
The Essence of Reynolds

Stephen Brookes
Carnegie Mellon University

Peter W. O’Hearn
Facebook

Uday Reddy
University of Birmingham

Abstract
John Reynolds (1935-2013) was a pioneer of programming lan-
guages research. In this paper we pay tribute to the man, his ideas,
and his influence.

Categories and Subject Descriptors D.3 [Programming Lan-
guages]; F.3 [Logics and Meanings of Programs]
Keywords Polymorphic λ-calculus, Separation Logic, Parametric-
ity, Data Abstraction, Subtypes, Defunctionalization, Substructural
Logic and Typing, Possible World Semantics

1. Introduction
John Reynolds died on April 28, 2013. He will be remembered
for his fundamental and far-sighted research on programming
languages: semantics, specifications, language design, logics and
proof methodology.

John was born on June 1, 1935, and was raised in Glen Ellyn,
Illinois, a suburb of Chicago. He attended Purdue University as an
undergraduate, graduating in 1956. His Ph.D. thesis in Theoretical
Physics (Harvard University, 1961) was titled “Surface Properties
of Nuclear Matter”. In later years, with typical modesty and hu-
mility, John would describe this, one of his earliest experiences in
computer science, as a “big number-crunching program” designed
to produce “an uninteresting computation of an unimportant quan-
tity in a bad approximation”. At Harvard John met Mary A. Allen,
and they married in 1960. John is survived by Mary and their sons,
Edward (born 1963) and Matthew (born 1965).

After Harvard, with a burgeoning interest in computer science,
John worked as a physicist at Argonne National Laboratory. While
at Argonne, he developed a compiler for compilers, called CO-
GENT (1965), and he designed the language GEDANKEN (1969).
In 1970 he left Argonne for academia, moving to Syracuse Uni-
versity as a Professor of Computer and Information Science. Af-
ter a long and fruitful period at Syracuse he moved to Carnegie
Mellon University in 1986, where he stayed until retirement at the
end of 2012. Over the years he enjoyed sabbaticals and visiting
positions at many universities and institutions, including Stanford
University, INRIA (Rocquencourt and Sophia Antipolis), Impe-
rial College (University of London), Lucent Technologies, Queen
Mary (University of London), Edinburgh University, Aarhus Uni-
versity, and Microsoft Research (Cambridge, England). He forged

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2535838.2537851

long-lasting ties with many researchers and was highly valued as a
colleague. He was an invited speaker at conferences and symposia
spanning the world.

John was an active member of the Association for Computing
Machinery (ACM) for many years, including a long stint as editor
of the Communications of the ACM and the Journal of the ACM.
He became an ACM Fellow in 2001, and received the ACM SIG-
PLAN Programming Language Achievement Award in 2003. He
was a prominent member of IFIP Working Group 2.3. (Program-
ming Methodology), which he joined in 1969, and IFIP Working
Group 2.2 (Formal Language Definition), in which he participated
from 1977 to 1991. The British Computer Society awarded him the
Lovelace Medal in 2011. He was a proud recipient of an Honorary
D. Sc. degree conferred by Queen Mary, University of London, in
July 2007. Carnegie Mellon University honored him with the Dana
Scott Distinguished Research Award in April 2006. In November
2013 ACM SIGPLAN honoured John’s memory by renaming their
Outstanding Doctoral Dissertation Award to the John C. Reynolds
Doctoral Dissertation Award.

John laid the foundations for the work of many of us in the
programming languages research community. The influence of his
more widely known work – on parametric polymorphism and on
Separation Logic – is very plain to see, for example by browsing
the pages of recent POPL conferences. What is less well known,
and perhaps even more striking, is the sheer number of absolutely
first-rate contributions made by John across a broad range, all of
which display his characteristic deep insight. In remembering him,
and what he was like as a researcher and colleague, there is no
better place to start than with a simple recollection of these results.

2. Main works.
Early Works. While working at Argonne John became interested
in both programming languages and in automatic theorem proving.
He produced COGENT, an early compiler-compiler. He then pro-
duced a very significant, yet somewhat overlooked, paper:

• Automatic computation of data set definitions. IFIP Congress
(1) 1968: 456-461

In modern terminology, this paper computed an over-approximation
of the kinds of data structures reached in a program, where the data
was constructed using Lisp-style operations (car, cdr, etc).

