
VERIFYING FORMAL SPECIFICATIONS OF 
SYNCHRONOUS PROCESSES* 

Patricia P. Griffiths + and Charles J. Prenner "H" 

Center for Research in Computing Technology 
Harvard University 

Cambridge, Massachusetts 02138 

ABSTRACT: SYNVER is an automatic programming system for the synthesis of solutions to problems of 
synchronization among concurrent processes from specifications written in a high level assertion language 
(SAL). The correctness of the solutions constructed by SYNVER follows from the soundness of the 
synthesizer itself and from a verification phase which is applied to the specifications. This 
verification phase is the main topic of this paper. To provide context for the verification the paper 
includes a discussion of synchronization problems and a brief overview of both the SYNVER system and the 
SAL specification language. A formal definition of the correctness of a SAL specification is then 
presented along with algorithms which may be used to determine if a given specification is correct. 

I. INTRODUCTION 

This paper describes some of our recent work in the area of automatic programming. While this area 
has been defined in many ways, we view it as a collection of tools, methods, and techniques for fast, 
inexpensive production of reliable software. Automatic programming attempts to put more of the burden 
of software production and reliability upon the machine or software production system, and less upon the 
programmer or user. These motivations are similar to those that led to the development of high level 
programming languages as a replacement for assembly languages. Then, as now, the desire is to produce 
software which does as much work as possible for the programmer. 

We are specifically concerned with developing approaches and techniques that advance toward the 
long-range goal of constructing general purpose automatic programming systems. Here, we begin work on 
some prerequisites of this goal through the construction of such a system for a specific problem domain. 
The value of this effort is twofold. In addition to examining outlines and directions for eventual more 
general systems, we have constructed an operational system for a non-trivial problem domain. Thus, we 
present an existence proof that many of the problems can be simplified and clarified by a Judicious choice 
of problem domain and by careful system design. 

The problem domain chosen is the synchronization of systems of concurrent processes. Conventional 
approaches have made the description and solution of such problems quite difficult. Our system, SYNVER, 
overcomes these difficulties by approaching synchronization at a level close to a human conceptual model 
of such problems. 

The design and construction of the SYNVER system [Grif74,Grif75a] involves three areas of automatic 
programming: very high level languages, program synthesis, and program verification. 

Traditionally, the main efforts in automatic programming have been in the area of verification. 
Automatic or semi-automatic theorem-provers formulate and prove theorems about logical formulae which 
are assertions or verification conditions about programs. From the resulting proofs, programs can be 
extracted to satisfy the. theorems proven. Thus, synthesis of programs was originally based on 
verification. 

SYNVER approaches synthesis and verification as separate issues. A very high level specification 
language (SAL) is formulated in which synchronization problems can be described in a high-level, formal, 
yet human-oriented way. (SAL is an extension of the extenslble language ECL [Weg70][Weg74], using data, 
operator, and control extension facilities [Pren72]. SYNVER is itself written in ECL as well.) It is 

This research was supported in part by the Advanced Research Projects Agency under contract 
F19628-74-C-0083 and by IBM under an IBM fellowship grant. 

+ 
Current Address: IBM Research Laboratory, San Jose, California 95193 

Current Address: Computer Science Division, University of California at Berkeley, Berkeley, 
California 94720 

192 



this specification language together with problem-domain-specific knowledge which provides sufficient 
information to facilitate the synthesis and verification of solutions to the described problems. The 
synthesis and verification can be done independently; synthesis, therefore, is freed from its dependence 
on verification and from the limitations of theorem provers. In this paper we will be concerned primarily 
with the verification phase of SYNVER. However we must first provide both context and motivation for 
the verification techniques. In Sections 2 and 3 we discuss the nature of synchronization problems and 
previous techniques for their description and solution. Sections 4 and 5 give an overview of SYNVER and 
a brief discussion of the salient points of the specification language SAL. Sections 6 and 7 define 
specification verification. Section 8 discusses the algorithms used by the verification phase. Section 9 
discusses extensions to these techniques. 

2. SYNCHRONIZATION PROBLEMS 

The basic unit of discourse in synchronization problems is the process. Wulf et al. [Wulf74] describe 
a process as the smallest entity that can be scheduled for independent execution. One can visualize a 
process as a program plus a data environment and a control environment together with enough status 
information (e.g., a program counter, a set of interrupts enabled or disabled, etc.) so that the process 
can be executed. 

A processor is the active agent; it executes a process. Throughout this paper it is assumed that 
there exist a fixed number of processors available for the simultaneous evaluation of processes. The 
processors are multiplexed over the processes in order to insure that each process receives some share 
of processor time. However, no assumptions are made about the allocation of processor time. Because 
the multiplexing is transparent to the processes, in any given process an arbitrary amount of time may 
pass between the execution of one instruction and the next. Consequently, without some mechanism for 
coordination, communication between processes, such as sharing a resource, would be quite unreliable. 

The possibility of interference between systems of concurrent processes characterizes what we call 
synchronization problems. Such systems are characterized by two or more processes, running concurrently 
on the same or different machines which share some data or resources. These processes are mainly 
asynchronous; usually they are operating independently on their own computations. Occasionally, however, 
they need to access shared data or resources or to make contact with each other. We can describe several 
typical kinds of synchronization problems: 

i) "Mutual exclusion problems. These problems occur when processes want exclusive access to a 
resource. Examples of such resources are line printers or disk files needed for output. 

The concept of processes mutually excluding each other from resource access extends to program code 
as well. It is occasionally the case that processes have sections of code, called critical sections, 
which contain operations on shared data which are to be performed without interference from other 
processes. That is, these critical sections must be evaluated indivisibly with respect to other 
processes. Consequently, no more than one process at a time should be evaluating its critical section. 

2) Shared access. Mutual exclusion problems generalize to requests for multiple, yet still 
restricted access. In this type of problem, resource access is not restricted to one process at a time. 
Instead, several processes of special types or in limited numbers may be permitted simultaneous access. 
An example of such a case is a file which can be accessed by any number of processes which access it on 
a read-only basis. However, processes which write on the file are still excluded. 

3) Cooperation problems. Cooperation type synchronization problems occur when a process requires 
simultaneous access to two or more resources. These resources cannot in general be acquired one by one 
and kept until they are all accumulated because if the number of resources is limited, they may be 
exhausted before any process has filled its requirements. Thus all processes may be waiting for 
additional resources; none may be able to proceed. This situation is known as total deadlock [Holt71a, 
Holt 71b]. One way of avoiding this situation is for a process to acquire all its needed resources 
simultaneously, or else wait, retaining none of them. 

Our knowledge of synchronization problems is quite informal. We know that processes generally acquire 
and release resources one by one, or if they acquire several at a time, they generally later release the 
same number. In a system of synchronous processes, processes generally come to some section of code 
which they must not enter before making some arrangements with other processes. Presumably this code 
uses scarce resources, and the arrangements are in the form of obtaining exclusive access, waiting for 
sufficient resources, and so on. At the end of this section of code, processes generally notify other 
processes that the restricted access has been lifted. 

