
Lazy Stateless Incremental Evaluation
Machinery for Attribute Grammars

Jeroen Bransen Atze Dijkstra S. Doaitse Swierstra
Utrecht University, The Netherlands
{J.Bransen,atze,doaitse}@uu.nl

Abstract
Many computer programs work with data that changes over time.
Computations done over such data usually are repeated completely
after a change in the data. For complex computations such repeti-
tive recomputation can become too inefficient. When these recom-
putations take place on data which has only changed slightly, it
often is possible to reformulate the computation to an incremen-
tal version which reuses the result of the computation on previous
data. Such a situation typically occurs in compilers and editors for
structured data (like a program) where program analyses and trans-
formations (for example error checking) are done while editing.

Although rewriting to incremental versions thus offers a so-
lution to this problem, a manual rewrite of an already complex
computation to its incremental counterpart is tedious, error prone,
and inhibits further development of the original computation.
We therefore intend to generate such incremental counterparts
(semi)automatically by focusing on computations expressed using
Attribute Grammars (AGs).

In this paper we do groundwork for this goal and develop ma-
chinery for incremental attribute grammar evaluation based on
change propagation and pure functions. We use pretty printing with
free variable annotation to explain our techniques. Furthermore, our
techniques also expose rules of conduct for a programmer desiring
incrementality: the automatic translation of code to an incremental
version does not always directly result in efficiency improvements
because code often is written in a style unsuitable for automatic
incrementalization. We show some common cases in which (small)
code changes facilitating incrementality are required. We evaluate
the effectiveness of the overall approach using a simple bench-
mark for the example, and a more extensive benchmark based on
constraint-based type inference implemented with AGs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Incremental compilers

General Terms Algorithms, Languages, Theory

Keywords incremental evaluation, attribute grammars, change
propagation, program transformation, type inference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543735

1. Introduction
Computer programs that work with data slowly changing over time,
like compilers in a development environment, can be reformu-
lated into incremental versions that (efficiently) respond to these
changes, often resulting in programs that run asymptotically faster
compared to a full recomputation. However, the construction of
such incremental programs can be a tedious job, so a lot of research
has been done on the (semi)automatic construction of incremental
computations (Ramalingam and Reps 1993).

One of the existing approaches to this problem is based on
self-adjusting computation (Acar et al. 2006), where stable data
is distinguished from changeable data and language primitives are
added to work with changeable data. Because the usage of such
primitives requires extensive changes to the code, techniques have
been developed to automatically infer these changes based on the
types (Chen et al. 2011).

A drawback of self-adjusting computations is that data depen-
dency information is build up dynamically, which usually leads to
runtime overhead. We therefore propose a solution based on at-
tribute grammars (Knuth 1968), where dependency information is
statically known. A static approach does not only avoid the run-
time overhead of dependency tracking, but also allows for static
analyses based on the dependency information that could improve
incremental behaviour.

1.1 Attribute grammars
Attribute Grammars (AGs) are known to be suitable for the imple-
mentation of the semantics of programming languages and have
been extensively studied. AGs consist of a context-free grammar
specifying the Abstract Syntax Tree (AST) together with a set of
attribute definitions describing how the nodes in the AST are to
be decorated with attributes describing properties of that node. Se-
mantic rules describe how attribute values can be computed out of
other attributes.

AGs are isomorphic to the class of functional programs known
as catamorphisms. AGs are of particular interest since they have
advantages over functional programs, for example by providing a
declarative way of programming in which parts of the program flow
can be left implicit. Because AGs are a restricted form of functional
programs more optimizations can be applied, for example the one
that is described in this paper. Furthermore, because of their com-
positional nature AGs lend themselves well for implementing pro-
gram analyses and transformations in an attractive aspect oriented
way.

Efficient evaluators can automatically be computed from AG
definitions for ordered AGs (Kastens 1980). In Ordered Attribute
Grammars (OAGs) the dependencies between attributes are used
to statically find an evaluation order such that for all possible ASTs
the attribute values of the dependencies of an attribute are computed

145

before the attribute itself is computed. Another approach to the
construction of efficient evaluators is the algorithm from (Kennedy
and Warren 1976) which works better in certain cases because there
are less restrictions on the AG (Bransen et al. 2012). However, we
use OAGs in this paper because the linear evaluation order is useful
for the incremental evaluation machinery.

A well-known application in which AGs are used to generate
syntax-directed editors is the Synthesizer Generator (Reps and
Teitelbaum 1984). In such interactive programming environments
it is not only necessary to evaluate attributes of an AG once, but
also to efficiently handle (usually small) changes in the AST. This
can be achieved using incremental evaluation of AGs (Demers
et al. 1981). Note that we use AG evaluation as a shortcut for the
evaluation of the attributes of an AG.

The main motivation for our work is the Utrecht Haskell Com-
piler (UHC) (Dijkstra et al. 2009) which is completely built us-
ing AGs. It is our intention to use incremental AG evaluation tech-
niques such as those described in this paper to create an incremen-
tal version of the UHC that can efficiently respond to such small
changes in the input and can efficiently recompile.

Incremental AG evaluation can be done in various ways, all
using some form of caching. One approach, which is also used
in the Synthesizer Generator, is to store the attribute values in the
AST and update them using a tree-walk evaluator after a change
in the AST (Demers et al. 1981; Yeh and Kastens 1988). Another
approach is taken by Vogt et al. (1991) where the attribute values
are not stored in the AST itself, but are computed in visit functions
for which function caching is used to store previously computed
results. This approach is improved upon in (Saraiva et al. 2000).

All such approaches maintain global state. In the case of the
approach taken in the Synthesizer Generator this state is the AST
itself where the attribute values are stored in the AST. In essence,
the AST itself can be seen as a cache where for each possible
subtree in the AST for each attribute exactly one value is stored. In
the function caching approaches the state is the memoization table,
where again for each subtree a value is stored. However, in the latter
case the organisation of the cache could be slightly different, for
example by not only storing the result of the previous computation,
but also keep the memoized value of earlier computations. The
advantage is that the chance that a desired value is already in the
cache is increased, but the drawback is that purging strategies must
be used to avoid infinite growth of the cache.

1.2 Overview
In this paper we present a novel approach for incremental AG
evaluation based on a purely functional implementation of AGs.
The behaviour of our code is equivalent to that of the stateful
solutions with a cache size of one value per attribute per node,
but uses no global state. Furthermore, since our solution uses only
pure functions we can rely on lazy evaluation to make sure that we
only compute values (or retrieve them from some sort of cache)
when this is necessary for computing the final result. For our
implementation we use Haskell (Peyton Jones 2003).

Our approach is based on change propagation, which means
that we assume that it is known in what way the AST changes. In
the context of an interactive programming environment this is al-
ways the case, since the user interactions lead to (explicit) changes
to the AST. Another example of such interactive programming en-
vironment is Proxima (Schrage 2004) which is based on AGs. In
other applications however, for example an incremental compiler,
it could be the case that a completely new AST is given of which ac-
tually a large part corresponds to the original AST. The approaches
based on function caching retain their incremental behaviour in
such case, but for approaches like ours an explicit representation

of the changes to the AST is needed. To find such a representation
we use the diff algorithm from (Bransen and Magalhães 2013).