There is a story associated with this paper. Years later, people
were pursuing automatic shape analysis based on Separation Logic,
as represented in tools such as SPACE INVADER, SLAYER, THOR
and INFER. Reynolds wanted to pursue proofs of full functional
correctness, beyond the reach of mere program analysis, leading
to many good-natured arguments and discussions. In arguing his
position, John seemed to be eerily skilled at pinpointing the limi-
tations of the techniques in these tools, even though he could see
and appreciate the excitement. It turns out that the people work-
ing on these tools were not aware that “Automatic Computation of
Data Set Definitions” could be regarded as an early shape analysis.

251

You can find yourself at a disadvantage when your opponent just
happens to be the source of the founding works underpinning the
position you are defending!

This story is typical. Again and again during his career Reynolds
was seen to be years ahead of the field, and it became a kind of joke
amongst friends that John had gotten there 10 years or more before
everyone else. Once, when hearing a talk on types, Reynolds com-
plimented the speaker on one of the ideas he explained, and the
speaker said that the idea was taken from a Reynolds paper. At this
point a round of jokes began on the theme of Reynolds being 10
years ahead of himself; John joined in, teasing himself gleefully.

The next important paper was in the direction of John’s other
early interest, theorem proving.

• Transformational systems and the algebraic structure of
atomic formulas. Machine Intelligence 5, pages 135151. 1969.

This paper developed an anti-unification algorithm, which solves
the dual problem to unification: it seeks the most specific common
generalization of two terms. This is a fundamental idea that forms
part of the basis of the field of inductive logic programming.

These two papers, which are probably not so well known in the
PL community, would already have given a very respectable career.
But it was now that John entered a kind of golden of period, an
extended run of high productivity and extreme quality.

Golden Period. 1970-1984. There are so many top-flight papers
here that we simply list them with brief comments, a kind of
annotated bibliography.

• GEDANKEN - a simple typeless language based on the
principle of completeness and the reference concept. CACM
13(5): 308-319 (1970)
This was an untyped call-by-value programming language
whose way of mixing imperative features and functions is sim-
ilar to the core of ML. This paper won the 1971 ACM Annual
Programming Systems and Languages Paper Award, 1971

• Definitional Interpreters for Higher-Order Programming
Languages, Proceedings, 25th National ACM Conference (Au-
gust 1972), pp. 717-740. Reprinted in Higher-Order and Sym-
bolic Computation, 11 (1998), pp. 363-397.
This paper showed how to transform a series of interpreters,
eventually ending up with a compiler. This work helped to pop-
ularize continuations as a tool in language implementation, and
introduced the concept of defunctionalization where functions
in the interpreter are replaced by their representations (such as
closures) in more concrete data structures.

• On the Relation between Direct and Continuation Seman-
tics. ICALP 1974 : 141-156
At the time the power of continuations was becoming apparent,
and John asked the simple question of whether continuation and
direct semantics can be connected by a precise theorem. The
question was non-trivial because, as the abstract states, ‘The
heart of the problem is the construction of a relation which must
be a fixed-point of a non-monotonic ‘relational functor”.’ The
paper introduced a general technique for constructing relations
between recursively-defined domains.

• Towards a theory of type structure. Symposium on Program-
ming 1974: 408-423
Introduced the Polymorphic λ-calculus, the first type theory of
polymorphic functions. Reynolds’s work on Polyλ as well as
his later work on parametricity influenced the designs of gener-
ics in Java and in .Net (Phil Wadler and Andrew Kennedy,
personal communication). The polymorphic lambda calculus is
beautiful as well as powerful. It consists of just five constructs,
yet it can define many of the data structures of central impor-

tance in programming. Like many timeless scientific discover-
ies, this calculus was invented twice, in this case by Reynolds
and by the logician Jean-Yves Girard (who called it System F).
In this paper John attempted, not for the last time, to make a
model of the polymorphic calculus. This was difficult because
of the impredicative (circular) nature of the calculus, which
made it seem to be skirting Russell’s paradox. He almost got
there, but stated: “we must admit a serious lacuna in our chain
of argument”. Later, John said (jokingly) that the lacuna admis-
sion was one of the most fortunate phrases he had ever included
in a paper.