Before entering this critical section of code, a process either obtains access and proceeds, or waits 
until access can be obtained. A process in a synchronous system never interrupts another process and 
causes it to wait. 

It is characteristic of synchronization problems that if a process can either wait or continue upon 
attempting to enter a critical section, then that waiting is transparent to the process. Once inside 

193 



the critical section, the state of the world from the process's viewpoint is the same whether it was 
delayed and then awakened or whether it proceeded directly. We call this commutatlvlty the delay 
invisibility principle. 

3. SOLVING SYNCHRONIZATION PROBLEMS 

Many primitive operations have been invented to implement solutions to synchronization problems. One 
of the original synchronization primitives is DiJkstra's semaphore operations [DiJ68], which we will 
consider as a representative example. Simply, a semaphore counts the scarce resource usage. Its initial 
value is the initial number of available resources. When its value is zero, no resources are available, 
and processes requesting resources have to wait. The P operation on a semaphore requests the resource, 
the V operation releases it. 

Semaphore operations are ideal for describing very simple synchronization problems. They are not, 
however, easily adaptable to situations of shared data access where, for example, one type of process 
has priority over another [Cour71]. Nor are they easy to use for cooperation type synchronization 
problems [Par75]. Many of the more complex synchronization problems are of these latter two types. 
Semaphores and other similar types of synchronization primitives do not provide a natural model for human 
conceptualization of these kinds of problems. 

It is our view that the human conceptual model of synchronization problems is centralized. A person 
tends to think not about each of the individual processes, but about what happens in the system of 
processes as a whole. The human problem conception focuses on how the scarce resource (be it critical 
section code, llne printer, disk buffer, etc.) may be accessed. This encourages thinking about 
synchronization problems in terms of "states of the entire system" with respect to resource access. 

Specification of synchronization problems in terms of their solutions with semaphore operations (or 
other low-level primitives) is inconsistent with such a centralized, state-oriented representation. 
Semaphores distribute the knowledge about synchronization among the various processes, while the human 
mind conceives of this knowledg e in a centralized way. In addition, semaphores are very 
implementation-orlented. The gap between the conceptual model in terms of states and the solution in 
terms of P and V operations in each process is substantial. The problem solutions bear little resemblance 
to the problem description in English. Hence, in coding solutions to these problems, there is a difficult 
transformation from the human problem conception to the resultant code. 

These implementation-oriented solutions are also difficult to change. If an incremental change is 
made in the problem description (such as giving one type of process priority but keeping the rest of the 
problem the same), there is often a vast change in the P and V solution to the problem. This does not 
reflect our intuition that the translation between mental conception and the machineable problem 
specification and solution should be a continuous function. 

In addition, P and V solutions are cast at too low a level for a programmer to visualize all the 
possible interactions between processes. He has difficulty envisioning all the possible orderings of 
events. This makes it difficult to write programs to solve synchronization problems, and further, to 
prove that such a system of synchronous processes is correct. 

The verification techniques we present are related to those of Robinson and Holt [Rob74] and Levitt 
[Lev72]. Their techniques in turn are based on work by Manna [Man69] [Man70] and Aschcroft and Manna 
[Ash70]. Manna formalizes properties of non-deterministlc programs executed by a single processor. He 
introduces the choice point which corresponds to the set of instructions from which the processor may 
select at that point. Correctness of non-deterministic programs is related to the set of all possible 
executions of the program on a given input. Manna and Aschcroft formalize properties of parallel programs 
in a similar manner. A parallel program can be transformed into an equivalent non-determlnlstic program 
which, when executed, chooses one particular interleaving of instructions of the parallel programs from 
the set of all possible interleavlngs. Because of the proliferation of choice points, and thus the number 
of assertions as well, the concept of protected bodies of code (those containing no choice points and 
therefore executed indivisibly with respect to other processes) is introduced. Levitt extends the 
Asehcroft and Manna techniques. He retains the notion of protected bodies of code, and in addition to 
the choice node he introduces a split node to split a control path previously executed by one processor 
into two or more paths, each executed by its own processor. As with the techniques for sequential 
programs [Floyd67], Levitt divides control paths into fragments of code bounded by assertions and proves 
each piece separately. Thus, the synchronization may be proven correct in the same way as and at the 
same time as the asynchronous code. Robinson and Holt present a formal specification approach in which 
the code involved with synchronization is separated from the asynchronous programs. High level abstract 
entities (sates) control access to critical sections of code. Proving the synchronization correct in 
this context means proving that these gates protect critical sections in the desired manner with respect 
to global invarlants. However, the verification technique is not easily mechanized. In addition, no 
implementation of gates is suggested. 

194 



4. OVERVIEW OF THE SYNVER SYSTEM 

These difficulties have led us to propose an automatic programming approach to solving synchronization 
problems. Using this approach, a programmer can present his problem description in the centralized 
state-oriented way in which he conceives of it. He is provided with a very high level specification 
language SAL (Synchronization Assertion Language) which provides a natural medium for describing 
synchronization problems. Thus problem specifications can be easily read, modified, and communicated to 
others. This is not necessarily the case for semaphore solutions of synchronization problems. 

Because SAL is a high level human-oriented medium for the description of synchronization problems, 
the choice of primitives in which to implement the specifications is separable from the problem itself. 
This enables such problems to be stated more clearly and frees the solutions from implementation-specific 
restrictions. The linguistic power of SAL allows incremental changes in the problem to be reflected by 
incremental, local changes to the SAL problem description. In addition, the specifications are formal 
enough to permit synthesis and verification of programs which solve the specified problem. 

A SAL specification is in the form of an abstract program specification for each type of process in 
the system. This abstract program specification contains a skeleton of program code, including calls 
upon one or more synch functions. These synch functions, the code for which will be synthesized by 
SYNVER, provide the only means by which processes may communicate. Synch functions may be either monitor 
procedures [Hoare74]; calls on Prenner's control interpreter [Pren73], or procedures utilizing Dijkstra's 
P and V operations [Steele75]. Both SAL and the verification technique are independent of the choice of 
synchronization primitives used, i.e., SYNVER can synthesize synch functions which utilize any of these 
various sets of lower level primitives. Synch function calls are indivisible with respect to other synch 
function calls, i.e., all such calls are ordered linearly in time. The code for the synch functions is 
completely independent of the code for the asynchronous computations of the processes. We believe that 
this separability is a desirable feature for communicating processes. It avoids "collusion" (unwitting 
or otherwise) arising from processes knowing too much about each other's internal computations [Byrn74]. 
This kind of separability and minimization of knowledge follows naturally from the principles of 
structured programming, where procedural encapsulation is intended to minimize the assumptions one 
component makes about another [Zilles73]. 

If we consider the system of processes to be in one of several distinct global states, and synch 
functions are the only means of communication between processes, then only execution of synch functions 
may cause a change of state. For synchronization problems there is usually only a small number of 
legitimate states that the set of communicating processes can be in. These global states are most often 
related to which processes are executing their critical sections. 