All code that we present in this paper is hand-written and in
some places simplified for presentation. In actual applications this
code is however automatically generated from the corresponding
AG definition, such that the programmer does not need to think
about the underlying implementation that is described in this pa-
per. We have implemented this in the Utrecht University Attribute
Grammar Compiler (Swierstra et al. 1998) and the benchmark re-
sults are generated using that implementation.

The main contribution of this paper is to show how incremental
AG evaluation can be achieved using a purely functional imple-
mentation of AGs. The other contributions that we make are the
following.

• We describe basic AG machinery which can be seen as an AG
way of functional programming.

• We describe some common patterns that can have a negative
influence on the incremental behaviour of code and show solu-
tions to these problems.

• We show some benchmarks results for a larger case using our
technique which is incremental type inference based on con-
straint solving.

This paper is organised as follows. In Section 2 we start by
briefly introducing the example that is used throughout the paper.
Then in Section 3 the existing AG machinery is introduced and
the necessary background information on attribute grammars is
given. The main contribution of the paper is in Section 4. We
describe some extra insights that can facilitate the incremental
behaviour in Section 5 and evaluate the different stages of the given
approach using both the example and a type inference algorithm as
a benchmark in Section 6. Finally, we discuss some shortcomings
and future work in Section 7, and in Section 8 we wrap up with
some concluding remarks.

2. Example
To illustrate the techniques described in this paper we develop a
pretty printer for the untyped lambda calculus in which free vari-
ables are annotated. This example is both simple enough to be un-
derstood without much explanation, yet complex enough to demon-
strate the need for incrementality and usefulness of our techniques.

We define the untyped lambda calculus in the standard way.

e := x | e e | λx → e

The pretty printer should place parentheses around every applica-
tion and lambda abstraction. Furthermore, each occurrence of a free
variable should be annotated with a * character. As an example, a
term λx → λy → x y z is pretty printed as follows.

(\x -> (\y -> ((x y) *z)))

The \ is used instead of λ as is done in Haskell.
Although this example is very simple it contains the necessary

ingredients to illustrate our techniques. The pretty printing is com-
positional: the pretty printing of a node does not depend on the
result of its siblings. However, the pretty printing does depend on
the context (the bound variables) so after a change to the expression
a part of the pretty printing might need to be recomputed.

3. Attribute Grammar machinery
In this section we introduce attribute grammars and the existing
machinery along with an implementation of the example.

146

3.1 Attribute grammars
The basis of an AG is a context-free grammar specifying the AST.
In a Haskell setting the AST is represented by an algebraic data
type with a constructor for each production of the context-free
grammar. For each nonterminal in the right-hand side of a produc-
tion there is a constructor (or child in terms of AGs) of the corre-
sponding type in the algebraic data type.

The AST of our lambda expressions is represented in UUAGC
syntax as follows.

data Lam
| Var x :: {String }
| Abs x :: {String }

e :: Lam
| App l :: Lam

r :: Lam

This data definition is similar to the record syntax of Haskell.
Furthermore, the primitive types of the underlying implementation
language (String in this case, which is a Haskell type as Haskell is
used as the back end language) are wrapped in curly braces.

In our setting the AST is constructed from the concrete syn-
tax by means of parsing using parser combinators (Swierstra and
Duponcheel 1996). The parsing of the concrete syntax into an AST
is not important for the techniques developed in this paper and we
therefore assume to have the AST available as input in the rest of
this paper.

Attributes The AST is decorated with attributes which can be
either inherited, synthesized or chained. An inherited attribute is
a value passed from the root to the leaves in the AST. At every
production for each inherited attribute of each child an expression
must be defined, yielding a value for the attribute at runtime. This
is called a semantic rule. Conversely, a synthesized attribute is
composed from the leaves of the AST towards its root. For each
production for each synthesized attribute of that production an
expression must be defined. A chained (or threaded) attribute is a
combination of an inherited and synthesized attribute.

In order to pretty print the variables contextual information
about all bound variables is needed. We therefore pass a set of all
bound variables down, which is an inherited attribute. This attribute
is declared as follows using the keywords attr and inh.

attr Lam
inh boundvars :: {Set String }

The result of the pretty printing is a synthesized attribute of type
String .

attr Lam
syn pp :: {String }

Semantic rules Semantic rules specify for each production how
the attribute values are computed out of other attribute values.
AG systems usually employ AG specific notation for specifying
the AST, attributes and semantic rules. Additionally, AG systems,
like the Utrecht University Attribute Grammar Compiler (UUAGC)
(Swierstra et al. 1998), can support features like allowing the user
to split up code fragments for aspect oriented programming and AG
compile-time combination of those aspects into a single evaluator.

An attribute value can be computed when all attribute values it
depends on are already computed. We assume in this paper that we
have an evaluation order for the attributes such that for any possible
AST the attribute values can be computed in that order. In the OAG
setting such an evaluation order is inferred by the AG system at
compile time and is guaranteed to exist.

For the implementation of the example, the semantic rules for
boundvars are defined with the keyword sem, followed by an ex-

pression for each Lam child of each production (constructor). Such
expression indicates how the value for the boundvars attribute
should be computed out of other attribute values. The curly braces
in this code fragment are used as a short notation for a set.

sem Lam
| Abs e.boundvars = {@x} ∪@lhs.boundvars
| App l .boundvars = @lhs.boundvars

r .boundvars = @lhs.boundvars

The @ notation is used to refer to attribute values. In this case
@x is a leaf in the AST representing the variable name, and
@lhs.boundvars refers to the inherited attribute boundvars of
the current node. In the UUAGC setting the last two rules (called
copy-rules) are automatically inferred when their definition is not
given.

Finally the expressions for the pretty printing are defined as
follows, where boundvars is used to decide on the pretty printing
of a variable.

sem Lam
| Var lhs.pp = if @x ∈ @lhs.boundvars

then @x
else "*"++@x

| Abs lhs.pp = "(\\"++@x ++ " -> "
++@e.pp ++ ")"

| App lhs.pp = "("++@l .pp ++ " "
++@r .pp ++ ")"

3.2 Evaluation machinery
We now show the implementation of the example in Haskell. The
data type is a straightforward translation:

data Lam = Var String
| Abs String Lam
| App Lam Lam

We use an inherited attribute of type Set String and a synthe-
sized attribute of type String , so the evaluator resulting from each
Lam alternative therefore has the following type.

type TLam = Set String → String

This follows the general pattern: the semantics of an AG node
(including the root node) is a function from inherited to synthesized
attributes.

For each production we define a function that specifies the
semantics of that production, given the semantics of its children.
The semantic function for variables simply is a direct translation
from the semantic rules. For a more concise presentation we use
the variable bv as name for the boundvars attribute.

semLamVar :: String → TLam
semLamVar x bv = if x ∈ bv

then x
else "*"++ x

For lambda abstraction the evaluator for the child is passed as an
argument. We first invoke the child evaluator with the new value
for boundvars and use the resulting String to construct the result
for the abstraction.

semLamAbs :: String → TLam → TLam
semLamAbs x e bv = "(\\"++ x ++ " -> "++ ep ++ ")"

where ep = e ({x} ∪ bv)

Finally for the application case the evaluators for both children are
invoked with the set of bound variables passed unchanged, after
which the result is constructed.

