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Abstract
Graphics processors (GPUs) are highly parallel devices that promise
high performance, and they are now flexible enough to be used
for general-purpose computing. A programming language based
on implicitly data-parallel collective array operations can permit
high-level, effective programming of GPUs. I describe three opti-
mizations for such a language: automatic use of GPU shared mem-
ory cache, array fusion, and hoisting of nested parallel constructs.
These optimizations are simple to implement because of the design
of the language to which they are applied but can result in large
run-time speedups.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, Compilers, Optimization;
D.1.1 [Programming Techniques]: Applicative (Functional) Pro-
gramming

General Terms Languages, Design

1. Introduction
Graphics processing units (GPUs) are highly parallel accelera-
tor devices, offering high-performance computing capabilities su-
perior to those of traditional processors. Due to increased hard-
ware flexibility and improved programming tools, GPUs have fre-
quently been used for non-graphics computation, e.g., for SAT
solving [Manolios and Zhang 2006], state space search [Edelkamp
et al. 2010], and physics simulations [Elsen et al. 2006]. Early work
in general-purpose GPU programming repurposed graphics pro-
gramming models such as OpenGL or Direct3D (e.g., Manolios
and Zhang [2006]); more recent efforts have involved NVIDIA’s
CUDA dialect of C++ (e.g., Edelkamp et al. [2010]). Although
CUDA is a significant improvement over previous methods, it is
too low-level for easy use: for example, to find the largest element
of a vector efficiently requires over 150 lines of CUDA; in a typical
sequential programming language, this problem can be solved with
at most a few lines of code.

What an ideal general-purpose GPU programming model might
be is still an open question. One promising approach is that of ar-
ray programming, where one describes how to transform an array
as a whole using collective operations. Array programming is not a
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new idea, going back at least to APL [Iverson 1962]. It has particu-
lar advantages in the context of high-performance parallel process-
ing, because many collective array operations are implicitly data-
parallel and have well-known parallel implementations [Blelloch
1989, 1996; Sengupta et al. 2007].

Recent efforts have explored the possibility of targeting GPUs
through array programming [Catanzaro et al. 2010; Lee et al. 2009;
Mainland and Morrisett 2010]. This paper shows that an applica-
tive array programming model supported by simple optimizations
can enable users to write GPU kernels whose performance is com-
petitive with hand-written CUDA code but whose source code is a
fraction of the size of CUDA. In particular:

• I describe how to automatically make use of GPU shared mem-
ory cache in stencil operations to reduce memory traffic (§5),
and show experimentally that it improves performance by up to
a factor of eight (§8).

• I describe a simple array fusion scheme to further reduce mem-
ory traffic and eliminate the need for temporary arrays (§6), and
show experimentally that it improves performance by up to a
factor of three (§8).

• I describe how some nested data-parallel programs can be eas-
ily transformed into equivalent non-nested programs through
hoisting, similar to loop-invariant code motion performed by
compilers in traditional imperative languages (§7).

These optimizations are implemented in the compiler for the re-
search language Barracuda, a compositional, applicative array pro-
gramming language for GPUs, embedded within Haskell (§3). Al-
though more general optimization techniques are known (e.g., the
flattening transform for nested data-parallel programs [Blelloch
1996]), the optimizations presented in this paper are simple to
implement—requiring almost no analysis—due to the language de-
sign of Barracuda.

2. Background: Efficient GPU Code
The GPU is structured at a very high level as shown in Figure 1.
Each GPU has several distinct memory areas, and data can only be
transferred among these areas in fixed, well-defined ways. The lat-
est GPUs possess hundreds of cores organized into dozens of mul-
tiprocessors, each with its own private memory, known as shared
memory, which can be accessed as quickly as a register. Access
to device memory located on the GPU itself is shared by all the
GPU multiprocessors, and can be done within hundreds of GPU
cycles. The CPU of the system controls data movement between
main memory and device memory, which takes thousands of GPU
cycles.

The core of a parallel algorithm for the GPU must be expressed
as a set of single-instruction, multiple-data computations called
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Figure 1. Block diagram of the GPU.

kernels. A single kernel is run in parallel on a GPU, on multiple
data, by thousands of lightweight kernel threads. In the simplest
case, each thread executing the kernel computes a function for
a single element of the input arrays. These kernel threads are
organized into gangs of thread blocks, which are in turn organized
into a grid, which are scheduled onto the GPU’s multiprocessors;
in other words, work must be assigned to GPU threads through a
two-level decomposition of the problem. For example, an element-
wise transformation on a vector of 220 elements might assign one
element to each of 220 threads, organized and scheduled as 4096
groups of 256-thread blocks. When a kernel is called it must be
supplied with parameters that specify the data-parallel execution
configuration in addition to its data arguments.

2.1 CUDA
The high-level programming model described previously is com-
patible with a wide variety of GPU architectures. To provide access
to this parallel hardware, and to hide differences between architec-
tures (which change rapidly), NVIDIA provides CUDA, a dialect
of C++ that is aware of the GPU.

CUDA offers a means of expressing a kernel: it is a C++ pro-
cedure that uses no recursion and no indirect calls and is executed
purely for its side effect on device memory. Kernel code may not
refer to main memory; it can only access the GPU’s device memory
and shared memory.

CUDA offers a small set of primitives for managing memory
on the GPU and for transferring data between main memory and
device memory: most importantly, cudaMalloc and cudaFree al-
locate and deallocate memory on the GPU, and cudaMemcpy trans-
fers data between main memory and device memory. Data to be
stored in shared memory is marked with the device qualifier,
and data transfer between shared memory and device memory is
done through regular assignment statements within kernel code.
Explicit use of synchronization primitives by threads within a block
is necessary within kernel code when shared memory is used.

