by finite multisets (the
input) and integers (the output). Coefficients are non zero only if
the multiset is of size one or two:

JOnceK : JTwiceK :
([0], 0) 7→ 1

2

([0], 1) 7→ 1
2

([a], 42) 7→1 if a 6= 0
(m, a) 7→0 otherwise.

([0, 0], 0) 7→ 1

2

([0, 0], 1) 7→ 1
2

([0, a], 42) 7→2 if a 6= 0
([a, b], 0) 7→1 if a 6= 0, b 6= 0
(m , a) 7→0 otherwise.

On the second example, two quantitative phenomena are mixed
up. The first one is probabilistic: coefficient 1

2
comes from the use

of coin. The second one stems from branching construction: two
different execution traces are leading to 42, either the two outcomes
of the random variable x are first 0, and then a 6= 0, or its outcomes
are first a, and then 0. In our model, these traces are gathered in
the same multiset [0, a] and the coefficient 2 is the combinatorial
counterpart. This gives a hint of why programs are not represented
as random variables.

Now, the interaction of a probabilistic program with a proba-
bilistic data boils down to a matrix product adapted to take into
account multiplicities.

Let us consider a probabilistic datum x : Int and a program
M : Int ⇒ Int. As a reminder, the a-th coefficient JxKa is the
probability that a is the outcome of x. The probability J(M)xKb,
that (M)x returns b, is given by decomposing the computation in
pairwise disjoint events. Each event corresponds to an intermediate
multiset m gathering the input values that are effectively used
during computation:

J(M)xKb =
∑

m∈Mf(N)

JMK(m,b) JxKm , (2)

(see Notation 1 for JxKm) is the probability that independent calls
to x returns the values gathered in m. In this way, every coefficient
J(M)xKb is a power series with infinitely many variables, that are
the JxKa for a ∈ N.

Applying Formula (2), we compute the non zero coefficients:

J(Once)xK0 = J(Once)xK1 = 1
2

JxK0 J(Once)xK42 =
∑
a≥1

JxKa

J(Twice)xK0 = 1
2

JxK2
0 +

∑
a,b≥1

JxKa JxKb

J(Twice)xK1 = 1
2

JxK2
0 J(Twice)xK42 = 2

∑
a≥1

JxK0 JxKa

Notice that every coefficient of J(Once)xK is a linear function
and every coefficient of J(Twice)xK is a polynomial of degree 2.
Besides, Once and Twice preserve subprobability distributions:∑

b

J(Once)xKb = 1
2

JxK0 + 1
2

JxK0 +
∑
a≥1

JxKa ≤ 1

∑
b

J(Twice)xKb = JxK2
0 + 2 JxK0

∑
a≥1

JxKa + (
∑
a≥1

JxKa)2,

= (
∑
a≥0

JxKa)2 ≤ 1.

3. Probabilistic PCF
We define the language PPCF in Figure 1. This system is a mi-
nor variant with respect to the probabilistic extension of PCF pre-
sented in [4] (see Remark 6). The grammar of terms is obtained
by adding to standard PCF a random number generator rand.The

typing rules (Figure 1(b)) are the usual ones, with rand of type
Int ⇒ Int. From now on, we call program a closed term of type
Int. Figure 1(c) gives the one step reduction relation κ−→, imple-
menting a weak head-reduction (i.e. a lazy call-by-name strategy).
The relation is weighted with a probability κ ∈ [0, 1] equal to 1
except for steps firing a (rand)n redex, reducing to any numeral
in {0, . . . , n− 1} with equal probability 1

n
. The probability of a

reduction sequence is the product of the weights of all its steps.
Some notational conventions are introduced in Figure 1(d) and will
be used henceforth.

Example 2. Notice (by induction on n ≥ 1) that the term
choose(Mi)

n
i=1, for 1 ≤ i ≤ n reduces (in several steps) to any

Mi with equal probability 1
n

. In general, any reduction sequence
has a probability given by a rational number in [0, 1], since randn
introduces just fractions.

Example 3. The fix-point constructor yields infinite reduction
sequences, like the typical loop ΩA

1→
(
λxA.x

)
ΩA

1→ ΩA.
However, we can have terms with infinite reduction sequences
but converging to a normal form with probability 1. Indeed, take
M

∆
= fix(λxInt.x⊕ 0) (see notations in Figure 1(d)) we have:

M
(
λxInt.x⊕ 0

)
M M ⊕ 0 0

1 1
1
2

1
2

The probability that M reduces to 0 is equal to the sum of the
probabilities of all finite reductions sequences from M to 0, which
is
∑∞
n=0

1
2n+1 = 1, n being the number of loops taken by a

sequence.

A way for precisely defining the probability of convergence of
a term to a normal form is by giving the operational semantics as
a Markov process over the set of PPCF terms, following [4]. The
transition matrix PROBA ∈ [0, 1]PPCF×PPCF is defined by:

PROBAM,N
∆
=

κ if M κ→ N ,
1 if M = N is a normal form,
0 otherwise.

(3)

Notice that PROBAM,N is well-defined since there exists at most
one reduction step M κ→ N , once fixed M and N . PROBA is
a stochastic matrix (i.e. for all M ,

∑
N∈PPCF PROBAM,N = 1).

The value of PROBAM,N intuitively describes the probability of
evolving from the state M to the state N in one step.

A termM is absorbing whenever PROBAM,M = 1: the absorb-
ing states are those which are invariant under the transition matrix.
Notice that the normal forms are all absorbing, but the converse is
false, e.g. Ω is an absorbing term.

The n-th power PROBAn of the matrix PROBA is a stochastic
matrix on PPCF (in case n = 0, we have the identity matrix on
PPCF). Intuitively, the value of PROBAnM,N is the probability of
evolving from the state M to the state N in exactly n steps.

Proposition 4 ([4, Lemma 32]). Let M ∈ PPCF and N absorb-
ing, the sequence {PROBAnM,N}n∈N is monotonic.

We can thus define, for every program M and n ∈ N:

PROBA∞M,n
∆
=
∞

sup
k=0

(PROBAkM,n) (4)

Intuitively, PROBA∞M,n defines the probability that M reaches a
numeral n in an arbitrary number of steps.

In standard PCF the observational pre-order is defined with
respect to the termination of a term in a context of type Int. In a
probabilistic framework like PPCF, one can refine such a pre-order

311

Types A,B,C ::= Int | A⇒ B Terms M,N,P ::= x | λxA.M | (M)N | fix(M) | 0 | s(M) | p(M) | if(M,N,P) | rand

(a) Grammar of types and terms. The constant Int is the base type of integers. Given n ∈ N, n will denote its associated numeral, defined as sn(0).

Γ, x : A ` x : A

Γ, x : A `M : B

Γ ` λxA.M : A⇒ B

Γ `M : A⇒ B Γ ` N : A
Γ ` (M)N : B

Γ `M : A⇒ A
Γ ` fix(M) : A

Γ ` 0 : Int

Γ ` P : Int
Γ ` s(P) : Int

Γ ` P : Int
Γ ` p(P) : Int

Γ `M : Int Γ ` N : A Γ ` P : A
Γ ` if(M,N,P) : A Γ ` rand : Int⇒ Int

(b) Simple type assignment system.(
λxA.M

)
N 1−→M [N/x] if(0, N, P) 1−→ N p(n+ 1) 1−→ n

fix(M) 1−→ (M) fix(M) if(n+ 1, N, P) 1−→ P (rand)n
1
n−→ k, for k < n

M κ−→M ′, M not abstract.

(M)N κ−→ (M ′)N

M κ−→M ′

s(M) κ−→ s(M ′)

M κ−→M ′

p(M) κ−→ p(M ′)

M κ−→M ′

if(M,N,P) κ−→ if(M ′, N, P)

M κ−→M ′

(rand)M κ−→ (rand)M ′

(c) Reduction rules. In case n = 0, (rand)n is a normal form.

