
Machines with Multiregister Operations

EXTENDED ABSTRACT

A. V. Ahoand S. C. Johnson
Bell Laboratories

MurrayH ill, New Jersey

J.D. Ullma~
Princeton University

Princeton, New Jersey

Summary

Previous work on optimal code generation has usually assumed that the underlying
machine has identical registers and that all operands fit in a single register or memory lo-
cation. This paper considers the more realistic problem of generating optimal code for ex-
pressions involving single and double length operands, using several models of register-
pair machines permitting both single and double word instructions. With register-pair
machines a new phenomenon arises that is not present in optimal code generation for sin-
gle register machines: Inanoptimal evaluation ofan expression it may benecessarytoos-
cillate back and forth between evaluating subexpressions of the expression.

A linear-time optimal code generation algorithm is derived for a register-pair machine in
which all registers are interchangeable. The algorithm is based on showing that for this
model there is an optimal evaluation sequence with limited oscillation between the sub-
trees dominated by the children of a given node. Forother machine models including the
familiar even-odd register-pair machine, optimal evaluation sequences can always require
unlimited oscillation.

1. Introduction

In programming languages rich in expressions, like
BLISS [W] or C [RKL1, we can find expressions contain-
ing many operators. In generating good object code for
these languages, it is desirable to use registers to hold
frequently-used data and addresses. Consequently,
without exercising care in the way available registers are
used, there may not always be enough registers available
to evaluate expressions efficiently.

Previous theoretical work on optimal code generation
for expressions (e.g., [AJI, [B], [BLI, [N], [R], [SUI) has
assumed that the underlying machine has N identical re-
gisters, that each data object fits in a single register or
memory location and that all operators produce a result in
a single register. Urffortunately, few real machines have
such a simple register architecture. Many have special
purpose registers for handling floating point operations,
integer multiplication and division, addressing, condition
codes, etc. In this paper we make a modest sally into this
world of reality by considering the influence of operand

tWork partially supported by NSF grant DCR-74-15255.

size and register structure on the complexity of code gen-
eration.

We relax the condition that data occupies one register

or memory location by allowing operands and results of
instructions to have size single or double, that is, taking
one or two registers or memory locations. We shall call
machines in which all instructions operate on single-sized
operands single-register machines. Machihes with both sin-
gle and double instructions will be called register-pair

machines. A precise definition of these machine models is
contained in Section 2 of this paper.

This paper considers optimal code generation algo-
rithms for register-pair machines. In particular we are in-
terested in the optimal evaluation of expressions having
no common subexpressions. (When the expressions are
represented graphically, they are trees rather than dags

[AU].) We exclude expressions with common subexpres-
sions in this paper because in this case optimal code gen-
eration is already difficult even on single register
machines [BS, AJU].

With register-pair machines a new phenomenon arises
that is not present in optimal code generation for -single-
register machines. Section 2. shows that in an optimal
evaluation of an expression on a register-pair machine it

21

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1977 ACM 0-12345-678-9…$5.00

may always be necessary to oscillate back and forth
between subexpressions of the expression. This oscilla-
tion is in direct contrast to the “contiguity property” of

optimal programs for single-register machines [AJ].
For certain types of register-pair machines Sections 3

and 4 show that we can bound this oscillation and thus

derive a dynamic programming algorithm that generates

optimal code for expressions in time that is linear in the

input size of the expression. For other types of register-
pair machines, such as the even-odd register-pair

machines, Section 5 shows that this oscillation can be-

come arbitrarily large.

2. The Machine Model

Computers in existence today present a bewildering

diversity of instruction repertoires. Certain operations

such as multiplication and division often require double

length data. The precise details of these operations, how-

ever, vary widely from machine to machine.

The multiplication instruction, for example, may take

as operands registers r and r’ and deliver the result in the

register pair (r, r+l) or in the register pair (r–1, r) or

possibly in register r with the contents of register r+l

destroyed. Rather than considering an intricate model

which has sufficient complexity to mio’ic every real

machine, we shall adopt a rather simple register-pair

machine model in the hope that we can gain insight into

the effects of the architecture of the underlying machine

on the complexity of code generation.