147

semLamApp :: TLam → TLam → TLam
semLamApp l r bv = "("++ lp ++ " "++ rp ++ ")"

where lp = l bv
rp = r bv

Using these semantic functions for each constructor, a function that
takes an AST and the inherited attributes and returns the synthe-
sized attributes is defined as follows.

semLam :: Lam → TLam
semLam (Var x) = semLamVar x
semLam (Abs x e) = semLamAbs x (semLam e)
semLam (App l r) = semLamApp (semLam l)

(semLam r)

When we run this code on some example AST this gives the
expected result.

*Main> semLam (Abs "x" $ Abs "y" $
Var "f" ‘App‘ Var "x") Set.empty

"(\\x -> (\\y -> (*f x)))"

Note that we pass an empty set as initial value for the set of bound
variables.

3.3 Multiple visits
In many cases there are inherited attributes of a nonterminal that
(indirectly) depend on one or more synthesized attributes of that
same nonterminal. Passing all inherited attributes at once in order
to compute the synthesized attributes is not possible in that case.
As a solution for this multiple passes over the AST are used,
implemented by multiple visits. Each visit is a pass over the AST
that takes some (possibly zero) inherited attributes and returns
some (non-empty list of) synthesized attributes. We assume we
know how to do this, as the specific scheduling is usually provided
in an AG front end by OAGs scheduling algorithms.

In the case of multiple visits, the visit functions do not only
return the synthesized attributes for that visit, but also a function
for a subsequent visit. Values can be shared between visits by
(partially) applying the function for the subsequent visit in the
semantic functions.

Example Let us extend the example in the following way. Instead
of inserting all bound variables in the set, we now add only the
variables to the set that are free in the body of that abstraction. For
now this change might seem arbitrary, but in Section 5 we show that
such a change to the code can improve the efficiency of incremental
evaluation.

The gathering of free variables is defined as follows.

attr Lam
syn freevars :: {Set String }

sem Lam
| Var lhs.freevars = {@x}
| Abs lhs.freevars = @e.freevars \ {@x}
| App lhs.freevars = @l .freevars ∪@r .freevars

The rules for propagating the bound variables are changed as fol-
lows.

sem Lam
| Abs e.boundvars = if @x ∈ @e.freevars

then {@x} ∪@lhs.boundvars
else @lhs.boundvars

| App l .boundvars = @lhs.boundvars ∩@l .freevars
r .boundvars = @lhs.boundvars ∩@r .freevars

With this change the inherited attribute boundvars has become
dependent on the synthesized attribute freevars , so we need two

visits: in the first visit the freevars attribute is computed, and the
visit we had before can then be done as the second visit.

Implementation The AG automatically infers the two visits and
the types of the evaluator in Haskell are the following. The first
visit returns the set of free variables together with the evaluator for
the second visit, and the second visit takes as argument the set of
bound variables and returns the pretty printed expression.

type TLam1 = (Set String ,TLam2)
type TLam2 = Set String → String

For the variable case we simply split up the semantics in two visit
functions.

semLamVar2 :: String → TLam1

semLamVar2 x = v1 where
v1 = ({x}, v2)
v2 bv = if x ∈ bv

then x
else "*"++ x

In the case of lambda abstraction we perform the first visit for the
child in v1 to get the free variables of the child, together with the
evaluator for the second visit of the child. Both the free variables
of the child and the second visit function for the child are needed
in v2, so we partially apply v2 to pass the values to be used in the
second visit.

semLamAbs2 :: String → TLam1 → TLam1

semLamAbs2 x = v1 where
v1 e = let (efv , e2) = e

in (efv \ {x}, v2 efv e2)
v2 efv e2 bv = let nbv = if x ∈ efv

then {x} ∪ bv
else bv

er = e2 nbv
in "(\\"++ x ++ " -> "++ er ++ ")"

Finally in the case for application the free variable sets of the left
and right child are used in the second visit so again v2 is partially
applied.

semLamApp2 :: TLam
1 → TLam1 → TLam1

semLamApp2 = v1 where
v1 l r = let (lfv , l2) = l

(rfv , r2) = r
in (lfv ∪ rfv , v2 lfv rfv l2 r2)

v2 lfv rfv l2 r2 bv = let lr = l2 (bv ∩ lfv)
rr = r2 (bv ∩ rfv)

in "("++ lr ++ " "++ rr ++ ")"

Finally, we have to tie the knot, where the result of the first visit is
used to invoke the second visit. Such a function could be defined as
follows.

semRootLam2 :: Lam → (Set String ,String)
semRootLam2 e = (fv , v2 ∅) where

(fv , v2) = semLam2 e

4. Incremental evaluation
As described in the introduction our approach is based on change
propagation. The idea is that alongside the first execution of a visit
a change handler is constructed. A change handler is a function
which can (efficiently) handle changes to the AST and inherited
attributes. The change handler takes as an argument a description
of changes to the AST and the (possibly new) inherited attributes,
and returns the synthesized attributes and again a change handler.

148

In this section we develop an incremental version of the one-visit
version of the example.

4.1 Edit operations
There is a rich variety of changes which can be made to an AST.
For example:

• Add/delete: The most common type of changes which are in-
sertion, deletion or replacement of nodes.

• Reordering: Swapping two or more subtrees, for example in
rebalancing a binary tree.

• Duplication: Insert multiple copies of the same subtree.

All such edit operations are supported by our approach, as long
as there is an explicit representation of the change that represents
which subtree ends up where. Our approach supports all such
operations by using the explicit representation of changes from
(Bransen and Magalhães 2013).

In Figure 1 we illustrate insertion, deletion and replacements
of nodes. The outermost triangle represents the full AST in which
an edit operation is performed. The innermost triangle represents
the subtree that can be reused: we call this part R. In the left and
right picture R represent the same subtree. The shaded triangle
represents the part of the AST that is changed. As the shaded
triangle in the left picture does not necessarily correspond to the
shaded part in the right picture we call the left one S1 and the right
one S2.

With this representation an insertion can be implemented by
choosing S1 to be equal to R. This means that in the left picture
there is no shaded part, so we reuse the full subtree. In S2 the
shaded part is the part which is inserted, of which R is a child.
In a similar way deletion can be modelled by choosing S2 to be
equal to R. In that case there is no shaded part in the right picture,
so all nodes in the shaded part in the left picture are removed and
the full changed subtree is replaced by the smaller subtree R.

For representing reordering of subtrees or duplication of sub-
trees, multiple inner triangles are used. For more details on this rep-
resentation we refer the reader to (Bransen and Magalhães 2013).

This representation is inspired by the zipper structure (Huet
1997). In zippers the context in which edit operations happen is
explicitly stored together with the subtree that is currently in focus.
In our approach the context is not explicitly stored in the data
type for representing edit operations, but is implicitly stored by
the functions that use this data type for performing the incremental
computation.

The information that is stored in our data type for edit operations
is the path from the root of the tree towards the changed subtree S1

(the dashed line in Figure 1), the path from the root of the changed
subtree S1 to the reused tree R (the solid line in Figure 1), and the
new nodes that are constructed because of this edit operation (the
shaded part in the right picture in Figure 1, using a special marker
for R).