2.2 Keys to good parallel performance on the GPU
Several factors determine whether GPU code will be efficient. In
roughly descending order of impact, these include:

1. minimization of data movement between the GPU and CPU;

2. choice of appropriate block and grid dimensions;

3. proper memory alignment and array indexing patterns; and

4. explicit use of shared memory when appropriate.

Each can significantly impact performance—i.e., by factors of two
or more—and it can be difficult to get them all correct.

Data movement between GPU and CPU GPU code cannot ac-
cess the system’s main memory, and so the data required for any
GPU operation must be copied into device memory. After GPU
code has finished and further processing with the result is desired

(e.g., printing it or sending it over the network), it is necessary to
copy the result back into main memory, which takes thousands of
cycles. An application that makes efficient use of the GPU will in-
volve minimal copying between these memory spaces.

Block and grid dimensions A problem must be decomposed for
a grid of thread blocks to run on a GPU. Only certain thread block
dimensions (roughly, powers of two) are efficiently executed by
the GPU; furthermore, it is important that there be enough thread
blocks so that the GPU hardware can be fully utilized. A poor
choice of block or grid dimensions can greatly hinder performance.

Memory alignment and array indexing patterns When arrays
are properly aligned within device memory and all threads within a
thread block use one of a few prescribed memory access patterns,
access to device memory can be batched or coalesced, reducing the
number of memory transactions required, which can have a dra-
matic impact on overall performance. However, the necessary con-
ditions for memory coalescing to occur are subtle and the details
are hard to get right.

Shared memory Each GPU multiprocessor contains fast on-chip
shared memory that is accessible by all threads within a thread
block executing on that multiprocessor. Since shared memory can
be accessed so much faster than device memory, shared memory
should be used in kernel code where multiple threads within a
block would access the same memory locations. Shared memory
is analogous performance-wise to L1 cache in a CPU, but differs
sharply in the fact that shared memory caching must be done
explicitly by the programmer.1

3. Barracuda: An Applicative Array Language
Barracuda is a simple array language for GPU programming, and
is the vehicle used to test the impact of the optimizations presented
in this paper. Barracuda supports array programming with rank-1
arrays (i.e., vectors) and rank-2 arrays (i.e., matrices). Furthermore,
Barracuda is statically typed: arrays in Barracuda are parametrized
by element type, which is either that of floating-point numbers,
integers, or Boolean values; these element types can be easily
mapped to types supported by the GPU.

Barracuda provides three primitive collective operations on its
arrays:

Map Applies a scalar function element-wise to some number of
arrays of the same rank.

Reduce Accumulates a scalar value from an array using a binary
reducing function, e.g, addition.

Slice Creates a sub-array of the same rank from another array,
given start, stop, and stride information.

The set of supported operations and types in Barracuda is small,
reducing the amount of implementation effort required while still
being sufficient for meaningful proof-of-concept work.

Barracuda is an applicative, total language: it has no notion
of side effects or assignment, and it is not possible to write non-
terminating or undefined programs. This is not as restrictive as it
may first seem, as many operations on arrays can be expressed
functionally. Because Barracuda programs lack side effects and
must terminate, it is easier to reason about them, and code gen-
eration is simplified, as no sophisticated analysis is required. Fur-
thermore, Barracuda’s array primitives are compositional: the array
primitives can be freely nested rather than having to be explicitly
sequenced, which allows a more declarative programming style.

1 NVIDIA’s Fermi GPUs support implicit caching; however, NVIDIA still
recommends explicit use of shared memory for best performance.
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Barracuda is designed for offline generation of GPU code. Its
primary use case is this: a programmer writing an application in
C++ wants to run certain array operations on a GPU, for sake of
performance. Rather than writing the GPU code by hand, the pro-
grammer writes the operations at a high level in Barracuda, which
is then compiled into efficient CUDA code and C++ wrapper code.
In other words, Barracuda functions are the unit of compilation.
Barracuda functions are compiled into C++ procedures that wrap
CUDA code, and the user of the generated code need not be aware
of any of the low-level details of GPU programming. In particular,
Barracuda hides completely all the performance issues of GPU pro-
gramming discussed in section 2.2 except for the minimization of
data movement between the CPU and GPU, which it puts entirely
into the hands of the programmer.

Barracuda is the vehicle by which the optimizations described in
this paper are explored; all the optimizations ought to be applicable
in other languages sharing Barracuda’s essential attributes. These
attributes are the following:

Support for array programming The language emphasizes col-
lective array operations, such as map, reduce, and slice.

Compositionality The collective operations can be freely nested.

Referential transparency The array operations are applicative,
lacking side effects.

Compiled to a GPU The language targets a GPU, which pos-
sesses fast on-chip shared memory cache that can be exploited
in operations with highly local memory access patterns.

The remainder of this section gives an overview of Barracuda.
Details of the embedding are included in Appendix A.

3.1 Examples
Two example Barracuda programs appear in Figure 2. The first

is an implementation of root mean square error. It is written sim-
ilarly to the way one could write a version operating on regular
Haskell lists, modulo different types and different names for cer-
tain functions, e.g., VExp Float instead of [Float], and vmap
instead of map. (These alternative function names were chosen to
avoid shadowing the functions in the Haskell Prelude.) Other func-
tions, such as sqrt and the arithmetic operators, are overloaded and
use the normal Haskell names. This example demonstrates compo-
sition of vector primitives: vzipWith—a map operator that applies
a binary function element-wise to two vector—appears inside the
vector argument of vmap, which itself appears inside the vector ar-
gument of vsum, a vector reduction.