We assume a machine has N registers i-o, rl, , rN_l

which are interchangeable with respect to all instructions

involving single-length operands. The single-length in-

structions have the usual form

r + m [load]

m + r [store]

r+ropr ’

}
[operations]r+ropm

Here r and r’ refer to registers, and m to a memory loca-

tion.

We also assume that there are instructions involving

double-length operands. These instructions use two regis-

ters or two memory locations to hold an operand. The re-

gister pairs that can be used to hold an operand are

specified by a set P of permissible register pairs. For ex-

ample, P might consist of all pairs (r,, r,+l) such that i is

even. The double-length instructions have the following

form:

(r, r’) + (ml, m,+l) [double load]

(m,, H7,+I) + (r, r’) [double store]

(r, r’) - (r, r’) op (s, .s’)

(r, r’) - (r, r’) op (m,, ml+{)

(r, r’) + (r, r’) op s ,s#r, r’

(r, r’) - (r. r’) op trr

r+rop (~, s“) r#s, .s’

22

r +- r op (ml, /7?,+1)

In these instructions (r, r’) and (s, s’) can be any register

pairs in P and (m,, m,+l) is a pair of consecutive memory

locations used to hold a double-length operand. Note

that in the operations, the destination is always the same

as the left operand. If (r, r’) is a register pair in P, we

shall refer to r as the /e/i register of the pair and r’ as the

right register.

To model real computers more closely we shall also

permit classes of extend and shorferl operations of the fol-

lowing form:

(r, r’) + EL r’

(r, r’) +ERr

r + SL (r, r’)

r’ + SR (r, r’)

where (r, r’) is any register pair in P. Finally we assume

“strong typing” of operands; we do not permit the use of

a double load or double store to move two single values.

We shall consider three classes of register-pair

machines in this paper. These classes are distinguished

by the set P of register pairs usable in double-length in-

structions.

1.

2.

3.

UrlFeslricted Model

P= {(r,, r,) I O<i, ,j<N–l; /#j]

A ~jacen[Model

P= ((r,, r,+,) I O</< N–l}

Evetl-Odd Model

P = ((r,,, r~l+l) I O< I S\(N-2)/2])

Although many other models are also possible, these

three serve to illustrate salient aspects of existing comput-

ers with double-length instructions. Results pertaining to

the unrestricted model can be used for machines where

register-to-register moves and exchanges are much faster

than other operations. The adjacent and even-odd models

approximate machines such as the IBM System/370 and

the PDP- 11 where somewhat similar restrictions are

placed on what registers can be used to hold the operands

of multiply and divide instructions.

Exarnp/e f. Let us consider how an expression might be

evaluated on an unrestricted machine with four registers

r. through r3. The tree for an expression with which we

shall deal is shown in Figure 1. We use circles to

represent single values and rectangles for doubles. A se-

quence of machine instructions evaluating this expression

tree with no stores is shown in Figure 2. ❑

It should be observed that the code of Figure 2 meets

the restrictions of the adjacent machine but not the

even-odd machine (because E is loaded into an odd-even

pair rather than an even-odd pair). In fact there is no

way to evaluate Figure 1 on a four-register even-odd

machine withoul using a store instruction.

Another important observation about the program of

Figure 2 is that it begins working on the left subtree of

the root then moves to the right subtree, then back and

Figure 1. Expression tree.

