
Parallelization in Calculational Forms

Zhenjiang Hu Masato Take&i
Department of Information Engineering Department of Information Engineering

University of Tokyo University of Tokyo
(hu@ipl.t.u-tokyo.ac.jp) (t&sichiOu-tokyo. ac. jp)

Wei-Ngan Chin
Department of Information Systems & Computer Science s

National University of Singapore
(chinun@iscs.nus.edu.sg)

Abstract

The problems involved in developing &cient parallel pro-
grams have proved harder than those in deveioping &-
cient sequential ones, both for programmers and for com-
pilers. Although program calculation has been found to be
a promising way to solve these problems in the sequential
world, we believe that it needs much more effort to study
its effective use in the parallel world. In this paper, we pro-
pose a calcuiirtionniframework for the derivation of efficient
parallel programs with two main innovations: .

l We propose a novel inductive synthesis lemma based
on which an elementary but powerful parallelization
theorem is developed.

l We make the first attempt to construct a calculational
algorithm for parallelization, deriving associative op-
erators from data type definition and making full use
of existing fusion and tupling calculations.

Being more constructive, our method is not only helpful
in the design of efficient parallel programs in general but
also promising in the construction of parallelizing compiler.
Several interesting examples are used for illustration.

1 Introduction

Consider a language recognition problem for determining
whether the brackets ‘(, and ‘)’ in a given string are car-
rectly matched. This problem has a straightforward linear
sequential algorithm, in which the string is examined from
left to right. A counter is initialized to 0, and increased or
decreased as opening and closing brackets are encountered.

sbp x = sbp’ x0
SW II = 0
sbp’ {a : x) c 1 Glz= ‘(, then sbp’ z [c + 1)

eIse if a == ‘>’ then
c>o A sbp’x(c-1)

else sbp’ 2 c.

Permission to make digitalhard copies ofI1 or part of this material for
Pe~Onal Or hssroom use is granted without fee provided Ihat the copies

~-IZ not mde or distributed for profit or commercial ndvanloge, I& copy-
right notice. the litle of he publication and its date appeq, md IroIjce Jo
&en lbt ~pti& is by pemksion of the ACM, Inc. To copy otherwise,
lo rePub!ish to post On servers Or to redistribute to lists, requires sp.ecific

permission and/or fee.
POPL 98 San Diego CA USA
fipyrigbt 199X ACM O-89791-979-3/9XlOl..53.50

It is, however, quite difficult to write a parallel program
lie those in pSS91, Co1951 whose algorithms are actually
non-triviaI.

Our work on parallelization in calculational forms is mo-
tivated by the successful application of program calculation
to the optimization of sequential programs. Program cnku-
lation is a kind of transformational programming approach
[DarSl] to program construction, in which a clear and under-
standable but may be terribly inefliclent program is succcs-
sively transformed into more and more efficient versions by
means of equationa reasoning in Bird-Me&ens Formalisms
(BMF) [BirS7, Bir89, Mal89, Bac89, Fok92]. BMF, also
known as constructive algorithm@ was first proposed as
the theory of Iists [Bir87], and was then extended to bo a
general theory of datatypes. It has proved to be very use-
ful not onIy in deriving various kinds of efficient sequential
programs [G&92, dM92, Jeu93], but also in constructing op-
timization passes of compilers [GLJSS, SF93, TM95, HITBG,
OHIT97, HITT97j. Its success owes much to its concise de-
scription of transformation algorithms and its strong thco-
retical foundation based on category theory.

We do believe that it is both worthwhile and challenging
to apply the calculational approach in a practical way to
develop efficient pamlkl programs as well as to construct
pora&%zzing compilers. Different from the previous studies,
this work attains several new characteristics.

0 Mukiflg the BMF paraZfeZ model more practical.
Many studies have been devoted to showing that BMF
is a good parallel computation model and a suitable
parallel programming language (SkiSO, Skiglib]. To on-
able extraction of parallelism, programs are expected
to be written in terms of a small fix set of spcciflc
higher-order functions, such as map and reduction,
These higher-order functions enjoy useful manipu!a-
tionproperties for program transformation [Bir87j and
are suitable for parallel implementation [Ski92, SkiSlaj.
However, it is not practical to force programmers to
write programs this way. In contrast, our paralleliza-
tion will target general recursive programs.

l Enriching calcuiational laws and theorems for paralleli-
zation.
BMF provides a general theory for program cahh-
tion, which should be specialized with respect to dif-
ferent application fields, e.g., dynamic programming

[dM92], circuit design [X390], and optimization of func-
tional programs [TM95, HIT96, HITT97]. In each spe-
cialization, new laws and theorems need to be devel-
oped in order to handle specific problems. However, in
the field of parullelfzution (i.e., development of eflicient
parallel program) [GDH96, Gor96a, Gor96b], there is
a lack of powerful parallelization laws and theorems,
which greatly limits its scope. Our calculational frame-
work should remedy this situation.

In this paper, we shall report our first attempt to con-
struct a udculattional framework specifically for paralleliza-
tion. Our main contributions are as follows.

l We propose a novel inductive synthesis lemma in which
two well-known synthesis techniques, namely gened-
ization and induction, are elegantly embedded. Based
on it, we develop an elementary, but general calcu-
lational theorem for parallelization (Section 4). By
elementary, we mean that it contributes to the core
transformations in our parallelization algorithm; and
by general, we mean that it is more powerful than
all the previous laws and theorems [Ski92, GDH96,
Gor96a, GorSGb] and thus can be applied to synthesize
many interesting parallel programs (as demonstrated
in Section 4). Moreover, this theorem can be directly
implemented by way of simple symbolic manipulation.

l We propose a systematic and constructive paralleliza-
tion algorithm (Section 5) for the derivation of par-
allel programs. It can be applied to a wide class of
general programs covering all primitive recursive func-
tions with which almost all algorithms of interest can
be described. Two distinguishing points of our al-
gorithm are its constructive way of deriving associa-
tive/distributive operators from algebraic datatypes,
and the effective use of the fusion and tupling calcula-
tion in the parallelizing process-

* Our parallelization algorithm is given in a calculational
way like those in [OHIT97, HITT97]. Therefore, it
preserves the advantages of transformation in calcu-
lational form; being correct and guaranteed to termi-
nate. In addition, it can be naturally generalized to

, programs over other linear algebraic datatypes rather
than only lists as used in this paper. It is not only
helpfu1 in the design of efficient parallel programs but
also promising in the construction of paralleliiation
systems.

The organization of this paper is as follows. In Section
2, we review the notational conventions and some basic con-
cepts used in thii paper. After making clear the paralleli-
zation problem in Section 3, we propose our new synthesis
lemma from which several basic parallelization laws and the
parallelization theorem are derived in Section 4. We pro-
pose our parallelization algorithm in Section 5, and highlight
some future work in Section 6. Related work and conclusion
are given in Section 7.