The second example, an implementation of weighted moving
average over a vector of floats, is more complicated. It shows the
use of Haskell as a macro system for Barracuda: the weight parame-
ters, given as a Haskell list rather than a Barracuda vector, are incor-
porated at compile-time. This example also crucially uses the vec-
tor slice primitive of Barracuda: to compute an n-point weighted
moving average, the wmAvg function slices the input vector into
n overlapping slices, multiplies each slice by its corresponding
weight, and adds up all the results element-wise. This function is an
example of a stencil operation, where the function applied at each
element depends on the values of neighboring elements.

4. Compiling Barracuda to a GPU
Barracuda functions are compiled into CUDA code and C++ wrap-
per code, as seen from a very high level in Figure 2. Barracuda de-
fines C++ types corresponding to each of the Barracuda vector and
matrix types: an expression of type SExp Int in Barracuda maps to
int in C++; SExp Float maps to float; and SExp Bool maps to
bool in C++. The C++ component of Barracuda defines two tem-

RMSE in Barracuda
rmse :: VExp Float -> VExp Float -> SExp Float
rmse x y = sqrt (sumDiff / len)

where
len = fromIntegral (vlength x)
sumDiff = vsum (vmap (^2) (vzipWith (-) x y))

Generated code for RMSE
// CUDA kernel; not exported
__global__ void
rmse_kernel (const float *x,

const float *y,
float *partial_results);

// Wrapper procedure; exported in interface
void
rmse (const gpu_vector<float> &x,

const gpu_vector<float> &y,
float &result)

{
... // invoke kernel; finish reduction

}

Weighted moving average in Barracuda
wmAvg

:: [Float] -- weights
-> VExp Float -- input vector
-> VExp Float

wmAvg ws xs = foldr1 (vzipWith (+)) slices
where

slices :: [VExp Float]
slices = zipWith weightVec [0..] ws

weightVec :: SExp Int -> Float -> VExp Float
weightVec i w = vmap (* float w) slice

where
slice = vslice xs (i, sliceLen + i, 1)
sliceLen = vlength xs - int (length ws)

Generated code for weighted moving average
// CUDA kernel; not exported
__global__ void
wmAvg_kernel (const float *xs, float *result);

// Wrapper procedure; exported in interface
void
wmAVg (const gpu_vector<float> &xs,

gpu_vector<float> &result)
{

... // invoke kernel
}

Figure 2. Two Barracuda programs and their corresponding gener-
ated code. Root mean square error is shown above; weighted mov-
ing average is shown below. The Barracuda implementations op-
erate on Barracuda vectors and mirror what might be written in
regular Haskell operating on Haskell lists: VExp a, vmap, vsum,
vlength, and vzipWith correspond to [a], map, sum, length,
and zipWith in Haskell. The int and float functions in the sec-
ond example are explicit conversions from Haskell values into Bar-
racuda values. The function vslice denotes a sub-vector.
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plate classes for vectors and matrices residing on the GPU, which
are mapped to Barracuda’s VExp and MExp type constructors:

template <class T>
class gpu_vector;

template <class T>
class gpu_matrix;

In other words, the location of arrays in the generated code is
explicit in the types, and the caller of the code is responsible for
deciding when to copy between device memory and main memory,
which is one of the most costly operations of CUDA programming.
These template classes are implemented so that memory is properly
aligned, which is a necessary condition for memory coalescing.

The unit of compilation in Barracuda is the function. Barracuda
functions are compiled into C++ procedures using the following
parameter passing conventions:

• Input arguments are passed by constant reference; and
• the output argument is passed by reference.

By returning the result by reference, the onus of memory manage-
ment for function outputs is placed on the caller. This is an inconve-
nience, but it gives the caller precise control over when allocations
are made and allows for in-place array updates, both of which are
important for high-performance computing.

4.1 Compiling the Array Primitives
In the simplest case, a Barracuda function does not use any of the
array primitives, and therefore consists only of scalar code. Such
code is easily compiled into CUDA. The interesting cases involve
use of the array primitives, which, when generating parallel code
(see section 7 for discussion of the alternative), are compiled into
CUDA kernels and kernel invocation code.

Map A map operation applies an n-ary scalar mapping function
to n arrays element-wise. A CUDA kernel is generated for the
mapping function, and kernel invocation code is inserted into the
C++ wrapper code being generated. In the current implementation,
the generated kernel has each thread apply the mapping function
to only a single set of n elements. More work-efficient code would
have each thread apply the function to multiple elements, although
it is not always a clear performance win; experimenting with this is
left as future work.

Reduce A reduce operation accumulates a scalar value by repeat-
edly applying a binary reducing function to elements of an array.
Similarly to the way the map operation is compiled, a CUDA ker-
nel is generated for the reducing function, and kernel invocation
code is inserted into the C++ wrapper code being generated. The
Barracuda compiler generates code for reduction that uses a log-
arithmic fan-in: each CUDA thread block reduces a block of el-
ements from the array using shared memory, and after the kernel
execution finishes, the CPU performs a final reduction of the par-
tial results. The reduction code Barracuda generates is based on the
final optimized implementation described by Harris [2008].