(tl, r,) + c
(r”, r,) + (/73, I’,)-L)

(rL r3) + B

(r2, r3) + (r2, r3)*(t’o, r,)

rj --- SR(rz, r3)
ro*F

rO - ro+ G

(r}, r2) - E

(r,, rJ -- (r,, rJ/r”
r2 + SR(rl, r2)
(ro, rl) - A

(ro, r,) + (rO, rl)+r~

(rz, rs) + EL r2
(r2, r~) - (r2, r3)*H

(m, r]) - (rO, ri)+(r~, r~)

/* load Cinto (t’O, r,) */
/* compute n~ */

I* compute t14*/
I* compule tzj*I

/* compute nla */

/* compute tl~ */
/* compute llg */

/* compute)12 */

I* compute t17*/
/* compute n6 *I

/* compute tll */

Figure 2. Machine code to evaluate Figure I

forth once more before evaluating the root. This oscilla-

tion is necessary because if no STORE’s are used, H3 re-

quires all four registers, and /?8 requires three. In fact, al]

optimal programs evaluating Figure 1 on unrestricted re-

gister machines exhibit this oscillatory behavior, thus

showing that this model does not satisfy the conditions

for the contiguity theorem of [AJI.
It should be noted that the use of the SHORTEN

opera[ors is not essential for this example. We could re-

place the subtrees of t~3 and })X by trees of singles requir-

ing 4 and 3 registers, respectively. for evaluation with no

STORE’s and (he same oscillation would appear in any

optimal program using four registers.

3. Limited Oscillation in Unrestricted Machines

This section shows that the oscillations required to

evaluate an expression tree for an unrestricted machine

can be confined to LWO bounces between the subtrees of

the root. This result is used in the next section to derive

a linear-time dynamic programming algorithm for the

generation of optimal code for an unrestricted machine.

The va/ue of an instruction in a program is the expres-

sion which that instruction computes. The scope of an in-

struction / is the subsequence of instructions from the in-

struction following /, up to the last instruction using the

value of /. As a special case, if f computes the root and

is not redefined, then the scope of / is deemed to include

the “end” of the program. A value is /ive at any instruc-

tion within its scope. If the value of an instruction is

never used, that instruction is use/e.ss and its scope is

empty. The wM/f/~ of a program is the maximum over all

instructions of the number of live values held in registers

after that instruction, counting doubles as 2 and singles as

1. Except for doubles, all these notions are as in [AJ],
where more formal definitions appear.

There are two properties of optimal programs for

single-register machines that were used by [AJI to obtain
a dynamic programming code generation algorithm,

23

(1) Retraining, which allows us to take any optimal

(2)

program of width wand execute it using a fixed

set of w registers. That is, registers can be

“renamed” at will.

Rearratlgement which allows us to take any op-

timal program for an expression tree Tand rear-

range it into a sequence of subprograms

PIP2 . P, P,+l such that each P,, 1 < i < r,

evaluates and stores into memory the value of

some node of Tand f,+] evaluates the root of T

Except for the last instruction, there are no other

stores in P,, 1 < i < r. Moreover, for every

node nof T, the portion of the subtree of 7with

root n that omits proper descendants of stored

nodes is evaluated contiguously by a consecutive

sequence of instructions in one of the P,’s.

[n the unrestricted machine model, the renaming condi-

tion continues to hold, as all registers are equivalent in

their capabilities. The rearrangement condition, however,

fails to hold, as we saw from Example 1. There is no op-

timal program which evaluates each subtree of the root of

Fig. 1 contiguously. Nevertheless, we can prove the fol-

lowing modified version for programs with no STORE’S;

an obvious generalization analogous to the rearrangement

theorem of [AJ] holds for programs with STORE’S,

Consider an expression tree T with root n, having two

subtrees T] and T2. Roughly speaking, the following

rearrangement theorem states that if T can be evaluated

optimally with no stores, then T can be evaluated op-

timally by a program which has one of the following

forms:

P,[

PI P21

P2P, [

PI P2P1 I

P; P, P21

P; P; P] P2[

P;P; P2P, I

whe~e PI and P2 evaluate subtrees T] and T2, respective-

ly, leaving a result in a register, and PI and P2 evaluate

the remainder of T1 and T2, respectively. I is the instruc-

tion evaluating the root tl. Thus an optimal program nev-

er needs more than two bounces between T, and T2.