2 BMF and Parallel Computation

In this section, we briefly review the notational conventions
and some basic concepts in BMF [Bir87], and point out some
related results which will be used in the rest of this paper.

317

In order to simpliiy our presentation, we will not formu-
late our calculational idea in terms of the general theory of
constructive algorithm&x as we did in [HIT96, HIT971 (see
Section 6 for some related discussion.) Rather, we illustrate
our idea using the theory of lists.

2.1 Functions

Function application is denoted by a space and the argu-
ment which may be written without brackets- Thus f a
means f(o). Functions are curried, and application asso-
ciates to the left. Thus f a b means (f a) b. Function ap-
plication binds stronger than any other operator, so f a @ b
means (fa) 8 b, but not f (a 0 b). Function composition
is denoted by a centralized circle 0. By definition, we have
(f oda= f (g a). Function composition is an associative
operator, and the identity function is denoted by id.

In&r binary operators will often be denoted by @, @ and
can be sectioned; an infix binary operator like @ can be
turned into unary functions by

(a@)b=a@b=(Ob)a.

The projection function zi selects the ith component of
tuples, e.g., zr (a,b) = a. Also, A is a binary operator on
tuples, defined by

(fAda=(fa,g4.
Lastly, fr A - - - A f,, is abbreviated to Affi.

2.2 Lists

The liit datatype dominates our daily programming. Lists
are finite sequences of values of the same type. There are
two basic views of lists.

l Parallel view of lists. A list is either empty, a singleton,
or a concatenation of two lists. We write [] for the
empty lit, [a] for the singleton list with element a,
and z-l-l-y for the concatenation of z and y. Lists in
the parallel view are also called uppend (or join) lists.

l SequentiaI view of lisk;. A list is either empty [I, or
is constructed by au element a and a list z by the
constructor : which is denoted by a : z. Lists in this
sequential view are also called cons lists.

Concatenation is associative, and [] is its unit. For ex-
ample, the term [l] ft[2] ++ [3] denotes a list with three
elements, often abbreviated to [l, 2,3]. In addition, we write
a : z for [a] -l-l-z, and vice versa.

2.3 Homomorphisms, Mutumorphism, and Paral-
lel Computational Model

List homomorphisms (or homomorphisms for short) [Bin871
are those functions on finite lists that promote through list
concatenation, as precisely delined below.

Defbition 1 (List Homomorphism) A function h satis-
fying the following equations is called a list homomorphism:

h [al = ka
h w+Y) = hz@hy

where @ is au associcrtive bmary operator. We write ah,@
for the unique function h. cl

i

I

For example, the function s2con, for summing up all el-
ements in a list, can be defined as a hom0morphism of
aid,+& Two important homomorphisms are map and rc-
duction, Map is the operator which applies a function to
every eIement in a list: It is written as an in&r *. Infor-
mally, we have

k*[zr,zs ,+.., zn]=[kzl,kza,-.., ?=,I.

Reduction is the operator which collapses a lit into a single
value by repeated application of some binary operator. It is
written as au infix /. Informally, for an associative binary
operator @, we have

@/[x1,22,..., xn]=x1cT3x*a3..*cr3xn.

It has been argued that * and / have simple massively par-
allel implementations on many architectures [Ski90]. For
example, @/ can be computed in parallei on a tree-like struc-
ture with the combining operator @ applied in the nodes,
while k* is computed in parallel with k applied to each of
the leaves.

The reIevance of homomorphisms to parallel program-
ming is basically from the homomorphism lemma {EM?]:
Qk, @D = (@/) o (k*), saying that every list homomorphism
can be written as the composition of a reduction and a map.
One can also observe that homomorphisms express the well-
known divide-and-conquer parallel paradigm. More detailed
studies can be found in ISki92, GDH96, Co1951 on showing
why homomorphisms are a good characterization of parallel
computational modeIs and can be effectively implemented
on modern parallel architectures.

It follows that if we &n derive list homomorphisms, then
we can get corresponding parallel programs. Unfortunately,
there remains a major problem; a lot of interesting list func-
tions are not homomorphisms themselves because there ex-
ists no appropriate operator @ [Co195]. To solve thii prob-
lem, Cole proposed the idea of a near homomorphism, the
composition of a projection function and a homomorphism.
Following Cole’s idea and using the result in pT9?, HITT97],

I we shall choose list mutvmorphisms [Fok92] as our parallel
computation model.

Definition 2 (List Mutmnorphisms) The fnncti~n~ k,
. . ., h,, are called list mutumorphisms (or mutumorphLms
for short) if they are mutually defined in the following way:

4 bl = kja
hj (&f-y) = ((Ai%) 4 @j (W’hi) d-

Particularly, a single function, say hi, is said to be a list mu-
tumorphism, if there exist a set of functions hr, . . ., hi-r,
hi+1, h, which together with hi satisfy the above equa-
tionaI form. q

Compared to homomorphisms, mutumorphisms provide
a better characterization of a parallel computational model.

l Mutnmorphisms win over homomorphisms because of
their more powerful descriptive power. They are con-
sidered as the most general recursive functions defined
in an inductive manner iFok92], being capabIe of de-
scribing most interesting functions.

l Mutumorphisms enjoy many useful manipulation prop-
erties for program transformation. Particularly, they

can be automaticalIy turned into efficient homomor-
phisms via the following tupling calculation (see Sec-
tion 4.2.2 for an example). Therefore, they possess a
similar parallel property as homomorphisms.

Theorem 1 (‘Tupling [HIT97]) Let hi,. . , ,h,, be mutu-
morphisms as defined in Definition 2. Then,

It then follows from the theorem that any mutumorphism
h can be, transformed to be a composition of a projection
function and a homomorphism, i.e.,

hj = nj 0 QA;ki, A;@iD.

3 ParalIeIization Problem

Before addressing our calculational framework for parallcli-
zation, we should be more specific about the parallelization
problem we would like to resolve in this paper.

Recall that in the process of program calculation to ob-
tain efficient sequential programs, we start with a naiva and
concise program krithout concern for its efficiency and then
transform it into more and more efficient program by equa-
tional reasoning. Similarly, in the process of program calcu-
lation to parallelize programs, we should start with a naive
and concise program without concern for its parallelism and
then transform it into a parallel version.

Specifically, we would like to start with a gcncral re-
cursive program (see the definition of sbp, for an cxamplo)
usually defined in the following form.

The function f is inductively defined on lists, The dcfini-
tion body is an expression probably containing occurrences
of recursive call f 2, variable a, and even application of
some other functions to 2. 3y looking at general functional
programs iu Haskell [HpJWe92], we could find that most
of the recursive functions over lists are defined in (or can
be easily turned to) this form. Here we need not consider
parallelism at all. In order to simplify our presentation, we
shall mostly consider single recursive definitions rather than
mutual ones {except for Section 4.2.4), and WC assume that
recursive functions induct over a single parameter rather
than multiple ones. To he precise, we give the following def-
i&ion of our specification program (initial programs to bo
paralleliied).