ΩA
∆
= fix(λxA.x) M ⊕N ∆

= if((rand) 2,M,N)

choose()
∆
= ΩA choose(M1, . . . ,Mn+1)

∆
= if((rand)n+ 1,Mn+1, choose(M1, . . . ,Mn))

if(∧0
i=1Mi, N, P)

∆
=N if(∧n+1

i=1 Mi, N, P)
∆
= if(Mn+1, if(∧ni=1Mi, N, P), P)

if(M = 0, N, P)
∆
= if(M,N,P) if(M = n+ 1, N, P)

∆
= if(p(M) = n,N, P)

(d) Notational conventions. Also, we can use choose(Mi)
n
i=1 as a shortcut for choose(M1, . . . ,Mn).

Figure 1: Probabilistic extension of PCF.

by comparing the probability of convergence. Let CΓ,A be the set
of contexts Q mapping terms M of type A in the environment Γ,
into programs Q[M], i.e. closed terms of type Int.

Definition 5 (Observational pre-order). Given Γ ` M : A, and
Γ ` N : A, we define4:

M vΓ N iff ∀Q ∈ CΓ,A, PROBA∞Q[M],0 ≤ PROBA∞Q[N],0 .

Let ≡Γ be the equivalence induced by vΓ.

Remark 6. There are slightly different probabilistic primitives that
can be added to PCF. We have chosen a quite standard one, rand,
implementing CAML function Random.int. In [5, 21] it is also
considered the more basic Coin

∆
= (rand) 2. Another possibility

is to allow an arbitrary superposition of two terms M ⊕κ N , for
κ ∈ [0, 1], evaluating to M with probability κ and to N with
probability 1−κ, see e.g. [15, 19]. Concerning n-ary distributions,
there is ⊕ni=1κiMi, evaluating to any Mi with probability κi [26].
Finally, [4] allows any probabilistic distribution over the whole set
of numerals (κn)n∈N, evaluating to n with probability κn.

Obviously, Coin can be defined as ⊕ 1
2

as well as (rand) 2.
Also, both ⊕κ and rand are definable as ⊕ni=1κiMi, and the latter

4 The numeral 0 chosen for testing the equality is not significant. Indeed,
from a context Q semi-separating two terms M , N on a numeral n, i.e.
such that PROBA∞

Q[M],n
6≤ PROBA∞

Q[N],n
, one can get a context semi-

separating M and N on another numeral m by applying a suitable number
of p() or s() constructors.

as (κn)n∈N. However, the converses are less trivial. In [5, Figure
6] the authors show how to define rand as a recursive program us-
ing just Coin. On the contrary, ⊕κ is strictly more expressive than
rand and Coin, since it is not true that all real numbers can be
approximated by series of rational numbers generated from PPCF
terms (hence recursively enumerable series). One can then wonder
whether the observational equivalence on PCF terms depends on
the chosen probabilistic primitive. The full abstraction gives a neg-
ative answer to the question: all such primitives induce the same ob-
servational equivalence on PCF terms, which is in fact the equiva-
lence induced by Pcoh (Corollary 28).

4. Probabilistic Coherence Spaces
We present probabilistic coherence spaces [4, 14] and recall the
main results needed to state and prove the full abstraction theorem.

The category PCoh of probabilistic coherence spaces is a model
of PPCF. As usual, types are interpreted as objects of the category
and programs as maps between the interpretation of the input and
output types.

Actually, PCoh is underlied by a model of linear logic that we
do not make explicit for the sake of brevity, but we refer to [4].

4.1 Probabilistic Coherence Spaces
A probabilistic coherence space is a pair (|A| ,P (A)) of a set
|A| and a set P (A) of vectors in the module R|A|+ . Intuitively, the
elements in |A| represent atomic data, while the vectors in P (A)

312

express probabilistic data. At the ground type, P (Int) is in fact
the convex set of the subprobability distributions of the elements
in |Int|. However, at higher-order types, this intuition is lost5 and
the definition of P (A) depends on a duality condition describing
the probability of having an interaction between a datum of type A
(which is a program) and an environment.

Consider a program and an environment interacting on atomic
data a included in a set |A| such that their respective interpreta-
tion are positive real vectors: v, w ∈ R|A|+ . Their pairing gives a
quantitative estimation of the interaction success

〈v, w〉 ∆
=
∑
a∈|A|

va wa ∈ R+. (5)

We say that their interaction is probabilistic whenever 〈v, w〉≤ 1.
We then define a polar operation on sets of vectors P ⊆ R|A|+ as

P⊥
∆
=
{
w ∈ R|A|+ s.t. ∀v ∈ P 〈v, w〉≤ 1

}
. (6)

The probabilistic duality environment/program is then enforced in
our model by the closedness condition P⊥⊥ = P .

Definition 7 ([4, 14]). A probabilistic coherence space, or PCS
for short, is a pair A = (|A| ,P (A)) where |A| is a countable set
called the web of A and P (A) is a subset of R|A|+ satisfying:

1. P (A)⊥⊥ = P (A),
2. ∀a ∈ |A|, ∃κ > 0, ∀v ∈ P (A), va ≤ κ,
3. ∀a ∈ |A|, ∃κ > 0, κea ∈ P (A).

As a side effect, Condition (1) forces P (A) to be a convex set.
Condition (2) requires the projection of P (A) in any direction to
be bounded, while (3) forces P (A) to cover every direction.6

Example 8. The set P (Int) of subprobability distributions over N
yields a PCS. In particular, P (Int)⊥⊥ = P (Int), its polar being
P (Int)⊥ = [0, 1]N.

4.2 The category PCoh
The objects of PCoh are the PCSs and the set PCoh(A,B) of
morphisms from A to B is the set of matrices φ ∈ RMf(|A|)×|B|

+

such that ∀v ∈ P (A), φ(v) ∈ P (B), where

∀b ∈ |B| , (φ(v))b
∆
=

∑
m∈Mf(|A|)

φm,b · vm, (7)

(see Notation 1 for the definition of vm). Following Section 2, a
morphism is presented as a matrix that gathered the coefficients of
the power series described by the Equation (7).

The identity on A is given by the matrix

IdAm,a
∆
=

{
1 if m = [a],

0 otherwise.

In fact, we have IdA(v) = v, for every v ∈ P (A).
Let φ ∈ PCoh(A,B) and ψ ∈ PCoh(B, C), their composition

must satisfy: ∀v ∈ P (A) , (ψ ◦φ)(v) = ψ(φ(v)). In matricial
terms, this comes out as: ∀c ∈ |C|,∑

m∈Mf(|A|)

(ψ ◦φ)m,c · vm =
∑

p∈Mf(|B|)

ψp,c ·
(
φ(v)

)p
=

∑
p∈Mf(|B|)

ψp,c ·
∏

b∈Supp(p)

(∑
q∈Mf(|A|)

φq,b · vq
)p(b)

.

5 P (A) is not anymore a subset of [0, 1]|A|, see discussion in Section 2.
6 These conditions are introduced in [4] for keeping finite all the scalars
involved, yet they are not explicitly stated in the definition of PCS in [14].

Now, to extract the coefficient of the monomial vm, we dis-
tribute product over sum. This amounts to choosing a partition
of m =

⊎
(q(b,i))(b,i)∈p matching the enumeration {(b, i) s.t. b ∈

Supp (p) , i ≤ p(b)} of p.
Therefore, the composition ψ ◦φ is defined7 as the matrix coef-

ficients, for m ∈Mf (|A|) and c ∈ |C|:

(ψ ◦φ)m,c
∆
=

∑
p∈Mf(|B|)

ψp,c
∑

(m(b,i))(b,i)∈p
s.t.

m=
⊎

(m(b,i))

∏
(b,i)∈p

φm(b,i),b. (8)

4.3 PCoh is Cartesian Closed
The cartesian product of any countable family (Ai)i∈I of PCSs is:∣∣∏

i∈I Ai
∣∣ ∆
=
⋃
i∈I

({i} × |Ai|),

P
(∏

i∈I Ai
) ∆

=

{
v ∈ (R+)|

∏
i∈I Ai| s.t. ∀i ∈ I,

πi(v) ∈ P (Ai)

}
,

where πi(v) is the vector in R|Ai|+ denoting the i-th component of
v, i.e.

(
πi(v)

)
a

∆
= v(i,a).