Theorem 1. Let P be a program with no STORE’s and no

useless instructions, computing some expression tree T

on an N-register unrestricted machine. Suppose the root

of T has children c1 and C2, where C2 may not exist.

Then for each of c1 and C2 which is double and has a des-

cendant whose size is single, we can optionally select a

node m, which is a proper descendant of c,, (=1, 2, such

that:

(1) m, is single.

(2) No proper ancestor of m, except possibly the root

of T is single,

(3) We can find a program computing T with the

same number of instructions as P, of the same or

smaller width as P, and having the form

P] P2 PI, where P,, 1<j<s, computes m, or

c, into a register or registers, and / computes the

root

/–1

Moreover, P, is computed using at most N – ~.x (k) re-
k=l

gisters, where x (k) is 2 if Pk computes some c1 and there

is no mf. and x-(k) is 1 otherwise. That is, x(j) is the in-

crease in the number of registers needed to hold the

results of PI, P2, , , P, over that needed to hold the

results of P] ,P2, , P,–].

Proctf We shall actually prove a somewhat stronger result

by induction on the length of P. The strengthening of the

theorem necessary to form the inductive hypothesis is to

permit P to compute T starting with the values of some

leaves in registers, provided these leaves each meet the

above conditions (l)-(2) on the m,’s. P may also start

with the values of some of the C,’S in registers even if

they are doubles.

Suppose the first instruction of P computes or loads a

node n (perhaps a leaf) of the subtree of c,, The value of

n is a double and at no time during the execution of P are

fewer than two registers used for values in the subtree of

c, until the root is evaluated. Then, using all N registers

compute the value of c, using the instructions of P that

serve that purpose. Call this sequence of instructions PI

and suppose without loss of generality that PI leaves its

result in the last two registers, rN–j and rA,_l. Rename

the registers in the remaining instructions of P so that

only registers r. through rN-j are used. Since at least two

of the N registers are always devoted to the subtree of c,,

this renaming can be done. Let the resulting program be

Q. By the inductive hypothesis, we can put Q in the form

P2 P, . P, I satisfying the conditions of the theorem and

using N—2 registers. We may construct the desired pro-

gram PI P2 PL+, f by prepending PI to P2P3 P,/.

At some time during the computation of P only one regis-

ter is devoted to values of descendants of c,. Let n7, be

the descendant of c, whose value is in a register the last

time in P that one register is devoted to descendants of c,,

It is not possible that some descendant of c, was initially

in a register when P began, or else condition (2) in the

theorem statement would be violated, Thus we may let

PI be the subsequence of P’s instructions computing tT7,

into some register, say N—1, Rename the registers used

by the remaining instructions of P to avoid register N–1

until the value of m, is used. Since at least one register is

utilized for a descendant of m, until the value of m, is

used, this renaming can be done, Apply the algorithm re-

cursively to the remaining program and prepend F’l as be-

fore.

Example 2. Consider the expression tree T in Figure 3.

Theorem 1 implies that if T can be evaluated without

STORES, then in the worst (most oscillatory) case we can

find singles ml and mj. no proper ancestor of which is

single, such that an optimal program to evaluate T is nev-,, ,,
er more complex than P] P2 P} P21 or P2Pl P2PI, where P,

and P2 are optimal programs to evaluate the subtrees of T

with roots ml and n?2. PI and P2 are optimal programs

evaluating the left and right subtrees of the root r, assum-

ing ml and m2 have been evaluated and left in registers,

/ is the instruction evaluating the root r. ❑

24

P,

F’lgure 3. Expression {ree 7

4. Algorithm for Unrestricted Machines

In this paper we measure the COS(of a program in

terms of the number of instructions used. (The results

can be generalized to apply (o more general additive cost

func[ions, if necessary.) Theorem I [ells us that :In op-

timal way [0 cornpule a tree involves working on each

sub(ree of the root in turn, bretiking off work on a given

subtree at mos(once. and leaving a single register holding

u v:ilue for that subtree if and when we do. The dynamic

programming approach of [AJ] can now be applied, pro-

vided we compute the following COS[vectors for each

node /L

(1) CI,,OI) = the cost of computing some singie-

valued descendtint)r~ of)] using I regis[ers and

later computing (he bal~nce of the tree with root r]