• User-Defined Types and Procedural Data Structures as
Complementary Approaches to Data Abstraction, New Di-
rections in Algorithmic Languages 1975
This paper was ahead of its time in pinpointing the essential dif-
ference between object-oriented approaches to data abstraction
and abstract data types... a topic often revisited decades later.
Essentially, procedural approaches are easy to extend because
their data representations are decentralized, ADT’s provide for
binary and multi-nary operations because they are centralized,
and the strengths of one are the limitations of the other.

• Syntactic Control of Interference. POPL 1978: 39-46
A strikingly original paper on using what is now called an affine
λ-calculus to control aliasing and other forms of interference
between program parts. Possibly the first use of substructural
type theory to control resources, 9 years before the appearance
of linear logic.

• Programming with Transition Diagrams. Programming Method-
ology, A Collection of Papers by Members of IFIP WG 2.3, ed.
D. Gries, Springer-Verlag, 1978, pp. 153–165.
In this paper, Reynolds goes against the grain, demonstrating
how well-designed programs with goto statements can be easy
to prove correct.

• Reasoning about Arrays, CACM 22(5): 290–299 (1979)
An early application of separation principles for reasoning
about arrays using a notation called partition diagrams that
Reynolds invented for this purpose. The material is also cov-
ered in Chapter 2 of Craft of Programming. A technique that
Reynolds often used for motivating this material was to ask stu-
dents to write a binary search program and let them discover for
themselves how it is hard it is to get it right. With Reynolds’s
technique, it is almost impossible to get it wrong.

• Using category theory to design implicit conversions and
generic operators, Semantics-Directed Compiler Generation
1980: 211-258
A generalization of many-sorted algebras, category-sorted al-
gebras, is defined and used to account for generic operators ap-
plied to different types in the presence of implicit conversions
between types, ensuring that the order of applying the conver-
sions does not affect the final result.

• The Essence of Algol, Algorithmic Languages, ed. J. W. de
Bakker and J. C. van Vliet, North-Holland, 1981, pp. 345-372.
In this highly influential and oft cited paper, Reynolds con-
tended that Algol should be considered as an applied call-by-
name λ-calculus, and described Idealized Algol to illustrate a
number of principles of language design that he proposed as
constituting Algol’s essence. This paper made significant tech-
nical inventions that go far beyond Idealized Algol.

Explained how types encapsulate effects naturally in the
call-by-name design, and consequently full βη laws are
valid. This idea was echoed in the use of types to control
effects in Haskell, which used similar principles to insulate

252

functions from effects and went beyond Algol’s monoid of
commands to monads (a sort of parameterized commands).
Possible world (functor category) semantics of local state,
which is still influencing technical developments at the edge
of programming language theory, as in recent POPL papers
of Ahmed, Dreyer, Birkedal and others on reasoning about
local state with Kripke relations.
Typed λ-calculus with subtypes, which has been used sig-
nificantly in the foundations of object-oriented languages
and elsewhere.

Typically, John did not make a big deal about any of these spe-
cific contributions, or single out any one for special attention; it
was as if they were mere intellectual tools used in crafting his
larger points about language design. But what tools! One won-
ders in retrospect how he managed to cram so many significant
and original ideas into a single paper.

• The Craft of Programming. Prentice Hall International se-
ries in computer science, Prentice Hall 1981, ISBN 978-0-13-
188862-3, pp. I-XIII, 1-434
and
Idealized Algol and its Specification Logic, Tools and Notions
for Program Construction, ed. D. Neel, Cambridge University
Press (1982), pp. 121-161.
In this book and paper Reynolds’s ideas about program proving
are developing. There is a significant focus on abstraction and
refinement in “craft”, and on controlling interference as an aid
to modular reasoning.

• Types, Abstraction and Parametric Polymorphism. IFIP
Congress 1983: 513-523
Perhaps the only computer science paper in which the phrase
‘moral turpitude’ features, in a not-to-be-missed fable involving
Bessel and Descartes. Arguably the best article ever written on
the point and purpose of types, exploring the idea that types
enforce abstraction. Written as a counterpoint to the prevailing
attitude at the time, in which types (only) classify values and
rule out errors; while the conventional view emphasized one
laudable aspect, Reynolds was convinced that there was more
to types and makes a compelling case.
Technically, the paper is notable for formalizing the Abstraction
Theorem and for introducing Relational Parametricity.