Definition 3 (Specification) The programs to be pd-
lelized are those that can be turned into the form

f (u: x) = -m E[{ti)i=l 2 (93 X)%1 I (f &I

where

l E[] denotes an ezpressioon eoni& with three groups
of holes (). It contains no occurrence of o, x and f+

l (ti>fl denotes a group of m holes being filled with m
terms tr,..., tm respectively. It is allowed to contain

occurrences of a, but not those of x.

-.

l (a x)& denotes a group of n holes being filled with
n function applications, q1 x, . . . , qn x, where a’s are
mutumorphisms (paralleliied functions).

l (f x)f denotes a group of k holes each being filled with
the same term f x. cl

Clearly, this sort of specification is quite general and can
describe most interesting algorithms. In fact, it can de&e
all primitive recursive functions [Mee92]. The essential r+
striction we imposed on the specification is that the psram-
eter to each recursive call to f in the RIB should be x. In
other words we allow f x, but we do not allow any compu-
tation on the argument off, e.g., f (2 : z). Several remarks
should be made here.

l Our specification programs need not be given in terms
of a context; rather they are general programs like sbp
given in the introduction. ?Ve only require the exis-
tence of an expression context, which usually can be
obtained in a simple way. The following is an example
of sbp in terms of a context:

sbp’ (a : x) = E[(u == ‘(‘, a == ‘)‘),

&‘pr x, sbp’z, sbp’x)]

where the context E is defined by

Jwl, t2), 0, (fl, fz,f3)1
= Xc. if tr then fr (c + 1)

else (if tz then c > 0 A jz (c - 1) else fs c).

l For a given program, there may exist many different
potential contexts. As will become clear later, it is of
great importance in our parallehzation framework to
derive a proper one from the program. This may in-
volve some normalizing transformation on the program
prior to a context extraction.

l We have omitted the base equation for the definition
of f in Definition 3:

f[l=e

where e is an expression without occurrence of f. For
brevity, we shah even omit it in the rest of the paper.

Our parallelization problem turns out to be equivalent
to calculate a new parallel version for f in Definition 3.
According to the discussion in Section 2, we know that mu-
tumorphiims can be considered ss a good characterization
of parallel computations. We thus want this parallel version
off to be in a mutumorphic form, i.e.,

f (x-l-l-y) = -** f x --- f y ---.

4 Calculational Laws and Theorem for Paralleliia-
tion

In this section, we f&t propose a new synthesis lemma in
which two well-known synthesis techniques, namely geneml-
i&ion and induction, are well embedded. Then, based on
the synthesis lemma we develop several parallelizing laws
and conclude with our parallelization theorem. All of them
are the basis of our parallelization algorithm as discussed in
Section 5.

4.1 Synthesis Lemma

Parallelizing f in this paper means to derive a mutumor-
phism for f. To this end, we shall propose our synthesis
lemma, which neatly combines two known synthesis tech-
niques, namely generalization and induction, which have
been proven to be very useful in [CTT97].

Lemma 2 (Synthesis) Given is a specification program

whose context E[] satisfies the fusibfe property with respect
to the q/s, f and x, if there exist terms t;, . . . , t& such that
for any Ai’s, Bi’s and y we have

Then we can obtain the following parallel version. For any
nonempty x’, _

f (x’ +tx) = E[(Gix’)L (G X))~zla (f x):] (2)

where the new functions Gr , . . - , G, are defined by’

G [al = ti
Gi (x; ft $) = t:[(Ai c) Gi X;&I

(B; I-) Gi x&)&,

y ‘+= 41

Proof. We prove (2) by induction on the nonempty list x’.

l Base Case [a]. This is established by the following
cakxdation.

f (~‘+-I-4
= { Assumption: d = [a] }

f (bl +w = (Equation (I) }
E[(ti)El r (S X)&I I If &I

=
(Definition of Gi }

E[(G [al)L (e- x&l, (f &I
= { Since d = [u] }

E[(Gi X’)% 3 (e XI& (f x)fI

“we me t[z I+ y] to denote a tern obtained from t with 41 occur-
rences of 2 being replaced by y.

319

.

,

.

i

,

. .

The synthesis lemma tells us that a recursive definition
whose expression context satisfies the fusible property can be
paralleiized to a mutumorphic form of Equation {2J2. The
fusible property is empIoyed to guarantee that unfolding the
functions qj and f in a fusible context should only change
the holes’ contents while preserving the context structure.
Thii lemma is motivated by the paralleiizing procedure de-
scribed in [CTT971, but it has two distinguishing features.
Fist, it does not rely on comparison of functions which is
unavoidable in [CTT97]. We achieve this by induction di-
rectly on append lists ([u] and xi -H-X;) rather than on cons
lists ([f and a : x). Second, it is formal and precise, which
is in sharp contrast to the previous informal study. This
makes it possible to construct our calculational framework
for parallelization.

To see a simple use of thii lemma, consider the function
length, computing the length of a list,

length (a : x) = 1+ length x.

It can be expressed using a context as _

h ERA), 0, W@% 0, (f 41 = E[(A f W,(L (f x>I 6%
E[j meets the fusible condition), it follows from the synthesis
lemma, after expansion of the context, that we obtain the
following mutumorphic definitions.

length (x’ +-x) = G1 x’ + length x
G1 14 = 1
GI (4 +I-& = Glx;+Glx;

It should be noted that we can go further to make this
result more efficient {although this improvement is beyond
parallelization itself) if we adopt syntactical comparison of
function definitions to check if the new functions are equiv-
alent to known fundions being parallelized and thus reduce
the number of newly introduced functions. A simple check

2This can be seen from the definition of mutumorphism where we
may choose f, 41, . . ., qn, G1, . . ., G, to be the Si’s.

(which compares both the base and induction equations)
confums that G1 = length, showing that C% can be replaced
by length and hence can be removed safely. An alternative
way is to put off this syntactic comparison until after tupling
transformation, as we will see for scan’ in Section 5.

4.2 Deriving Laws and Theorem for Parallelization

Most previous studies on parallelizatian by program trans-
formation [GDHSG, Bra941 are essentially based on the fol-
lowing calculational law3:

f (a : 2) = f [u] @ f z, $ is associativo~
f (x’ +l-x) = f 2’ @ f 2

However, in the present form, this law is restricted in scope
and has rather limited use in practice. We shall extend it
in several ways making use of our synthesis lemma, In tho
following, after proposing several typical extensions of the
Bird’s law, we conclude with a general theorem.

4.2.1 First Extension

Notice that in the F&IS of the given definition off the x is
not allowed to be accessed by other functions except f, So
our first extension is to remove this restriction.