Slice A slice operation names a sub-array of a larger array. For
instance, a slice of a one-dimensional array specifies start index,
stop index, stride, and the array to slice. In the case of a slice
operation that appears at the top level of a Barracuda function,
special copying routines provided by the Barracuda runtime are
used. In the more interesting case where a slice expression occurs as
an array argument of another array primitive, the slice is compiled
by translating indexes into array slice into the appropriate indexes
of the original array. Barracuda’s array slices have no run-time
reification, and are handled at compile time.

5. Shared Memory Optimization
As mentioned in section 2, graphics processors possess a limited
on-chip shared memory space that can be accessed much more
quickly than device memory. When a data-parallel array operation
computes a function at each element using that element’s value and
the values of neighboring elements, large performance gains can
be realized by generating CUDA code that uses the GPU’s shared
memory cache rather than accessing device memory repeatedly.
The weighted moving average code listed in Figure 2 is an example:
the input vector is sliced n times (once for each of n weight
parameters), with each slice being shifted over one element from
the previous slice. So, with n = 15, each vector element would be
read 15 times by different threads.

The Barracuda compiler identifies array operations where use
of shared memory is applicable, and in such situations it generates
code that uses shared memory cache, storing one element at a time
for each thread within a thread block. It does this as follows:

1. Collect all uses of array variables that are used in at least two
unique overlapping contexts.

2. When generating kernel code for the function, for each such ar-
ray variable, generate code to load the cache from device mem-
ory, and replace each corresponding array indexing expression
with code that accesses shared memory when in bounds and
that accesses device memory otherwise.

The context of an array variable refers to array slicing: an array
variable can be referred to in unsliced or in sliced fashion. Two
contexts are said to overlap if it can be statically determined that
there exist array elements included in both contexts. Whether two
contexts overlap is determined by simple rules:

1. Two identical array variables overlap.

2. An array variable and a slice of that variable overlap.

3. Two slices s1 and s2 of variable v overlap if in each dimension,
the start and stop parameters of s1 and s2 form overlapping
intervals and the overlap is a significant.2

If the expressions that specify slice parameters involve only compile-
time constants and accessors for array extents (e.g., vector length),
the Barracuda compiler will be able to determine conclusively
whether two contexts overlap, using the above rules along with
special handling of accessors of array extents.

Consider the forward difference operator, an archetypal stencil
computation of the sort used in iterative methods. The forward
difference operator is defined by the equation

∆v(x) = v(x+ 1)− v(x)

where x and x + 1 are valid indexes for v. A Barracuda function
for this transformation might be written as so:

forwardDiff :: VExp Float -> VExp Float
forwardDiff xs = vzipWith (-) xs’’ xs’

where
xs’’ = vslice xs (1, vlength xs, 1)
xs’ = vslice xs (0, vlength xs - 1, 1)

Compiling this function without shared memory optimization
would result in a kernel that would have each thread read from
device memory twice, for two different elements of xs.

When compiling with shared memory optimization enabled,
the compiler determines that variable named xs is used in two
different slice contexts (named by xs’ and xs’’), and that xs’’

2 Significant being defined in the current implementation as 50% of the
corresponding CUDA thread block dimension, or in other words, 128 for
vector slices and 8 for matrix slices.
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is the same as xs’, only shifted over one index. The Barracuda
compiler has a special case for such “shifted” slices: only if the shift
amount is enough to cause the contexts to be so different that they
could not possibly significantly overlap will non-optimized code
be generated. With the forward difference example, when shared
memory optimization is enabled, the compiler generates a kernel in
which the majority of threads read from device memory only once:
the threads first load from device memory into shared memory, and
then work from that. Conditional code is necessary to handle the
cases where a thread is at the boundary of a thread block, or at the
boundary of the vector.

6. Array Fusion
The array primitives in Barracuda can be freely nested. For in-
stance, in the root mean square error example in Figure 2, vzipWith
(vector map on two vectors) occurs within vmap, which occurs
within vsum (a vector reduction). Naive compilation of this ex-
pression would generate code that evaluates from the most nested
outward, using two temporary vectors and three CUDA kernel in-
vocations. This code would be correct but inefficient. However,
since Barracuda is applicative and total, it is always safe to fuse
array arguments of map, reduce, and slice that are themselves array
expressions.

The map and reduce primitives both involve scalar functions.
When compiling the body of a CUDA kernel for an array expres-
sion, it is necessary to generate an indexing expression for the array
expression. When indexing a composite array expression, the com-
piler composes the scalar functions in the appropriate way so that
they are fused.

Consider a Barracuda function involving a multiply-and-add on
a vector with some constants:

mulAdd :: VExp Float -> VExp Float
mulAdd xs = vmap (+ 1) (vmap (* 2) xs)

The vector indexing code for this composite vector expression
would look roughly like xs[idx] ∗ 2 + 1.

In Barracuda, fusion is guaranteed for array primitives that
appear as array arguments: no temporaries will be allocated, and
only a single pass over the input arrays will be performed. This
fusion technique is most similar to that used in the Blitz++ array
library for C++ [Veldhuizen 1998].

7. Hoisting Nested Array Operations
The array primitives in Barracuda are compositional, and so they
can be used in any type-correct context, including within mapping
and reducing functions. However, if the map and reduce primitives
were always compiled into parallel code, a nested data-parallel tar-
get language would be required. Unfortunately, the CUDA pro-
gramming model does not allow arbitrary nested data-parallel
code—kernels can contain only sequential code. Instead of imple-
menting the well-known and more general flattening transforma-
tion to convert nested data-parallel programs into flat data-parallel
programs [Blelloch et al. 1993], Barracuda takes a simple, much
less general approach based on hoisting, which is similar to loop-
invariant code motion performed by compilers for imperative lan-
guages.