• Polymorphism is not Set-Theoretic. Semantics of Data Types
1984: 145-156
Reynolds had been convinced that the polymorphic λ-calculus
should have a set-theoretic model, because “types are not lim-
ited to computation”, and he set out to find a set-theoretic
model. Instead, he ended up showing that there actually is no
non-trivial model of the polymorphic λ-calculus in which types
denote sets and where the function type denotes the collection
of all set-theoretic functions from one type to another. Interest-
ingly, this was done assuming classical set theory, and obser-
vations of Hyland, Moggi, Pitts and others later demonstrated
the possibility of set-theoretic models assuming intuitionistic
set theory. Nowadays there are many models of the polymor-
phic calculus.
Although he did not question the truth of his result, John was
never satisfied with the models of polymorphism that have been
obtained, and upon questioning he would become fidgety: it was
as if he felt there was something missing in his own insight (if
not that of others).

1985-2000. In this period John continued producing high-quality
work, but not at quite the same pace as in the golden period. Some
of the key works are the following.

• Syntactic Control of Interference, Part 2, ICALP’89
• On Functors Expressible in the Polymorphic Typed Lambda

Calculus. Inf. Comput. 105(1): 1-29, 1993 (with Plotkin)
• Using Functor Categories to Generate Intermediate Code.

POPL 1995: 25-36
• Theories of programming languages. Cambridge University

Press 1998, ISBN 978-0-521-59414-1, pp. I-XII, 1-500
• From Algol to polymorphic linear lambda-calculus. J. ACM

47(1): 167-223, 2000. (with O’Hearn)

The JACM’00 paper connected up his interests on Algol and on
polymorphism; more on that in the next section.

The POPL’95 paper is remarkable for connecting category the-
ory to compilation. John used category theory, and semantics in
general, as a tool for guiding design (of a language or a compiler),
and not just for after-the-fact study. This attitude is summed up
neatly in his remark:

Programming language semanticists should be the obste-
tricians of programming languages, not their coroners.

John C. Reynolds

Separation Logic. In 1999, at age 64, John produced one of his
most stunning papers.

• Intuitionistic Reasoning about Shared Mutable Data Struc-
ture, Millennial Perspectives in Computer Science: Proceed-
ings of the 1999 Oxford-Microsoft Symposium in Honour of
Sir Tony Hoare, Palgrave, 2000.

This paper came like a bolt from the blue. In it, John showed proofs
of heap-mutating programs that were almost as simple as those
for purely-functional programs. The key insight was how linked
data structures could be described using inductive definitions and
a connective which we now call the separating conjunction. One
could fold and unfold the definitions, and work in isolation on
components of the separating conjunction.

John’s paper built on an early work of Burstall (Some tech-
niques for proving programs which alter data structures. Machine
Intelligence, 1972). Reynolds extended it by using a form of sub-
structural logic, which turned out to be an instance of the Bunched
Logic of O’Hearn and Pym. After a POPL’01 paper by O’Hearn
and Ishtiaq detailing this connection, there was one further paper.

• Local Reasoning about Programs that Alter Data Struc-
tures. CSL 2001: 1-19 (with O’Hearn and Yang)

This paper described the canonical semantics and proof theory of
Separation Logic as it is now understood. It used a boolean rather
than an intuitionistic form of logic and it worked for a low-level
programming language closer to assembly, whereas the 1999 paper
was formulated for a language without memory deallocation or
address arithmetic.

Although Reynolds was a proponent of influential ideas, he
never regarded the positions he adopted as cast in stone. Indeed,
it might seem strange that John Reynolds, one of the leading pro-
ponents of safe programming languages, would advance a logic
for an unsafe language in his work. Here was the inventor of
GEDANKEN, Idealized Algol, and the Polymorphic λ-calculus,
working with a language with ‘dirty’ features. But, armed with pro-
gram logic, safety could be achieved. Reynolds proved a number of
low-level programs to test his ideas, such as for a form of doubly-
linked lists which save space by storing the xor of forward and back
pointers rather than each separately, and the inductive definition in
Separation Logic and the proof came out surprisingly easily.

