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Abstract 

The problems involved in developing &cient parallel pro- 
grams have proved harder than those in deveioping &- 
cient sequential ones, both for programmers and for com- 
pilers. Although program calculation has been found to be 
a promising way to solve these problems in the sequential 
world, we believe that it needs much more effort to study 
its effective use in the parallel world. In this paper, we pro- 
pose a calcuiirtionniframework for the derivation of efficient 
parallel programs with two main innovations: . 

l We propose a novel inductive synthesis lemma based 
on which an elementary but powerful parallelization 
theorem is developed. 

l We make the first attempt to construct a calculational 
algorithm for parallelization, deriving associative op- 
erators from data type definition and making full use 
of existing fusion and tupling calculations. 

Being more constructive, our method is not only helpful 
in the design of efficient parallel programs in general but 
also promising in the construction of parallelizing compiler. 
Several interesting examples are used for illustration. 

1 Introduction 

Consider a language recognition problem for determining 
whether the brackets ‘(, and ‘)’ in a given string are car- 
rectly matched. This problem has a straightforward linear 
sequential algorithm, in which the string is examined from 
left to right. A counter is initialized to 0, and increased or 
decreased as opening and closing brackets are encountered. 

sbp x = sbp’ x0 
SW II = 0 
sbp’ {a : x) c 1 Glz= ‘(, then sbp’ z [c + 1) 

eIse if a == ‘>’ then 
c>o A sbp’x(c-1) 

else sbp’ 2 c. 
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It is, however, quite difficult to write a parallel program 
lie those in pSS91, Co1951 whose algorithms are actually 
non-triviaI. 

Our work on parallelization in calculational forms is mo- 
tivated by the successful application of program calculation 
to the optimization of sequential programs. Program cnku- 
lation is a kind of transformational programming approach 
[DarSl] to program construction, in which a clear and under- 
standable but may be terribly inefliclent program is succcs- 
sively transformed into more and more efficient versions by 
means of equationa reasoning in Bird-Me&ens Formalisms 
(BMF) [BirS7, Bir89, Mal89, Bac89, Fok92]. BMF, also 
known as constructive algorithm@ was first proposed as 
the theory of Iists [Bir87], and was then extended to bo a 
general theory of datatypes. It has proved to be very use- 
ful not onIy in deriving various kinds of efficient sequential 
programs [G&92, dM92, Jeu93], but also in constructing op- 
timization passes of compilers [GLJSS, SF93, TM95, HITBG, 
OHIT97, HITT97j. Its success owes much to its concise de- 
scription of transformation algorithms and its strong thco- 
retical foundation based on category theory. 

We do believe that it is both worthwhile and challenging 
to apply the calculational approach in a practical way to 
develop efficient pamlkl programs as well as to construct 
pora&%zzing compilers. Different from the previous studies, 
this work attains several new characteristics. 

0 Mukiflg the BMF paraZfeZ model more practical. 
Many studies have been devoted to showing that BMF 
is a good parallel computation model and a suitable 
parallel programming language (SkiSO, Skiglib]. To on- 
able extraction of parallelism, programs are expected 
to be written in terms of a small fix set of spcciflc 
higher-order functions, such as map and reduction, 
These higher-order functions enjoy useful manipu!a- 
tionproperties for program transformation [Bir87j and 
are suitable for parallel implementation [Ski92, SkiSlaj. 
However, it is not practical to force programmers to 
write programs this way. In contrast, our paralleliza- 
tion will target general recursive programs. 

l Enriching calcuiational laws and theorems for paralleli- 
zation. 
BMF provides a general theory for program cahh- 
tion, which should be specialized with respect to dif- 
ferent application fields, e.g., dynamic programming 



[dM92], circuit design [X390], and optimization of func- 
tional programs [TM95, HIT96, HITT97]. In each spe- 
cialization, new laws and theorems need to be devel- 
oped in order to handle specific problems. However, in 
the field of parullelfzution (i.e., development of eflicient 
parallel program) [GDH96, Gor96a, Gor96b], there is 
a lack of powerful parallelization laws and theorems, 
which greatly limits its scope. Our calculational frame- 
work should remedy this situation. 

In this paper, we shall report our first attempt to con- 
struct a udculattional framework specifically for paralleliza- 
tion. Our main contributions are as follows. 

l We propose a novel inductive synthesis lemma in which 
two well-known synthesis techniques, namely gened- 
ization and induction, are elegantly embedded. Based 
on it, we develop an elementary, but general calcu- 
lational theorem for parallelization (Section 4). By 
elementary, we mean that it contributes to the core 
transformations in our parallelization algorithm; and 
by general, we mean that it is more powerful than 
all the previous laws and theorems [Ski92, GDH96, 
Gor96a, GorSGb] and thus can be applied to synthesize 
many interesting parallel programs (as demonstrated 
in Section 4). Moreover, this theorem can be directly 
implemented by way of simple symbolic manipulation. 

l We propose a systematic and constructive paralleliza- 
tion algorithm (Section 5) for the derivation of par- 
allel programs. It can be applied to a wide class of 
general programs covering all primitive recursive func- 
tions with which almost all algorithms of interest can 
be described. Two distinguishing points of our al- 
gorithm are its constructive way of deriving associa- 
tive/distributive operators from algebraic datatypes, 
and the effective use of the fusion and tupling calcula- 
tion in the parallelizing process- 

* Our parallelization algorithm is given in a calculational 
way like those in [OHIT97, HITT97]. Therefore, it 
preserves the advantages of transformation in calcu- 
lational form; being correct and guaranteed to termi- 
nate. In addition, it can be naturally generalized to 

, programs over other linear algebraic datatypes rather 
than only lists as used in this paper. It is not only 
helpfu1 in the design of efficient parallel programs but 
also promising in the construction of paralleliiation 
systems. 

The organization of this paper is as follows. In Section 
2, we review the notational conventions and some basic con- 
cepts used in thii paper. After making clear the paralleli- 
zation problem in Section 3, we propose our new synthesis 
lemma from which several basic parallelization laws and the 
parallelization theorem are derived in Section 4. We pro- 
pose our parallelization algorithm in Section 5, and highlight 
some future work in Section 6. Related work and conclusion 
are given in Section 7. 