Lemma 3 (Primitive Form) Given is a program

f(a:x) = ga(qx)@f 2

where 8 denotes an associative binary operator and q is a
homomorphism a&, &I. Then, for any non-empty lists 2’
and x, we have

f (x’*x) = G x’ (q 2) CD f x

where G is a function defined by

G I4 = ga
G(x:+-xi) = Xz.{Gxc: {qx;c:e,z)@Gxc: z)

Proof Sketch. Notice that

where

E[] is fusible w.r.t. q, f and 2, because

Therefore, this lemma follows from the synthesis lemma. Cl

4.2.2 Second Extension

Our second extension is to allow the specification program
f to use an accumulating pammeter.

3Note we do not think that the third homomorphism theorem
[Gib96] is a calculational law, because it tells the cxistcnco of a par-
allel program but does not address how to calculnte thorn. Moro
discussion can be found in Section 7.

320

Lemma 4 (Accumulation) Given is a program

f (a : 2) c = g1a(qx)c 8 fz(g2acF3c)

where 8 and @ are two associative binary operators, and
q = f&r, $,,D. Then, for any non-empty lists 2’ and z, we
have

f(x’+l-x)c = GI x’ (qx) c@f x (G2 x’c’8c)

where GI and Gz are functions defined by

Gl [a] z c
G1 (x: +I- x’z) z c

= g1azc
= GI x; (q x; cup z) c d

G2 [QJ
G1x;z(G2x;@c)

Gz (x: -H-X;)
= g2a
= G:!x;E)ZGG~X~

Proof Sketch. First we move the accumulating parameter
from LHS to ItHS by means of a lambda abstraction, i.e.,

f(u:~)==c.~g1Q(qx)cc~f(g2a~c))

Then we define a fusible expression context by

E[(ti)Ll, {ql)*(fl)] = AC-(tlqlC@fl (t2 8C))

such that

f (Q : 4 = %?i QL (4 4, If 41.
Now, it is not difficult to verify that E[] is fusible and thus
the synthesis lemma can be applied. Cl

Before going on with other extensions, we pause with a
more concrete use of this lemma. Consider the sbp problem
given in the introduction. Normalizing the if-structures in
the definition [CDGSG] gives (omitting initial equation)

sbp’ (a : x) c = (if a == ‘(’ then !I%ue
ekeifa==‘)‘thenc>Oelse Z+ue)
A
sbp’ x ((if a == ‘(, then 1
else if a == ‘)’ then - 1 else 0) + c).

In order to use the lemma, we introduce two functions gr
and g2 to abstract two subexpressions.

sbp’ (a : Z) c = g1 a C A sbp' x(92 a+c)
91 a C = if a == ‘(, then lhre

92 Q
= $s; if a == ‘)’ then c > 0 else tie

== ‘() then 1
else if a = ‘)’ then - 1 else 0

It follows from Lemma 44 that

sbp’ (d.+tx) c = GI x’ c A sbp’ x (G2 x’ + c)

where

GI [a] c = if a == ‘(’ then tie
else if a == ‘)’ then c >: 0
else !Zhe

GI (x:-I+x:)c =
~‘2 bl

Glx:c A G~x;(Gzx;+c)
= ifa==‘(‘thenl

G2 (4 -H-X:)
else if a == ‘)’ then (-1) else 0

= G2x;+G2x;

“Note that the auxiliary p z call can be made optional in both
Lemma 3 and Lemma 4 when 2 does not appear outside of the recur-
sive f call. This occurs for the sbp’ definition.

Thii is the parallel version we aim to get in this paper,
although it is currently inefficient because of multiple traver-
sals of the same input lit by several functions. But this can
be automatically improved by the tuplmg calculation as in-
tensively studied in [Chi93, HITT97]. For instance, we can
obtain the following program by tupling sbp’, Gl and G2.

sbp’ x c
iuP bl c

= s where (s, gr , 92) = tup zc c
= if a == ‘(, then

(c-l-l ==O, The,l)
else if a == ‘)’ then

(c-l==O,c>O,-1)

tup (x +i- Y) c
else (c == 0, The,O)

= let (G, gh, g2J = tup 2 c
(SY> QlY 192Y) = tup Y (g2r + 4

in (a= A sy, a2 A gly, a2 +gzy)

It seems not so apparent that the above gives au effi-
cient parallel program. Particularly, the second recursive
call tup y (gz= + c) relies on gr2, an output from the first
recursive call tup x c. Nevertheless, this version of tup can
be effectively implemented in parallel on a multiple proces-
sor system supporting bidirectional tree-like communication
with G(logn) complexity where n denotes the length of the
input list, by using a algorithm similar to that in @e89].
Two passes are employed; an upward pass in the compu-
tation is used to compute the third component of tup x c
before a downward pass is used to compute the first two
values of the tuple.

This example is taken from [CoI95], where only an in-
formal and intuitive derivation was given. Although our
derived program is a bit difFerem, it is as efficient as that in
[Co195].

4.2.3 Third Extension

The importance of conditimd structure in a definition has
been highlighted in FG94, CDG96]. Our third extension is
to ahow explicit conditional structure.

Lemma 5 (Conditional) Given is a program

f (a:~) = ifgla(qlx) thengza(q2x)Bfx
else 93 a (q3 x)

where @ denotes an associative binary operator, and 6; =
a&fbi; iave or i = 1,2,3. Then, for any non-empty lists x’

1

f (x’ +-l-z) = if GI 4 (qr x) then GZ x’ (qa z) @ f x
else G3 x’ (qs x)

where Gr , Ge and Gs are defined by

Gr [a] z = graz
2 fjz*4) z = Glx:(q~x:e,,z) A GIX;Z

= g2az
G2 (x;+f-x;)z =
G3 14 z

62 xi (qi x: 8q, z) aa G2 x; z

6s (z; -l-l-xi) z 1 ?zfx: (91 x; erll z) then Gsxkz
eke 63 4 (a S eq3 z)

Proof Sketch. We can d&e f by

f (Q : X) = E((gi Q)EI, (qiX)&l, (f z)]

321

.

I

where

E{(t&, (Qi)&l , {fi)] 7 if TV qr then t2 q2 CB fi eke t3 43.

The context E[] is fusible since

where

4.2.4 Fourth Extension

So far we have considered linear recursions, i-e, recursions
with a single recursive call in the de6nition body. In this
section, we provide onr paralidization law for nonlinear I*
cursions. For instance, the foIlowing Zfib is a tricky nonlinear
recursion on lists, which computes the fibonacci number of
the length of a given list, mimicking the fibonacci function
on natural numbers.

lfib[] = 1
ljb (u : x) = lfib x + lfib’ x
ifib’ [] = 0
ZJW (a: x) = rfia x

To handle nonlinear recursions properly, we make de of
distributive and commutative properties.

Lemma 6 {Multiple Recursive Calls) Assume that fi
and fi are mutually recursive functions defined by

fi g:g = 91 a I41 ~~@b~l@fl4~cPl2@3f2 4

= g2n[Q2x)~ipzl~flx)~Ipz2~f2x)

where 4; = a&;, @,,-D for i = I, 2, @ is associative end
commutative, and @ is an associative operator which is dis-
tributive over 63, i.e., for any x, y and Z,

~y@*tYly, = (x @ Y> @ b @ 4
.z x= (y 63 x) a3 (2 @ 4.