Paths in the AST are represented by the Path type below,
which simply is a list of integers. The elements in the list are child
indices from the top of the AST towards the node that the Path .
For example, [0, 1] refers to the second child of the first child of
the root. This information is enough for our approach as we do
not need to store extra contextual information based on the actual
constructors on the path.

type Path = [Int]

The part of the AST that is inserted after a change is represented
by the following data type which is similar to Lam . The special
marker LamR indicates a place where a reused subtree must be
inserted.

data LamR

= LamR Path
| VarR String
| AbsR String LamR

| AppR LamR LamR

Using Path and LamR the type for a full change to the AST is
represented as follows.

type IncInsert = (Path,LamR)

The first element is the path from the root to the changed subtree,
and the second element describes how the new subtree must be
constructed.

As an example, let us look at the edit from the top level expres-
sion f y to f (λx → y) where f and y are arbitrary expressions.
This edit is the insertion of a lambda abstraction in the second child
of the root and is represented as follows.

addAbs :: IncInsert
addAbs = ([1],AbsR "x" (LamR [1]))

The first [1] here indicates that the insertion should take place in
the second child of the root, and the second [1] indicates that the
subtree originally at that location should be reused in the inserted
tree.

This representation of changes to the AST does not prevent
us from constructing invalid edit operations. For example, a path
could select the second child of an Abs node, which only has a
single child. These values are intended to be generated only, that
is, not hand-written by a human programmer, for example by the
algorithm from (Bransen and Magalhães 2013). In this paper we
therefore assume that all our edit operations apply to the AST under
consideration. Another reasonable approach to take is to generate
a suitable error message in that case, since in an earlier phase
something has gone wrong.

4.2 Change propagation
At first glance one could think that attribute values can only change
in the part of the tree that has changed or on the path towards the
change. Since inherited attributes can depend on synthesized at-
tributes of other parts of the AST this is not true, and recomputation
may be necessary in parts of the AST that have not changed.

Furthermore, during an incremental update our AG machinery
should not only be able to respond efficiently to changes, but it
should also be possible to select a subtree which is reused. We
therefore use another data structure for representing the type of
changes in our AST, which will be passed as an argument to a
change handler:

data IncChange
= NoChange
| Change (Path → TLam I) IncInsert
| Select Path

The first constructor is used to recompute a part of the AST where
only the inherited attributes have changed and not the AST, the
second for propagating a change in the AST, and the last for select-
ing and retrieving the visit function of a given subtree so it can be
reused.

Now the type of the visit functions should be changed to also
return a change handler. Intuitively attribute evaluation yields a
change handler alongside synthesized attribute values:

type TLam I = Set String
→ (String , IncChange → TLam I)

To avoid an infinite type in Haskell we reformulate TLam I by
wrapping it in a newtype:

149

Figure 1. Illustration of an edit operation with the changed part of the tree being shaded.

newtype TLam I = TLam I {
runTLam I :: Set String

→ (String , IncChange → TLam I)
}

4.3 Implementation
After a change, the newly inserted part of the AST as described by
the LamR data type should be constructed. We define the following
helper function for constructing this new part of the AST, which
takes the LamR describing the shape of the new tree and a selection
function for retrieving the visit function for a subtree that is being
reused.

semRef :: (Path → TLam I)→ LamR → TLam I

semRef sel d = case d of
LamR p → sel p
VarR x → semLamVar I x
AbsR x e → semLamAbs I x (semRef sel e)
AppR l r → semLamAppI (semRef sel l)

(semRef sel r)

In Figure 2 the incremental version of semLamApp is shown. The
computation of the attributes is not changed, only at the child visits
an extra argument is returned, which is for each child a function
that can efficiently respond to changes in the tree.

The memv1 function is where the incremental behaviour is
achieved and it is used when the subtree rooted at this node has not
changed. It uses the inherited attribute bv to check whether the new
inherited attribute bv ′ has changed. If this is not the case then the
values of the synthesized attributes have not changed either so the
previously computed values can immediately be returned. In case
of a change in inherited attributes, the current visit is recomputed
but for the children the incremental version is used.

Note that a full equality check is done for the inherited at-
tributes. This might seem to be an innocent operation but it is
important to realise that this can have a great impact on perfor-
mance. When the values of the inherited attributes become very
large, the equality checking might become computationally expen-
sive. In Section 7 we come back to this issue and describe how
we can improve this. Furthermore, the equality check restricts the
types of the inherited attributes, since there must be an Eq instance
for each of them.

Using the helper functions semRef and memv1 we construct
the change handler incr . Its argument c of type IncChange allows
incr to react to changes as follows.

In case of NoChange the current subtree has not changed but
the synthesized attributes need to be computed from the given in-
herited attributes. Since this function is constructed in an earlier
visit we have already computed a set of attributes once and can
therefore return the memv1 function to reuse these previously com-

semLamAppI :: TLam I → TLam I → TLam I

semLamAppI l r = TLam I (v1 l r) where
v1 l r bv = (pp, incr) where

(lp, l ′) = runTLam I l bv
(rp, r ′) = runTLam I r bv
pp = "("++ lp ++ " "++ rp ++ ")"
memv1 =

TLam I (λbv
′ → if bv ≡ bv ′

then (pp, incr)
else v1 (l ′ NoChange)

(r ′ NoChange) bv ′)
incr c = case c of

NoChange → memv1

(Select []) → memv1

(Select (0 : is)) → l ′ (Select is)
(Select (1 : is)) → r ′ (Select is)
(Change sel ([], r))→ semRef sel r
(Change sel (0 : is, r))
→ TLam I (v1 (l ′ (Change sel (is, r)))

(r ′ NoChange))
(Change sel (1 : is, r))
→ TLam I (v1 (l ′ NoChange)

(r ′ (Change sel (is, r))))

Figure 2. Incremental version of semLamApp

puted values if possible. In case that the inherited attributes have
changed the memv1 function recomputes the visit and propagates
the NoChange to its children.

For a Select value a part of the already computed subtree should
be selected for being reused. In the case of the current subtree
being selected again memv1 is returned, otherwise the Select is
propagated to the corresponding child.

Finally the Change value describes a change in the AST. When
the current node is changed, the semRef helper function is used to
construct the new nodes. The part to be reused is found by using
the Select construct to select the corresponding function. When a
child changes, the change is propagated to the corresponding child
and the current visit is recomputed with the changed child.

After a change to the AST, recomputation happens at the path
from the root to the changed node, and in all nodes where at
least one inherited attribute has changed. When multiple changes
are propagated, only the immediate previous result is reused. Our
mechanism therefore can be seen as an embedded implementation
of a cache for attribute values which stores one value per node.

150

5. Facilitating incrementality
In the previous section we have described the incremental version
of the pretty printing example. Although it has some form of incre-
mental behaviour, it is not more efficient in many practical cases.
This can however be improved by making small changes to the im-
plementation, which have little effect on the normal evaluation, but
have great impact on the incremental behaviour. More generally,
use of incremental mechanisms requires a programmer to rethink
its program code as to facilitate incremental behaviour; incremen-
tality is not something which totally comes for free.

The issues and their solutions which we describe in this section
are not unique to incremental evaluation of AGs. We believe that
similar problems appear in other solutions for automatic incremen-
tal evaluation, for example that of (Chen et al. 2012).

5.1 Projection of inherited attributes
Our incremental AG evaluation machinery uses equality of inher-
ited attributes for deciding when to do recomputations. However, it
may happen that small changes of some inherited attribute have no
influence on the value of the synthesized attributes.