To add the sum of one vector to each element of a second, one
might write

addSum :: VExp Float -> VExp Float -> VExp Float
addSum arr1 arr2 = vmap f arr2

where f y = vsum arr1 + y

Here, vsum, an array reduction, is used within the mapping function
given to vmap. In this case, the subexpression containing the nested

array operation, vsum arr1, is independent of the argument of the
mapping function, and can safely be hoisted out.

However, it is possible to write nested data-parallel functions
that cannot be transformed by hoisting. Consider the following:

ndp :: VExp Float -> VExp Float -> VExp Float
ndp arr1 arr2 = vmap f arr2

where f v = vsum (vmap (\x -> x + v) arr1)

For each element v of arr2, this function would compute the sum
of adding v to each element of arr1. Here, the nested array oper-
ations cannot be hoisted out because they depend upon the value
of the array element given to the mapping function. When nested
array operations cannot be hoisted, the operation is implemented
by emitting a sequential loop within the generated CUDA kernel;
this is similar to the approach taken in Nikola [Mainland and Mor-
risett 2010] and Copperhead [Catanzaro et al. 2010]. In these cases,
the Barracuda compiler emits a warning that the code will be in-
efficient: the principal motivation for using graphics processors is
performance.

Earlier versions of Barracuda experimented with techniques
to make expression of troublesome constructs impossible, but all
proved unsatisfactory. A design goal of Barracuda was that it al-
low the array operations to be composed, and that it as be free
of restrictions as possible. Disallowing nested data-parallel pro-
grams through type system techniques hindered expression, ei-
ther by eliminating compositionality or preventing kernel functions
from closing over their environments.

The hoisting technique presented here is hardly novel, and is
not as general as the flattening transform, but it is simple to imple-
ment in an applicative array language like Barracuda: if a nested
array expression does not contain variables bound by reducing or
mapping functions, hoist the nested expression out and have it store
its result in a temporary, and replace the original nested expression
with a reference to the temporary. In the case of an array reduction
(which results in a scalar value), the cost of a temporary is virtually
free.

8. Experimental Results
I performed three experiments. First, I ran several benchmarks
comparing Barracuda-generated code to handwritten implementa-
tions to demonstrate the basic viability of Barracuda. Second, I
compared the run time of Barracuda-generated code with and with-
out array fusion to measure its performance impact. Finally, I com-
pared the run time of Barracuda-generated code with and without
shared memory optimization to measure its performance impact.

In all the benchmarks, only the computation time was measured,
not the time to copy data between main memory and device mem-
ory, as the copying costs would be the same for handwritten and
Barracuda implementations. All of the benchmarks were run on
a system with a quad-core Intel Q6600 CPU, 8 GB RAM, and a
GeForce 8800GT graphics card with 512 MB RAM, running 64-
bit Ubuntu Linux 10.04 and CUDA 3.2.

These benchmarks ran within microseconds even for large ar-
rays, which complicated measurement of execution time, as such
short runs approached the resolution of the timers available on the
system. To minimize this source of error and to get consistent mea-
surements, each benchmark was run repeatedly for thirty seconds,
with the number of runs recorded. Only the operation being timed
was executed within this loop; the requisite allocation and initial-
ization of arguments was done outside of the timing loop. The val-
ues for the input arguments were chosen pseudo-randomly. The to-
tal execution time of a benchmark was then divided by the number
of loop iterations performed to arrive at the average execution time.

The benchmarks that work with vectors were run with power-
of-two sizes. The benchmarks that work with matrices were run
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with square matrices with power-of-two dimensions. This was done
for simplicity and also because power-of-two vectors and matri-
ces satisfy the memory alignment properties necessary for good
CUDA performance without extra padding. Note, however, that the
Barracuda-generated code is not restricted to run with power-of-
two vectors or square matrices, but is general.

8.1 Basic Performance Measures
Operations from the BLAS library [Lawson et al. 1979] and Black-
Scholes option pricing are benchmarks that frequently appear in
work on systems for high-performance array computing (e.g., see
Lee et al. [2009] and Mainland and Morrisett [2010]), as they test
the basic viability of such systems. I compared the performance
of handwritten CUDA code provided in the CUDA SDK or the
cuBLAS library to that of Barracuda-generated code. The two
BLAS operations chosen were SAXPY and SDOT; SAXPY is
expressed as a vector map operation in Barracuda, and SDOT is
expressed as a vector reduction.

Results of these benchmarks are shown in Figure 3. In the
SAXPY benchmark, we see that the Barracuda version always
runs faster than the cuBLAS version, which is a surprising result.
A simple modification of Barracuda’s generated code to use the
same block and grid dimensions as the cuBLAS implementation
indicates that the differences in these factors are not the cause of
Barracuda’s superior performance. Without access to the cuBLAS
source code it is difficult to say conclusively, but it seems that the
cuBLAS implementation allows for non-unit stride in its vector
arguments and does not have a code path specialized unit stride.3

A Barracuda version of Black-Scholes option pricing was com-
pared to the implementation found in the CUDA 3.2 SDK ex-
amples. Black-Scholes option pricing is another example of an
element-wise vector transformation, but with a much more com-
plex and expensive function than SAXPY. This benchmark demon-
strates the viability of a high-level language for more realistic com-
putations that one would like to run on a graphics processor. We see
that once the vectors are large enough to warrant running on a GPU,
the performance of the Barracuda version is within five percent of
the handwritten version from the CUDA SDK.