Next, John wrote an influential survey article covering these
papers and others on Separation Logic up to 2002.

253

• Separation Logic: A Logic for Shared Mutable Data Struc-
tures. LICS 2002: 55-74

This paper was associated with an invited talk by John at the
LICS’02 conference. At the end of his talk John started to try to sum
up where we had got to and then stopped, looked at the audience,
and simply said: ‘a growing number of people are working on
this formalism and... well... we think we’re on to something’. John
Reynolds was humble and not prone to overstatement, and coming
from him this was a strong statement.

The next section will provide more context for this work on
Separation Logic.

Later Papers. After the founding of Separation Logic, John pro-
duced several further papers.

• Separation and information hiding. POPL 2004: 268-280
(with O’Hearn and Yang)

• Local reasoning about a copying garbage collector. POPL
2004: 220-231 (with Birkedal and Torp-Smith)

• Towards a Grainless Semantics for Shared Variable Con-
currency, FSTTCS 2004: Foundations of Software Technol-
ogy and Theoretical Computer Science, LNCS 3328, pp. 35-48,
2004

• Syntactic Control of interference for Separation Logic.
POPL 2012: 323-336 (with Reddy)

The paper on grainless semantics picks up an old bugbear of his,
influenced by Dijkstra’s idea that the understanding of concurrent
programs should not be dependent on a particular ‘grain to time’.
His final paper, with Reddy, fittingly brings together two of his
major contributions.

3. State and abstraction
The issues of state and abstraction were central themes in Reynolds’s
research, especially during the time of his “golden period.” State
is of the kind represented in imperative “Algol-like” languages,
with Algol W being his favorite. This preference was because the
effects are concentrated in the base types of “expressions” and
“commands,” and the function types remain “pure,” subject to full
βη equivalence. Thus, “Algol-like” meant an integration of “imper-
ative” and “functional” aspects, preserving both of their fundamen-
tal properties without any corruption. Abstraction is represented in
strong type systems, semantically based, as well as in how the store
is viewed in Algol-like languages. Reynolds saw intimate connec-
tions between these two views of abstraction and sought to build
bridges so that the ideas could be carried back and forth between
them. In addition to the abstraction inherent in the store, Reynolds
also wanted additional modularity in the management of store, go-
ing beyond what is representable in conventional language designs.
This desire led him to new proposals for type systems, logics and
semantic frameworks, as represented in syntactic control of inter-
ference, Separation Logic and grainless semantics.

Reynolds’s golden period coincides with his teaching of a grad-
uate course on programming at Syracuse. The material he devel-
oped for this course is published as The Craft of Programming
(1981). It contains a wealth of information about

• what imperative programming means,
• how to develop imperative programs rigorously,
• the type structure of imperative programs,
• reasoning principles (both practical, e.g., arrays, and abstract,

e.g., Specification Logic), and
• how to reason about data abstraction (or information hiding).

His analysis of this material gave rise to a series of insightful pa-
pers, the most prominent of which are The Essence of Algol (1981),
and Idealized Algol and its Specification Logic (1982). However,
the most novel material of the book, the chapter on Data represen-
tation structuring, is not directly represented in these papers. So,
one must go to the source to understand these ideas. However, we
believe that these insights influenced Reynolds’s papers on types:
A theory of type structure (1974) and Types, abstraction and para-
metric polymorphism (1983). These are the “bridges” we speak of.

Reynolds always thought of the store in imperative programs
as an “abstract type,” whose full information is hidden from the
program. Soon after defining the polymorphic lambda calculus in
1974, he worked on a project titled A polymorphic model of Algol.
We have a copy of his handwritten notes, dated “9–23–75,” which
contain these key equations

Bsta[S] = S
∼→ S

Bw1→w2 [S] = ∀S′. Bw1 [S × S′]→ Bw2 [S × S′]

We see here that Reynolds thinks of the (Idealized) Algol types for
statements (sta) and procedures (w1 → w2) as type constructors
Bsta and Bw1→w2 . These type constructors are parametrized by
a type variable S representing the set of states for a store. This
is in marked contrast to Strachey’s denotational semantics where
the store is fixed and global. Here the store is a type variable.
In essence, this means that the program can work with whatever
“type” of store we supply, as long as it has all the required data
variables. An intuitive interpretation of parametric polymorphism
immediately implies that the program will act the same way for all
these different “types” of stores.