As an example, let us change an expression e to λx → e
where x does not appear anywhere in e . We know that the result of
pretty printing e should not change, hence it should be possible to
reuse the previous result without further computations. However,
since we add the variable x to the set of bound variables, the
inherited attributes of e has changed and the pretty printing of e
is recomputed.

The solution is to use only the relevant part of inherited at-
tributes. The boundvars set is used to decide how to pretty print
variables. However, the only variables that we ever look up in this
set are the variables that appear in the subexpression. Therefore, if
at a lambda abstraction we add a variable to the set that does not
appear (free) in the subexpression, this does not change the result of
the pretty printing. It does however have negative influence on the
incremental behaviour, since the inherited attributes have changed
and recomputation happens.

Concretely, to solve this problem we switch to the two-visit ap-
proach that we already showed in Section 3.3. In the first visit
freevars is constructed in a bottom-up fashion. In the second
visit the rest of the attributes are computed based on the inher-
ited set boundvars similar to our earlier approach. However, since
freevars is already available for all children at the beginning of the
second visit, it can be used to do a projection on the set boundvars .
For Abs , x is only added to boundvars when x appears in the set
of free variables of e , and recomputation only happens when there
is a relevant change to the bound variables.

Although this solution is specific to the pretty printing example,
there is a more general pattern behind this. In Section 5.5 we
generalise the insights used here.

5.2 Fresh variable generation
In many program analyses and transformations there is a need for
fresh variables. The standard way of implementing fresh variable
generation in AGs is to use a chained attribute of type Integer ,
giving the index of the next fresh variable. At each point where a
fresh variable is needed, the index is used for generation and the
number is increased before being passed to the next node.

This approach is useful in standard AG evaluation since it can
be implemented on AG level and no special back end support is
needed. With incremental evaluation however this method of gen-
erating fresh variables has a negative influence on the effectiveness
of the incremental evaluator, because the chained behaviour prop-
agates changes through the whole AST, and chained behaviour in
general has a negative influence on incremental evaluation.

For example, imagine a type inference algorithm for the lambda
calculus implemented with AGs. Now suppose that an expression
e is extended with a let binding at top level, so is converted to
let x = . . . in e where x is not free in e . It is clear that the type of
e has not changed due to this edit and should be reused. However,
when the fresh type variables are first generated for the binding of
x , the chained attribute for the variable generation that is passed to
e is different from the first evaluation, so all fresh type variables
used in e change! As a result of this not only are all types inferred
again, but there is also some overhead involved which results in the
incremental evaluation being slower even in such a simple case.

The general problem with the fresh variable generation as a
changed attribute is that its definition imposes more restrictions
than necessary. Instead of defining that we need a unique variable
at each node, we have defined a strict order in which the variables
should be generated. This results in extra dependencies that in case
of incremental evaluation result in unnecessary recomputations.

The solution we propose is to abstract over fresh variable gen-
eration at AG level and use a different mechanism for generating
fresh variables. This could be handled in the parsing stage by pro-
ducing a fresh variable generator for each node, for example by
using the path from the root to the node as seed.

For now we use a simpler approach and we generate fresh vari-
ables in a more imperative way using some form of global state.
In a pure setting this can be achieved by running the evaluation in
a monadic environment (Wadler 1990). We use a monad Unique
with a function getUnique :: Unique Integer for fresh variable
generation, for which we do not show the implementations. When
evaluating our pretty printing example in such monadic environ-
ment, the type TLam for examples becomes the following.

newtype TLam I = TLam I {
runTLam I :: Set String →

Unique (String , IncChange → TLam I)
}

As a result of this change, the outcome of an incremental evaluation
is not necessarily equal to the usual evaluation anymore; they are
however equivalent under alpha renaming, which is fine for prac-
tical cases where fresh variables are used. In the particular case of
type inference a normalisation step could be added which does al-
pha renaming to some normal form for observational equality.

There is however a problem with this way of generating fresh
variables: when a subtree is duplicated due to an edit and no re-
computation happens in the resulting subtrees, their fresh variables
are shared. In usual applications this is undesirable and could lead
to wrong results. This technique does therefore not work when du-
plication is allowed in the edit operations, but more elaborate tech-
niques for fresh variable generation can work without the need to
take special care about this on the AG level.

5.3 Intermediate constraint solving
Many program analyses can be written as a constraint based al-
gorithm. Constraints are usually generated in a bottom up fashion
making such algorithms very suitable for incrementalization when
written as an AG. However, in such algorithms most time is usually
spent in solving the constraints, not constructing the constraints.
The incremental AG machinery is used for making the constraint
generation phase more efficient after changes in the AST. With con-
straint solving being done only at top level we still spend most time
there, since the constraint solving is completely redone even after a
simple change.

However, many of the generated constraints are equivalent to
the constraints generated earlier, so the result of the constraint
solving should also be stored. Because in many cases there is a
certain order in which constraints should be solved, it is not always

151

semLamApp2
I :: TLam1

I → TLam1
I → TLam1

I

semLamApp2
I l r = TLam1

I (v1 l r) where
v1 l r = do

(lfv , l ′) ← runTLam1
I l

(rfv , r ′)← runTLam1
I r

let fv = lfv ∪ rfv

return (fv ,TLam2
I (v2 lfv rfv fv l ′ r ′))

v2 lfv rfv fv l r bv = do

(lp, li) ← runTLam2
I l (bv ∩ lfv)

(rp, ri) ← runTLam2
I r (bv ∩ rfv)

let p = "("++ lp ++ " "++ rp ++ ")"
memv1 = TLam1

I (return (fv ,TLam2
I memv2))

memv2 bv ′ = if bv ′ ≡ bv
then return res
else do

(, l ′) ← runTLam1
I (li NoChange)

(, r ′)← runTLam1
I (ri NoChange)

v2 lfv rfv fv l ′ r ′ bv ′

incr c = case c of
NoChange → memv1

(Select []) → memv1

(Select (0 : is)) → li (Select is)
(Select (1 : is)) → ri (Select is)

(Change sel ([] , r))→ semRef 2I sel r
(Change sel (0 : is, r))

→ TLam1
I (v1 (li (Change sel (is, r)))

(ri NoChange))
(Change sel (1 : is, r))

→ TLam1
I (v1 (li NoChange)

(ri (Change sel (is, r))))
res = (p, incr)

return res

Figure 3. Incremental two-visit version of semLamApp

possible to solve all constraints as soon as they are generated. In
cases where the constraints can (partially) be solved in intermediate
stages, this is beneficial for the incremental evaluation.

For example for constraint based type inference, it is possible
to solve all constraints for a closed expression in which no free
variables appear. Depending on the application such situation might
or might not happen frequently, but when it does it can lead to large
speed optimizations. In Section 6 we show some benchmark results
related to this example.

5.4 Implementation
With the improvements described in the previous sections the im-
plementation has changed in several ways. When fresh variables
are used the visits need to be performed in a monad, and for the
projection of the inherited attribute we require two visits.

Although our example does not use fresh variables, we still
show the monadic implementation for the sake of example. As with
the non-incremental two-visit implementation we use two types to
represent the two visits. The types of these two visits are therefore
the following.

newtype TLam1
I = TLam1

I {
runTLam1

I ::Unique (Set String ,TLam2
I)

}

newtype TLam2
I = TLam2

I {
runTLam2

I :: Set String
→ Unique (String , IncChange → TLam1

I)
}

We see that the inherited and synthesized attributes of the visits
are similar to the earlier implementation of our example with two
visits, but wrapped in a monadic computation.