The j-th projection Prj ∈ PCoh(
∏
i∈I Ai,Aj) and the prod-

uct 〈φi〉i∈I ∈ PCoh(B,
∏
i∈I Ai) are given by:

Prjm,a
∆
=

{
1 if m = [(j, a)],
0 otherwise.

(〈φi〉i∈I)p,(j,a) = (φj)p,a

The terminal object 1 is given by the empty product (∅, {0}).
Notice that the set of points of a PCSA, i.e. the set PCoh(1,A), is
isomorphic to the convex set P (A).

Notation 9. We writeA1×A2 for the binary product: in the sequel,
we present any v ∈ P (A1 ×A2) as the pair (π1(v), π2(v)) ∈
P (A1)× P (A2) of its components.

Notice that the set Mf
(∣∣∏

i∈I Ai
∣∣) is isomorphic to the set-

theoretic cartesian product
∏
i∈I
(
Mf (|Ai|)

)
, via the map as-

sociating any m ∈ Mf
(∣∣∏

i∈I Ai
∣∣) with the I-indexed family

(mi)i∈I defined as mi(a)
∆
=m(i, a). This means that any mor-

phism φ ∈ PCoh(
∏
i∈I Ai,B) can be presented as a matrix in-

dexed by sequences in
(∏

i∈IMf (|Ai|)
)
× |B|.

The object of morphisms is defined as

|A ⇒ B| ∆
=Mf (|A|)× |B| , P (A ⇒ B)

∆
= PCoh(A,B).

PCoh is then turned into a cartesian closed category by the eval-
uation Ev ∈ PCoh((A ⇒ B) × A,B) and the curryfication
Cur(φ) ∈ PCoh(C,A ⇒ B), for every φ ∈ PCoh(C × A,B),
defined as:

Ev(m,p),a
∆
=

{
1 if m = [(p, v)],
0 otherwise,

Cur(φ)m,(p,b)
∆
=φ(m,p),b

Notice that the above equations use Notation 9, e.g. representing a
multiset in Mf (|(A ⇒ B)×A|) as a pair (m, p) of multisets in
Mf (|A ⇒ B|)×Mf (|A|).

Actually, the category PCoh is well-pointed in the sense that
the equality of morphisms is extensional, i.e. given two matrices
φ, ψ ∈ PCoh(A,B), if for every v ∈ P (A), φ(v) = ψ(v), then
φ = ψ. To sum up, we have:

7 The definition of Equation (8) is due to [17]. On a side note, remark that
in [4], the authors use another formulation in which identical summands
produced by different partitions are gathered. This gives rise to multinomial
coefficients that are hidden in the sums of the present formulation. However,
the two definitions give rise to the same matrix.

313

Proposition 10 ([4, §1.6]). PCoh is a well pointed cartesian closed
category.

4.4 Object of numerals and Cpo-Enrichement

The object of numerals of PCoh is the PCS Int ∆
=(N,P (Int))

equipped with the morphisms z ∈ PCoh(1, Int) ' P (Int),
pred, succ ∈ PCoh(Int, Int), and ifz ∈ PCoh(Int × Int ×
Int, Int) defined as

zn = δ0,n, predm,n = δm,[n+1], succm,n+1 = δm,[n],

ifz(m,p,q),n =

1 if (m, p, q) = ([0], [n], []),

or (m, p, q) = ([k + 1], [], [n]),

0 otherwise.

The natural order on R+ enriches PCoh with a cpo-structure,
defined componentwise on morphisms: i.e., given φ, ψ ∈ PCoh(A,B)

φ ≤ ψ iff ∀m ∈Mf (|A|) ,∀b ∈Mf (|B|) , φm,b ≤ ψm,b.

The matrix 0 is the minimum element and the lub of a directed net
(φd)d∈D is then given by(

sup
d∈D

(φd)
)
m,b

∆
= sup
d∈D

(
(φd)m,b

)
,

Remark 11. The componentwise order on matrices is not ex-
tensional, i.e. there are φ, ψ ∈ PCoh(A,B) such that ∀v ∈
P (A), φ(v) ≤ ψ(v), but φ 6≤ ψ. For example, take φ, ψ ∈
PCoh(Int, Int):

φm,n
∆
=

{
1 if m = [k], n = 0,
0 otherwise.

ψm,n
∆
=

{
1 if m = [], n = 0,
0 otherwise.

Although φ 6≤ ψ, for every subprobability distribution of natural
numbers v ∈ P (Int), we get φ(v) = (

∑
k vk, 0, 0, . . .) ≤

(1, 0, 0, . . .) = ψ(v). In fact, we will use this mismatch for
disproving the inequality full abstraction in Section 6.

4.5 PCoh is an Adequate Model of PPCF
The model of PPCF is obtained by extending the usual categorical
interpretation of PCF to rand.

With a type A, we associate a PCSA, by induction on the type:
Int 7→ Int and A⇒ B 7→ A ⇒ B.

Let Γ = x1 : A1, . . . , xn : An. The interpretation of a
judgment Γ `M : B is a morphism JMKΓ of PCoh(

∏n
i=1Ai,B),

defined in Figure 2 by structural induction on the unique derivation
of Γ `M : B.

The fix-point operator fix(M) is the lub of its approximants,
given by induction by

fix0φ
∆
=0, fixn+1φ

∆
= Ev ◦ 〈φ, fixnφ〉.

The operator rand is defined by using (a multiset variant of) the
matrix Rand of Equation (1):

JrandKm,k
∆
=

{
1
n

if m = [n], k < n,
0 otherwise.

Together with the categorical interpretation of a term, we de-
scribe its action on the vectors in the convex set associated with
its input type. Notice that, since the category is well pointed of the
category, this action univocally determines the interpretation of the
term. Notice also that the matrices interpreting the basic constructs
in Figure 2 have 0, 1 coefficients, except for JrandK which is inter-
preted as the random function that introduces rational numbers in
[0, 1]. Coefficients greater than 1 may be produced by composition
of morphisms (Equation 8).

Thanks to Notation 9, JMKΓ can be described as a vector in-
dexed by a tuple (~m, b) of ~m ∈ Mf (|Γ|) and a web element
b ∈ |B|. This convention will be used hereafter.

Example 12. If Coin is identified with (rand) 2, then the interpre-
tation of Once and Twice are the matrices given in Section 2.

Consider the term ΩA
∆
= fix(λxA.x). Notice that

q
λxA.x

y
is

different from zero only on the web elements of the form ([a], a), so
that fixn

q
λxA.x

y
(0) = 0 for any natural number n. We conclude

JΩAK = 0, as expected.
Consider now the term P

∆
= fix(λxInt.x⊕ 0). We have thatq

λxInt.x⊕ 0
y

(m,a)
= 1

2
JxKma + 1

2
J0Kma , i.e. it is equal to 1

2
when

m = [a], or when m = [] and a = 0, otherwise it is equal to 0.
This means that fixn

q
λxInt.x⊕ 0

y
(0) = 1

2
+ 1

4
+· · ·+ 1

2n
, for any

n > 0. We conclude that JP K ∆
= supn fixn

q
λxInt.x⊕ 0

y
(0) = 1.

Proposition 13 (Soundness [4]). The semantics is invariant under
reduction, i.e. for every Γ `M : B:

JMKΓ =
∑
N

PROBAM,N JNKΓ .

Proof (Sketch). The invariance under reduction rules of the stan-
dard PCF redexes follows by cartesian closedness and the cpo-
enrichement of PCoh. The soundness of the reduction of (rand)n
is straight from the definition of JRandK. The soundness of the con-
text rules depends on the fact that the interpretation of a context is
linear in the argument associated with the fired redex. For exam-
ple, the soundness of the context rule associated with application
depends on the equality: Ev ◦ 〈κφ+ µψ, ξ〉 = κ(Ev ◦ 〈φ, ξ〉) +
µ(Ev ◦ 〈ψ, ξ〉)

Theorem 14 (Adequacy [4]). Let M be a closed term of type Int.
Then, JMK is the sub-probability distribution on N such that

∀n ∈ N, JMKn = PROBA∞M,n .