Then, for any non-empty lists x’ and x, we have

f2 (x'+tx) = G2x'{q24 @(G2ix'@ fix)

e3 (Gzzx'@ f23

322

where

G1 [a] 2‘ =
GI (xi -i-M;) 2 =

G2 [aI 2 =
G2 (x~-H-4)~ =

GII [a] =
Glr {xi -H-x;) =

G12 [a] =
G,2 (2; -I-!-& =

G21 [a] =

G21 (xi +kx;> =

G22 [a] =

G22 (xi -H-x;) 2 =

The proof of the lemma is omitted, which is not difficult
using induction on the input of fl and f2. In fact, the
calculational law in this lemma is synthesized using a natural
extension of the synthesis lemma, from single contexts to
mutual ones. This lemma can be easily generalized from
two mutually recursive functions to n functions, On tho
other hand, in case that fr and fs are the same, this lemma
is specialized to deal with a single function whose definition
body contains multiple occurrences of the recursive call.

Let us use this theorem to parahelize the Ifib function.
Noticing that @ = + and 8 = X, we get the following
parallel program where Gr x z = Gs x z = 0.

l$b [a] = 1
ifib (2’ +I- x) = (Gil x’ x lj?b x) + (Gn x’ x ifib’ z)

i$’ 8 +tx) : ii?21 x’ x lfib x) + (G22 x1 x IJib’ x)

where

GII t@]
Gu (2; +-i&c;> 1 ;G,, x: x G11 xi) +

(G12 x: x G21 xc’z>

GIZ Ia3
Gl2 (4 +t-41 1 ;GII a; x G22 xic:) -1-

(Gl2 x: x G22 xi>

GII
G21

G12
G12

4) +
4)

d> +
4)

This result can be mechanically transformed into an cffi-
cient O(logn) parallel program by the tupling calculation
@ITT97]. As an interesting side result, we have actually
derived an O(logn) sequential algorithm for computing the
standard fib function. This can be seen by first replacing
all x, x’, xi, and xi in the program by their lengths rcspcc-
tively, and then applying the tupling calculation (followed
by even/odd case analysis).

-_

4.2.5 Main Theorem

We have demonstrated the key extensions together with the
corresponding parallelizatiojl laws. And, we have simpli-
fied our presentation in several ways. Fit, we discussed
each extension almost independently; for exainple, the ac-
cumulation parameter is not considered in Lemma 5 and
6. Second, in all the lemmas, the f z are placed on the
right side of EJ in the definition body. In fact, it can be
put on the left side just by using a new associative operator
x @’ y = y @ x, and it can even be put in the middle of two
8, as in g1 a (ql EC) fB f x 93 g2 IL (qz 2). Taking all the
above into consideration, we obtain a class of new recursive
definitions that can be paralleliied.

Theorem 7 (Parallelization) Let gi be any function, qi
be a mutumorphism (say a&, &<D), @ be an associative
operators. Then, we consider the folIowing definitions5 of a
function f

f (a:5) {c} = el@e28---8en

where every ei is

0 a non-recursive czpresion, i.e., 9i U (qi Z) {C); Or

l a recursive call: f x (g a @ c} where g is a function
and 0 is associative; or

l a conditional ezpression wrapping recursive calls: if
gil a (qil X) {c} then e; @ ei @ * - - 8 e’, else giz a (qiz
x) {c}, where at least one e: is a recursive call and the
others are non-recursive expressions.

Functions of this form can be parallelized by calculation,
provided (1) all occurrences of recursive calls to f are the
same’, and (2) if there are two or more occurrences of f,
then 0 should be commutative and there should exist an
associative operator 8 (with the unit I@> which is distribu-
tive over 8. cl

This theorem summarizes a sufficient condition for a re-
cursive definition to be parallelized. We will omit the proof
(which is based on the lemmas in this section), but shall
show how it will be used practically in the next section.

5 Parallelization Algorithm

Having given our parallelization theorem, we shall propose
our parallelization algorithm, making it clear how to recog-
nize associative and distributive operators in a program and
how to transform a general program so that the paralleliza-
tion theorem can be applied.

5.1 Recognizing Associative and Distributive Op-
erators

Central to our paralleIization laws and theorem is the use of
associativity of a binary operator @ and distributive oper-
ator 8. Therefore we must be able to recognize them in a

‘We use {c} in the definition off to denote that c is an option
which may not appear.

‘In the case of mutual-recursive functions, as seen in Lemma 6, we
allow calls to f to be different but logically treat them simply as f
cnlls.

323

program. There are several ways: limiting application scope
by requiring all associative and distributive operators to be
made explicit, e.g. in @?G94, CTT97], or adopting AI tech-
niques lie anti-unification [Hei94] to synthesize them. All
of them need human insights.

Fortunately, we are able to constructively derive such
associative operators from the resuIting type of the function
to be parallelized! It is known [SF931 that every type R that
has a zero constructor Cz (a constructor with no arguments
lie [J for lists) has a function 8, which is associative and
has the zero Cz for both a left and right identity. Such a
function 8 is called zero replacement function, since x @ y
means to replace all Cz in x with y. Here are two examples.
For the type of cons lists, we have such a @ defined by

[l@Y = Y
(x:xs)f3y = x:(xsg3y)

which is the list concatenation operator -l-t-; and for the type
of natural numbers, it is defined by

flay = y
wJ=4@Y = Svce(ncBy)

which is the integer addition +.
Associated with 8, we can could derive a most natural

distributive 9. For example, for the type of natural num-
bers, associating with + we have a distributive operator @
defined by:

(x@) 0 = II
(xs) (Sueen) = x+x@n

Clearly, 8 is our familiar x. This natural distributive oper-
ator is very important as seen in Lemma 6.

In summary, given a function f whose result has the
type of R, our associative operator is nothing but the zero
repIacement function derived from R. At first sight, this
seems to be rather restrictive, because we simply take one
fixed operator for every data type (e.g., it for lists and + for
natural numbers). In fact, among the associative operators
with the type of R + R + R, the zero replacement function
is the most primitive one. This is because no matter how
the associative operators are defined, they basically have to
produce their results (of type R) using the data construc-
tors of R for gluing whereas these data constructors could
be expressed in terms of the zero constructor and the zero
replacement function (see Step 1 in Section 5.2 for some
examples.)

5.2 Main Algorithm

Suppose that we are given a function defined by

f; Wf”)‘”
a:2 c = body

where body is any expression. The accumulating parameter
may be unnecessary (and thus denoted as {c}) which can
then be ignored. Certainly, not all functions have efficient
parallel versions and so our algorithm wilI give up paralleli-
zation in case our conditions are not satisfied. Nevertheless,
our algorithm can automatically parallelize a wider class of
functions covering many interesting ones (e.g., sbp, fib and
sum) than existing calculational methods.