In Figure 3 we show the corresponding implementation for the
App constructor. We see that the visit code has become monadic
which imposes a restriction on the order in which the attributes are
computed, but as mentioned earlier we assume that the evaluation
order is statically known. In v1 the value of fv is computed as
expected and the visit function for v2 is returned, which is partially
applied to pass values from the first to the second visit, in particular
the free variables of the children, the state of the two children and
the value of fv .

In v2 the other synthesized attributes are computed as before.
The memv1 and memv2 functions have slightly changed to match
the new types of the visit functions. Because the first visit does
not have any inherited attributes, the memv1 function can always
directly return the previously computed synthesized attributes.

5.5 General observations
As we have discussed in Section 5.2 using a chained attribute for
generating fresh variables is bad for incremental performance. For
the particular case of fresh variable generation we have used special
implementation to solve this problem, but from this insight we
can draw a more general conclusion: chained attributes are bad
for incremental performance, synthesized attributes are good. For
this same reason type inferencing with algorithm W which has a
chained behaviour is less suitable for incremental evaluation than
the constraint based type inference algorithm.

In Section 5.1 and Section 5.3 we described two optimizations
that are specific to certain algorithms. The general observation there
is that computations must be done as early as possible for better
incremental behaviour, where early means early in the control flow.
In AGs this means that operations on inherited attributes should
happen as close to the root of the tree as possible, while operations
on synthesized attributes should happen as close to the leaves of the
tree as possible.

The motivation behind this idea is that we would like to keep
the number of values that need to be changed after an incremental
update to the AST as small as possible. When some computation
relies on a value that is changed, it has to be recomputed at some
point. However, when that recomputation is done earlier this might
avoid recomputation of other values that are “in between”.

6. Evaluation
To evaluate the effectiveness and to measure the overhead of our
approach we have run several benchmarks. For the time measure-
ment we used Criterion (O’Sullivan 2009) which is a framework
for measuring the performance of Haskell programs. It takes care of
running benchmarks multiple times for more accurate results, forc-
ing evaluation of the benchmark results, avoiding undesired sharing
between runs and generating statistics. In our case we have directed
Criterion to use 100 runs for each benchmark.

In order to generate arbitrary lambda expressions and edit oper-
ations we used QuickCheck (Claessen and Hughes 2000) which is a
tool for formulating and testing properties of Haskell programs. As
a part of this tool there is a set of functions for generating arbitrary
instances of data types, which we use to generate the data for our
benchmarks.

We use the QuickCheck machinery for generating arbitrary in-
stances of Lam . To control the size of our benchmarks the func-

152

arbLam :: Int → Gen Lam
arbLam n | n < 2 = genVar

| otherwise = frequency [(2, genLam n)
, (3, genApp n)]

genApp :: Int → Gen Lam
genApp n = do

nl ← choose (1,n − 1)
l ← arbLam nl
r ← arbLam (n − nl − 1)
return $App l r

genLam :: Int → Gen Lam
genLam n = do

v ← choose (’a’, ’j’)
e ← arbLam (n − 1)
return $Abs [v] e

genVar ::Gen Lam
genVar = do

v ← choose (’a’, ’j’)
return $Var [v]

Figure 4. The generation of arbitrary Lam instances.

tions take a parameter indicating the size of the expression that
should be generated, which is our case is the number of nodes in
the tree representation. The implementation is showed in Figure 4.
For the variable generation we use 10 different variables to balance
the number of bound and free variables.

6.1 Versions
In our benchmark we have compared the following four different
versions of our example algorithm. Each version has been given a
short name which is used to refer to the version in later sections.

Base The base version is the code for the pretty printing example
as described in Section 3.2. This version is used as the baseline
for the benchmarks.

Incr This is an incremental version of Base using the techniques
described in Section 4.

Base2 To give an idea of the influence of the improvements from
Section 5 on the non-incremental version of the code we have
included this version. This code is the non-incremental two-
visit approach from Section 3.3 and includes the optimizations
described in Section 5.1.

Incr2 This is the incremental version of Base2, which includes all
improvements described in this paper.

Although there are more versions that could be defined based on
the separate changes described in Section 5, we believe that these
four versions give a good impression of the effectiveness of the
described approach.

6.2 Benchmarks
Our benchmark contains the following eight different benchmarks,
which we think gives a good overview of both the extreme cases
and the typical cases as found in a syntax-directed editor that infers
types during editing.

Initial The pretty printing the initial AST which forms the base of
each of the following eight possible changes.

Add lambda top level Adding a lambda abstraction at the top
level to the expression as described earlier in this paper.

Add app top level Adding an application of a variable at the top
level of the expression.

Full change The full expression is replaced by another expression,
to illustrate the overhead in cases where no efficiency gain can
be achieved.

Delete The deletion of an arbitrary subexpression.

Add application The addition of an application at an arbitrary
place in the expression.

Add lambda The addition of a lambda abstraction at an arbitrary
place in the expression.

Replace variable The replacement of an arbitrary variable by an-
other arbitrary variable.

Each benchmark has been applied to a set of 100 lambda expres-
sions, one of each size between one and 100. The arbitrarily gen-
erated changes are generated separately for each of the 100 expres-
sions only once, such that all different versions of the code use the
same set of changes.

6.3 Results
In Figure 5 we show the result of the benchmarks. The times have
been scaled relative to Base, so a bar of height 0.5 indicates that a
version used half the time of the base version.

The overhead of the incremental evaluation for the initial run
is small as we see in (a). The one visit approach is slightly more
efficient than the two visit approach so Base2 takes 1.0008 times
the time of Base. Due to the construction of change handlers,
Incr is 1.0214 times slower than Base. Because Haskell uses lazy
evaluation the construction of the change handlers is the only work
that is done, which results in only a very small overhead.

The extreme cases of (b) and (c) illustrate that large speedups
can be achieved. In (c) the Incr2 version takes 0.0077 times the
time of Base. From (c) it is also clear what the effect of the
projection of boundvars from Section 5 is, as can be seen in the
large difference between Incr and Incr2.

When the full AST is changed as in (d) we find that Incr2 is
1.0512 times slower than Base. Because no information can be
reused in this example an incremental version of the code will
never improve the runtime. It is therefore to be expected that an
incremental version is slower and the overhead presented here is
only minor.

The other four benchmarks show results similar to these. In
general Incr2 takes less time except for extreme cases where no
information can be reused. For some other cases the improvement
is only minor, which is also to be expected for the type inferencing
algorithm; some small changes to an expression can have large
impact on all types.

6.4 Constraint based type inference
As a more real world test case we have implemented a type infer-
encing algorithm with AGs. The algorithm that we use is constraint
based type inferencing from (Heeren et al. 2002) on the lambda cal-
culus with let bindings and let polymorphism. The algorithm uses a
single inherited attribute which is a set of type variables, and three
synthesized attributes of which one is the set of constraints.

The different versions of implementation and the benchmarks
are similar to the pretty printing example. In the Base version there
is a single visit in which all constraints are gathered and solved
at top level. The Base2 version uses two visits and intermediate
constraint solving as discussed in Section 5. The Incr and Incr2
are the corresponding incremental versions, and all four versions
use the fresh variable generation in a monadic way.