2 BMF and Parallel Computation 

In this section, we briefly review the notational conventions 
and some basic concepts in BMF [Bir87], and point out some 
related results which will be used in the rest of this paper. 
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In order to simpliiy our presentation, we will not formu- 
late our calculational idea in terms of the general theory of 
constructive algorithm&x as we did in [HIT96, HIT971 (see 
Section 6 for some related discussion.) Rather, we illustrate 
our idea using the theory of lists. 

2.1 Functions 

Function application is denoted by a space and the argu- 
ment which may be written without brackets- Thus f a 
means f(o). Functions are curried, and application asso- 
ciates to the left. Thus f a b means (f a) b. Function ap- 
plication binds stronger than any other operator, so f a @ b 
means (fa) 8 b, but not f (a 0 b). Function composition 
is denoted by a centralized circle 0. By definition, we have 
(f oda= f (g a). Function composition is an associative 
operator, and the identity function is denoted by id. 

In&r binary operators will often be denoted by @, @ and 
can be sectioned; an infix binary operator like @ can be 
turned into unary functions by 

(a@)b=a@b=(Ob)a. 

The projection function zi selects the ith component of 
tuples, e.g., zr (a,b) = a. Also, A is a binary operator on 
tuples, defined by 

(fAda=(fa,g4. 
Lastly, fr A - - - A f,, is abbreviated to Affi. 

2.2 Lists 

The liit datatype dominates our daily programming. Lists 
are finite sequences of values of the same type. There are 
two basic views of lists. 

l Parallel view of lists. A list is either empty, a singleton, 
or a concatenation of two lists. We write [] for the 
empty lit, [a] for the singleton list with element a, 
and z-l-l-y for the concatenation of z and y. Lists in 
the parallel view are also called uppend (or join) lists. 

l SequentiaI view of lisk;. A list is either empty [I, or 
is constructed by au element a and a list z by the 
constructor : which is denoted by a : z. Lists in this 
sequential view are also called cons lists. 

Concatenation is associative, and [] is its unit. For ex- 
ample, the term [l] ft[2] ++ [3] denotes a list with three 
elements, often abbreviated to [l, 2,3]. In addition, we write 
a : z for [a] -l-l-z, and vice versa. 

2.3 Homomorphisms, Mutumorphism, and Paral- 
lel Computational Model 

List homomorphisms (or homomorphisms for short) [Bin871 
are those functions on finite lists that promote through list 
concatenation, as precisely delined below. 

Defbition 1 (List Homomorphism) A function h satis- 
fying the following equations is called a list homomorphism: 

h [al = ka 
h w+Y) = hz@hy 

where @ is au associcrtive bmary operator. We write ah,@ 
for the unique function h. cl 

i 

I 



For example, the function s2con, for summing up all el- 
ements in a list, can be defined as a hom0morphism of 
aid,+& Two important homomorphisms are map and rc- 
duction, Map is the operator which applies a function to 
every eIement in a list: It is written as an in&r *. Infor- 
mally, we have 

k*[zr,zs ,+.., zn]=[kzl,kza,-.., ?=,I. 

Reduction is the operator which collapses a lit into a single 
value by repeated application of some binary operator. It is 
written as au infix /. Informally, for an associative binary 
operator @, we have 

@/[x1,22,..., xn]=x1cT3x*a3..*cr3xn. 

It has been argued that * and / have simple massively par- 
allel implementations on many architectures [Ski90]. For 
example, @/ can be computed in parallei on a tree-like struc- 
ture with the combining operator @ applied in the nodes, 
while k* is computed in parallel with k applied to each of 
the leaves. 

The reIevance of homomorphisms to parallel program- 
ming is basically from the homomorphism lemma {EM?]: 
Qk, @D = (@/) o (k*), saying that every list homomorphism 
can be written as the composition of a reduction and a map. 
One can also observe that homomorphisms express the well- 
known divide-and-conquer parallel paradigm. More detailed 
studies can be found in ISki92, GDH96, Co1951 on showing 
why homomorphisms are a good characterization of parallel 
computational modeIs and can be effectively implemented 
on modern parallel architectures. 

It follows that if we &n derive list homomorphisms, then 
we can get corresponding parallel programs. Unfortunately, 
there remains a major problem; a lot of interesting list func- 
tions are not homomorphisms themselves because there ex- 
ists no appropriate operator @ [Co195]. To solve thii prob- 
lem, Cole proposed the idea of a near homomorphism, the 
composition of a projection function and a homomorphism. 
Following Cole’s idea and using the result in pT9?, HITT97], 

I we shall choose list mutvmorphisms [Fok92] as our parallel 
computation model. 

Definition 2 (List Mutmnorphisms) The fnncti~n~ k, 
. . ., h,, are called list mutumorphisms (or mutumorphLms 
for short) if they are mutually defined in the following way: 

4 bl = kja 
hj (&f-y) = ((Ai%) 4 @j (W’hi) d- 

Particularly, a single function, say hi, is said to be a list mu- 
tumorphism, if there exist a set of functions hr, . . ., hi-r, 
hi+1, . . . . h, which together with hi satisfy the above equa- 
tionaI form. q  

Compared to homomorphisms, mutumorphisms provide 
a better characterization of a parallel computational model. 

l Mutnmorphisms win over homomorphisms because of 
their more powerful descriptive power. They are con- 
sidered as the most general recursive functions defined 
in an inductive manner iFok92], being capabIe of de- 
scribing most interesting functions. 

l Mutumorphisms enjoy many useful manipulation prop- 
erties for program transformation. Particularly, they 

can be automaticalIy turned into efficient homomor- 
phisms via the following tupling calculation (see Sec- 
tion 4.2.2 for an example). Therefore, they possess a 
similar parallel property as homomorphisms. 

Theorem 1 (‘Tupling [HIT97]) Let hi,. . , ,h,, be mutu- 
morphisms as defined in Definition 2. Then, 

It then follows from the theorem that any mutumorphism 
h can be, transformed to be a composition of a projection 
function and a homomorphism, i.e., 

hj = nj 0 QA;ki, A;@iD. 