Remark 15. Adequacy allows one to prove that specific prim-
itives are not definable in the language. A noteworthy example
is the parallel or function [27]. In our setting, this should be a
closed term por : Int⇒ Int ⇒ Int such that PROBA∞((por)0)0,0,
PROBA∞((por)1)Ω,1 and PROBA∞((por)Ω)1,1 are equal to 1. By ade-
quacy, JporK (e0)(e0)1 = JporK (e1)(0)0 = JporK (0)(e1)0 = 1.
By definition of a morphism in PCoh, JporK (e0)(e0) must be a
subprobability distribution, hence JporK (e0)(e0)0 = 0. That im-
plies JporK([],[]),0 = 0. On the other hand, JporK (e1)(e1)0 ≥
JporK (e1)(0)0 +JporK (0)(e1)0−JporK[],[],0 = 2, which contra-
dicts that JporK (e1)(e1) is a subprobability distribution. We con-
clude that por is not a term of PPCF.

However, let us mention that the Gustave function is a valid
morphism of PCoh (see [13]).

Full abstraction extends to higher-order types the perfect match-
ing syntax / semantics stated by adequacy on Int. One direction of
full abstraction is indeed a consequence of Theorem 14.

Corollary 16 (Abstraction). Given Γ ` M : A, and Γ ` N : A,
we have that JMK ≤ JNK implies M vΓ N . In particular,
JMK = JNK implies M ≡Γ N .

Proof. By induction on C[], one proves that JMK ≤ JNK implies
JC[M]K ≤ JC[N]K. Then the result follows from Theorem 14.

5. Full Abstraction
We prove equational full abstraction (Theorem 27), that is the
converse of the part of Corollary 16 dealing with equality. This
is a straightforward consequence of Lemma 26 stating that for any

314

Γ Ai
Pri

~v ~vi

JxiKΓ

Γ A⇒ B
Cur(JMKΓ,x:B)

~v Cur(u 7→ φ(~v, u))
q
λxB .M

yΓ, with φ = JMKΓ,x:B

Γ (A⇒ B) &A B
〈JMKΓ , JNKΓ〉 Ev

~v φ(~v)(ψ(~v))

J(M)NKΓ, with φ = JMKΓ, ψ = JNKΓ

Γ 1 Int
T z

~v (1, 0, 0, ...)

J0KΓ

Γ Int Int
JMKΓ

succ

~v (0, w0, w1, ...)

Js(M)KΓ, with w = JMKΓ (~v)

Γ Int Int
JMKΓ

pred

~v (w1, w2, ...)

Jp(M)KΓ, with w = JMKΓ (~v)

Γ 1 Int⇒ Int
T rand

~v JrandK

JrandKΓ

Γ Int×A×A Int
〈JMKΓ , JNKΓ , JN ′KΓ〉 ifz

~v w0u+
∑∞
n=1 wnu

′

Jif(M,N,P)KΓ, with w = JMKΓ (~v), u = JNKΓ (~v), u′ = JN ′KΓ (~v)

Γ A
supn fixn(JMKΓ)

~v supn fixn(w)

Jfix(M)KΓ, with w = JMKΓ (~v)

Figure 2: The standard semantics of PPCF terms together with its action on ~v ∈ P (Γ).

closed terms M and N having different interpretations in Pcoh,
there is a testing term P such that (P)M and (P)N reduce to 0
with different probabilities. Let us outline the path to this result.

With any web element a, we associate a testing term P(a) that
is described in Figure 5 and that reminds the contexts used in [3].
P(a) is not an ordinary term of PPCF since its construction uses a
random operator, weighted by a list ~X of formal parameters. How-
ever, a parameterized term becomes an ordinary PPCF term when
we substitute ~X by a list ~κ of rationals in [0, 1]. Following [6],
we introduce in Figure 3 an intersection type system that defines
semantics of parameterized terms. This interpretation is a formal
power series over ~X (Definition 21). Moreover, parameterized se-
mantics is compatible with Pcoh through substitution of parameters
(Lemma 20).

Now, assume thatM andN are interpreted by different matrices
and pick a web element a such that JMKa 6= JNKa. Then, the
semantics of the parameterized terms (P(a))M and (P(a))N are
distinct formal power series. Indeed, Lemma 24 implies that they
differ at least on one coefficient.

Finally, Lemma 25 ensures the existence of a list ~κ of rationals
in [0, 1] on which these power series disagree. So, the substitution
of ~X by ~κ in P(a) produces a testing context separatingM andN .

We first describe parameterized PPCF in Subsection 5.1. Then,
testing terms are presented in Subsection 5.2. We conclude in
Subsection 5.3 with the full abstraction theorem.

5.1 Parameterized PPCF
Let P be a denumerable set of formal parameters. X,Y, Z range
over parameters in P.

The grammar of parameterized PPCF is an extension of PPCF
(Figure 1(a)) by multiplication of terms by parameters:

PPCFP ::= · · · | X ·M, where X ∈ P.

The simple type of X · M under a context Γ is A whenever
Γ `M : A in PPCF (Figure 1(b)).

The substitution of parameters by scalars let us recover ordinary
terms from parameterized ones. More precisely, let M ∈ PPCFP

and n
m
∈ [0, 1] be a rational number. We define M

[
n
m
/X
]

as the

term obtained by replacing in M any subterm of shape X ·N with

choose(Nn,Ωm−n)
∆
= choose(N, . . . , N︸ ︷︷ ︸

n times

,Ω, . . . ,Ω︸ ︷︷ ︸
m−n times

) (9)

(see Figure 1(d) for choose definition). Substitution is then gener-
alized to lists ~X of parameters and ~κ of rationals as M

[
~κ/ ~X

]
.

Fact 17. If ~X is the list of all parameters in M and ~κ a list of
rational numbers in [0, 1], then M

[
~κ/ ~X

]
is a term of PPCF.

The semantics of PPCFP is a refinement of PPCF semantics
taking into account parameters. Yet, for the sake of the full ab-
straction proof, we give a different presentation and use a weighted
intersection type system. Roughly speaking, types are web ele-
ments and with each type derivation π, we associate a weight ω(π)
which is a positive monomial, i.e. a product of rationals in [0, 1]
and of finitely many parameters. Then, the interpretation JMK of
a PPCFP term M is a matrix indexed by web elements. For each
web element, there can be several type derivations and the corre-
sponding coefficient is the sum of their weights.

More precisely, Figure 3 describes the rules for constructing a
derivation π :: Γ• `α M : a of what we call a web judgment
Γ• `α M : a. Notice that Γ ` M : A is a valid simple type
judgment, a ∈ |A| and α is a monomial. Besides, a web context Γ•

is defined as a function mapping any typed variable xC occurring in
Γ to a finite multiset m ∈ Mf (|C|) of web elements and mapping
variables non-appearing in Γ to the empty multiset. For instance,
for any Γ = x1 : C1 . . . xn : Cn and ~m ∈ Mf (|Γ|), Γ~m denotes
the web context xCii 7→ ~mi for 1 ≤ i ≤ n. Disjoint unions Γ•]∆•

of web contexts are defined pointwise.

Fact 18. If Γ• `α M : a is derivable and Γ•(x) is a non-empty
multiset, then x is free in M .

Rules app and fix deserve some comments. Application of
PPCFP terms is interpreted following Equation (8) that defines
composition. Remark that indices of app mainly coincide with the
indices of the sums in (8), with one more difficulty since we have
to split contexts. Now, fix is derived from the rule app and from

315

var
xA : [a] `1 x : a

nat`1 n : n
k < n

rand
` 1
n
rand : ([n], k)

Γ•, xA : m `α M : a
abs

Γ• `α λxA.M : (m,a)

Γ•′ `α M : (m, b) ∀(a, i) ∈ m, Γ•(a,i) `β(a,i)
N : a

app(m,(Γ•
(a,i)

)(a,i)∈m) s.t.

m ∈Mf (|A|)
Γ•
′]

⊎
(a,i)∈m

Γ•(a,i) = Γ•
Γ• `α∏

(a,i)∈m β(a,i)
(M)N : b

Γ•′ `α M : (m, b) ∀(a, i) ∈ m, Γ•(a,i) `β(a,i)
fix(M) : a

fix(m,(Γ•
(a,i)

)(a,i)∈m) s.t.

m ∈Mf (|A|)
Γ•
′]

⊎
(a,i)∈m

Γ•(a,i) = Γ•
Γ• `α∏

(a,i)∈m β(a,i)
fix(M) : b

Γ• `α M : n+ 1
pred

Γ• `α p(M) : n

Γ• `α M : n
succ

Γ• `α s(M) : n+ 1

Γ• `β M : 0 ∆• `α N : a
if0

Γ•]∆• `βα if(M,N,P) : a

Γ• `β M : n+ 1 ∆• `α P : a
ifs

Γ•]∆• `βα if(M,N,P) : a

Γ• `α M : a par
Γ• `αX X ·M : a

Figure 3: Semantics of parameterized PPCF.

fix(M) 1→ (M) fix(M). To illustrate this point and the followings,
we detail Examples 22 and 23 at the end of this subsection.