using j registers, including the register used to

hold the value of }}~. We can assume ,j< (, since

o(herwise we could evaiua~e [he entire tree with

root ~~without oscillation using ,j regislers. If the

tree with root)1 has no singles, then a,,())) can be

taken to be infinite,

(2) ~,(~~) = tbe cost of computing the tree with root }~

using 1 registers. If H is a leaf, ,6,()/) = O for till I.

To compute these values for a node H, suppose the a

and (J values are available for its children. We consider a

list cl, Cz,,.. of children of the node)1, such that each

single-sized child appears at mos(once, and each double-

sized child appears at most twice, The list corresponds to

an evaluation order in which

(1) the children which do not appear are assumed to

have been computed and stored,

(2) the children which appear once are tissumed to be

completely computed at that time, and

(3) the children which appear twice are assumed to

have some single-valued subtree computed, and

then later the entire subtree computed.

For each list, we shall describe the contribution to CII,(f~)

and /31(t~) which might arise from computing the node)7

in the way described in the list. The actual costs a,,()])

and ~l(t~) will be the minimum. over all lists, of the con-

tributed costs. The contribution to each cost of a non-

Ieaf child c not appearing in the list is the cost of precom-

puting it and storing it; this is ~~(c) plus the cost of a

single or double store. If c is the left descendant of H, it

must also be loaded, so this cost must be included.

The contributions to a,,(~~) of a child c depend on

whether it appears once or twice on the list and whether

its sibling is a single or a double. A few cases should il-

lustrate what is involved,

1, The list is clc~cl where C2 is a single. The cost of

(his list is U,,, -l((l) + /3-l (cl) + cost of the instruction

for /r. This cost reflects a computation in which we first

evaluate a subtree of c1 (whose root is single) with 1 re-

gister available, then compute the entire righl subtree

(whose root is (2) with ,/–1 registers available (one being

busy with [he descendant of c1). then return to evaluate

the remainder of the left subtree with ,/–1 registers, and

finally evaluate H.

If (2 is a double in this case, then the first term in the

cost is al,l_2 (cl).

2. The list is CIC1CIC2. The cost of this list is U,,, -l(cl)

+ ~,_l,,_l(c2) + cost of the instruction for H. Here we

evaluate a subtree of c1 with 1available registers, evaluate

a subtree of c1 with ,j–1 available registers, complete the

evaluation of c1 with ,/–1 available registers, then com-

plete the evaluation of C2 with ,)–2 available registers, and

finally evaluate)1.

Similar formulas can be derived for the other cases.

The cost /3,(t~) is the minimum taken over a,,()~) and

the costs of the lists representing the ways of computing

the tree with root ~) without oscillation. For example, the

list CICl, where both c} and C2 are singles is ~,(cl) +

B-1 (c2) + cost of the instruction for H.
Clearly, given a list, the time required to compute a,,

and /3, for a given i and ,j is bounded above by a constant.

For binary operators, the number of lists is finite (in fact,

lists have length at most 4). Applying the same kind of

dynamic programming considerations as [AJ], we can jus-

tify the following theorem:

7-heoretti 2, There is an algorithm to generate optimal

code for an unrestricted machine that is linear in the size

of the expression, o

Note that the above algorithm is quadratic in the

number of registers. If we permit operators of arbitrary

~rity /i, the complexity grows as 0((2k) !). (In effect, this

is the number of lists which must be considered.)