This model of Algol could not be finished in 1975 because
it did not satisfy the β equivalence of Algol. In 1981, Reynolds
moved from type constructors to functors in the Essence of Al-
gol model, which depend on the postulation of morphisms between
store types. We suspect that he was never fully satisfied with func-
tors. In 2000, he returned to the original equations in the joint paper
with O’Hearn, From Algol to polymorphic linear lambda calculus,
where these equations appear again, adapted to the linear context.
So, what happened to the problem with β equivalence? It is still
open! Linearity rules out the obvious counterexamples and enough
evidence is gathered to show that the model is worthy even if it
does not satisfy β equivalence.

This is one direction of the “bridge.” We expect that the other
direction was implicit in Reynolds’s thinking. The chapter on
Data representation structuring contains programming examples
where graph algorithms are treated (including Tarjan’s algorithm
for strong components, posed as a challenge problem by Knuth
for program correctness) using data refinement. An initial algo-
rithm expressed in terms of sets of nodes and edges is gradually
refined to an algorithm involving concrete data objects within Al-
gol W. The relationship between the two sets of data structures is
captured using a technique that Reynolds invents for this purpose:
general invariants, which are true throughout a particular region
of the program (as opposed to Floyd-Hoare invariants that are true
at particular points in the program). Transporting these ideas back
across the bridge, we notice that the programs are operating on two
independent state spaces SA and SC , and the general invariants
are relations R ⊆ SA × SC that are maintained by the two slices
of the program without any observable difference. Here, we see
the principles of relational parametricity taking shape, not in an
abstract theoretical setting, but in concrete programming examples
involving data abstraction.

The essence of relational parametricity is that, if a program term
is parametrized by a type variable (or an opaque type), then the in-
formation about the type is hidden from the term, and the term be-
haves the same way for all possible instantiations of the type vari-

254

able. Hence, if we consider two instantiations A and A′ of the type
variable and allow ourselves the freedom to substitute particular el-
ements x ∈ A by elements x′ ∈ A′ then the results produced by the
program term should be the same, modulo the substitution we have
made. What kind of substitutions can one make? In early years of
modern mathematics, isomorphisms, i.e., structure-preserving one-
to-one correspondences, were allowed. After the advent of category
theory, homomorphisms, i.e., many-to-one correspondences, were
allowed. But, if A and A′ are two arbitrary instantiations, there
is no intuitive reason why the allowed correspondences should
be asymmetric. Hence, logical relations, i.e., structure-preserving
many-to-many correspondences, are the only intuitively appealing
answer to the question for programming applications. They form
the basis of relational parametricity. In a good theory of para-
metricity, both “isomorphism parametricity” and “homomorphism
parametricity” (natural transformations) become special cases of
relational parametricity.

While we mentioned “program terms” above for the sake of ex-
planation, these ideas are by no means limited to programs. Any
mathematical formula, any algorithmic process or any mechanism
in which output quantities are causally derived from input quanti-
ties, whether discrete or continuous, can have the notion of being
parametrized by types and, if so, we might expect it to be paramet-
ric. Bob Atkey makes a beginning with this line of enquiry in the
present POPL. He shows that the symmetries of physical system
as required for the “Noether’s theorem” in classical mechanics can
be viewed as instances of parametricity. This should pave the way
for broader applications of the relational parametricity principle in
mathematics and science.

With the formulation of relational parametricity, the “bridge” is
completed. The reasoning principles of Data representation struc-
turing are translated into the parametricity principles of the poly-
morphic lambda calculus, via the translation of the 1975 notes (or
the 2000 paper employing polymorphic linear lambda calculus).

Imperative programs are complicated for a variety of reasons
and those complications do not go away just by defining seman-
tics. Reynolds repeatedly sought to create intellectual tools to con-
trol and master the complications. A key idea was that the state
should not be treated as a monolithic entity; rather it should be par-
titioned into separate portions and distributed to different parts of
the program to operate on independently. In Syntactic Control of
Interference (1978), he proposed a system of rules that allows pro-
gram terms to be viewed as “owning” portions of the store, based
on their free identifiers, and only terms that own separate portions
can be combined using the procedure mechanism. This is roughly
the meaning of saying that a procedure and its argument “should
not interfere.” Specification logic (1982) involves subtler notions of
non-interference, which were investigated in a novel semantics of
Tennent (Semantical Analysis of Specification Logic, Inform. Com-
put. 1985) and in O’Hearn’s 1991 Ph.D. thesis. In Reasoning about
Arrays (1979), Reynolds applied the separation principle to arrays,
inventing a powerful notation called “partition diagrams” to docu-
ment such separation.