In Figure 6 we show the benchmark results of the type inference
algorithm. The sizes of the benchmarks are similar to the pretty

153

Base Incr Base2 Incr2
0

0.5

1

(a) Initial

Base Incr Base2 Incr2
0

0.5

1

(b) Add application top level

Base Incr Base2 Incr2
0

0.5

1

(c) Add lambda top level

Base Incr Base2 Incr2
0

0.5

1

(d) Full change

Base Incr Base2 Incr2
0

0.5

1

(e) Delete

Base Incr Base2 Incr2
0

0.5

1

(f) Add application

Base Incr Base2 Incr2
0

0.5

1

(g) Add lambda

Base Incr Base2 Incr2
0

0.5

1

(h) Replace variable

Figure 5. Benchmark results of pretty printing example

printing example and so are the results. All in all we feel that these
benchmarks show that our stateless incremental attribute grammar
machinery can greatly improve the runtime.

7. Discussion
In this paper we have described our stateless incremental AG ma-
chinery using pretty printing with free variable annotation as a run-
ning example. Although this example is a good example for show-
ing the core aspects of our approach, it is not a real world use case.
In this section we discuss some shortcomings of the example and
of our approach in general.

7.1 Pretty printing example
The pretty printing example uses a single data type Lam for its
AST. However, in many applications a family of mutually recur-
sive data types is used for describing the AST. Our approach fully
supports a family of mutually recursive data types for the AST. The
visit functions only need minor changes in such case, but for the
edit operations a more advanced change is necessary. With mul-
tiple data types the inserted nodes om the tree can be of different
types. To keep the whole approach type-safe Generalized Algebraic
Data Types (Cheney and Hinze 2003; Xi et al. 2003) are required
to describe the edit operations such that all data types for edit op-
erations have a type parameter indicating the type of the node in
which the edit is performed.

In both the single the two-visit approach only the last visit uses
an inherited attribute, and it is not straightforward to extend our
technique to multiple visits where each visit has both inherited and
synthesized attributes. This is a shortcoming of the pretty printing
example, but in our implementation we do support such AGs. By
storing the intermediate states of the children after each visit, every
visit can be recomputed whenever necessary.

7.2 Type inference example
For the type inference implementation we have assumed that both
the initial expression and the expression after a change are well-
typed. However, in practice during editing the expressions can be
temporarily ill-typed. For example, when an argument is added to

a function one might first add this argument to the function at the
definition site, which changes the whole expression to an ill-typed
expression, after which the arguments are added at the call site to
make it well-typed again. Support for this has been left out for
simplicity, but it is not hard to change our approach to support such
behaviour. Note that in such case even though the full expression
might be ill-typed, subexpressions that are unchanged can still be
well-typed and the incremental behaviour is retained.

For the type inference example we have made the generation
of constraints incremental, but the constraint solving procedure
itself always performs a full recomputation, even if for example
the input is alpha equivalent to an earlier input. This problem can
be solved by lifting the constraint solving to the AG level, such that
the techniques described in this paper can be applied.

7.3 Drawbacks and shortcomings
The title of this paper states that we develop stateless AG machin-
ery. However, with the fresh variable generation as described in
Section 5.2 the evaluation is done inside a monad which essentially
adds state. The incremental evaluation is however stateless and the
state used for the generation of fresh variables is a unique case; the
AG code itself and the incremental evaluation thereof do not use
any form of global state.

We have given an alternative to fresh variable generation to
avoid the chained behaviour, but we have not solved the problem of
avoiding chained behaviour in general. In some cases it is possible
to replace the chained attribute by two or more attributes in multiple
visits, for example by first gathering the results using a synthesized
attribute and then distributing these results over the AST with
an inherited attribute. It is however future work to automatically
transform chained attributes in an AG to version that does not have
the chained behaviour.

Full equality on inherited attributes is used in our incremental
evaluation for deciding whether or not do recomputation. This
does not only restrict the types of our inherited attributes, but also
might be a large bottleneck in case of expensive equality checks
for our inherited attributes. However, in a usual attribute grammar
system we know more than just the semantic rules. In many cases
attribute values are simply copied from the parent to the child

154

Base Incr Base2 Incr2
0

0.5

1

(a) Initial

Base Incr Base2 Incr2
0

0.5

1

(b) Add let top level

Base Incr Base2 Incr2
0

0.5

1

(c) Add lambda top level

Base Incr Base2 Incr2
0

0.5

1

(d) Full change

Base Incr Base2 Incr2
0

0.5

1

(e) Delete

Base Incr Base2 Incr2
0

0.5

1

(f) Arbitrary change

Base Incr Base2 Incr2
0

0.5

1

(g) Add let

Base Incr Base2 Incr2
0

0.5

1

(h) Add lambda

Base Incr Base2 Incr2
0

0.5

1

(i) Replace variable

Figure 6. Benchmark results of constraint based type inference

node, which is also the case for the boundvars attribute in the one-
visit approach at the App constructor. In such cases we statically
know that inserting or deleting such nodes has no influence on the
value of boundvars , and we thus need no recomputation for their
children. It is future work to use that information to avoid equality
checks and to test how well such approach would work in practice,
because the obvious drawback is that we may not recognise all
cases where the value did not change.

The price that is paid for the decrease of runtime in incremental
evaluation usually is the increase of memory consumption. As ex-
pected the incremental code in our approach also consumes more
memory than the non-incremental version, but the memory con-
sumption increases only by a constant amount per node in the AST.
Because memory is relatively cheap and the order of magnitude of
the total memory consumption for the application does not change
with our approach, we think that this increase is not a problem.

In our approach we only efficiently handle cases where the in-
herited attributes have not changed, but the same trick might be
applied for the synthesized attributes. For example, in the type in-
ference example a change in a subtree might result in the same con-
straints and type being generated, and in the approach as described
in this paper the constraint solver is run again to solve the con-
straints. Since the result of the previous constraint solving phase is
still available this should not be necessary. By also requiring equal-
ity instances for our synthesized attributes it would be possible to

also avoid such recomputations. However, the values of the synthe-
sized attributes of the child are only known after doing the part of
a visit in which the inherited attributes of that child are computed
and the child visit is invoked. It is therefore not immediately clear
how the visit functions should be changed to support this form of
incrementality and it is future work to support this.

An important assumption of the incremental evaluation ma-
chinery is that an incremental run returns the same result as its
non-incremental counterpart. Although we have verified that our
techniques work correctly for the examples, we have not formally
proved soundness or correctness of our incremental transformation.

7.4 Attribute grammar extensions
In Higher-Order AGs (HAGs) (Vogt et al. 1989) attribute values
themselves can be trees which can again be decorated with at-
tributes. HAGs can for example be used for modelling multiple
phases of a compiler. In the type inference example, we could add
a more verbose version of lambda expressions which is first desug-
ared to the simple version on which the type inference is done.
Such desugaring step could be described with HAGs by defining
a synthesized attribute on the initial AST of type Lam which is
the desugared version of the expression. At the top level this at-
tribute is then instantiated as a tree and the type inference is per-
formed. With such higher order behaviour incremental evaluation
based on change propagation often breaks because the (implicit)

155

link between nodes in the initial AST and nodes in the desugared
version is lost. It is future work to support HAGs in our approach
such that changes in the original AST can be propagated to changes
in the higher order children.