SAL provides facilities for describing these global states and for specifying the transitions between 
these states made by the synch functions. The former is achieved using SAL state definition statements. 
The latter is achieved by placing assertions before and after each synch function call. 

Invariant assertions (I-assertions), which are placed before calls to synch functions, consist of a 
union of global states. These states are the ones which are permissible when the process is executing 
in the code section preceding the call. 

Result assertions (R-assertions), which are placed after synch function calls, specify the effects 
of the call upon the global state of the system and upon other processes, i.e., R-assertions indicate 
the impact of a contact between processes upon the entire system. However, the global state resulting 
from an R-assertlon must be consistent with the following I-assertion as well as I-assertions for all 
other code sections executed concurrently. Hence, I-assertions restrict the impact of other R-assertions 
during the execution of asynchronous code. 

When a SAL synchronization problem description, including definition of global states and abstract 
program skeletons for the process types, is input to the SYNVER system, SYNVER will synthesize code for 
the synch functions and then apply a verification technique to the spec&fications to prove them correct. 
The correctness of the code generated for the synch functions follows from the correctness of the 
synthesizer. This may be achieved using standard techniques and will not be discussed further. Here, 
we are concerned with the verification techniques which are applied to the specifications. 

Verifying that a SAL specification is correct means proving that the invariant and result assertions 
are all mutually consistent; if (i) the system of processes is initially in a state which is consistent 
with the I-assertions for the initial code section for all processes, and (ii) there exists no sequence 
of synch function calls such that the system is put into a statewhich is inconsistent with the 
I-assertlons of the code sections being evaluated concurrently, then no I-assertion will ever be violated. 
Since the I-assertions, in essence, describe the synchronization desired, the specifications have been 

shown to be correct. 

195 



5. THE SAL SPECIFICATION LANGUAGE 

The first portion of a SAL problem specification is a set of state definitions of the form: 

<name> IS <conjunction of Boolean relations on state variables> 

for example, 

NULL IS NREAD = 0 AND NWRITE = O. 

The rest of the SAL specification consists of one or more process type definitions of the form: 

<process name> DOES <asynchronous code interspersed with synch function calls> 

Synch function calls occur at the points of contact with other processes and are intended to provide the 
appropriate synchronization between processes. SAL assertions must be provided before and after each 
synch function call to describe the actions or the impact that the user expects of these synch functions. 
SAL provides two types of assertions: invariant assertions (l-assertions) and result assertions 
(R-assertions), which act as pre- and post-conditions, respectively. 1-assertions are specified to hold 
for entire sections of asynchronous code (the section preceding the call), and they indicate what global 
states may hold upon the initiation of the call. R-assertions follow each call and indicate the effect 
on the entire set of processes of having performed that call. The effect of a call may be to change the 
global state of the system and to make processes wait or to cause previously waiting processes to 
continue. 

When one proves entire (sequential) programs correct, an output assertion is associated with the 
halting point of the program. It is often characteristic of synchronization problems that there is no 
such halt and corresponding output assertion. Consequently, SAL assertions do not behave as input-output 
assertions for a synch function call. We emphasize that SAL assertions are not like Hoare assertions 
[Hoare69] in this respect. An R-asser£ion describes the state of the system after the evaluation of the 
associated synch function call, regardless of whether or not the calling process continues execution. 

To facilitate the presentation of SAL syntax as well as the verification technique, we will introduce 
an example, the "first readers and writers problem" [Cour71]. There is a table of data, access to which 
is shared by all processes. Some processes are writers who require exclusive access to the table. Others 
are readers accessing the table on a read-only basis. Any number of readers may access the table at a 
time. Readers may not access the table while a writer has access, and vice versa. Neither type of 
process has priority when the table becomes available. We require two integer state variables: 

NREAD, the number of readers accessing the table, 
NWRITE, the number of writers accessing the table. 

There are three states of the system: 

NULL IS NREAD = 0 AND NWRITE = 0 
WRITING IS NREAD = 0 AND NWRITE = i 
READING IS NREAD GT 0 AND NWRITE = 0 

There are two types of processes, READERS and WRITERS. READERS perform the synch functions STARTREAD 
followed by ENDREAD, while WRITERS perform the synch functions STARTWRITE then ENDWRITE. 

We can now discuss the syntax of invariant and result assertions. Invariant assertions immediately 
precede each synch function call and describe the state of the entire system of processes throughout the 
evaluation of the preceding code section, up to the start of the evaluation of the synch function call. 
The syntax of an invariant assertion is: 

ASSERT(Si .... , Sn) 

where Sj's are names of states already defined by the SAL specification. The system may be in only one 
state at a time. Hence the state definitions are disjoint; exactly one of the Boolean expressions 
defining the states is true at a time. The meaning of an invarlant assertion, then, is that throughout 
the asynchronous code preceding the synch function call the state of the system is a member of the 
specified set of states. In our example (see Appendix) the invariant assertion ASSERT(READING) holds 
throughout the reader's critical section, while the invariant assertion for the non-crltlcal sections is 
ASSERT(NULL, WRITING, READING), i.e., all the states. 

The syntax of result assertions is much richer than that of invariant assertions. We will give only 
a brief description of the syntax here. The reader is referred to [Grif75a, Grif75b] for greater detail 
and a more complete description of SAL. Result assertions are placed immediately after every synch 
function call, They specify the transitions between states of the system to be effected by the preceding 
synch function call, Result assertions consist of a series of cpnditlonals separated by commas. The 
basic format of a result assertion is: 

196 



ASSERT(cond-i, cond-2, ..., cond-n) 

where each cond-J is a conditional whose syntax is of the form: 

possible current state + next state AND control actions 

We call the possible current state on the left hand side of ÷ the initial state of the conditional. 
Correspondingly, we call the next state on the right hand side the final state. The semantics of an 
individual conditional in a result assertion are that if the system state is the initial state, the synch 
function should change the system to the final state, performing the control actions specified on the 
right hand side of the conditional. The conditionals of a result assertion, ASSERT(cond-l,...,cond-n), 
are to be considered in order of appearance, as in a LISP conditional. If the state of the system is 
not the initial state of cond-l, then consider cond-2, etc. The union of the initial states of the 
conditionals of a result assertion is equal to the set of states listed in the preceding invariant 
assertion. 

The control conJuncts WAIT and PROCEED on the right hand side of a result assertion conditional are 
possible control actions which may be specified by a result assertion. They indicate whether or not 
control is to be transferred back to the process performing the synch function call immediately after 
the call terminates. The conjunct PROCEED may be omitted; if WAIT is not specified, PROCEED is assumed. 

In the last conditional of a result assertion, SAL permits the ELSE operator to replace the initial 
state and then "÷" as syntactic sugar for all the remaining states of the preceding invariant assertion 
not already explicitly listed in any other conditional. In the case that there is only one conditional 
in the result assertion, ELSE may be replaced by ALWAYS for readability. 