.

t

i

I

We shah adopt scan (also known as p&z sums) [Ble89,
FG94, GorSGb] as our running example, while specializing
the general operator to be + for readability. This example
is interesting not only because of its importance in parallel
computation [BIeSS] but also because of the non-triviality
of a correct and efficient parallel implementation, as argued
in [O’D94].

scan [] = 11
scan (u : x) = a:(a+)*scanx

Step 1: Making the associative operator explicit .

First of all, we make the associative operator @ explicit in
our program to use our parallelization theorem. Note that
this @ is not an arbitrary associative operator; rather it
is a zero replacement operator derivable from the resulting
type R. Theoretically [SF93J, for any linear datatype’ R
with a zero data constructor Cz, a constructor expression,
say Ci er e, ez where e, c9rresponds to the recursive com-
ponent, can be transformed into a new expression combined
with e, by @I, i.e., (Cc er Cz ez)@e,. We apply this transfor-
mation to all those constructor expressions whose recursive
component contains occurrences of a recursive call to f. For
instance, when R is the list type (whose zero constructor
is {J and whose associative operator is -tt-), we apply the
following ruh to the body:

f x appears in e,
e:e, * [e]+l-e,-

Similarly, when R is the type of natural numbers, we have
the rule:

f z appears in e,
Succ e, * (Succ 0) + e,

Returning to OUT running example, we should get

scan (a : 2) = ’ [a] *(a+) * scan 2.

Step 2: Normalizing body by abstraction and, fusion
cakuIation

After @ is made explicit and the normalization algorithm
{CDG96] for conditional structure has been applied, the body
should be the Form el @ez 6+ . @e,, or be a single conditional
expression of the form if eP then er 8 ez @I + v. d en else e; @
e;@-.-@ek. These e;‘s and e!,‘s can be classified into three
groups.

l d-group: the expression contains no recursive call to
f *

l B-group: the expression is just a recursive call to f.

l C-group: the expression is an expression containing a
recursive call to j as its component’.

For an expression e in the d-group, we turn it into the
form ge a (qe z) (c) where ge is a function and Q= is a
homomorphism. This can be done as follows. Assuming
that ql,..., Q,, are all functions being applied to x in e,

7A datatype is linear if each branch has a single recursive eompo-
nent. So lists are linear but trees are not.

%t may be an conditional expression whose predicate part contains
a recursive call to I.

we first apply our parallelization algorithm to obtain their
corresponding mutumorphisms, which then can bc tuplcd
[HITT97] to a homomorphism, say qe. So we have gi x =
xi (qe z). Now ge with three arguments can be defined by
ge = Aa Qr (C}* e[(qi 2: I+ fli &)&I]*

For all expressions in the B-group, we check if they are
in the same form as f x {(g a@~)) xr.t. the same function
g and the associative operator 0 derived from c’s datatypo.
Note that if f has no accumulating parameter, we just check
if they are the same as f x. If it succeeds, we continua;
otherwise, we give up parallelization.

For an expression e in the C-group, we introduce a now
function fe 2 a c = e and try to derive a recursive definition
for fC by automatic fusion caIculation [SF93, TM9.5, HIT96,
OHIT97}. If this succeeds, we proceed to parallelizc fe by
our parabelization algorithm. It is fusion calculation that
helps us move expressions from the C-group to the A-group,

After doing so, we have got a program in the form that
can be parallelized according to the parallelization theorem
(Note that we may need to normalize conditional expressions
to our required form by the algorithm in [CDGSG]; this stop
is omitted here).

Returning to our running example, recall that we have
reached the point ‘where

body = [u] +i- (a+) * scan x. -
The first underlined expression is in the d-group which can
be turned into g1 a where gr a = [a], whereas the second is
in the C-group which needs fusion calculation. It is actually
a fusion of two functions (a+)* and scan. Let scan’ x a =
(u+) * scan 2. Fusion calculation will give

scan’ [u] c = (a + c]
scud (u : x) c = [u + c] -I+ scan’ x (a-&).

Notice the fact that the above underlined + is an associative
operator derived from the type of the accumulating result c,
which actually plays an important role both in the previous
fusion calculation and in the later parallelization of scan’.
Now scan (a : x) = [u] -~-scan x a, which indicates that
stun is no longer a recursion and the task of parallelization
has moved to parallelizing scan’. Repeating the above step
to the body of scan’ would give

scan’ (a : x) c = g1 UC-H-scud x (92 a-kc)
where gr a c = [CZ + cJ, g2 a = a

Step 3: Applying parallelization laws and optimizing
by tupling cakulation

Now we are ready to apply the parallelization theorem to
derive a parallel version of f. There are three cases.

If the transformed body has no recursive call to f, WQ
need do nothing for f as seen for scan, but turn to
parallelize functions used in the body.

If the transformed body has a single occurrence of re-
cursive call, we can apply the parallelization theorem
directly. For instance, we can obtain the following par-
a&l version for scan’:

scarz’(x+t-y)c = Grxc++scan’y(Gzx4-c)
GI [a] c = [u + c]
GI (X-H-Y) c = Gr xc-t+G~y(Gzxfc)
~2 14 = a
~72 ix+ty) = G2y+G.x

324

l Otherwise, the transformed body has more than one oc-
currences of the recursive call. In this case, we require
that @ shouId be commutative and should have a cor-
responding distributive operator Q with the unit say
~a. Then, we can apply the parallelization theorem.

Application of the parallelization theorem gives a paral-
lel program in an mutumorphic form as seen for SC&. To
obtain the final version, we need further optimization using
the automatic tupling calculation as demonstrated in Sec-
tion 4.2.2. Following the same thought., we can calculate
the following final version for scan’ (by tuplmg scan’, Go
and Gz), which is a U(Iogn) parallel algorithm, as efficient
as that in [sle89].

scan’ x c = s where (s, gl,g2) = tup x c
tup 14 c = ([a + cl, b + 4 4
tup(x-H-y) c = let (~~,g1~,92~) = tup x c

(SY, Sly > gad = tup Y (922 + c)
in (gh -Hsy, gh -H-g~y, g2y + 924

Interestingly, this program can be improved again by the
fact that the first and the second components produced by
tup are always the same. Therefore, we can remove the
second component and obtain the following program.

scan’ 2 c = swhere(s,gz)=tupxc .
tuP 14 c = ib + 4 4
tup(x*y)c = let(s,,g2z)=tupxc

by, Q2Y > = tup Y (g2z + c)
in (52 +I- sy, g2y + 922)

6 Future Extensions

In this section, we highlight some future work. First of all,
although the parallelization framework in this paper is de
fined for functions over lists, it can be naturally extended
to ofher linear data types based on the theory of Construc-
tive Algorithmics [Mal90, Fok92]. It will be interesting to
formalize the parallelization framework in a polytypic way
[JJ96], making thii extension be more precise. Specifically,
a straightforward extension is to generalize the present re-
sults to linear data types which permit multiple base data
constructors and multiple recursive data constructors, with
the latter having only one recursive argument each. Such a
data type can be shown to have an associative decomposition
operator, and a corresponding synthesis lemma. A simple
example of thii is natural numbers with f as its associa-
tive decomposition operator. The corresponding synthesis
lemma for functions on natural numbers is &en below.