3 ParalIeIization Problem 

Before addressing our calculational framework for parallcli- 
zation, we should be more specific about the parallelization 
problem we would like to resolve in this paper. 

Recall that in the process of program calculation to ob- 
tain efficient sequential programs, we start with a naiva and 
concise program krithout concern for its efficiency and then 
transform it into more and more efficient program by equa- 
tional reasoning. Similarly, in the process of program calcu- 
lation to parallelize programs, we should start with a naive 
and concise program without concern for its parallelism and 
then transform it into a parallel version. 

Specifically, we would like to start with a gcncral re- 
cursive program (see the definition of sbp, for an cxamplo) 
usually defined in the following form. 

The function f is inductively defined on lists, The dcfini- 
tion body is an expression probably containing occurrences 
of recursive call f 2, variable a, and even application of 
some other functions to 2. 3y looking at general functional 
programs iu Haskell [HpJWe92], we could find that most 
of the recursive functions over lists are defined in (or can 
be easily turned to) this form. Here we need not consider 
parallelism at all. In order to simplify our presentation, we 
shall mostly consider single recursive definitions rather than 
mutual ones {except for Section 4.2.4), and WC assume that 
recursive functions induct over a single parameter rather 
than multiple ones. To he precise, we give the following def- 
i&ion of our specification program (initial programs to bo 
paralleliied). 

Definition 3 (Specification) The programs to be pd- 
lelized are those that can be turned into the form 

f (u: x) = -m E[{ti)i=l 2 (93 X)%1 I (f &I 

where 

l E[] denotes an ezpressioon eoni& with three groups 
of holes (). It contains no occurrence of o, x and f+ 

l (ti>fl denotes a group of m holes being filled with m 
terms tr,..., tm respectively. It is allowed to contain 

occurrences of a, but not those of x. 



-. 

l (a x)& denotes a group of n holes being filled with 
n function applications, q1 x, . . . , qn x, where a’s are 
mutumorphisms (paralleliied functions). 

l (f x)f denotes a group of k holes each being filled with 
the same term f x. cl 

Clearly, this sort of specification is quite general and can 
describe most interesting algorithms. In fact, it can de&e 
all primitive recursive functions [Mee92]. The essential r+ 
striction we imposed on the specification is that the psram- 
eter to each recursive call to f in the RIB should be x. In 
other words we allow f x, but we do not allow any compu- 
tation on the argument off, e.g., f (2 : z). Several remarks 
should be made here. 

l Our specification programs need not be given in terms 
of a context; rather they are general programs like sbp 
given in the introduction. ?Ve only require the exis- 
tence of an expression context, which usually can be 
obtained in a simple way. The following is an example 
of sbp in terms of a context: 

sbp’ (a : x) = E[(u == ‘(‘, a == ‘)‘), 

&‘pr x, sbp’z, sbp’x)] 

where the context E is defined by 

Jwl, t2), 0, (fl, fz,f3)1 
= Xc. if tr then fr (c + 1) 

else (if tz then c > 0 A jz (c - 1) else fs c). 

l For a given program, there may exist many different 
potential contexts. As will become clear later, it is of 
great importance in our parallehzation framework to 
derive a proper one from the program. This may in- 
volve some normalizing transformation on the program 
prior to a context extraction. 

l We have omitted the base equation for the definition 
of f in Definition 3: 

f[l=e 

where e is an expression without occurrence of f. For 
brevity, we shah even omit it in the rest of the paper. 

Our parallelization problem turns out to be equivalent 
to calculate a new parallel version for f in Definition 3. 
According to the discussion in Section 2, we know that mu- 
tumorphiims can be considered ss a good characterization 
of parallel computations. We thus want this parallel version 
off to be in a mutumorphic form, i.e., 

f (x-l-l-y) = -** f x --- f y ---. 

4 Calculational Laws and Theorem for Paralleliia- 
tion 

In this section, we f&t propose a new synthesis lemma in 
which two well-known synthesis techniques, namely geneml- 
i&ion and induction, are well embedded. Then, based on 
the synthesis lemma we develop several parallelizing laws 
and conclude with our parallelization theorem. All of them 
are the basis of our parallelization algorithm as discussed in 
Section 5. 

4.1 Synthesis Lemma 

Parallelizing f in this paper means to derive a mutumor- 
phism for f. To this end, we shall propose our synthesis 
lemma, which neatly combines two known synthesis tech- 
niques, namely generalization and induction, which have 
been proven to be very useful in [CTT97]. 

Lemma 2 (Synthesis) Given is a specification program 

whose context E[] satisfies the fusibfe property with respect 
to the q/s, f and x, if there exist terms t;, . . . , t& such that 
for any Ai’s, Bi’s and y we have 

Then we can obtain the following parallel version. For any 
nonempty x’, _ 

f (x’ +tx) = E[(Gix’)L (G X))~zla (f x):] (2) 

where the new functions Gr , . . - , G, are defined by’ 

G [al = ti 
Gi (x; ft $) = t:[(Ai c) Gi X;&I 

(B; I-) Gi x&)&, 

y ‘+= 41 

Proof. We prove (2) by induction on the nonempty list x’. 

l Base Case [a]. This is established by the following 
cakxdation. 

f (~‘+-I-4 
= { Assumption: d = [a] } 

f (bl +w = ( Equation (I) } 
E[(ti)El r (S X)&I I If &I 

= 
( Definition of Gi } 

E[(G [al)L (e- x&l, (f &I 
= { Since d = [u] } 

E[(Gi X’)% 3 (e XI& (f x)fI 

“we me t[z I+ y] to denote a tern obtained from t with 41 occur- 
rences of 2 being replaced by y. 
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The synthesis lemma tells us that a recursive definition 
whose expression context satisfies the fusible property can be 
paralleiized to a mutumorphic form of Equation {2J2. The 
fusible property is empIoyed to guarantee that unfolding the 
functions qj and f in a fusible context should only change 
the holes’ contents while preserving the context structure. 
Thii lemma is motivated by the paralleiizing procedure de- 
scribed in [CTT971, but it has two distinguishing features. 
Fist, it does not rely on comparison of functions which is 
unavoidable in [CTT97]. We achieve this by induction di- 
rectly on append lists ([u] and xi -H-X;) rather than on cons 
lists ([f and a : x). Second, it is formal and precise, which 
is in sharp contrast to the previous informal study. This 
makes it possible to construct our calculational framework 
for parallelization. 