Fact 19. If Γ ` M : A then
∑
π::Γ~m`M :a ω(π) is a power series

with finitely many variables in P and non negative coefficients.
Thus, for any list ~κ of non negative reals,

(∑
π::Γ~m`M :a ω(π)

)
(~κ)

is well defined.

The following fundamental lemma ensures the soundness of the
weighted type system that computes the semantics of PPCFP.

Lemma 20 (Soundness). Let M be a term of PPCFP such that
Γ ` M : B and ~X lists its parameters. For any ~p ∈ Mf (|Γ|),
b ∈ |B|, and any list ~κ of rational numbers in [0, 1],

r
M
[
~κ/ ~X

]zΓ

~p,b
=
(∑
π::Γ~p`M :b

ω(π)
)
(~κ) (10)

Proof. We prove Equation (10) by structural induction onM , using
rules of Figure 3 and the definition of the categorical interpretation
of a term in PPCF. We consider the term fix(M) greater than
(Mn) y for any natural number n > 0 and variable y. In fact, we
are using the induction on the ordinal ω2.

Most cases follow directly from induction hypothesis. We only
detail three cases: (i) multiplication with a parameter, (ii) applica-
tion, (iii) fix-point.

(i) AssumeM = Xi·N and κi = n
m

. Then (using Equation (9))

we get: M
[
~κ/ ~X

]
= choose

(
N
[
~κ/ ~X

]n
,Ωm−n

)
. Besides,

JΩK = 0 (Example 12), so
r
M
[
~κ/ ~X

]zΓ

~p,b
= n

m

r
N
[
~κ/ ~X

]zΓ

~p,b
.

Now, any derivation τ :: Γ~p ` M
[
~κ/ ~X

]
: b consists of a

sequence of h ≤ n rules ifs with on top, the rule if0 with a
derivation π :: Γ~p ` N

[
~κ/ ~X

]
: b as right premise. Indeed, the

subterm Ω has no web type (see Example 23). When π is fixed,
ω(τ) = ω(π)

m
and there are as many derivations τ as many choices

of h ∈ {1, . . . , n}. So, we compute∑
τ ::Γ~p`M :b

ω(τ)
[
~κ/ ~X

]
=

n

m

(∑
π::Γ~p`N :b

ω(π)
[
~κ/ ~X

])
,

which is equal to n
m

(r
N
[
~κ/ ~X

]zΓ

~p,b

)
by induction hypothesis.

We conclude by gathering the equalities of the two paragraphs.

(ii) Assume M = (N)P . Thanks to the categorical semantics,
J(N)P KΓ

~p,b =
(
Ev ◦ 〈JNKΓ , JP KΓ〉

)
~p,b

. Then by definition of

composition (Equation (8)) and left linearity of Ev, J(N)P KΓ
~p,b is∑

m∈Mf(|A|),
(~p(a,i))(a,i)∈m s.t.⊎

(a,i)∈m ~p(a,i)⊆~p

JNKΓ
~p\

⊎
~p(a,i),(m,b)

∏
(a,i)∈m

JP KΓ
~p(a,i),a

.

By induction hypothesis and distributing product over sum, we get∑
m∈Mf(|A|),

(~p(a,i))(a,i)∈m
s.t.

⊎
~p(a,i)⊆~p

∑
τ ::~q`N :(m,b)

where
~q=~p\

⊎
~p(a,i)

ω(τ)
∑

(π(a,i))(a,i)∈m
s.t. ∀(a,i)∈m,

π(a,i)::~p(a,i)`P :a

∏
(a,i)∈m

ω(π(a,i))

Although the indices of the sums might be frightening, they pre-
cisely describe all possible derivations of Γ~p ` (N)P : b. Namely,
the first sum defines the label of the terminal application rule, while
the other sums give the choices of the derivations of their premises.
The total weight is then the product of premise weights.

(iii) Assume M = fix(N). Any derivation π :: Γ~p ` fix(N) : b
ends with a cluster of fix rules (see Example 23). For n ∈ N∗, let
Πn be the set of derivations whose cluster height is at most n.

Now, remark that a derivation in Πn can be transformed into
a derivation τ :: Γ~p, yB : [] ` (Nn) y : b (where y is fresh)
by replacing fix rules with app rules (keeping labels) and each
occurrence of fix(N) with

(
Nh
)
y for the suitable h ≤ n. Besides,

this transformation preserves weights. Therefore:∑
π∈Πn

ω(π) =
∑

τ ::Γ~p,yB :[]`(Nn)y:b

ω(τ)

316

Since Jfix(N)KΓ
~p,b =

∨
n∈N J(Nn) yKΓ,y

(~p,[]),b, and by induction
hypothesis: J(Nn) yKΓ,y

(~p,[]),b =
∨
n∈N

∑
τ ::Γ~p,yB :[]`(Nn)y:b ω(τ),

Jfix(N)KΓ
~p,b =

∨
n∈N

∑
π∈Πn

ω(π) =
∑

π∈
⋃
n Πn

ω(π) =
∑

π::Γ~p`fix(N):b

ω(π)

According to this result, we generalize the semantics notation
to parameterized PPCF:

Definition 21. For any term M in PPCFP with n parameters,

JMKΓ•

a

∆
=

∑
π::Γ•`M :a

ω(π) (11)

It is a power series whose domain of convergence contains [0, 1]n.

The weighted type assignment system of Figure 3 has an interest
by its own. It turns computation of semantics of terms (and hence
its observational behavior) into a proof search problem.

The reader can convince himself that this approach is useful by
computing the semantics of the following examples by applying
directly rules of Figure 2.

Example 22. Let k and k′ be non negative integers. Let us consider
the possible derivations of the application (M)N with

M
∆
=λxInt.if(x,ΩInt, if(x,ΩInt, 42)), N

∆
= if(y, k, k′).

The derivable judgments on the term N are of the form yInt :
[n] `1 N : k, with k ∈ {k, k′}. In fact, once fixed n, the derivation
is unique and is given at the left-hand side of Figure 4. As for the
term M , the derivable judgments are of the form yInt : [] `1 M :
([h, h′], 42), with h, h′ > 0. However, in this case we have two
different derivations whenever h 6= h′: one derivation is given at
the right-hand side of Figure 4, while the other one is obtained by
swapping the order between the var rules on h and h′.

The weight of a derivation of (M)N is 1. However, the number
of derivation of a fix judgment yInt : [n, n′] `1 (M)N : 42
depends on n, n′, k, k′ following cases:

• if k = k′ and n = n′, then there is exactly one derivation;
• if k = k′ and n 6= n′, then there are two derivations, one ending

with the rule app([k,k],{(k,1)7→[n],(k,2)7→[n′]}) and the other one
with the rule app([k,k],{(k,1)7→[n′],(k,2)7→[n]});
• if k 6= k′ and n = n′, then there are two possible derivations,

depending on which is the derivation used for inferring the
judgment on M ; notice that the final rule typing (M)N must
be app([k,k′],{(k,1)7→[n],(k′,1)7→[n]});
• if k 6= k′ and n 6= n′, then there are four possible derivations,

depending on the last rule (i.e. app([k,k′],{(k,1)7→[n],(k′,1)7→[n′]})
or app([k,k′],{(k,1)7→[n′],(k′,1)7→[n]})) and on the derivation for
inferring M .

Actually, by Lemma 20, weights of possible derivations sums into
J(M)NKy , i.e.