Lemma 8 (Synthesis: Natural Numbers) Given is a
program

f (SUCC X) = E[(ti)L, (gj X)jR=l, (f X)c>z]

whose context E[] satisfies the fusible property with respects
to gj’s, f and 2, i.e., there exist terms 4,. . . , & such that
for any Ai’s, Bi’s, y and z we have

E[V&s (gjb + XI)&, (E[@i)iEn=,s (gj XI& <f&l)!1
= E[ML 8 (Sj X)&l3 tf x)!1

Then we can obtain the following parallel version: for any
nonempty x’,

f (x’ + X) = E[(Gi x’)L, (gj X))~ZIP U x):]

where the new functions G1,. . . , G,,, are defined by

Gi 0 = ti
Gi (x: + xi) = t:[(Ai I+ Gi xi&,

(& I+ Gi $&a
Y * 41. 0

Another direction for enhancement is to generalize the
present result to nested linear data types. As amply demon-
strated by the NESL work [Ble92], nested sequences are par-
ticularly important for expressing irregular problems, such
as sparse matrixes. Effective parallelization of such prob-
lems depend on the ability to parallelize flattened version
of nested sequences. It may be interesting to see how our
parallelization theorem can be extended to handle nested
linear data types. Thii enhancement could be used to pro-
vide a more friendly front-end to NESL, by allowing con-
ventional sequential programs to be used without being re-
stricted to the available parallel primitives.

7 Related Work and Conclusion

It is known to be very hard to give a general study of
parallelization [Ski94a] because it requires a framework well
integrating three general things: a general parallel program-
ming language, a general parallelization algorithm, and a
general parallel model. In this paper, we show that BMF
can provide us with such a framework. Particularly, we pro-
pose a general parallelization algorithm in BMF, which has
not. received its worthy study- Being more constructive, our
parallelization algorithm is not only helpful in design of effi-
cient parallel programs in general but also promising in the
construction of parallelizing compilers.

Besides the related work given in the introduction, our
work is closely related to the studies of parallel program-
ming (particularly with homomorphisms) in BMF (Ski92,
Co195, Gor96b, Gor96a, GDH96, HIT97], and to the pre-
vious works on proving that homomorphisms are a good
characterizations of parallel computational models [Ski92,
GDH96, Gor96a]. They provide the basis of our work. Ho-
momorphiims provide us with a31 excellent common inter-
face for programmers, low&-level parallel implementation,
and higher-level parallelizing transformation. They can be
considered as a parallel skeleton, but are different from those
in [Co189, DFRf93] which are mainly designed to capture
various kinds of control structures of programs. In contrast,
homomorphisms are derivable from the data structures that
programs are defined on, thus their control structures are
much simpler and can be mapped efliciently to wide range
of parallel architectures.

Much work has been devoted to deriving efficient homo-
morphisms in BMF. We classify them into three approaches.
The first approach [Ski921 requires initial programs to be
written in terms of a small set of specific homomorphisms
such as map and reduction, from which more complicated
homomorphisms can be derived, based on calculational laws
such as promotion rules. However, it is impractical to force
programmers to write programs in this way.

The second approach is to derive homomorphism from
recursive definitions. The main idea is to identify those re-
cursive patterns whose list homomorphisms can be easily
derived, e.g., in [GDH96, Gor96a]. However, the given pat-
terns are less general and the application scope is rather

-

325

limited. Moreover, although it makes heavy use of associa-
tivity of operators, how to recognize and derive them in a
program was not described at all. In contrast, our approach
is not restricted to a specific: recursive pattern, and we give
a way to recognize associative operators from the resulting
type information.

The third approach is based on i&e third homomorphism
theorem [Gib96]. The thiid homomorphism theorem says
that an algorithm h which can be formally described by
two specific sequential algorithms (Zeftwad and tightwad
reduction algorithms) is a list homomorphism. Barnard et
al [BSSSl] bnce tried it on the language recognition prob-
Iem. Although the existence of an associative binary opera-
tor is guaranteed, the theorem does not address any efficient
way of calculating it. Gorlatch [Gor96a, Gor96b] proposed
an idea of synthesizing list hOmOmOrphiSms by generalizing
both leftward and rightward reduction functions, which was,
then well formalized by using the term rewriting technique
[GGSi’]. Nevertheless, as shown in thii paper, it is possible
to paralleiize systematically using only a leftward sequential
program.

Our synthesis lemma was greatly inspired by the paral-
lel svnthesis alp;orithm in [CDG96, CTT97]. We extended
andlformalize ihe idea of second brder g&eralization and
inductive derivation in that algorithm.

In traditional imperative languages there are also many
ongoing efforts at developing sophisticated techniques for-
paral1elizing iterative loop {FG94]. Different from the usual
way [Len961 based on the analysis of dependence graph, it is
based on a parallel reduction of function composition which
are associative, relying on the existence of a template form
which can be efficiently maintained. Our idea of fusible con-
texts is related but both more formal and more genera1 than
that of a closed template form. We attempt to deal with
more general recursive equations, and do not require henris-
tic simplification techniques.

Our work is much influenced by the ideas of deriva-
tion of associative and distributive operator from data types
in [SF93]. However, previous studies were essentially for
the purpose of automatic construction of monadic opera-
tors from type definitions. We brought them here for our
parallelization purpose.

This work is also reIated to our previous work @IT9i’].
Previous work starts from the specification of compositions
of mutumorphisms, while this work shows’how to derive
mutumorphisti from general sequential piograms.

Acknowledgement

This paper owes much to the thoughtful and helpful discus-
. sions with Manuel Chakravarty, Fer-Jan de Vries, Masami

Hagiya, Hideya Iwasaki, GabrieIe Keller, Mizuhito Ogawa,
Akihiko Takano, and other members of the Tokyo CACA
seminars. Particularly, Manuel Chakravarty carefully read
a draft of thii paper and gave us many valuable comments.
Thanks are also to POPL referees who provided detailed
and helpful comments.

References

. Pad91 R. Backhouse. An exploration of the Bird-
Meertens formalism. In STOP Summer

[Bir87]

[Bir89]

[sle89]

[3Ie92]

[Bra941

[sSS91]

[CDG96]

[Chi93]

~Col89]

[Co195]

[CTT97]

[DFH+93]

326

School on Constructive Algorithm&q Ameland,
September 1989.

R. Bird. An introduction to the theory of
lists. In M. Broy, editor, Logic of Progmm-
ming and Cah.di of Discrete Design, pages 5-
42. Springer-Verlag, 1987.