The Black-Scholes benchmark points out a deficiency in Bar-
racuda: Barracuda programs are single expressions, and there are
no tuple types, meaning only a single result can be returned. The
handwritten version can evaluate both call and put option prices
within a single pass, and work can be shared between the two eval-
uations, i.e., it has two output vectors. Because only a single result
can be returned by Barracuda programs, one would have to call two
different Barracuda-generated procedures to evaluate both call and
put option prices, which would require two passes over the input
vectors and would eliminate the possibility of sharing intermediate
results. Barracuda could be made more generally usable by allow-
ing functions to return multiple results.

8.2 Impact of Array Fusion
To test the impact of array fusion, a benchmark from the RMSE
program of Figure 2 was created, both with and without array
fusion.4 The results are shown in Figure 4. We see a speedup of
three when the input vectors are large.

3 A Barracuda user could generate an implementation that used non-unit
stride by using Barracuda’s vector slicing capability, so long as the stride
was known at compile time.
4 Note that Barracuda always uses array fusion when generating code; the
non-fused version was synthesized by calling several Barracuda-generated
routines for the various nested subexpressions of RMSE.

8.3 Impact of Shared Memory Optimization
To test the impact of shared memory optimization, I ran three sten-
cil computation benchmarks: forward difference, a two-dimensional
Jacobi iterative solver, and a 15-point weighted moving average.
These three benchmarks all demonstrate the combined use of map
and slice array primitives, and all three result in output arrays that
are smaller than the inputs.5

Forward difference The forward difference function given in sec-
tion 5 was tested with and without shared memory. We see in the
results that once the vectors become large enough, the performance
of the shared memory version becomes several times faster than the
unoptimized version, and appears to approach a four times speedup
in the limit. One might expect the speedup of the shared mem-
ory version to approach two at the limit, because each element of
the vector (with the exception of the first and last) is read by two
threads. In this case, the use of shared memory facilitates memory
coalescing, and so fewer overall memory transactions are required,
explaining the greater-than-two speedup.

Weighted moving average Weighted moving average is a compli-
cated one-dimensional stencil operation. For this benchmark, the
example code from Figure 2 was given the weights for Spencer’s
15-point moving average.6 When the vectors become large, shared
memory optimization results in an eight times speedup.

Jacobi iteration stencil Solving a two-dimensional discretization
of Poisson’s equation is a more complicated demonstration of a
stencil computation than forward difference. We see from the re-
sults that when the matrices become large enough, use of shared
memory improves performance by roughly a factor of two.

9. Related Work
There have been many higher-level languages designed for pro-
gramming GPUs, most based on array programming or stream pro-
gramming. Brook is a C-like language that treats the GPU as a
stream processor [Buck et al. 2004]. Sh is a shader and stream pro-
gramming language embedded within C++, making heavy use of
the template mechanism and preprocessor [McCool et al. 2004].
Copperhead [Catanzaro et al. 2010] is a system for Python that
compiles a subset of Python code to GPU code, in particular vari-
ous vector primitives such as map and reduce.

Most similar to Barracuda are array languages embedded within
Haskell. Accelerate [Lee et al. 2009] provides an imperative array
language and an online compiler targeting CUDA. Accelerate of-
fers a richer set of primitives and supported types than Barracuda;
in particular, product types and the prefix scan primitive are sup-
ported. Accelerate disallows expression of nested data-parallel pro-
grams by giving its parallel array primitives monadic result type,
and hence making them non-compositional. Nikola [Mainland and
Morrisett 2010] is an applicative array language and online com-
piler targeting CUDA. Nikola demonstrates how more Haskell lan-
guage constructs, such as function application and let-expressions,
can be used to denote object language constructs. Array fusion
is not discussed in either the work on Accelerate or the work on
Nikola, and neither of these systems hoist nested array expressions.

There is little work on automatic use of GPU shared memory
cache; none of the other systems described here implement the
shared memory optimization described in this paper. Silberstein
et al. [2008] described dynamic spatial and temporal caching us-
ing shared memory, implemented in software, whereas the shared
memory optimization described in this paper is entirely static.

5 For discussion of how in-place array updates are made possible in Bar-
racuda, see Appendix B.2.
6 -3, -6, -5, 3, 21, 46, 67, 74, 67, 46, 21, 3, -5, -6, and -3.
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Figure 3. Performance measures of Barracuda programs. Benchmarks are from Lee et al. [2009], Mainland and Morrisett [2010], and
Lawson et al. [1979]. Only computation time on the GPU was measured, not the time needed to copy data to and from the GPU. The left
graph shows the absolute run times for the Barracuda versions, and the corresponding cuBLAS or CUDA SDK versions; the performance of
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on the right, showing that on all benchmarks, Barracuda performs within 5% of hand-written code. On SAXPY, Barracuda is 5–20% faster.
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10. Conclusion
This paper has shown that using a high-level, applicative, compo-
sitional array programming language can hide most of the com-
plexity of GPU programming, yet can have performance com-
petitive with handwritten code. This paper described three sim-
ple optimizations—shared memory optimization, array fusion, and
hoisting of nested array expressions—and showed that the former
two can result in large speedups. Finally, in virtue of the language
being applicative and compositional, these optimizations are sim-
ple to implement, requiring almost no analysis.

10.1 Challenges for Embedded Languages
The experience of embedding a language within Haskell caused
me to run into two difficulties. First, when deeply embedding a lan-
guage within another, one would like to have natural, lightweight
concrete syntax for the embedded language. Haskell makes a pleas-
ant metalanguage, as it supports definition of new infix operators
and overloading through type classes, but it would be beneficial
if more Haskell language constructs could be overloaded, such as
conditional expressions, let-expressions, and lambda expressions.