Boolean expressions involving the variables of the invariant states may appear on the left hand side 
of ~. An example is: 

READING AND (NREAD = i) ÷ NULL . 

We now present a brief discussion of several other control conjuncts that may appear on the right 
hand side of a result assertion conditional. We define sets of processes, called Waitsets, which contain 
those processes which are required to WAIT. A process may belong to at most one waitset at a time. 

There are three control conjuncts on the right hand side of result assertion conditionals which 
describe waitsets and operations upon them. 

WAIT IN <waitset name> 

enters the process performing the synch function call as a member of the set <waitset name> and prevents 
it from continuing execution. 

Corresponding to this is the conjunct STARTUP. 

STARTUP [ALL] <process type> OUTOF <waitset name> 

specifies that (all) processes(es) of type <process type> are to be removed from the waitset <waitset name> 
and scheduled for execution. Execution will begin with the next statement in the waiting process after 
the synch function call. 

If the IN <waitset name> or OUTOF <waitset name> are omitted, the <waitset name> is assumed to be 
the same as the <process type> name. 

The third control conjunct related to waitsets is 

REVIVE [ALL] <process type> OUTOF <waitset name> . 

REVIVE removes (all) process(es) of type <process type> from the waitset <waitset name> and allows them 
to redo their synch function. Note that REVIVE does not necessarily cause a process to continue execution 
beyond the synch function call, as the process may again be blocked. 

The purpose of REVIVE is to make a clear distinction between the actions of the process performing 
the wakeup and the actions of the process being reawakened. If STARTUP is used to wake up a waiting 
process, the reawakened process will begin execution at the statement following its synch function call, 
thereby having no opportunity to make any changes in the system state or perform any control actions. 
Hence, any such actions must be performed by the process performing the STARTUP. In general, the use of 
STARTUP in this fashion would require distribution of a copy of a reawakened process' result assertion 
into every conditional where a process of that type might be reawakened. REVIVE achieves an equivalent 
effect in a more modular fashion, in that it in effect generates a call on the revived process's synch 
function as a subroutine. Thus, knowledge about the actions of a synch function is localized, and the 
entire specification becomes easier to write and more concise. 

197 



The REVIVEd result assertion may itself contain REVIVE conjuncts and nesting of REVIVEs may continue 
to arbitrary depth. In this case, or when a sequence of REVIVEs occurs on the right hand side of a 
conditional, a chain of interim states is created. Each successive REVIVE takes as its initial state 
the state resulting from the previous REVIVE. 

For some states, several actions might be taken with different priorities. The conditional specifying 
this uses the TRY conjunct, or priority set. The priority set begins with the keyword TRY and consists 
of one TRY clause followed by an arbitrary number of NEXT clauses. Each of the TRY or NEXT clauses will 
be called a branch of the priority set. Each branch is considered in turn. The branches are listed in 
order of priority from highest to lowest. 

The format of a priority set is: 

lhs ÷ right hand side THEN TRY IF actions-i POSSIBLE 
NEXT IF actions-2 POSSIBLE 

NEXT IF actions-n POSSIBLE 
END-TRY . 

Each branch consists of a set of control conjuncts at least one of which is enclosed by the words 
IF ... POSSIBLE. The IF ... POSSIBLE brackets enclose the control operations which may not necessarily be 
possible. The highest priority branch found to be possible is the one chosen. An example of the use of 
the priority set would be in the second readers and writers problem [Cour71], where when the table becomes 
available, we grant the use of it to a waiting writer, if any. If there are no waiting writers, then 
all waiting readers are granted the table. Thus writers have priority over readers. 

It is sometimes the case that several alternatives for a result assertion conditional are desired 
with equal priority. An example is the first readers and writers, problem [CourTl] described above. When 
the table becomes available, either one waiting writer or all waiting readers may be granted access, and 
we explicitly do not wish to favor either process type. The SAL conjunct which permits one to specify 
this is an OR conjunct. The format of an OR conjunct is: 

EITHER aetions-i OR actions-2 OR ... OR actions-n END-OR . 

Ordinarily all branches of an OR conjunct are assumed to be possible. When an OR conjunct is contained 
in a branch of a priority set, however, this is no longer true. Within a priority set, all the branches 
of an OR conjunct must be considered and rejected before the next branch of the priority set can be 
considered. 

6. INFORMAL DESCRIPTION OF THE VERIFICATION 

The verification that a given specification is correct is by induction. We will explain the proof 
technique using the first readers and writers problem as an example. 

The SAL specification contains a llst of the states of the system. It also provides a process type 
description with the order of synch function calls for each type of process which will be in the system 
of concurrent processes. Each synch function call is preceded by an invariant assertion and followed by 
a result assertion. Since a synch function is in essence defined by these assertions, if a synch function 
is used more than once, it must have the same assertions associated with it. For each process type 
definition, the verifier constructs an abstract program. For each synch function call, the abstract 
program contains four items of information: 

(i) A code index number representing the asynchronous code preceding the synch function call. 
(2) The set of states specified by the invariant assertion. 
(3) The name of the synch function. 
(4) The result assertion in an internal form. 

We will use the names ci, ai, fi, and r i to refer to the above items, respectively. The verifier 
gives the code following the last synch function call in each process description the same index as the 
code preceding the first synch function call in that description. The purpose of this is to help simulate 
the effect of more than one process of each type running concurrently. 

The first readers and writers problem has the following abstract programs. The complete SAL 
specification appears in the Appendix. 

Reader : c I 

al: (NULL, WRITING, READING) 

STARTREAD 

198 



Writer: 

r I /* result assertion for STARTREAD 

c 2 

a2: (READING) 

ENDREAD 

r 2 /* result assertion for ENDREAD 

c I 

c 3 

a3: (NULL, WRITING, READING) 

STARTWRITE 

r 3 /* result assertion for STARTWRITE 

c 4 

a4: (WRITING) 

ENDWRITE 

r 4 /* result assertion for ENDWRITE 

c 3 

One may visualize the effect of synch function call as causing a transition from a code section c i 
to zero or more result code sections depending upon whether the process PROCEEDs or WAITs and whether 
any other processes are REVIVEd or caused to STARTUP. Similarly these synch functions make transitions 
from one state of the system to one of a set of several possible result states depending upon the initial 
and final states of the conditionals of the corresponding result assertions. 

We can represent these transitions among states and among code sections as a transition table with 
transitions between ordered pairs of the form: 

(state, set of code sections) 

The transition table for the first readers and writers problem is given below. If the system is currently 
performing the synch function fi and the state of the system is s4; then the resulting transition is one 

J 
of the ones listed for the ordered pair (sj, ci). There may be several transitions possible depending 
on which branches of a priority set or OR conjunct are used, as well as the truth value of the Boolean 
expressions which may occur on the left hand side of a conditional. 