To see a simple use of thii lemma, consider the function 
length, computing the length of a list, 

length (a : x) = 1+ length x. 

It can be expressed using a context as _ 

h ERA), 0, W@% 0, (f 41 = E[(A f W,(L (f x>I 6% 
E[ j meets the fusible condition), it follows from the synthesis 
lemma, after expansion of the context, that we obtain the 
following mutumorphic definitions. 

length (x’ +-x) = G1 x’ + length x 
G1 14 = 1 
GI (4 +I-& = Glx;+Glx; 

It should be noted that we can go further to make this 
result more efficient {although this improvement is beyond 
parallelization itself) if we adopt syntactical comparison of 
function definitions to check if the new functions are equiv- 
alent to known fundions being parallelized and thus reduce 
the number of newly introduced functions. A simple check 

2This can be seen from the definition of mutumorphism where we 
may choose f, 41, . . ., qn, G1, . . ., G, to be the Si’s. 

(which compares both the base and induction equations) 
confums that G1 = length, showing that C% can be replaced 
by length and hence can be removed safely. An alternative 
way is to put off this syntactic comparison until after tupling 
transformation, as we will see for scan’ in Section 5. 

4.2 Deriving Laws and Theorem for Parallelization 

Most previous studies on parallelizatian by program trans- 
formation [GDHSG, Bra941 are essentially based on the fol- 
lowing calculational law3: 

f (a : 2) = f [u] @ f z, $ is associativo~ 
f (x’ +l-x) = f 2’ @ f 2 

However, in the present form, this law is restricted in scope 
and has rather limited use in practice. We shall extend it 
in several ways making use of our synthesis lemma, In tho 
following, after proposing several typical extensions of the 
Bird’s law, we conclude with a general theorem. 

4.2.1 First Extension 

Notice that in the F&IS of the given definition off the x is 
not allowed to be accessed by other functions except f, So 
our first extension is to remove this restriction. 

Lemma 3 (Primitive Form) Given is a program 

f(a:x) = ga(qx)@f 2 

where 8 denotes an associative binary operator and q is a 
homomorphism a&, &I. Then, for any non-empty lists 2’ 
and x, we have 

f (x’*x) = G x’ (q 2) CD f x 

where G is a function defined by 

G I4 = ga 
G(x:+-xi) = Xz.{Gxc: {qx;c:e,z)@Gxc: z) 

Proof Sketch. Notice that 

where 

E[] is fusible w.r.t. q, f and 2, because 

Therefore, this lemma follows from the synthesis lemma. Cl 

4.2.2 Second Extension 

Our second extension is to allow the specification program 
f to use an accumulating pammeter. 

3Note we do not think that the third homomorphism theorem 
[Gib96] is a calculational law, because it tells the cxistcnco of a par- 
allel program but does not address how to calculnte thorn. Moro 
discussion can be found in Section 7. 

320 



Lemma 4 (Accumulation) Given is a program 

f (a : 2) c = g1a(qx)c 8 fz(g2acF3c) 

where 8 and @ are two associative binary operators, and 
q = f&r, $,,D. Then, for any non-empty lists 2’ and z, we 
have 

f(x’+l-x)c = GI x’ (qx) c@f x (G2 x’c’8c) 

where GI and Gz are functions defined by 

Gl [a] z c 
G1 (x: +I- x’z) z c 

= g1azc 
= GI x; (q x; cup z) c d 

G2 [QJ 
G1x;z(G2x;@c) 

Gz (x: -H-X;) 
= g2a 
= G:!x;E)ZGG~X~ 

Proof Sketch. First we move the accumulating parameter 
from LHS to ItHS by means of a lambda abstraction, i.e., 

f(u:~)==c.~g1Q(qx)cc~f(g2a~c)) 

Then we define a fusible expression context by 

E[(ti)Ll, {ql)*(fl)] = AC-(tlqlC@fl (t2 8C)) 

such that 

f (Q : 4 = %?i QL (4 4, If 41. 
Now, it is not difficult to verify that E[] is fusible and thus 
the synthesis lemma can be applied. Cl 

Before going on with other extensions, we pause with a 
more concrete use of this lemma. Consider the sbp problem 
given in the introduction. Normalizing the if-structures in 
the definition [CDGSG] gives (omitting initial equation) 

sbp’ (a : x) c = (if a == ‘(’ then !I%ue 
ekeifa==‘)‘thenc>Oelse Z+ue) 
A 
sbp’ x ((if a == ‘(, then 1 
else if a == ‘)’ then - 1 else 0) + c). 

In order to use the lemma, we introduce two functions gr 
and g2 to abstract two subexpressions. 

sbp’ (a : Z) c = g1 a C A sbp' x(92 a+c) 
91 a C = if a == ‘(, then lhre 

92 Q 
= $s; if a == ‘)’ then c > 0 else tie 

== ‘() then 1 
else if a = ‘)’ then - 1 else 0 

It follows from Lemma 44 that 

sbp’ (d.+tx) c = GI x’ c A sbp’ x (G2 x’ + c) 

where 

GI [a] c = if a == ‘(’ then tie 
else if a == ‘)’ then c >: 0 
else !Zhe 

GI (x:-I+x:)c = 
~‘2 bl 

Glx:c A G~x;(Gzx;+c) 
= ifa==‘(‘thenl 

G2 (4 -H-X:) 
else if a == ‘)’ then (-1) else 0 

= G2x;+G2x; 

“Note that the auxiliary p z call can be made optional in both 
Lemma 3 and Lemma 4 when 2 does not appear outside of the recur- 
sive f call. This occurs for the sbp’ definition. 