It is difficult to enforce complex static semantics of an object
language statically in the metalanguage. For example, it might be
desirable to statically guarantee against expression of non-hoistable
nested data parallel functions in Barracuda. Although a metalan-
guage with a more expressive type system (e.g., full dependent
types) could allow embedding of more complicated semantics of an
object language, it would be a great boon if such semantics could
be expressed in a more explicit way than through the type system
of the metalanguage.

10.2 Future Work
Barracuda is a limited language. It is sufficiently expressive to de-
scribe certain element-wise transformations on arrays and matri-
ces, but is unable to express operations like matrix multiplication
and sorting in a single function. A more generally useful embed-
ded array language would feature more array primitives, such as
scan operations, which alone can be used to express many realis-
tic data-parallel algorithms [Blelloch 1989]. The expressiveness of
Barracuda could further be improved by allowing multiple results
to be returned from functions. Furthermore, the language could be
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made more reusable by adding rank polymorphism [Keller et al.
2010], e.g., so that array map could be used to express element-
wise operations on arrays of arbitrary dimensionality.

Barracuda is designed to be used as an offline compiler for gen-
erating code to be used in a performance-oriented C++ application.
It would be advantageous if Barracuda could also be used to ac-
cess a graphics processor entirely from within Haskell as an online
compiler, as both Accelerate [Lee et al. 2009] and Nikola [Main-
land and Morrisett 2010] allow.

The fusion technique used in Barracuda is simple. More pow-
erful, sophisticated techniques for data structure fusion have been
developed [Coutts et al. 2007; Gill et al. 1993], which would be im-
portant in a richer array language where the simple fusion scheme
presented here would be insufficient.

There are several ways in which the generated code could be im-
proved, for instance, through the elimination of unnecessary array
bounds checking and through specialization of kernels for arrays
of certain lengths. Such techniques could improve performance of
generated code even further.

Finally, a more useful array-centric language might have mul-
tiple targets, e.g., multicore CPUs, GPUs, the Cell processor, and
other high-performance architectures.
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A. Embedding Barracuda
A.1 Language Representation
Barracuda is an embedded domain-specific language (EDSL) in
Haskell. It is deeply embedded, meaning that a programmer writes
Haskell code that constructs abstract syntax trees. These abstract
syntax trees are manipulated and eventually compiled into GPU
code. Although the metalanguage limits the choice of concrete
syntax, Haskell’s overloading and the ability to define new infix
operators helps keep the syntax overhead low.

Barracuda functions are represented as Haskell functions op-
erating on the abstract syntax tree (AST) types shown in Fig-
ures 6 and 7. The type constructors SExp, VExp, and MExp represent
scalar, vector, and matrix expressions. The allowed element types
of such expressions (i.e., Float, Int, and Bool) are instances of
the class Scalar. These types are generalized algebraic data types,
carefully defined so that ill-typed Barracuda programs are ill-typed
Haskell programs, making ill-typed Barracuda programs impossi-
ble to construct [Cheney and Hinze 2003; Xi et al. 2003], which
simplifies parts of the compiler implementation.

A.2 Smart Constructors
A Barracuda programmer does not construct ASTs directly, but
instead uses smart constructors, i.e., Haskell functions that may
perform some computation to construct values of a data type. In
many cases, the smart constructors have both the same type and
name as their corresponding AST constructors, shown in Figures 6
and 7, but lowercase instead of uppercase. In other cases, such
as with arithmetic operations, the smart constructors are suitably
overloaded so that syntactic overhead is low. For instance, numeric
scalar expressions types in Barracuda are instances of the appropri-
ate numeric Haskell type classes, allowing the normal arithmetic
functions to be used to construct Barracuda program fragments.
This overloading approach is frequently taken when deeply em-
bedding languages within Haskell. Following Elliott et al. [2003],
the smart constructors perform optimizations from the bottom up,
including constant folding and algebraic simplifications.

Barracuda functions are represented using higher-order abstract
syntax [Pfenning and Elliott 1988]. This permits the use of func-
tions in the metalanguage (Haskell) to represent functions in the
object language (Barracuda), allowing reuse of the metalanguage’s
name binding mechanism. In particular, in Barracuda, the con-
structors representing let-expressions, reduction, and mapping use
Haskell functions in their representation.

-- allowed scalar types
class (Ord a, Show a, Typeable a) => Scalar a where

... -- methods omitted

type Id = String
type Reducer a = SExp a -> SExp a -> SExp a

-- scalar expressions
data SExp :: * -> * where

-- scalar constants
SCFloat :: Float -> SExp Float
...
-- primitive operations
SFAdd :: SExp Float -> SExp Float -> SExp Float
SFMul :: SExp Float -> SExp Float -> SExp Float
VIdx :: (Scalar a) => Id -> SExp Int -> SExp a
...
-- let-expressions
SLet :: (Scalar a, Scalar b)

=> SExp a -- expr. to bind
-> (SExp a -> SExp b) -- body
-> SExp b

...
-- reductions
VReduce :: (Scalar a)

=> Reducer a -- reducing function
-> SExp a -- initial value
-> VExp a -- vector to reduce
-> SExp a

...

Figure 6. The representation of scalar expressions.

-- slice descriptors
data VSliceD = ... -- definition omitted
data MSliceD = ... -- definition omitted

-- vector expressions
data VExp :: * -> * where

-- vector slices
VSlice :: (Scalar a) => VSliceD -> Id -> VExp a
-- array map expressions
VMap :: (Scalar a, Scalar b)

=> (SExp a -> SExp b)
-> VExp a
-> VExp b

...