.Synch Function Current Pair Set of Result Pairs 

STARTREAD (NULL, Cl) (READING, c2) 

(READING, Cl) (READING, c2) 

(WRITING, Cl) empty 

ENDREAD (READING, c2) (READING, Cl) 

(NULL, Cl) 

(WRITING, (Cl, c4)) 

STARTWRITE (NULL, c3) (WRITING, e4) 

(WRITING, c3) empty 

(READING, c3) empty 

ENDWRITE (WRITING, c4) (WRITING, (c3, c4)) 

(READING, (c2, c3)) 

(NULL, c 3) 

199 



A transition table like this may be constructed mechanically from the result assertions corresponding 
to each synch function call. The transition table specifies how each synch function call changes the 
state of the system and what code sections control will enter as a result of each call. If waiting 
processes become unblocked as a result of a STARTUP or REVIVE specified by a call, then several code 
sections may be entered simultaneously. This is the case for ENDREAD when the system is in state READING 
and NREAD=i; then not only does the reader process continue (code c I is entered), but a writer is REVIVEd. 
Thus the entry in the transition table is (WRITING, (Cl, c4) ) . In a later section we will provide an 
algorithm for constructing the transition table. 

We will refer to the set of result pairs in the transition table which correspond to a given current 
ordered pair as the entry-set. Any individual ordered pair in the entry set will be called an entry. The 
first element of an entry will be referred to as entry.state, while the second will be referred to as 
entry.code-set. 

In general when control is simultaneously in code sections Cl,...,Cn, a state S of the system is 
allowable if and only if S is a member of the INTERSECTION (al,...an) , where the ai's , iSiSn, are the 
sets of states listed in the invariant assertions corresponding to the code sections c i. If this is not 
true, then an invariant assertion has been violated; i.e., control is in some cj, but the state of the 
system S is not a member of aj. It is required, therefore, that for each entry in each entry-set of the 
transition table, entry.state must be an allowable state for entry.code-set. This requirement can easily 
be checked mechanically. This will guarantee that the performance of a synch function call does not 
immediately change the state of the system to a state which is not allowable. 

In order to show that no result assertions violate any invariant assertions, we must prove the 
following: For any situation where a synch function is called, the resultant state of the system does 
not violate the invariant assertion of any code section in which control resides. These code sections 
include the sections resulting from the transition as well as sections evaluated concurrently with the 
synch function call. Thus, the resultant state of the system must be allowable for the set of 
simultaneous code sections. 

This is not the only criterion which must be satisfied however. Implicit in the assertions are bounds 
on the number of processes which may be executing a code section concurrently. We define a function B 
on the set of states such that B(S) returns a set of code sections which may be executed by no more than 
one process at a time while the system is in state S. For the first readers and writers problem, the 
function B is as follows: 

B(WRITING) = c 4 , 

i.e., only one writer may access the table at a time. 

We refer to the state of the system plus the set of code sections being evaluated as a system 
descriptor, which we will write (S, SCS), where S is the state and SCS is the set of simultaneous code 
sections. We define a system descriptor (S, SCS) to be legal if and only if: 

(i) S is an allowable state for SCS. This also implies that the intersection of the ai's 
corresponding to the c's in SCS is non-empty. 

(2) If any c i in B(S) is also in SCS, then no more than one process is evaluating the code 
section c i . 

In the next section we will present a better representation for system descriptors and describe the 
induction which will prove that a specification is correct. 

7. FORMAL DESCRIPTION OF THE VERIFICATION 

We now present the formal description of the induction proof necessary to prove that a SAL 
specification is correct. The proof technique is similar to computation induction [Man71]. This 
induction proves that if the system does not violate any invarlant assertions initially, then there is 
no sequence of subsequent synch function calls which will violate any invariant assertions. In this 
section we describe the induction formally and indicate how it also proves that a specification is 
deadlock-free, i,e., total deadlock as defined by Holt [Holt71a] [Holt71b], where all processes are 
blocked. We do not detect, except by inspection in individual cases, whether a given process becomes 
deadlocked. 

We first make a number of definitions. 

Let C be the set of all code sections c i in a specification. Let NC denote the cardinality of C, the 
total number of code sections. Let c denote any arbitrary member of C. 

Let S be the set'of all states of the system. Let s denote any arbitrary member of S. 

Let M:C÷2 S be a function defined on any code section, whose range is an element of the power set of S, 
such that 

200 



M(ci) : a i 

M returns the set of states specified by the invariant assertion associated with the code section c i. 

Let N denote the set of natural numbers {0,i,...}. 

Let F denote the set of functions f such that f:C+N. Then f(c) is a non-negative integer for any f and 
any c. f(c) will be used to count the number of processes evaluating c. 

Let DELTA be the set SxF. Let <s,f> denote an arbitrary member of DELTA. We call an element of DELTA 
a system descriptor. 

As noted in the previous section, there are certain code sections which may be evaluated by no more than 
one process at a time. These restrictions depend on the state of the system. We define a function 

B:S + 2 C 

such that for a given s, B(s) is the set of all code sections which no more than one process at a time 
may evaluate when the system is in state s. 

We define a set D which is a subset of DELTA such that 

<s,f> is in D if and only if 
i) s is in INTERSECTION(M(c)) 

f(c)>0 

2) c in B(s) IMPLIES f(c) s i 

This set D is a representation of all the legal system descriptors. 

The Base Step 

The base step of the induction can now be described. Let INITIAL be the subset of DELTA which 
consists of all the possible initial system descriptors (i.e., the configurations before any synch 
function calls are made). Then the base step of the induction is simply to show that 

INITIAL is a subset of D. 

The Induction Step 

For each c in C we define a function gamma c which describes the actions made by the synch function 
call following code section c. For every c in C, 

gamma : D ÷ 2 DELTA 
c 

where gamm c (<s,f>) is empty if and only if f(c)=0. So gamma c is totally defined on D. As explained 
in the previous section, a synch function call for a given state s may result in different actions 
depending on which branch of a TRY or EITHER clause was performed, etc. So gamma c (<s,f>) returns an 
element of 2 DELTA. This set is always finite, however, because the number of conditionals in a result 
assertion and the number of branches of TRY and EITHER clauses are always finite. 

Now we can define a function GAMMA 

GAMMA:D + 2 DELTA 

such that 
GAMMA(<s,f>) : UNlON(gammac(<S,f>)) 

c in C 

For a given <s,f>, GAMMA(<s,f>) is the set of all possible system descriptors which might result from 
the occurrence of any synch function call that could be performed at that point in the computation. 

The induction step is to show that 

<s,f> in D IMPLIES GAMMA(<s,f>) is a subset of D. 

We define <s,f> to be a descendant of <s,f> 0 if <s,f> = <s,f> 0 or <s,f> is in GAMMA(<s,f>') for some 
descendant <s,f>' of <s,f> 0. 

If the base step and the induction step are proven, then we may infer that if <s,f> is in INITIAL 
then every descendant <s,f>' of <s,f> is in D. Hence, from any initial configuration of the system, 
there is no sequence of synch function calls which causes any invariant assertion to be violated. 