Thii is the parallel version we aim to get in this paper, 
although it is currently inefficient because of multiple traver- 
sals of the same input lit by several functions. But this can 
be automatically improved by the tuplmg calculation as in- 
tensively studied in [Chi93, HITT97]. For instance, we can 
obtain the following program by tupling sbp’, Gl and G2. 

sbp’ x c 
iuP bl c 

= s where (s, gr , 92) = tup zc c 
= if a == ‘(, then 

(c-l-l ==O, The,l) 
else if a == ‘)’ then 

(c-l==O,c>O,-1) 

tup (x +i- Y) c 
else (c == 0, The,O) 

= let (G, gh, g2J = tup 2 c 
(SY> QlY 192Y) = tup Y (g2r + 4 

in (a= A sy, a2 A gly, a2 +gzy) 

It seems not so apparent that the above gives au effi- 
cient parallel program. Particularly, the second recursive 
call tup y (gz= + c) relies on gr2, an output from the first 
recursive call tup x c. Nevertheless, this version of tup can 
be effectively implemented in parallel on a multiple proces- 
sor system supporting bidirectional tree-like communication 
with G(logn) complexity where n denotes the length of the 
input list, by using a algorithm similar to that in @e89]. 
Two passes are employed; an upward pass in the compu- 
tation is used to compute the third component of tup x c 
before a downward pass is used to compute the first two 
values of the tuple. 

This example is taken from [CoI95], where only an in- 
formal and intuitive derivation was given. Although our 
derived program is a bit difFerem, it is as efficient as that in 
[Co195]. 

4.2.3 Third Extension 

The importance of conditimd structure in a definition has 
been highlighted in FG94, CDG96]. Our third extension is 
to ahow explicit conditional structure. 

Lemma 5 (Conditional) Given is a program 

f (a:~) = ifgla(qlx) thengza(q2x)Bfx 
else 93 a (q3 x) 

where @ denotes an associative binary operator, and 6; = 
a&fbi; iave or i = 1,2,3. Then, for any non-empty lists x’ 

1 

f (x’ +-l-z) = if GI 4 (qr x) then GZ x’ (qa z) @ f x 
else G3 x’ (qs x) 

where Gr , Ge and Gs are defined by 

Gr [a] z = graz 
2 fjz*4) z = Glx:(q~x:e,,z) A GIX;Z 

= g2az 
G2 (x;+f-x;)z = 
G3 14 z 

62 xi (qi x: 8q, z) aa G2 x; z 

6s (z; -l-l-xi) z 1 ?zfx: (91 x; erll z) then Gsxkz 
eke 63 4 (a S eq3 z) 

Proof Sketch. We can d&e f by 

f (Q : X) = E((gi Q)EI, (qiX)&l, (f z)] 
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where 

E{(t&, (Qi)&l , {fi)] 7 if TV qr then t2 q2 CB fi eke t3 43. 

The context E[] is fusible since 

where 

4.2.4 Fourth Extension 

So far we have considered linear recursions, i-e, recursions 
with a single recursive call in the de6nition body. In this 
section, we provide onr paralidization law for nonlinear I* 
cursions. For instance, the foIlowing Zfib is a tricky nonlinear 
recursion on lists, which computes the fibonacci number of 
the length of a given list, mimicking the fibonacci function 
on natural numbers. 

lfib[] = 1 
ljb (u : x) = lfib x + lfib’ x 
ifib’ [] = 0 
ZJW (a: x) = rfia x 

To handle nonlinear recursions properly, we make de of 
distributive and commutative properties. 

Lemma 6 {Multiple Recursive Calls) Assume that fi 
and fi are mutually recursive functions defined by 

fi g:g = 91 a I41 ~~@b~l@fl4~cPl2@3f2 4 

= g2n[Q2x)~ipzl~flx)~Ipz2~f2x) 

where 4; = a&;, @,,-D for i = I, 2, @ is associative end 
commutative, and @ is an associative operator which is dis- 
tributive over 63, i.e., for any x, y and Z, 

~y@*tYly, = (x @ Y> @ b @ 4 
.z x= (y 63 x) a3 (2 @ 4. 

Then, for any non-empty lists x’ and x, we have 

f2 (x'+tx) = G2x'{q24 @(G2ix'@ fix) 

e3 (Gzzx'@ f23 
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where 

G1 [a] 2‘ = 
GI (xi -i-M;) 2 = 

G2 [aI 2 = 
G2 (x~-H-4)~ = 

GII [a] = 
Glr {xi -H-x;) = 

G12 [a] = 
G,2 (2; -I-!-& = 

G21 [a] = 

G21 (xi +kx;> = 

G22 [a] = 

G22 (xi -H-x;) 2 = 

The proof of the lemma is omitted, which is not difficult 
using induction on the input of fl and f2. In fact, the 
calculational law in this lemma is synthesized using a natural 
extension of the synthesis lemma, from single contexts to 
mutual ones. This lemma can be easily generalized from 
two mutually recursive functions to n functions, On tho 
other hand, in case that fr and fs are the same, this lemma 
is specialized to deal with a single function whose definition 
body contains multiple occurrences of the recursive call. 

Let us use this theorem to parahelize the Ifib function. 
Noticing that @ = + and 8 = X, we get the following 
parallel program where Gr x z = Gs x z = 0. 

l$b [a] = 1 
ifib (2’ +I- x) = (Gil x’ x lj?b x) + (Gn x’ x ifib’ z) 

i$’ 8 +tx) : ii?21 x’ x lfib x) + (G22 x1 x IJib’ x) 

where 

GII t@] 
Gu (2; +-i&c;> 1 ;G,, x: x G11 xi) + 

(G12 x: x G21 xc’z> 

GIZ Ia3 
Gl2 (4 +t-41 1 ;GII a; x G22 xic:) -1- 

(Gl2 x: x G22 xi> 

GII 
G21 

G12 
G12 

4) + 
4) 

d> + 
4) 

This result can be mechanically transformed into an cffi- 
cient O(logn) parallel program by the tupling calculation 
@ITT97]. As an interesting side result, we have actually 
derived an O(logn) sequential algorithm for computing the 
standard fib function. This can be seen by first replacing 
all x, x’, xi, and xi in the program by their lengths rcspcc- 
tively, and then applying the tupling calculation (followed 
by even/odd case analysis). 