J(M)NKym,h =

1 if h = 42, k = k′, m = [n, n],
2 if h = 42, k = k′, m = [n 6= n′],

or h = 42, k 6= k′, m = [n, n],
4 if h = 42, k 6= k′, m = [n 6= n′],
0 otherwise.

Example 23. Any derivation of a fix-point term fix(M) ends with
a cluster of fix rules, each rule has one premise typing M and
a number of premises typing fix(M) and along which the cluster
grows. Since the derivation must be finite, the cluster eventually
ends with fix rules of label ([], ()). They have exactly one premise

P(n) = λxInt.if(x = n, 0,ΩInt)

N (n) = n

P(a) = λzB⇒C .(P(c)) ((z) choose(Xi · N (bi))
n
i=1)

N (a) = λxB .if(∧ni=1 (P(bi))x,N (c),ΩC)

Figure 5: testing terms. In the higher-order case, i.e.A = B ⇒ C,
we suppose a = ([b1, . . . , bn], c), with bi ∈ |B| and c ∈ |C|. Sub-
testing terms are supposed to have disjoint parameters and theXi’s
occurring in the definition of P(a) are assumed to be fresh.

typing M with a web element of shape ([], a). As a consequence,
the term ΩA = fix(λxA.x) has no web type, as λxA.x cannot have
a web type of shape ([], a). We find again JΩAK = 0.

On the other hand, any derivation of fix(λxInt.x⊕ 0) will end
with a branch of n > 0 fix rules: n− 1 rules labelled by ([0], ()),
and the rule at the top of the branch labelled by ([], ()) and having
as premise the unique derivation of ` 1

2
λxInt.x⊕ 0 : ([], 0). The

whole derivation has conclusion ` 1
2n

fix(λxInt.x⊕ 0) : 0 and the
sum of these weights for n > 0 yields

q
fix(λxInt.x⊕ 0)

y
0

= 1.
We find again the results of Examples 3 and 12.

5.2 Testing terms
Figure 5 associates with every web element a ∈ |A| two closed
terms of PPCFP: one term P(a) of type A ⇒ Int and one term
N (a) of type A, defined by mutual induction on A.
P(a) and N (a) are named testing terms. The parameters oc-

curring in this terms are in a bijective correspondence with the ele-
ments of the multisets appearing in a (at all depths).

In the following, we focus on JP(a)K(m,0) and JN (a)Ka′ , for
any m ∈ Mf (|A|) and a′ ∈ A, which are formal series in the
parameters occurring in the terms (Fact 19). More precisely, we are
interested in the coefficient of the monomial having each parameter
of the term occurring with degree 1. This monomial is called the
skeleton of a and is denoted by sk(a).

Lemma 24. Let A be a type, a, a′ ∈ |A| and m ∈ Mf (|A|). In
the series JP(a)K(m,0) (resp. JN (a)Ka′), the monomial sk(a) has
a non zero coefficient if and only if m = [a] (resp. a′ = a).

Proof. By definition, the coefficient of the monomial sk(a) in
JP(a)K(m,0) can be recovered from the sum of the weights of the
derivations of shape P ::`κsk(a) P(a) : (m, 0), and similarly
for JN (a)Ka′ . Hence, the statement is equivalent to the following
property IH(A), which will be proved by induction on type A:

? For any a ∈ |A|, there is a derivation of `κsk(a) P(a) :
(m, 0), with κ 6= 0, if and only if m = [a]

? For any a ∈ |A|, there is a derivation of `κsk(a) N (a) : a′,
with κ 6= 0, if and only if a′ = a.

For the ground type Int, testing terms have no parameters, so
that the monomial sk(n) is the constant term of the series. The
derivations of P(n) andN (n) are unique and of shape:

m = [n]

x : m `1 x : n `1 0 : 0

x : m `1 if(x = n, 0,Ωι) : 0

`1 λx
ι.if(x = n, 0,Ωι) : (m, 0)

a′ = n

`1 n : a′

317

yInt : [n] `1 y : n yInt : [] `1 k : k

yInt : [n] `1 N : k

yInt : [], xInt : [h] `1 x : h

yInt : [], xInt : [h′] `1 x : h′ yInt : [], xInt : [] `1 42 : 42

yInt : [], xInt : [h′] `1 if(x,ΩInt, 42) : 42

yInt : [], xInt : [h, h′] `1 if(x,ΩInt, if(x,ΩInt, 42)) : 42

yInt : [] `1 M : ([h, h′], 42)

Figure 4: Weighted derivations discussed in the Example 22

IH(C): q = [c]
Â`γ P(c) : (q, 0)

m = [(p′, c)]
p′ = [b′1, . . . , b

′
k′]

Ä
z : m `1 z : (p′, c) ∀j ∈ {1, . . . , k′},

IH(B): bij = b′j
Ç

`βij N (bij) : b′j
Æ

`Xij βij Xij · N (bij) : b′j
Å

` 1
k
Xij βij

choose(Xi · N (bi))
k
i=1 : b′j

Ã
z : m `β (z) choose(Xi · N (bi))

k
i=1 : c

Á
z : m `ω(P) (P(c)) (z) choose(Xi · N (bi))

k
i=1 : 0

À
`ω(P) λz

B⇒C .(P(c)) (z) choose(Xi · N (bi))
k
i=1 : (m, 0)

Figure 6: Proof derivation contributing in the sk(a) monomial in P(a).

We conclude that the coefficient is non zero iff m = [n] and
a′ = n.

For the inductive case, let us assume that the result holds for
type B and C and that a = ([b1, . . . , bk], c) ∈ |B ⇒ C|. No-
tice that sk(a) = sk(c)

∏k
i=1 Xisk(bi). A derivation of `κsk(a)

P(a) : (m, 0), with κ 6= 0, must be as described in Figure 6, as
justified below:

À The only possible rule is the abstraction one.
Á,Â For using the application rule, we have to choose an interme-

diate multiset q ∈ Mf (|B ⇒ C|) and a context Γ•′ such that
Γ•′ `γ P(c) : (q, 0) is derivable. Since P(c) is a closed term,
by Fact 18, Γ•′ must be empty (i.e. mapping all variables to the
empty multiset). Moreover, by definition, the parameters occur-
ring in P(c) must be different from those occurring in each
Xi · N (bi). Therefore, γ = νsk(c), with ν 6= 0. By induction
hypothesis in Â, we infer that q = [c]. We then deduce that Á is
a binary applicative rule of label app([c],(z:m)). Hence, the right
premise is the sequent z : m `β (z) choose(Xi · N (bi))

k
i=1 :

c, for a β of the shape µ
∏k
i=1 Xi · sk(bi).

Ã,Ä The shape of the term forces us to use the application rule again:
let p′ = [b′1, . . . , b

′
k′] denote the intermediate multiset. Since

the left premise is the only one in which z appears, there is only
one possible way of separating the context: Γ•′ = z : m and
Γ•b′j

= ∅. Since the only possible rule for Ä is the var rule,

we get m = [(p′, c)]. We conclude that Ã is an applicative
rule with k′ + 1 premises, the k′ right premises being of shape
`βj choose(Xi · N (bi))

k
i=1 : b′j .

Å,Æ,Ç For any j ∈ {1 . . . k′}, there is a cluster of h < k rules ifs
and at the top of it a rule if0 with, as right premise, a weighted
typing of a summand Xij · N (bij). From that we must apply a
par rule (numbered Æ) and get as premise a sequent of shape
`βij N (bij) : b′j , for ij ∈ 1 . . . k and weight βij . Then, notice
that the weight of the conclusion of Æ is Xijβij and that of the
conclusion of Å is 1

k
Xijβij . On the one hand, the reasoning on

Á gives us β = µ
∏k
i=1 Xi · sk(bi), while the definition of the

weight of the conclusion of Ã gives us β =
∏k′

j=1
1
k
Xij · βij .

Since by definition no parameter Xi occurs in N (bij), hence
no Xi appears in βij , we have that the mapping j 7→ ij is a
bijective correspondence between {1, . . . , k′} and {1, . . . , k},
so k = k′. Finally, since the sets of parameters occurring in the
N (bij) are pairwise disjoint, we deduce that βij is proportional
to sk(bij). We can then apply the induction hypothesis on Ç

and deduce that bij = bi, and so p′ = [b1, . . . , bk].