201 



D is constructed from the invariant assertions of the specification together with information about 
how many processes may be executing a code section at a time, i.e., the definition of the function B. 

The function GAMMA is constructed from the individual gammac's which are constructed from the result 
assertions. 

8. THE IMPLEMENTATION 

It remains now to show how the sets INITIAL and D can be obtained, and how to construct each function 
gammac, the function M, and the function B. 

INITIAL can be obtained from the set of states S and the abstract programs for each process type in 
the system. At system initialization, the initial state of the system is the null or default state where 
no resources are in use. Usually this state is named NULL. Then for each process type p some number Np 
of processes of type p are started up. By inspection of the abstract program for processes of type p, 
it can be determined which code section Cp is the first code section for processes of type p. Let Z 
denote the set for all such c . 

P 

Then INITIAL = {<NULL,f>If(Cp)=N p for all Cp in Z 

f(c)=0 for c in C-Z}. 

For the moment, let us assume that the function B is supplied by the user as additional information. 
Later we will indicate how the SYNVER verification system can help with the construction of B. 

The definition of the function M is clear. For each code section ci, M(c i) returns ai, the set of 
states specified by the invariant assertion which holds for c i. 

From these sets and functions D can be constructed. Actually D is almost always an infinite set, 
even with the restrictions on f made by B, because for c's not contained in B(s) for any s, f(c) can be 

any non-negative integer. Thus there are an infinite set of such f's for each unrestricted c. 
Consequently the set D cannot be enumerated in a finite number of steps. If D were finite, then we could 
take each element <s,f> in D and check if GAMMA(<s,f>) is a subset of D. Then the induction step of the 
verification would be proven and would terminate in a finite number of steps. 

By the construction of the set D and the definition of each gammac, it is clear that the relevant 
values of any f(c) are 0, i, and 2 or more: 

i) f(c)=0 -- This corresponds to no processes evaluating code section c. 
2) f(c)=l -- This corresponds to exactly one process evaluating code section e. 
3) f(c) > 1 -- This corresponds to two or more processes evaluating code section c. 

This justifies the definition of three equivalence classes of the values of f(c); for each c in C we 
define the relation EQUIV c as follows: 

<s,f> EQUIV <s',f'> if and only if s=s' and G(f(c)) = G(f'(c)) 
c 

where G:N + N is a function such that 

G ( O )  : o 
G(1)  = 1 
G(n) = 2 for n >- 2. 

We can now define the equivalence relation EQUIV such that 

<s,f> EQUIV <s',f'> if and only if for all c in C, <s,f> EQUIV c <s',f'> 

With this equivalence relation, D is partitioned into a finite number of elements. 

Thus the induction step of the verification can be proven by examining only the elements of the parti- 
tion of D induced by EQUIV. There are at most 3*NC*NS such elements of the partition where NC is the cardi- 
nality of C and NS is the cardinality of S. This is a finite set, and hence the induction step of the veri- 

fication can be proven in a finite number of steps. 

With this technique deadlock can also easily be detected. By the definition of D, there are no 
elements <s,f> of D such that f is identically zero. This is because <s,f> in D implies s in 

INTERSECTION(M(c)), which is empty if f(c)=0 for every c. Consequently, if every descendant of any element 
f (c) >0 

of D is also in D, the solution is free from total deadlock. In order to compute GAMMA(<s,f>) for any 
<s,f> in D, we need to compute gammac(<s,f>) for each c in C. gamma c is determined from the transition 
table which is constructed from the result assertions of the specification. We now present the algorithm 
for constructing the transition table. Then we will describe how to construct each gamma c from the table. 

202 



The Transition Table 

The transition table describes for each code section c in C and for each state s in S, how the synch 
function call following code section c affects both the state of the system and the set of simultaneous 
code sections. The transition table is constructed from the result assertions of the SAL specification 
together with the abstract program produced for each process type. 

An abstract program is constructed for each process type from the SAL specification. 
code of the form: 

<asynchronous code> 
ASSERT(---); 
synch function call; 
ASSERT(---); 

Every piece of 

is abstracted to a code index ci, a set of states for the invariant assertion ai, a synch function fi 
and a result assertion r i. 

The entries in the transition table are formed from examination of the conditionals of each result 
assertion. 

One row in the table is constructed for each (s,ci) pair, where s ranges over all the states in the 
corresponding a i. For every state s in ai, the result column of the transition table represents all the 
actions specified by all the conditionals whose initial state is s in the result assertion r i. Sometimes 
there are several such conditionals in ri, each with different Boolean expressions. Thus there may be 
multiple entries for each (s,ci) line in the table. In addition, each branch of a TRY or EITHER clause 
causes another entry to the (s,ci) line in the table. 

For example, 

sl ÷ s2 THEN TRY B1 
NEXT B2 

NEXT Bn 
END-TRY 

creates n entries in the transition table, one for each of the branches Bj. EITHER constructs are treated 
similarly. 

Each individual result pair in the entry-set consists of two parts: 

( I )  
(2) 

A state which the system may be in after the completion of the synch function call. 
A list of code sections where control will be as a result of the synch function call. This is 
empty when the process performing the synch function call must WALT, and no other processes are 
REVIVEd or caused to STARTUP. 

Although the system is actually in only one state at a time, it may not be decidable when constructing 
the transition table which state this is. For example, for code section Ci if the result assertion is: 

ASSERT(Si and K=i ÷ $2, 
Si and K=2 ÷ $3) , 

the (SI,Ci) part of the transition table has two entries, ($2, C2) and ($3, C2). Actually the system 
will be either in state $2 or in state $3, depending upon the value of K when the synch function call is 
made, Statically, however, the only information that can be ascertained is the entries ($2, C2) and ($3, 
C2). So, if for a given c i the result assertion r i has multiple conditionals for a given state s, then 
the (s,cl) line of the table consists of one entry for each conditional with initial state s. 

Let us now consider how to construct an individual entry for a given c i and s, and a given set of 
branches of TRY and EITHER clauses. This narrows the set of conjuncts to be considered on the rhs of a 
conditional to be rhs state, STARTUP, REVIVE, WALT, and PROCEED. Initially, entry.code-set and 
entry.state are both empty. 

If the conditional PROCEEDs (i.e., does not WAIT), then the next code index in the list of abstract 
program code (described above) for that process should be included in entry.code-set. Let us refer to 
this index as cj. In most cases J=i+l. 

If the conditional WAITs, entry.code-set remains unchanged. 

203 



If there are no REVIVE conJuncts on the right hand side of the conditional, then entry.state is the 
rhs state of the conditional. 

For example, if the conditional is 

s + s AND PROCEED, 
n 

the entry is (Sn, cj), where cj is the next code section index in the abstract program. 

If one or more STARTUP conjuncts appear on the right hand side of the conditional, one code index 
for each STARTUP conjunct is added to entry.code-set. This is the code index which follows the synch 
function call which caused a process of that type to WAIT. 