-_ 

4.2.5 Main Theorem 

We have demonstrated the key extensions together with the 
corresponding parallelizatiojl laws. And, we have simpli- 
fied our presentation in several ways. Fit, we discussed 
each extension almost independently; for exainple, the ac- 
cumulation parameter is not considered in Lemma 5 and 
6. Second, in all the lemmas, the f z are placed on the 
right side of EJ in the definition body. In fact, it can be 
put on the left side just by using a new associative operator 
x @’ y = y @ x, and it can even be put in the middle of two 
8, as in g1 a (ql EC) fB f x 93 g2 IL (qz 2). Taking all the 
above into consideration, we obtain a class of new recursive 
definitions that can be paralleliied. 

Theorem 7 (Parallelization) Let gi be any function, qi 
be a mutumorphism (say a&, &<D), @ be an associative 
operators. Then, we consider the folIowing definitions5 of a 
function f 

f (a:5) {c} = el@e28---8en 

where every ei is 

0 a non-recursive czpresion, i.e., 9i U (qi Z) {C); Or 

l a recursive call: f x (g a @ c} where g is a function 
and 0 is associative; or 

l a conditional ezpression wrapping recursive calls: if 
gil a (qil X) {c} then e; @ ei @ * - - 8 e’, else giz a (qiz 
x) {c}, where at least one e: is a recursive call and the 
others are non-recursive expressions. 

Functions of this form can be parallelized by calculation, 
provided (1) all occurrences of recursive calls to f are the 
same’, and (2) if there are two or more occurrences of f, 
then 0 should be commutative and there should exist an 
associative operator 8 (with the unit I@> which is distribu- 
tive over 8. cl 

This theorem summarizes a sufficient condition for a re- 
cursive definition to be parallelized. We will omit the proof 
(which is based on the lemmas in this section), but shall 
show how it will be used practically in the next section. 

5 Parallelization Algorithm 

Having given our parallelization theorem, we shall propose 
our parallelization algorithm, making it clear how to recog- 
nize associative and distributive operators in a program and 
how to transform a general program so that the paralleliza- 
tion theorem can be applied. 

5.1 Recognizing Associative and Distributive Op- 
erators 

Central to our paralleIization laws and theorem is the use of 
associativity of a binary operator @ and distributive oper- 
ator 8. Therefore we must be able to recognize them in a 

‘We use {c} in the definition off to denote that c is an option 
which may not appear. 

‘In the case of mutual-recursive functions, as seen in Lemma 6, we 
allow calls to f to be different but logically treat them simply as f 
cnlls. 
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program. There are several ways: limiting application scope 
by requiring all associative and distributive operators to be 
made explicit, e.g. in @?G94, CTT97], or adopting AI tech- 
niques lie anti-unification [Hei94] to synthesize them. All 
of them need human insights. 

Fortunately, we are able to constructively derive such 
associative operators from the resuIting type of the function 
to be parallelized! It is known [SF931 that every type R that 
has a zero constructor Cz (a constructor with no arguments 
lie [J for lists) has a function 8, which is associative and 
has the zero Cz for both a left and right identity. Such a 
function 8 is called zero replacement function, since x @ y 
means to replace all Cz in x with y. Here are two examples. 
For the type of cons lists, we have such a @ defined by 

[l@Y = Y 
(x:xs)f3y = x:(xsg3y) 

which is the list concatenation operator -l-t-; and for the type 
of natural numbers, it is defined by 

flay = y 
wJ=4@Y = Svce(ncBy) 

which is the integer addition +. 
Associated with 8, we can could derive a most natural 

distributive 9. For example, for the type of natural num- 
bers, associating with + we have a distributive operator @ 
defined by: 

(x@) 0 = II 
(xs) (Sueen) = x+x@n 

Clearly, 8 is our familiar x. This natural distributive oper- 
ator is very important as seen in Lemma 6. 

In summary, given a function f whose result has the 
type of R, our associative operator is nothing but the zero 
repIacement function derived from R. At first sight, this 
seems to be rather restrictive, because we simply take one 
fixed operator for every data type (e.g., it for lists and + for 
natural numbers). In fact, among the associative operators 
with the type of R + R + R, the zero replacement function 
is the most primitive one. This is because no matter how 
the associative operators are defined, they basically have to 
produce their results (of type R) using the data construc- 
tors of R for gluing whereas these data constructors could 
be expressed in terms of the zero constructor and the zero 
replacement function (see Step 1 in Section 5.2 for some 
examples.) 

5.2 Main Algorithm 

Suppose that we are given a function defined by 

f; Wf”)‘” 
a:2 c = body 

where body is any expression. The accumulating parameter 
may be unnecessary (and thus denoted as {c}) which can 
then be ignored. Certainly, not all functions have efficient 
parallel versions and so our algorithm wilI give up paralleli- 
zation in case our conditions are not satisfied. Nevertheless, 
our algorithm can automatically parallelize a wider class of 
functions covering many interesting ones (e.g., sbp, fib and 
sum) than existing calculational methods. 

. 

t 
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We shah adopt scan (also known as p&z sums) [Ble89, 
FG94, GorSGb] as our running example, while specializing 
the general operator to be + for readability. This example 
is interesting not only because of its importance in parallel 
computation [BIeSS] but also because of the non-triviality 
of a correct and efficient parallel implementation, as argued 
in [O’D94]. 

scan [] = 11 
scan (u : x) = a:(a+)*scanx 

Step 1: Making the associative operator explicit . 

First of all, we make the associative operator @ explicit in 
our program to use our parallelization theorem. Note that 
this @ is not an arbitrary associative operator; rather it 
is a zero replacement operator derivable from the resulting 
type R. Theoretically [SF93J, for any linear datatype’ R 
with a zero data constructor Cz, a constructor expression, 
say Ci er e, ez where e, c9rresponds to the recursive com- 
ponent, can be transformed into a new expression combined 
with e, by @I, i.e., (Cc er Cz ez)@e,. We apply this transfor- 
mation to all those constructor expressions whose recursive 
component contains occurrences of a recursive call to f. For 
instance, when R is the list type (whose zero constructor 
is {J and whose associative operator is -tt-), we apply the 
following ruh to the body: 

f x appears in e, 
e:e, * [e]+l-e,- 

Similarly, when R is the type of natural numbers, we have 
the rule: 

f z appears in e, 
Succ e, * (Succ 0) + e, 

Returning to OUT running example, we should get 

scan (a : 2) = ’ [a] *(a+) * scan 2. 