All of this was perhaps only setting the stage for the powerful
Separation Logic for dynamic data structures to come in 1999-
2001 which came as a surprising tour de force even to those of
us that had thought about the problem and knew all the technical
tools that Reynolds, O’Hearn and others deployed in solving it.
Separation Logic represents a giant intellectual leap in recognizing
that ownership (what can be accessed) and separation (divisions of
the state) are not static, spanning all states, but can vary from state
to state.

In his 2000 paper Intuitionistic Reasoning about Shared Muta-
ble Data Structure, Reynolds introduced the separating conjunc-
tion, which allows the pre-conditions of operations to break the

state into components. Reynolds demonstrated that this allowed for
simple proofs of heap-mutating programs and, more deeply enabled
a new spatial dimension to modular reasoning which complements
that of abstraction. In a sense, the pre-conditions not only specify
what is true in a state but also describe the structure of the store
(mainly the heap). This idea has far-reaching consequences, and it
is extremely fortunate that Reynolds made this step forward at the
time he did, because he opened the flood gates for new ideas.

The foremost of the new ideas was the resolution of the frame
problem by O’Hearn. In Local reasoning about programs that al-
ter data structures (2001, by Reynolds jointly with O’Hearn and
Yang), pre-conditions specify not merely what portion of the store
can be used from a program point, but only that portion of the store
that will be so used. This has the remarkable consequence that spec-
ifications need to talk about only the portion of the store actually
manipulated by program fragments, referred to as their “footprint”.
A general rule called the frame rule allows such local specifications
to be extended to larger contexts as needed; and, using the separat-
ing conjunction, this passage from smaller to larger contexts can be
described extremely directly and compactly.

Separation Logic, as represented in the ‘Local Reasoning’ paper
and finally in Reynolds’s LICS’02 paper, can be seen as the culmi-
nation of his theme of making the structure of the store explicit in
programming language theories (be they semantics or logics). In
the end, Separation Logic derives much of its power from the in-
terplay between dynamic separation and framing. And, the passage
from local specifications to larger contexts by framing can be seen
as a logical analogue of Reynolds’s idea of expanding a store shape
in his work on possible world semantics, going back as far as the
1975 notes mentioned above, but with the separating conjunction
providing a more flexible form of extension.

Today, Separation Logic is a thriving research direction with
a tremendous investment in building automated tools and solving
a variety of reasoning problems that have been perceived as too
difficult or impossible for a long time. It represents a major force
for taming the looming problem of concurrent software to be run
on multi-core processors.

4. Conclusion
John Reynolds was one of the greatest minds programming re-
search has seen. What was his secret? What was the essence of
Reynolds?

Certainly, he had great talent, and he also had great determina-
tion. But his way of working and interacting with others, conveying
what was important to him, was special and inspiring to those who
knew him. John Reynolds was as pure a scientist as you would ever
meet, and this is what made him tick. It was not academic politics,
or funding, or fame, it was just the ideas.

It was not uncommon for John to talk to someone about their
own ideas for hours at a time. Not only 20 minutes, or one hour,
but three, four or five hours. This was especially true for students
and junior faculty, but also held for more senior people as well. He
would set everything else aside, his own time included, in his desire
to get to the heart of the matter. These were intense sessions of deep
concentration and back-and-forth discussion, and while John would
argue vigorously and ask probing questions he always managed to
be patient and pleasant with whoever he was talking to. It was
as if programming and programming languages held wonderful
treasures waiting to be uncovered, and he wanted to see them. John
Reynolds just wanted to understand.

And he came to understand a lot. In the course of his career he
discovered numerous deep ideas of lasting value – anti-unification,
defunctionalization, theory of subtypes, possible world semantics
of state, polymorphic λ-calculus, relational parametricity, Separa-
tion Logic, and others – and we are much the richer for it.

255