The remaining conjunct to consider is REVIVE. This affects both parts of a transition table entry. 
Recall that a REVIVEd process redoes the synch function which caused it to WAIT. The REVIVEd process 
takes as its initial state the final state of the conditional specifying REVIVE. Consequently, the state 
of the system upon completion of the synch function call may not necessarily be that final state. In 
addition, if the REVIVEd process eventually PROCEEDs, the code section following the synch function call 
(which caused the REVIVEd process to wait) should be added to entry.code-set. 

To construct an entry for (s,c i) when one of the conditional's conjuncts is a REVIVE, one first 
constructs the entry for that conditional without considering any REVIVEs. This results in a set of one 
or more result pair entries. Then, for each such entry E, apply the following procedure to the synch 

function of the REVIVEd process: 

Let c~ denote the code section which corresponds to the synch function of the 
REVIVEd process. 
Replace E by the new-entries obtained by: 
for each entry E' from the result pairs correspondiffg to (E.state,cJ) 
(i) Let new-entry.state be E'.state 
(2) Let new-entry.code-set be UNION(E.code-set,E'.code-set) 

This results in some new set of (s,ci) entries. If there is another REVIVE in the (s,ci) conditional 
above, then this procedure is applied to each entry E in this new set of (s,ci) entries for the synch 
function which caused this next REVIVEd process to WAIT. 

In general, a REVIVEd process may in turn REVIVE another process, and so on. This creates a 
transitive closure problem of the chain of REVIVE references to (s,c i) entries. If this chain of 
references has a minimal element (one which does not make a further REVIVE reference) then the 
corresponding transition table entries can be completed. Otherwise the chain of references is strongly 
connected. Tarjan [Tarj72] describes an algorithm which detects strong-connectivity. If the chain of 
REVIVEs is strongly connected, then this means a process eventually tries to REVIVE itself or a process 
identical to itself. In these cases another method must be found for completing the transition table, 
after which this verification technique may be applied. 

Once the transition table entries have been completed by performing the transitive closure of all 
chains of REVIVEs, we can construct the functions gamma c. 

The construction of the transition table from the result assertions is completely mechanizable with 
the exception of completing the transition table in the case of a strongly connected chain of REVIVEs. 

Constructin$ the Function GAMMA 

Once the transition table is completed, it is easy to construct each gammac, and therefore the 
function GAMMA as well. The transition table contains entries for each c in C and each s in M(c). The 
transition table may have several entries for each such c and s, and each entry has two parts, 
entry.code-set and entry:state. Then for each c, and each <s,f> in D, gamma c (<s,f>) is empty if f(c) = 0. 
Otherwise (f(c)#0), 

gammac(<S,f>) = {<E.state,fE> I for all entries E in the transition table for (s,c)} 

where fE is the function in F such that 

(i) fE(c) = f(c)-l, and 

(2) for each c i in E.code-set fE(ci) = f(c i) + i. 

204 



EXAMPLE: THE FIRST READERS AND WRITERS PROBLEM 

S = {NULL,WRITING,READING} 

C = {Cl, c2, c3, c 4} 

Synch Function 

STARTREAD 

ENDREAD 

Current Pair 

(NULL, c I) 

(READING, Cl) 

(WRITING, Cl) 

(READING, c2) 

(NULL, c3) 

(WRITING, c3) 

(READING, c3) 

(WRITING, c4) 

STARTWRITE 

ENDWRITE 

Set of Result Pairs 

(READING, c 2) 

READING, c2) 

empty 

(READING, Cl) 

(NULL, c I) 

(WRITING, (Cl, c4) 

(WRITING, c4) 

empty 

empty 

(WRITING, (c3, c4) 

(READING, (c2, c3) 

(NULL, c 3) 

The function B supplied to the verifier is as follows: 

B(READING AND NREAD=i) = {c 2} 

B(WRITING) = {c 4} 

Elements of the Partition of D 

dl: <NULL, 
d2: <NULL, 
d3: <NULL, 
d4: <READING. 
d5: <READING. 
d6: <READING. 
d7: <READING 
d8: <READING 
d9: <READING 
dl0: <READING 
dll: <READING 
d12: <WRITING 
d13: <WRITING 
d14: <WRITING, 
d15: <WRITING, 

Notice that 
equivalently. 

Base Step 

f(c I) f(c 2) f(c 3) f(c 4) 

GEI 0 0 0 > 
0 0 GE i 0 > 

GE i 0 GE i 0 > 
0 i 0 0 > 
0 1 GE i 0 > 

GEI 1 0 0 > 
GE 1 1 GE 1 0 > 
0 GE 2 0 0 > 

GE 1 GE 2 0 0 > 
0 GE 2 GE 1 0 > 

GE 1 GE 2 GE 1 0 > 
0 0 0 i > 

GE i 0 0 i > 
0 0 GEi I > 

GE 1 0 GEi I > 

we have collapsed this partition for c I and c3, because the classes =i and GE 2 behave 

INITIAL = {<NULL, GE 1 0 0 0 > 
<NULL, 0 0 GE i 0 > 
<NULL, GE i 0 GE 1 0 >} 

Clearly INITIAL is a subset of D, 

205 



Induction Step 

GAMMA(d3) : {d5, dT, d13, d15} 
GAMMA(d7) = {d3, d6, dT, dl0, dll, d15} 
GAMMA(dii) = {d7, d9, all} 
GAMMA(dl5) = {d3, d7, all, d13, dl4, dl5} . 

We have taken advantage of an optimization here which is described in the following section. 
Therefore it was not necessary to apply GAMMA to a representative element of each equivalence class in 
the partition of D. 

9. EXTENSIONS 

The verification technique presented above is easily mechanized as it consists of iterating through 
an enumeration of a finite set, the partition of D, and applying the function GAMMA to each representative 
element of that partition. 

In addition, the function B may be generalized. In most synchronization problems either an unbounded 
number of processes are permitted to evaluate a critical section simultaneously or at most one process 
may be evaluating it. A problem could be formulated, however, in which at most some bounded number 
(greater than i), say N, processes are permitted to evaluate a critical section simultaneously. Then B 
would have to be generalized such that c in B(s) I~LIES f(c)~N. The verification technique can 
accommodate this generalization of B without difficulty. Since N is finite, the number of equivalence 
classes in the partition of D is also finite, and thus the verification may be accomplished as above. 

This verification technique can be optimized to avoid having to apply GAMMA to every representative 
element of the partition of D. Let us define a "less than" relation, <, on functions such that 

f' < f if and only if there exists a c.l such that f'(ci) = 0, f(ci) > 0 and f(c) = f'(c) for circ. 