Step 2: Normalizing body by abstraction and, fusion 
cakuIation 

After @ is made explicit and the normalization algorithm 
{CDG96] for conditional structure has been applied, the body 
should be the Form el @ez 6+ . @e,, or be a single conditional 
expression of the form if eP then er 8 ez @I + v. d en else e; @ 
e;@-.-@ek. These e;‘s and e!,‘s can be classified into three 
groups. 

l d-group: the expression contains no recursive call to 
f * 

l B-group: the expression is just a recursive call to f. 

l C-group: the expression is an expression containing a 
recursive call to j as its component’. 

For an expression e in the d-group, we turn it into the 
form ge a (qe z) (c) where ge is a function and Q= is a 
homomorphism. This can be done as follows. Assuming 
that ql,..., Q,, are all functions being applied to x in e, 

7A datatype is linear if each branch has a single recursive eompo- 
nent. So lists are linear but trees are not. 

%t may be an conditional expression whose predicate part contains 
a recursive call to I. 

we first apply our parallelization algorithm to obtain their 
corresponding mutumorphisms, which then can bc tuplcd 
[HITT97] to a homomorphism, say qe. So we have gi x = 
xi (qe z). Now ge with three arguments can be defined by 
ge = Aa Qr (C}* e[(qi 2: I+ fli &)&I]* 

For all expressions in the B-group, we check if they are 
in the same form as f x {(g a@~)) xr.t. the same function 
g and the associative operator 0 derived from c’s datatypo. 
Note that if f has no accumulating parameter, we just check 
if they are the same as f x. If it succeeds, we continua; 
otherwise, we give up parallelization. 

For an expression e in the C-group, we introduce a now 
function fe 2 a c = e and try to derive a recursive definition 
for fC by automatic fusion caIculation [SF93, TM9.5, HIT96, 
OHIT97}. If this succeeds, we proceed to parallelizc fe by 
our parabelization algorithm. It is fusion calculation that 
helps us move expressions from the C-group to the A-group, 

After doing so, we have got a program in the form that 
can be parallelized according to the parallelization theorem 
(Note that we may need to normalize conditional expressions 
to our required form by the algorithm in [CDGSG]; this stop 
is omitted here). 

Returning to our running example, recall that we have 
reached the point ‘where 

body = [u] +i- (a+) * scan x. - 
The first underlined expression is in the d-group which can 
be turned into g1 a where gr a = [a], whereas the second is 
in the C-group which needs fusion calculation. It is actually 
a fusion of two functions (a+)* and scan. Let scan’ x a = 
(u+) * scan 2. Fusion calculation will give 

scan’ [u] c = (a + c] 
scud (u : x) c = [u + c] -I+ scan’ x (a-&). 

Notice the fact that the above underlined + is an associative 
operator derived from the type of the accumulating result c, 
which actually plays an important role both in the previous 
fusion calculation and in the later parallelization of scan’. 
Now scan (a : x) = [u] -~-scan x a, which indicates that 
stun is no longer a recursion and the task of parallelization 
has moved to parallelizing scan’. Repeating the above step 
to the body of scan’ would give 

scan’ (a : x) c = g1 UC-H-scud x (92 a-kc) 
where gr a c = [CZ + cJ, g2 a = a 

Step 3: Applying parallelization laws and optimizing 
by tupling cakulation 

Now we are ready to apply the parallelization theorem to 
derive a parallel version of f. There are three cases. 

If the transformed body has no recursive call to f, WQ 
need do nothing for f as seen for scan, but turn to 
parallelize functions used in the body. 

If the transformed body has a single occurrence of re- 
cursive call, we can apply the parallelization theorem 
directly. For instance, we can obtain the following par- 
a&l version for scan’: 

scarz’(x+t-y)c = Grxc++scan’y(Gzx4-c) 
GI [a] c = [u + c] 
GI (X-H-Y) c = Gr xc-t+G~y(Gzxfc) 
~2 14 = a 
~72 ix+ty) = G2y+G.x 
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l Otherwise, the transformed body has more than one oc- 
currences of the recursive call. In this case, we require 
that @ shouId be commutative and should have a cor- 
responding distributive operator Q with the unit say 
~a. Then, we can apply the parallelization theorem. 

Application of the parallelization theorem gives a paral- 
lel program in an mutumorphic form as seen for SC&. To 
obtain the final version, we need further optimization using 
the automatic tupling calculation as demonstrated in Sec- 
tion 4.2.2. Following the same thought., we can calculate 
the following final version for scan’ (by tuplmg scan’, Go 
and Gz), which is a U(Iogn) parallel algorithm, as efficient 
as that in [sle89]. 

scan’ x c = s where (s, gl,g2) = tup x c 
tup 14 c = ([a + cl, b + 4 4 
tup(x-H-y) c = let (~~,g1~,92~) = tup x c 

(SY, Sly > gad = tup Y (922 + c) 
in (gh -Hsy, gh -H-g~y, g2y + 924 

Interestingly, this program can be improved again by the 
fact that the first and the second components produced by 
tup are always the same. Therefore, we can remove the 
second component and obtain the following program. 

scan’ 2 c = swhere(s,gz)=tupxc . 
tuP 14 c = ib + 4 4 
tup(x*y)c = let(s,,g2z)=tupxc 

by, Q2Y > = tup Y (g2z + c) 
in (52 +I- sy, g2y + 922) 

6 Future Extensions 

In this section, we highlight some future work. First of all, 
although the parallelization framework in this paper is de 
fined for functions over lists, it can be naturally extended 
to ofher linear data types based on the theory of Construc- 
tive Algorithmics [Mal90, Fok92]. It will be interesting to 
formalize the parallelization framework in a polytypic way 
[JJ96], making thii extension be more precise. Specifically, 
a straightforward extension is to generalize the present re- 
sults to linear data types which permit multiple base data 
constructors and multiple recursive data constructors, with 
the latter having only one recursive argument each. Such a 
data type can be shown to have an associative decomposition 
operator, and a corresponding synthesis lemma. A simple 
example of thii is natural numbers with f as its associa- 
tive decomposition operator. The corresponding synthesis 
lemma for functions on natural numbers is &en below. 