Combining all these results, we eventually get thatm = [(p′, c)] =
[([b1, . . . , bk], c)] = [a]. We conclude that there is a derivation of
`κsk(a) P(a) : (m, 0) if and only if m = [a].

Now, let us consider a derivation of `κsk(a) N (a) : a′, which
must have the following form: ...

x : p′ `α if(∧ki=1 (P(bi))x,N (c),ΩC) : c′

`α λxB .if(∧ki=1 (P(bi))x,N (c),ΩC) : (p′, c′)

We prove by recursion on k − j the property RH(j):

? if x : p′ `α if(∧ki=j (P(bi))x,N (c),ΩC) : c′ is derivable,
then α is proportional to sk(c)

∏k
i=j sk(bi) if and only if

c = c′ and p′ = [bj , . . . , bk].

The base case (j = k) is the induction hypothesis IH(C).
Indeed, if x : p′ `α N (c) : c′ is derivable, then, by Fact 18, p′

is empty, so that the weight α is proportional to sk(c) if and only
if c = c′. The inductive case is proved accordingly to Figure 7:

À Since ΩC has no web type (Example 23), the only possible rule
is if0. The choice of how to partition the context m1] m2

will be deduced from the type derivation. Since by definition
the set of parameters in P(bj) and the set of parameters in
if(∧ki=j+1 (P(bi))x,N (c),ΩC) are disjoint, we have that β is
proportional to sk(bj) and γ is proportional to

∏k
i=j+1 sk(bi).

Á For the right premise we can then apply the hypothesis RH(j+1)
and deduce that c = c′ and m2 = [bj+1, . . . , bk].

Â,Ã For the left premise, the only possible rule is app. We have
then to choose the intermediate multiset m′. As in the previous
cases, one can argue that the left premise has empty context

318

IH(A): m1 = [bj]
Ã`β P(bj) : (m1, 0) x : m1 `1 x : m1

Â
x : m1 `β (P(bj))x : 0

RH(j + 1): c = c′, m2 = [bj+1, . . . , bk]
Á

x : m2 `γ if(∧ki=j+1 (P(bi))x,N (c),ΩC) : c′

À
x : m1]m2 `βγ if(∧ki=j (P(bi))x,N (c),ΩC) : c′

Figure 7: Proof derivation contributing in the sk(a) monomial inN (a).

since P(bj) is closed and then the induction hypothesis IH(C)
gives m′ = [bj]. This means that Â has only one premise at
the right-hand side, which is a conclusion of a var rule, so that
m′ = m1.

We conclude by combining all these results: we get that the context
m1]m2 = [bj , . . . , bk] and c = c′.

We have proved that RH(1) holds: c = c′ and p′ = [b1, . . . , bk],
hence a′ = a.

5.3 Main Result
The theory of multi-variables analytic functions can be subtler than
single variable ones (for instance zeros of functions are not isolated
in general). In the following Lemma 25, we underline that the
coefficients of a power series vanishing on a neighborhood of zero
have to be null. Indeed, coefficients are computed by successive
derivations as limits of difference quotients. We then apply this
result to power series with possibly negative coefficients.

Lemma 25. [16] Let f be a power series from Rn to R absolutely
converging on [0, 1]n. If f vanishes on a dense subset of [0, 1]n,
then the coefficients of the power series f are zero.

Lemma 26. Let M and N be two closed terms of PPCF with the
same type A. If JMK 6= JNK, then there is a PPCF term P of type
A⇒ Int such that PROBA∞(P)M,0 6= PROBA∞(P)N,0.

Proof. Let a ∈ |A| such that JMKa 6= JNKa. Consider the testing
term P(a) as defined in Figure 5.

Let f denote the series J(P(a))MK0, which, by Definition 21
is a power series from [0, 1]n to [0, 1], where n is the number of
parameters in P(a). Let cf(sk(a), f) denote the coefficient of the
monomial sk(a) in f . By definition (Equation (11)) this coefficient
is given by the sum of the weights of the possible derivations of
`α (P(a))M : 0, for α proportional to sk(a). The last rule of this
derivation must be an app rule of shape:

`γ P(a) : (m, 0) ∀(a′, i) ∈ m, `β(a′,i) M : a′

`γ∏
(a′,i)∈m β(a′,i)

(P(a))M : 0

Since M has no free parameter (it is a term of PPCF), each
β(a′,i) is a positive real number. Hence, α = γ

∏
(a′,i)∈m β(a′,i)

is proportional to sk(a) iff γ is proportional to sk(a). We can then
apply Lemma 24 and get m = [a]. Moreover, by Lemma 20, the
sum of the weights of the derivations of ` M : a is equal to the
scalar JMKa. To sum up, we conclude:

cf(sk(a), f) = cf(sk(a), JP(a)K([a],0)) JMKa
with cf(sk(a), JP(a)K([a],0)) 6= 0. By an analogous reasoning:

cf(sk(a), g) = cf(sk(a), JP(a)K([a],0)) JNKa
where g denotes the power series J(P(a))NK0. We can conclude
that f and g have a different coefficient for the monomial sk(a) as
soon as JMKa 6= JNKa.

Now, we apply Lemma 25 to the series f − g, which is not the
zero power series because of the coefficient of sk(a). Therefore,
as rational numbers are dense in [0, 1], there is a list ~κ of rational
numbers in [0, 1] such that f(~κ) 6= g(~κ). By Lemma 20, this is
equivalent to

r(
P(a)

[
~κ/ ~X

])
M

z

0
6=

r(
P(a)

[
~κ/ ~X

])
N

z

0
.

We conclude by setting P = P(a)
[
~κ/ ~X

]
. Actually, P is a well-

defined PPCF term by Fact 17. So, by adequacy (Theorem 14),
PROBA∞(P)M,0 = J(P)MK0 6= J(P)NK0 = PROBA∞(P)N,0 .

Theorem 27 (Full Abstraction). Given Γ ` M : A, and Γ ` N :
A, we have:

M ≡Γ N iff JMKΓ = JNKΓ .

Proof. By Corollary 16 and Lemma 26.

As a consequence, the observational equivalence does not de-
pend on the chosen probabilistic primitive (recall Remark 6):

Corollary 28. For any p ∈ {Coin, rand ,⊕κ,⊕iκi, (κn)n∈N},
let ≡p denote the observational equivalence induced by the exten-
sion of PCF with the probabilistic primitive p. The equivalence
≡p coincides with the equality of the interpretations in PCoh. In
particular, ≡p gives the same equivalence on PCF terms, for any
choice of p.

Proof (Sketch). We have that ≡Coin = ≡rand since the two primi-
tives Coin and rand are interdefinable by [5]. Similarly, by the
discussion of Remark 6, we have: ≡rand ⊇ ≡⊕κ ⊇ ≡⊕iκi
⊇ ≡(κn)n∈N . In [4], the adequacy property of PCoh is es-
tablished for the language containing the the (κn)n∈N primitive,
hence ≡(κn)n∈N contains the equality =Pcoh of the interpretations
in PCoh. Finally, by Theorem 27, we have =Pcoh ⊇ ≡rand and we
can conclude.

6. A counter-example to inequational FA
We prove that inequational full abstraction fails for PCoh. The
proof consists in: (i) showing that the morphisms of Remark 11,
that proves the non-extensionality of the PCoh order, are definable
in PPCF (Equation 12); (ii) achieving a context lemma (Proposi-
tion 31) allowing us to infer the observational inequality by just
observing the behavior of closed terms in applicative contexts.

If one would like to enrich the language in order to make
observable also the componentwise order of PCoh, one should
add a kind of differential operator to PPCF, in the spirit of [9].
However, such an extension is not trivial, since PCoh is known not
to be sound for the whole differential λ-calculus.

Let us define M1 and M2 as follows:

M1
∆
=λxInt.if(x, 0, 0), M2

∆
=λxInt.0. (12)

By using rules of Figure 3 and Lemma 20, one can check that the
semantics of the two terms is given by the morphisms of Exam-
ple 11, i.e. JM1K = φ and JM2K = ψ. Hence, the two matrices
JM1K and JM2K are incomparable in Pcoh.