Then clearly f' < f implies GAMMA(<s,f'>) is a subset of GAMMA(<s,f>) since 

UNION(gammac(<S,f'>)) is a subset of UNION(gammac(<S,f>)) . 
c in C c in C 

Thus for any two representative elements of the partition <s,f> and <s,f'>, if f'<f, then only <s,f> need 
be considered. 

i0. CONCLUSION 

The verification technique presented here is based on the existence of synch functions to achieve 
synchronization among concurrent processes. Synch functions are separate from the asynchronous code of 
a program. This simplifies the correctness proofs of both the synchronization and the asynchronous code 
because the proofs can be done independently. Consequently, the combinatoric explosion of program paths 
to be proven as in the Levitt-Manna-Aschcroft approach is reduced. This is achieved without making 
assumptions that some bodies of code are protected. Furthermore, our technique is easily mechanizable 
and is suitable for incorporation in an automatic programming system. In addition, we have several 
implementations for synch functions, including Prenner~s control interpreter, Hoare's monitors, and 
DiJkstra's P and V operations. This flexibility is achieved because both SAL and the verification 
technique we use are at a sufficiently high level so as to be independent of the implementation. 

206 



APPENDIX 

The following is the SAL specification of the first readers and writers problem [Cour71]: 

NULL IS NREAD = 0 AND NWRITE = 0 
WRITING IS NREAD = 0 AND NWRITE = 1 
READING IS NREAD GT 0 AND NWRITE = 0 

READER DOES 
BEGIN 

ASSERT(NULL,WRITING,READING); 
STARTREAD; 
ASSERT(<READING,NULL> ÷ 

<READING,READING>, 
ELSE WAIT); 

<code for reading> 
ASSERT(READING); 
ENDREAD; 
ASSERT(READING AND NREAD GT 1 + READING, 

if not last reader, Just continue 
READING AND NREAD = 1 + 

NULL THEN 
TRY IF REVIVE(WRITER) POSSIBLE 

END-TRY) ; 
if last reader, revive 

waiting writer if any 
END; 

WRITER DOES 
BEGIN 

ASSERT(NULL,WRITING,READING); 
STARTWRITE; 
ASSERT(NULL+WRITING, ELSE WALT); 
if table free then go, else wait 
<code for writing> 
ASSERT(WRITING); 
ENDWRITE; 
ASSERT (ALWAYS NULL THEN 

TRY EITHER IF REVIVE(WRITER) 
POSSIBLE OR 
IF REVIVE(ALL READER) 

POSSIBLE END-OR END-TRY); 
exit, letting writer or all readers go if any 

END; 

REFERENCES 

[Ash70] Ashcroft, E. and Manna, Z., Formalization of Properties of Parallel Programs. Machine 
Intellisence Vol. 6, 1970. 

[Ash75] Ashcroft, E. A, Proving Assertions about Parallel Programs, J. Comp. and Sys. 
(1975). 

[Byrn74] Byrn, W. H., "Sequential Processes, Deadlocks, and Semaphore Primatives," Ph.D. Thesis, Harvard 
University, August 1974. 

[Cour71] Courtois, P. J. et al., "Concurrent Control with 'Readers I and ~Writers'," Comm. ACM Vol. 14, 
No. i0 (October 1971), pp. 667-668. 

[DiJ68] Dijkstra, E. W. "Cooperating Sequential Processes," in Programming Languages, (F. Genuys, ed.), 
Academic Press, New York, 1968, pp, 43-1%2. 

[Floyd67] Floyd, R. W. "Assigning Meanings to Programs," in Mathematical Aspects of Computer Science (J. 
T, Schwartz, ed.) Vol. 19, American Math. Soc., Providence, Rhode Island, 1967. 

[Grif74] Griffiths, P., SYNVER: A System for the Automatic Synthesis and Verification of Synchronous 
Processes, Proceedings ACM74, Nov. 1974. 

[Grif75a] Griffiths, P., SYNVER: An Automatic System for the Synthesis and Verification of Synchronous 
Processes, Ph.D. Thesis, Harvard University, June 1975. 

Sci. i0, pp 110-135 

207 



[Grif75b] Griffiths, P., SAL: A Very High Level Specification Language, Proceedings International 
Symposium on Proving and Improving Programs, July 1975. 

[Hoare69] Hoare, C. A. R., An Axiomatic Basis for Computer Programming, Comm. ACM Vol. 12, No. i0 
(October 1969). 

[Hoare74] Hoare, C. A. R., Monitors: An Operating System Structuring Concept., Comm. ACM Vol. 17, No. 
i0 (October 1974), pp. 549-557. 

[Holt71a] Holt, R. C., On Deadlock in Computer Systems, Ph.D. Thesis, Cornell University, January 1971. 

[Holt71b] Holt, R. C., Some Deadlock Properties of Computer Systems, Symp. on Opg. Sys. Principles, 
Palo Alto, October 1971. 

[Lev72] Levitt, Karl N., The Application of Program-Proving Techniques to the Verification of 
Synchronizatio n Processes, Fall Joint Computer Conference, pp. 33-47, 1972. 

[Man69] Manna, Z., The Correctness of Programs, Journal of Computer and System Sciences, 3, 119-127, 
1969. 

[Man70] Manna, Z., The Correctness of Nondeterministic Programs, Artificial Intelligence I, pp. 1-25, 
1970. 

[Man71] Manna, Z., Ness, S., and Vuillemin, J., Inductive Methods for Proving Properties of Programs, 
Computer Science Department, Stanford University, 1971. 

[Naur66] Naur, P., Proof of Algorithms by General Snapshots, BIT 6,4, pp. 310-316, 1966. 

[Par75] Parnas, D. L., On a Solution to the Cigarette Smoker's Problem (without conditional statements), 
Comm. ACM Vol. 18, No. 3 (March 1975), pp. 181-183. 

[Pren72] Prenner, C. J., Multi-path Control Structures for Programming Languages, Ph.D. Thesis, Harvard 
University, May 1972. 

[Pren73] Prenner, C. J., Extensible Control Structures, SIGPLAN Notices, Vol. 8, No. 9, pp. 129-132, 
September 1973. 

[Rob74] Robinson, L. and Holt, R. C., Formal Specifications for Solutions to Synchronization Problems, 
Computer Science Group, SRI, Menlo Park, California. 

[Steele75] Steele, G. L., Generation of Optimized Semaphore Synchronization Code, Senior Thesis, Harvard 
University, May 1975. 

[Tarj72] Tarjan, R., Depth-first Search and Linear Graph Algorithms, SIAM J. Comput. 
June 1972. 

Vol. i, No. 2, 

[Weg70] Wegbreit, B., Studies in Extensible Programming Languages, Ph.D. Thesis, Harvard University, 
May 1970. 

[Weg74] Wegbreit, B. et al., ECL Progra=~erVs Manual, Ctr. for Research in Comp. Tech., Harvard 
University, TR 23-74. 

[Wulf74] Wulf, W. et al., HYDRA: The Kernal of a Multiprocessor Operating System, Comm. ACM Vol. 17, 
No. 6 (June 1974) pp. 337-344. 

[Zilles73]'Zilles, S., Procedural Encapsulation: A Linguistic Protection Technique, SIGPLAN Notices, 
Vol'. 8, No. 9 (September 1973), pp. 142-146. 

208 