-- matrix expressions
data MExp :: * -> * where

-- matrix slices
MSlice :: (Scalar a) => MSliceD -> Id -> MExp a
-- matrix map expressions
MMap :: (Scalar a, Scalar b)

=> (SExp a -> SExp b)
-> MExp a
-> MExp b

...

Figure 7. The representation of vector and matrix expressions.
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A.3 Explicit Sharing
In order to avoid redundant computation of expressions, it is neces-
sary for Barracuda to have a notion of sharing. Consider a function
that squares its argument:

square :: (Num a) => a -> a
square x = x * x

When applied to a Barracuda expression, this Haskell function will
result in code duplication. Consider:

addOneSquare :: SExp Float -> SExp Float
addOneSquare x = square (x + 1)

Although in the metalanguage the result of x + 1 will be shared
when used with square, the representation in the object language
lacks this sharing. The following AST results from addOneSquare:

\x -> SFMul (SFAdd x (SCFloat 1.0))
(SFAdd x (SCFloat 1.0))

Essentially, function application in Haskell acts as macro expansion
in Barracuda. This can be problematic in complicated functions, as
it results in too much inlining. What is needed is that sharing be
explicit in Barracuda. To allow this, rather than recovering sharing
using a common subexpression elimination pass, the slet smart
constructor is used, which is a Barracuda let-expression for scalar
expressions. The type of slet matches its AST counterpart:

slet
:: (Scalar a, Scalar b)
=> SExp a -- expression to bind
-> (SExp a -> SExp b) -- body
-> SExp b

This construct indicates that its first argument is to be computed
once and referenced potentially multiple times within the body (a
higher-order function). Using this construct, one could write a new
version of addOneSquare that will not result in code duplication:

square’ :: (Num a, Scalar a) => SExp a -> SExp a
square’ x = slet x (\x’ -> x’ * x’)

addOneSquare’ :: SExp Float -> SExp Float
addOneSquare’ x = square’ (x + 1)

The Barracuda AST resulting from addOneSquare’ is

\x -> SLet (SFAdd x (SCFloat 1.0))
(\x’ -> SFMul x’ x’)

This lacks the duplication found in the previous implementation.
Writing functions using slet to indicate sharing in the object lan-
guage adds syntactic noise, but is crucial for generating reasonable
code for complicated functions.

A.4 Specifying Names in the Generated Code
The Barracuda compiler can generate CUDA procedures for Bar-
racuda expressions (i.e., values of type SExp a, VExp a, or MExp
a, where a is one of the allowed element types), and for Haskell
functions taking a Barracuda expression and returning something
that can be compiled. In other words, Haskell values of type

T1E1 → . . .→ TnEn

where each Ti is one of the type constructors SExp, VExp, or MExp,
and each Ei is one of the allowed element types, can be compiled
into CUDA procedures. The Haskell types that can be compiled are
instances of the Compilable type class.

Because Barracuda generates code meant to be called directly
by a C++ programmer, it is important that the generated proce-
dures and their arguments have meaningful names. This is done

by annotating Barracuda functions with name information via the
Function data type:

data Function :: * where
Function

:: (Compilable a)
=> a -- a Barracuda function
-> String -- function name
-> [String] -- input names
-> String -- output name
-> Function

Function is a GADT that takes something the Barracuda compiler
can handle and annotates it with name information to be used in the
generated code.

B. Compilation Details
B.1 Lambda Lifting
A function in Barracuda closes over its lexical environment. For
instance, consider a Barracuda function that adds a given scalar
value to each element of an array:

addVal :: SExp Float -> VExp Float -> VExp Float
addVal x xs = vmap (\y -> x + y) xs

The mapping function \y -> x + y contains the closed-over vari-
able x; in other words, x occurs free in the mapping function. This
presents a challenge for compilation, as CUDA has no notion of
closures. Lambda lifting [Johnsson 1985] is used to transform the
mapping and reducing functions in Barracuda—which may con-
tain closed-over variables—into corresponding functions with no
closed-over variables. Applying this to the addVal function above,
the kernel generated for the mapping function takes x as an addi-
tional argument that must be passed in with the x from the environ-
ment where the kernel is used.

B.2 In-place Array Updates
In high-performance array computing it is important that subsec-
tions of arrays can be updated in-place. However, Barracuda is an
applicative language without assignment, which seems at odds with
this requirement. The solution is simple: for array and matrix out-
puts, pass a view, or a runtime representation of an array or matrix
slice, instead of an array or matrix itself. view is responsible for
translating indexes into the appropriate indexes of the viewed ar-
ray or matrix. Consider the Barracuda function that doubles each
element of an array:

doubleArr :: VExp Float -> VExp Float
doubleArr xs = vmap (\x -> x * x) xs

This will be compiled into a C++ procedure with signature

void doubleArr (const gpu_vector<float> &xs,
gpu_vector_view<float> &output);

The output argument is a reference of type gpu vector view<float>
rather a reference of type gpu vector<float>. The caller of this
procedure could then specify that the output array is a sub-array of
another using the view function from Barracuda’s runtime, e.g.,

gpu_vector<float> arr1;
gpu_vector<float> arr2;
...
doubleArr(arr1, view(arr2, 10, 100));

This use of view would write the results of doubling arr1 into
arr2 from locations 10 to 100. If no slicing of the output array
is desired, the caller need not use view, but could instead sim-
ply pass arr2, as a gpu vector<T> will be implicitly cast to a
gpu vector view<T>.
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