319

In order to prove M1 v M2, we use a standard reasoning and
introduce a logical relation (Definition 29) allowing us to shrink the
set of contexts (Proposition 31). We conclude with Corollary 32.

Definition 29. By structural induction on a type A, we define
the binary relation CA over closed PPCF terms of type A, as
follows:NCIntN

′ iff ∀n ∈ N, JNKn ≤ JN ′Kn, andMCA⇒BM ′

iff ∀N CA N ′, (M)N CB (M ′)N ′.

Lemma 30. Let M be a term of type x1 : A1, . . . , xn : An `M :

A. If for all i, Ni CAi N
′
i , then M

[
~N/~x

]
CAM

[
~N ′/~x

]
.

Proposition 31. Let M and N be closed terms of type A. Then,
M CA N iff M vA N .

Corollary 32. The terms M1 and M2 of Equation (12) are logi-
cally related: M1 CInt⇒Int M2. Hence, M1 v M2.

7. Conclusion
We show that the observational equality over probabilistic pro-
grams is faithfully described by PCoh, a relatively abstract model
based on convex sets and extensional functions. The proof uses in-
novative tools which might be useful to study probabilistic pro-
graming from a semantical viewpoint. In a language with random
functions, two programs should be considered different not only
when they give different results, but also when they give the same
result but with different probabilities. Showing this difference can
be much harder than in a deterministic language. Indeed, it requires
a sharp control over coefficients expressing probabilities. PCoh de-
notes programs with power series, this allows us to use standard
tools of Calculus for handling probabilities.

Although we chose one probabilistic primitive (see Remark 6),
Corollary 28 shows that our result does not depend on this choice.
Moreover, we focused on PPCF, a call-by-name functional lan-
guage, but our result might be extended to other frameworks. In
fact, PCoh comes from a model of linear logic: it is the cok-
leisli category associated with the exponential comonad, that cor-
responds to the translation of the functional arrow A⇒ B into the
linear logic formula !A (B. Call-by-value can be obtained by
using the Eilenberg-Moore construction, i.e. translating A ⇒ B
into !(A (B). Control operators can be introduced considering
a polarized fragment of linear logic. Yet, extending this model to
concurrent systems or references is certainly more challenging.

A crucial tool in the proof of full abstraction is the use of the
type system of Figure 3, which is a kind of intersection type system.
In fact, a web element ([a1, . . . , an], b) can be seen as a type
(a1∧· · ·∧an)→ b, where the intersection is non-idempotent. This
system is a quantitative refinement of De Carvalho’s [6] and yields
the first logical presentation of a vectorial based semantics. Clearly,
both type inference and type checking are undecidable. However,
one can look for interesting restrictions of PPCF where the system
becomes decidable, in the spirit of [20].

Last, it should be noticed that, unlike most full abstraction mod-
els for PCF, our model has no simple PPCF-definability properties.
Our full abstraction proof builds applicative contexts using terms
which belong to a very small subset of the domains associated with
types. Their discriminating power relies on a strong regularity prop-
erty of power series (unlike smooth functions, a power series which
vanishes on an open set must be equal to 0, see for example to the
function defined by e−1/x2

for x > 0 and 0 for x ≤ 0). In contrast,
most full abstraction proofs build applicative contexts using terms
which belong to a dense subset of the corresponding domains.

References
[1] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for

PCF. Information and Computation, 163(2):409–470, Dec. 2000.

[2] G. Boudol, P.-L. Curien, and C. Lavatelli. A semantics for lambda
calculi with resources. Math. Struct. Comp. Sci., 9(4):437–482, 1999.

[3] A. Bucciarelli, A. Carraro, T. Ehrhard, G. Manzonetto, et al. Full
abstraction for resource calculus with tests. In CSL11 – Annual
Conference of the EACSL, volume 12, pages 97–111, 2011.

[4] V. Danos and T. Ehrhard. Probabilistic coherence spaces as a model
of higher-order probabilistic computation. Inf. Comput., 209(6):966–
991, 2011.

[5] V. Danos and R. Harmer. Probabilistic game semantics. ACM Trans-
actions on Computational Logic, 3(3):359–382, July 2002.

[6] D. de Carvalho. Execution Time of λ-Terms via Denotational Seman-
tics and Intersection Types. Preprint, 2009.

[7] T. Ehrhard. On Köthe sequence spaces and linear logic. Math. Struct.
Comput. Sci., 12:579–623, 2002.

[8] T. Ehrhard. Finiteness spaces. Math. Struct. Comput. Sci., 15(4):615–
646, 2005.

[9] T. Ehrhard and L. Regnier. The Differential Lambda-Calculus. Theor.
Comput. Sci., 309(1):1–41, 2003.

[10] J.-Y. Girard. The system F of variable types, fifteen years later. Theor.
Comput. Sci., 45:159–192, 1986.

[11] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
[12] J.-Y. Girard. Normal functors, power series and lambda-calculus. Ann.

Pure Appl. Logic, 37(2):129–177, 1988.
[13] J.-Y. Girard. Coherent banach spaces: a continuous denotational se-

mantics. Theor. Comput. Sci., 227:297, 1999.
[14] J.-Y. Girard. Between logic and quantic: a tract. In T. Ehrhard, J.-

Y. Girard, P. Ruet, and P. Scott, editors, Linear Logic in Computer
Science, volume 316 of London Math. Soc. Lect. Notes Ser. CUP, 2004.

[15] J. Goubault-Larrecq and D. Varacca. Continuous random variables. In
LICS, pages 97–106. IEEE Computer Society, 2011.

[16] É. Goursat. Cours d’analyse mathématique. Tome I. Gauthier-Villars,
1918.

[17] R. Hasegawa. Two applications of analytic functors. Theor. Comput.
Sci., 272(1-2):113–175, 2002.

[18] M. Hyland and L. Ong. On full abstraction for PCF. Information and
Computation, 163(2):285–408, Dec. 2000.

[19] C. Jones and G. Plotkin. A probabilistic powerdomains of evaluation.
In LICS. IEEE Computer Society, 1989.

[20] A. J. Kfoury and J. B. Wells. Principality and decidable type inference
for finite-rank intersection types. In POPL, pages 161–174, 1999.

[21] U. D. Lago and M. Zorzi. Probabilistic operational semantics for the
lambda calculus. RAIRO - Theor. Inf. and Applic., 46(3):413–450,
2012.

[22] J. Laird, G. Manzonetto, G. McCusker, and M. Pagani. Weighted
relational models of typed lambda-calculi. In LICS 2013. IEEE Press,
June 2013.

[23] R. Milner. Fully abstract models of typed lambda-calculi. Theor.
Comput. Sci., 4:1–22, 1977.

[24] R. Milner and C. Strachey. A Theory of Programming Language
Semantics. Chapman and Hall, London, 1976.

[25] E. Moggi. Computational lambda-calculus and monads. In LICS,
pages 14–23. IEEE Computer Society, 1989.

[26] A. D. Pierro, C. Hankin, and H. Wiklicky. Probabilistic lambda-
calculus and quantitative program analysis. J. Log. Comput., 15(2):
159–179, 2005.

[27] G. D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3):
452–487, 1976.

[28] G. D. Plotkin. LCF considered as a programming language. Theor.
Comput. Sci., 5(3):225–255, 1977.

[29] N. Saheb-Djahromi. Cpo’s of measures for nondeterminism. Theor.
Comput. Sci., 12:19–37, 1980.

[30] D. Scott. Continuous lattices. In Lawvere, editor, Toposes, Algebraic
Geometry and Logic, volume 274 of Lecture Notes in Math., pages
97–136. Springer, 1972.

320

	Introduction
	Denoting Probabilistic Programing
	Probabilistic PCF
	Probabilistic Coherence Spaces
	Probabilistic Coherence Spaces
	The category PCoh
	PCoh is Cartesian Closed
	Object of numerals and Cpo-Enrichement
	PCoh is an Adequate Model of PPCF

	Full Abstraction
	Parameterized PPCF
	Testing terms
	Main Result

	A counter-example to inequational FA
	Conclusion