5. Models in Which Limited Contiguity Fails to Hold

The result of Theorem 1 implies a modified version of

the contiguity theorem of [AJI, which in turn implies a

25

polynomial :ilgorithm for optimal code generation. How-

ever, there are a number of machine models in which

Theorem 1 can be shown no[to hold. That is, arbi~rary

oscillation be~ween two subtrees may be necessary for op-

[imal evaluation of an expression. For example, consider

the even-odd model.

Le/t)nlu. For all in[egers u ~nd b with 2u+b < N, we can

construct a tree S,, ~ which can be evaluated with no

STORE’s into a single register if and only if at least u

even-odd pairs and b additional registers are available.

Pri)()/. The case u=O follows from the labeling algorithm

of [E, NI. The case b=O follows similarly, since i tree

wi~h single-valued operands requiring a regis[ers can be

made to require u register pairs by making all i[s operands

and operators double, and then shortening (he result. If

u #0 and b#O, consider the ~ree of Figure 4. Since

b >0, we can evaluate [he righ[side and store the result

in ti register which is not part of the u pairs, then evaluate

{he left. If we could evaluate Figure 4 with no stores us-

ing fewer than u register-pairs we would violate what we

know about $,,(), and if we used fewer thtin 2u+b regis-

ters in total, we would viol~te what we know of S~,~,,+h.
❑

7/more))I 3. For every N there is an expression tree 7

with a node ~~wi~h two children c1 and C2 having the pro-

perty that any optimal program for 7 on an even-odd

machine with 2N registers has a subsequence of instruc-

tions /1,/2, , /2,v_l such that /1,/3, ~ evaluate des-

cendants of c1 and /2, /4, evaluate descendants of (2.

That is, 2N–2 oscillations occur in the subtree of ~~.

Pro?/ Figure 5 shows the tree 7 Consider a program

for 7 which does not store a result or move a value from

one register to another. Surely any such program must be

optimal. We mus[first evaluate .S&,o, or we shall never be

able to do so without STORE’S. .SN,n must be computed

in[o an even register, say register O, for we shall eventual-

ly extend its value into the paired odd register. If we do

the extension now, we can never evaluate .S~-l,l, since at

least two registers will be tied up with the resulting value.

Furthermore, the result of S~-l,, must appear in register

1, the other half of the above pair, else there will not be

sufficient register-pairs to compute .SN-1,0.

We are now in a situation where we cannot extend the

value of SN,O in register O until we have computed the en-

tire right side of Figure 5. Continuing in this way, by

symmetry of register-pairs, we must compute S,,0 in regis-

ter 2(,’v-/) and [hen S,_l I in register 2(V-/)+l, for
/ = N—I, N—2, , 3. Then we may compute S2 o in re-

gister 2N–4, We now use the remaining 3 registers for

S1 ,. arranging tha~ the result end up in register 21V–2.

We then extend that value in~o regis~er 2N–1 and evalu-

ate the right side of Figure 5 in regis(ers 2N–2 and

21V–1, Finally we may extend S,,(I into register

2(N–))+1 for 2<1< N and evaluate the left side of Fig-

ure 5 and the root in registers O and 1.

Thus every optimal program for 7 mus~ oscillate 2N–2

times back and forth, proving [he theorem. ❑

It is interesting [o observe that even wi~h the adjacent-

register constraint we can produce subtrees to play the

role of the .S,’s in Theorem 3. For example, if there are

N registers, the tree of Figure 6 can be evaluated with no

stores only if the result winds up in regis~er 0. Thus, if

we permit trees like Figure 6, we can prove:

7/m~re)}~ 4. Theorem 3 also holds for adjacent register-

pair machines. D

6. Summary and Suggestions for Further Work

We have considered several models of register pair

machines and shown that there is an oscillatory behavior

to the optimal evaluation of expressions on these

machines that is not present on single register machines.