Many other AG extensions exist and it is yet an open question
if and how these extensions could be incorporated in the presented
approach. For example, reference attributes as used in the work of
Reference Attributed Grammars (Hedin 2000) are problematic al-
ready for the purely functional implementations of non-incremental
AGs, and it is therefore not clear if it is feasible to support those in
our approach.

8. Conclusion
In this paper we have described the machinery that has been used
for the incremental evaluation of AGs. We have described some
changes that makes AG code better suitable for incremental eval-
uation and we have illustrated all of this using the pretty printing
example. In the end, the benchmark results for both the pretty print-
ing and the type inferencing example show that the incremental
evaluation of AGs with our machinery gives the desired efficiency
improvements in many cases and only a minor overhead in cases
where no information can be reused. From this we conclude that
the given approach works as expected and has the desired proper-
ties of incremental evaluators.

In Section 7 we have described some ideas for future work in
order to support a wider class of AG programs, in particular higher-
order AGs which are used in the Utrecht Haskell Compiler in many
places. We believe that the ideas presented in this paper form a solid
ground for further work on stateless incremental attribute grammar
evaluation.

Acknowledgments
The authors would like to thank the anonymous reviewers for their
helpful comments.

References
Acar, U. A., Blelloch, G. E., Blume, M., and Tangwongsan, K. (2006). An

experimental analysis of self-adjusting computation. In Proceedings of
the 2006 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’06, pages 96–107, New York, NY, USA.
ACM.

Bransen, J. and Magalhães, J. P. (2013). Generic representations of tree
transformations. In Proceedings of the the 9th ACM SIGPLAN Workshop
on Generic Programming (WGP’13), WGP ’13.

Bransen, J., Middelkoop, A., Dijkstra, A., and Swierstra, S. D. (2012). The
Kennedy-Warren algorithm revisited: ordering Attribute Grammars. In
Russo, C. and Zhou, N.-F., editors, Practical Aspects of Declarative
Languages, volume 7149 of Lecture Notes in Computer Science, pages
183–197. Springer Berlin / Heidelberg.

Chen, Y., Dunfield, J., and Acar, U. A. (2012). Type-based automatic incre-
mentalization. In Programming Language Design and Implementation.

Chen, Y., Dunfield, J., Hammer, M. A., and Acar, U. A. (2011). Implicit
self-adjusting computation for purely functional programs. In Interna-
tional Conference on Functional Programming, pages 129–141.

Cheney, J. and Hinze, R. (2003). First-class phantom types. Technical
report, Cornell University.

Claessen, K. and Hughes, J. (2000). QuickCheck: a lightweight tool for
random testing of Haskell programs. SIGPLAN Not., 35(9):268–279.

Demers, A., Reps, T., and Teitelbaum, T. (1981). Incremental evaluation for
attribute grammars with application to syntax-directed editors. In Pro-
ceedings of the 8th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’81, pages 105–116, New York, NY,
USA. ACM.

Dijkstra, A., Fokker, J., and Swierstra, S. D. (2009). The architecture of the
Utrecht Haskell Compiler. In Proceedings of the 2nd ACM SIGPLAN
symposium on Haskell, Haskell ’09, pages 93–104, New York, NY, USA.
ACM.

Hedin, G. (2000). Reference attributed grammars. Informatica (Slovenia),
24(3).

Heeren, B., Hage, J., and Swierstra, S. D. (2002). Generalizing Hindley-
Milner type inference algorithms. Technical Report UU-CS-2002-031,
Department of Information and Computing Sciences, Utrecht University.

Huet, G. (1997). The zipper. Journal of Functional Programming,
7(5):549–554.

Kastens, U. (1980). Ordered attributed grammars. Acta Informatica,
13:229–256. 10.1007/BF00288644.

Kennedy, K. and Warren, S. K. (1976). Automatic generation of effi-
cient evaluators for attribute grammars. In Proceedings of the 3rd
ACM SIGACT-SIGPLAN symposium on Principles on programming lan-
guages, POPL ’76, pages 32–49, New York, NY, USA. ACM.

Knuth, D. E. (1968). Semantics of context-free languages. Theory of
Computing Systems, 2(2):127–145.

O’Sullivan, B. (2009). Criterion: Robust, reliable performance mea-
surement and analysis. http://hackage.haskell.org/package/
criterion.

Peyton Jones, S. L. (2003). Haskell 98, Language and Libraries. The
Revised Report. Cambridge University Press. Journal of Functional
Programming Special Issue 13(1).

Ramalingam, G. and Reps, T. (1993). A categorized bibliography on
incremental computation. In Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’93, pages 502–510, New York, NY, USA. ACM.

Reps, T. and Teitelbaum, T. (1984). The synthesizer generator. SIGPLAN
Not., 19:42–48.

Saraiva, J., Swierstra, S. D., and Kuiper, M. F. (2000). Functional incremen-
tal attribute evaluation. In Proceedings of the 9th International Confer-
ence on Compiler Construction, CC ’00, pages 279–294, London, UK.
Springer-Verlag.

Schrage, M. M. (2004). Proxima – a presentation-oriented editor for
structured documents. PhD thesis, Utrecht University, The Netherlands.

Swierstra, S. D., Alcocer, P. R. A., and Saraiva, J. (1998). Designing
and Implementing Combinator Languages. In Advanced Functional
Programming, pages 150–206.

Swierstra, S. D. and Duponcheel, L. (1996). Deterministic, error-correcting
combinator parsers. In Launchbury, J., Meijer, E., and Sheard, T.,
editors, Advanced Functional Programming, volume 1129 of LNCS-
Tutorial, pages 184–207. Springer-Verlag.

Vogt, H. H., Swierstra, S. D., and Kuiper, M. F. (1989). Higher order at-
tribute grammars. In Proceedings of the ACM SIGPLAN 1989 Confer-
ence on Programming language design and implementation, volume 24
of PLDI ’89, pages 131–145, New York, NY, USA. ACM.

Vogt, H. H., Swierstra, S. D., and Kuiper, M. F. (1991). Efficient incre-
mental evaluation of higher order attribute grammars. In PLILP, pages
231–242.

Wadler, P. (1990). Comprehending monads. In Proceedings of the 1990
ACM conference on LISP and functional programming, LFP ’90, pages
61–78, New York, NY, USA. ACM.

Xi, H., Chen, C., and Chen, G. (2003). Guarded recursive datatype construc-
tors. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’03, pages 224–235, New
York, NY, USA. ACM.

Yeh, D. and Kastens, U. (1988). Improvements of an incremental evaluation
algorithm for ordered attribute grammars. SIGPLAN Not., 23(12):45–50.

156

http://hackage.haskell.org/package/criterion
http://hackage.haskell.org/package/criterion

	Introduction
	Attribute grammars
	Overview

	Example
	Attribute Grammar machinery
	Attribute grammars
	Evaluation machinery
	Multiple visits

	Incremental evaluation
	Edit operations
	Change propagation
	Implementation

	Facilitating incrementality
	Projection of inherited attributes
	Fresh variable generation
	Intermediate constraint solving
	Implementation
	General observations

	Evaluation
	Versions
	Benchmarks
	Results
	Constraint based type inference

	Discussion
	Pretty printing example
	Type inference example
	Drawbacks and shortcomings
	Attribute grammar extensions

	Conclusion