Lemma 8 (Synthesis: Natural Numbers) Given is a 
program 

f (SUCC X) = E[(ti)L, (gj X)jR=l, (f X)c>z] 

whose context E[] satisfies the fusible property with respects 
to gj’s, f and 2, i.e., there exist terms 4,. . . , & such that 
for any Ai’s, Bi’s, y and z we have 

E[V&s (gjb + XI)&, (E[@i)iEn=,s (gj XI& <f&l)!1 
= E[ML 8 (Sj X)&l3 tf x)!1 

Then we can obtain the following parallel version: for any 
nonempty x’, 

f (x’ + X) = E[(Gi x’)L, (gj X))~ZIP U x):] 

where the new functions G1,. . . , G,,, are defined by 

Gi 0 = ti 
Gi (x: + xi) = t:[(Ai I+ Gi xi&, 

(& I+ Gi $&a 
Y * 41. 0 

Another direction for enhancement is to generalize the 
present result to nested linear data types. As amply demon- 
strated by the NESL work [Ble92], nested sequences are par- 
ticularly important for expressing irregular problems, such 
as sparse matrixes. Effective parallelization of such prob- 
lems depend on the ability to parallelize flattened version 
of nested sequences. It may be interesting to see how our 
parallelization theorem can be extended to handle nested 
linear data types. Thii enhancement could be used to pro- 
vide a more friendly front-end to NESL, by allowing con- 
ventional sequential programs to be used without being re- 
stricted to the available parallel primitives. 

7 Related Work and Conclusion 

It is known to be very hard to give a general study of 
parallelization [Ski94a] because it requires a framework well 
integrating three general things: a general parallel program- 
ming language, a general parallelization algorithm, and a 
general parallel model. In this paper, we show that BMF 
can provide us with such a framework. Particularly, we pro- 
pose a general parallelization algorithm in BMF, which has 
not. received its worthy study- Being more constructive, our 
parallelization algorithm is not only helpful in design of effi- 
cient parallel programs in general but also promising in the 
construction of parallelizing compilers. 

Besides the related work given in the introduction, our 
work is closely related to the studies of parallel program- 
ming (particularly with homomorphisms) in BMF (Ski92, 
Co195, Gor96b, Gor96a, GDH96, HIT97], and to the pre- 
vious works on proving that homomorphisms are a good 
characterizations of parallel computational models [Ski92, 
GDH96, Gor96a]. They provide the basis of our work. Ho- 
momorphiims provide us with a31 excellent common inter- 
face for programmers, low&-level parallel implementation, 
and higher-level parallelizing transformation. They can be 
considered as a parallel skeleton, but are different from those 
in [Co189, DFRf93] which are mainly designed to capture 
various kinds of control structures of programs. In contrast, 
homomorphisms are derivable from the data structures that 
programs are defined on, thus their control structures are 
much simpler and can be mapped efliciently to wide range 
of parallel architectures. 

Much work has been devoted to deriving efficient homo- 
morphisms in BMF. We classify them into three approaches. 
The first approach [Ski921 requires initial programs to be 
written in terms of a small set of specific homomorphisms 
such as map and reduction, from which more complicated 
homomorphisms can be derived, based on calculational laws 
such as promotion rules. However, it is impractical to force 
programmers to write programs in this way. 

The second approach is to derive homomorphism from 
recursive definitions. The main idea is to identify those re- 
cursive patterns whose list homomorphisms can be easily 
derived, e.g., in [GDH96, Gor96a]. However, the given pat- 
terns are less general and the application scope is rather 
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limited. Moreover, although it makes heavy use of associa- 
tivity of operators, how to recognize and derive them in a 
program was not described at all. In contrast, our approach 
is not restricted to a specific: recursive pattern, and we give 
a way to recognize associative operators from the resulting 
type information. 

The third approach is based on i&e third homomorphism 
theorem [Gib96]. The thiid homomorphism theorem says 
that an algorithm h which can be formally described by 
two specific sequential algorithms (Zeftwad and tightwad 
reduction algorithms) is a list homomorphism. Barnard et 
al [BSSSl] bnce tried it on the language recognition prob- 
Iem. Although the existence of an associative binary opera- 
tor is guaranteed, the theorem does not address any efficient 
way of calculating it. Gorlatch [Gor96a, Gor96b] proposed 
an idea of synthesizing list hOmOmOrphiSms by generalizing 
both leftward and rightward reduction functions, which was, 
then well formalized by using the term rewriting technique 
[GGSi’]. Nevertheless, as shown in thii paper, it is possible 
to paralleiize systematically using only a leftward sequential 
program. 

Our synthesis lemma was greatly inspired by the paral- 
lel svnthesis alp;orithm in [CDG96, CTT97]. We extended 
andlformalize ihe idea of second brder g&eralization and 
inductive derivation in that algorithm. 

In traditional imperative languages there are also many 
ongoing efforts at developing sophisticated techniques for- 
paral1elizing iterative loop {FG94]. Different from the usual 
way [Len961 based on the analysis of dependence graph, it is 
based on a parallel reduction of function composition which 
are associative, relying on the existence of a template form 
which can be efficiently maintained. Our idea of fusible con- 
texts is related but both more formal and more genera1 than 
that of a closed template form. We attempt to deal with 
more general recursive equations, and do not require henris- 
tic simplification techniques. 

Our work is much influenced by the ideas of deriva- 
tion of associative and distributive operator from data types 
in [SF93]. However, previous studies were essentially for 
the purpose of automatic construction of monadic opera- 
tors from type definitions. We brought them here for our 
parallelization purpose. 

This work is also reIated to our previous work @IT9i’]. 
Previous work starts from the specification of compositions 
of mutumorphisms, while this work shows’how to derive 
mutumorphisti from general sequential piograms. 
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