For the unrestricted model we were able to bound the os-

cillations to two and thus derive a linear-time dynamic

programming algorithm. While the dynamic programming

algorithm is too expensive to implement in most compiler

applications, its existence suggests a more economical

specialized linear-time algorithm could be constructed for

particular machines in this class,

For the even-odd and adjacent register-pair machines

we showed the oscillations can be at least proportional to

the number of registers. This result suggests that efficient

optimal algorithms, if they exist, are unlikely to evolve

from any dynamic programming considerations for these

classes of register~pair machines.

There are a number of additional problems that would

be worth solving to add to our understanding of code

generation for register-pair machines.

(1) Is the optimal code generation problem polynomial

or exponential for the (a) even-odd (b) adjacent register-

pair machines?

Figure 4, The tree .$a,b

26

ER

Figure 5, The tree 7

(2) For what other sets of register pairs P, smaller

than the unrestricted model, does the limited contiguity

theorem hold. An interesting observation along these

lines is that if there is one additional register ra which can

only be used as the left pair of a double, i.e.,

P={(ra, ro), (r., rl), . . . (r~, r~-l)), then unlimited

bouncing is still required foroptimal evaluation ofexpres-

sions.

(3) The trees exhibiting oscillatory behavior for

Theorems 4 and 5 produce a number of bounces bounded

by the number of registers. Is this the worst possible

We? If SO, it appears that optimal code generation could
be done in time polynomial in the tree size but exponen-

tial in the number of registers,

(4) [f we could bound the number of oscillations by

some polynomial in the height of the tree, the algorithm

of Section 4 can be generalized to yield a polynomial algo-

rithm, 1s there such a bound for the even-odd or adja-

cent register-pair machines?

(5) How closely can optimality be approximated by a

linear- or polynomial- algorithm for the even-odd or ad~a-

cent register-pair machines?

(6) How well can we generate code for register-pair

machines when expressions contain common subexpres-

sions?

Bibliography

[AJI A. V. Aho and S. C, Johnson, “Optimal Code

Generation for Expression Trees, ” JACM 23:3

(July 1976), 488-501,

[AJUIA. V. Aho, S. C. Johnson, and J. D. U1lman,

“Code Generation for Expressions with Common

Subexpressions, ” JACM 24,1 (January 1977), to

appear.

27

o
SL

A

EL

N–2 ~L’s

i

EL

SL

EL

Figure 6. Tree requiring N registers with the result in register 0,

[AU]A. V. Aho and J. D. Unman, “Optimization of

Straight Line Code,” JIA M J. Computing 1>1.

(1972), 1-19.

[B] J. C. Beatty, “An Axiomatic Approach to Code

Optimization for Expressions, ” JACA4 19:4 (Oc-

tober 1972), 613-640.

[BL1 J. L. Bruno and T. Lassagne, “The Generation of

Optimal Code for Stack Machines, ” JACM 22:3

(JuiY 1975), 382-397.

[BSI J. Bruno and R. Sethi, “Code Generation for a

One-Register Machine,” JACA4 23:3 (July 1976),

502-510.

[E] A. P. Ershov, “On Programming of Arithmetic

Operations, ” Dok/. A. N. USSR 118:3 (1958),

427-430. (English translation in Comm. ACM 1:8

(1958), 3-6.)

[N 1. Nakata, ‘<On Compiling Algorithms for Arith-

metic Expressions, ” Comm. ACM 18:8 (August

1967), 492-494.

[R] R. R. Redziejowski, “On Arithmetic Expressions

and Trees, ” Comm. ACM 12:2 (February 1969),

81-84.

[RKL]D. M. Ritchie, B. W. Kernighan, and M. E.

Lesk, “The C Programming Language, ” CSTR

#31, Bell Laboratories, Murray Hill, N. J., 1975.

[SU1 R. Sethi and J. D. Unman, “The Generation of

Optimal Code for Arithmetic Expressions, ” JACM

17:4 (October 1970), 715-728.

[W] W. Wulf, R. K. Johnsson, C. C. Weinstock, S. O.

Hobbs, and C. M. Geschke, The Dewgn Qf ur7 Op-

tlmizittg Compiler, American Elsevier, New York,

1975.

28