R. Bird. Constructive functional programming,
In STOP Summer School on Constructive Al-
gorithmics, Abeland, 9 1989.

Guy E. BIelloch. Scans as primitive operations.
IEEE pans. on Computers, 38(11):1526-1638,
November 1989.

G.E. Blelloch. NESL: a nested data parallel
language. Technical Report CMU-CS-92-103,
School of Compnter Science, Carnegie-Mellon
University, January 1992.

T. A. BratvoId+ Parallelising a functional pro-
gram’using a list-homomorphism skeleton, In
Hoon Hong, editor, PASCO’94: First Interna-
tional Symposium on ParaIleI Symbolic Compu-
tation, pages 44-53. World Scientific, Soptcm- ’
ber 1994.

D. Barnard, 3. Schmeiser, and D. Skilficorn. DC-
riving associative operators for language rccog-
nition. In BtrlIetin of EATCS (43), pages 131-
139,1991.

W. Chin, J. Darlington, and Y. Guo. farallcliz-
ing conditional recurrences. In Annual Euro-
pean Conference on ParaIIeI Processingj LNCS
1123, pages 579-586, LIP, ENS Lyon, F!ranco,
August 1996. Springer-Verlag.

W. Chin. Towards an automated tupling strat-
egy. In Proc. Conference on Partial Eualua-
tion and Program Manipulation, pages 119-132,
Copenhagen, June 1993. ACM Press.

M. Cole. Algorithmic skeletons : a structured
approach to the management of parallel com-
putation. Research Monographs in Parallel and
Distributed Computing, Pitman, London, 1989,

M. Cole. Parallel programming with list homo-
morphisms. Parallel Processing Letters, 5(2),
1995.

W. Chin, S. Tan, and Y. Teo. Deriving ef-
ficient parallel programs for complex rccur-
rences. In ACM S&‘SAM/SIGNUM Intemn-
tional Conference on Parallel Symboiic Compu-
tation, pages 101-110, Hawaii, July 1997, ACM
Press.

J. Darlington. An experimental program trans-
formation system. Artificial bteiligence, 16:1-
46, 1981.

J. Darlington, A.J. Field, P.G. Harrison, P.H.J.
Kelly, D.W.N. Sharp, Q. Wu, and R,L. While.
Parallel programming using skeleton functions.
In Parallel Architectures 8 Languages Europe.
Springer-Verlag, June 93.

[dM92]

FokB2)

[GDH96]

[GG97]

[Gib92]

[Gib96]

[GLJ93]

[Gor96a]

[GorSGb]

[Hei94]

BT961

(HIT971

0. de Moor. Categories, relations and dynamic
progmmming. PLD thesis, Programming re-
search group, Oxford Univ., 1992. Technical
Monograph PRG-98.

A. Fischer and A. Ghuloum. Parallelizmg com-
plex scans and reductions. In ACM PLDI, pages
135-146, Orlando, Florida, 1994. ACM Press.

M. Folcldnga. A gentle introduction to category
theory - the calculational approach -. Tech-
nical Report Lecture Notes, Dept. INF, Uni-
versity of Twente, The Netherlands, September
1992.

Z.N. Grant-Duff and P. Harrison. Parallelism
via homomorphism. Parallel Processing Letters,
6(2):279-295, 1996.

A. Geser and S. Gorlatch. Parallelizing func-
tionat programs by generalization. In Alge-
braic and Logic Programming. ALP’g7, Lecture
Notes in Computer Science. Springer-Verlag,
1997.

J. Gibbons. Upwards and downwards accumula-
tions on trees. In Mathematics of Program Con-
struction (LNCS 669), pages 122-138. Springer-
Verlag, 1992.

J, Gibbons. The third homomorphism theorem.
Journal of finctional Programming, 6(4):657-
665, 1996.

A. Gill, J. Launchbury, and S. Peyton Jones.
A short cut to deforestation. In Proc. Con-
ference on finctional Programming Languages
and Computer Architecture, pages 223-232,
Copenhagen, June 1993.

S. Gorlatch. Systematic efficient paralleliza-
tion of scan and other list homomorphisms. In
Annual European Conference on Parallel Pro-
cessing, LNCS 1124, pages 401-408, LIP, ENS
Lyon, fiance, August 1996. Springer-Verlag.

S. Gorlatch. Systematic extraction and imple-
mentation of divide-and-conquer parallelism. In
Proc. Conference on Progmmming Languages:
Implementation, Logics and Progmms, LNCS
1140, pages 274-288. Springer-Verlag, 1996.

B. Heinz. Lemma discovery by anti-unification
of regular sorts. Technical report no. 94-21, FM
Informal& Technische Universitat Berlin, May
1994.

Z. Hu, H. Iwasaki, and M. Takeichi. Deriving
structural hylomorphisms from recursive delini-
tions. In ACM SIGPLAN International Confer-
ence on i%mctionaf Programming, pages 73-82,
Philadelphia, PA, May 1996. ACM Press.

Z. Hu, H. Iwasaki, and M. Takeichi. Formal
derivation of efficient parallel programs by con-
struction of lit homomorphisms. ACM nuns-
actions on Progmmming Languages and Sys-
tems, 19(3)&&f-461, 1997.

327

[IIITT97] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano.
Tupling calculation eliiinates multiple data
traversals. In ACM SIGPLAN International
Conference on Functional Progmmming, pages
164-175, Amsterdam, The Netherlands, June
1997. ACM Press.

pJWe92] Paul Hudak. Simon L. Pevton Jones. and Philip
Wadler (editors). Rep02 on the programming
language Haskell, a non-strict purely functional
language (version 1.2). SIGPLAN Notices, Mar,
1992.

[Jeu93]

[JJ96]

[JS90]

[Len961

[Mal89]

pal901

[Mee92]

[O’D94]

[OHIT97]

[SF93]

[SkiSO]

[Ski94a]

J. Jeuring. Theories for Algorithm Calculation.
Ph.D thesis, Faculty of Science, Utrecht Univer-
sity, 1993.

J. Jeuring and P- Jansson. Polytypic program-
ming. In 2nd International Summer School on
Advanced Functional Programming Techniques,
LNCS. Springer Verlag, July 1996.

Geraint Jones and Mary Sheeran. Circuit de-
sign in Ruby. In Staunstrup, editor, Formal
Methods for VLSI Design, Amsterdam, 1990.
Elsevier Science Publications.

C. Lengauer. Automatic parallelization and
high performance compiler. In Annual Euro-
pean Conference on Parallel Processing, LNCS
1123, pages 377-378, LIP, ENS Lyon, France,
August 1996. Springer-Verlag.

G. Malcolm. Homomorphisms and promotabil-
ity. In J.L.A. van de Snepscheut, editor, Math-
ematics of Program Construction, pages 335-
347. Springer-Verlag, 1989.

G. Malcolm. Data structures and program
transformation. Science of Computer Program-
ming, (14):255-279, August 1999.

L. Meertens. Paramorphisms. Formal Aspects
of Computing, 4(5):4X%424, 1992.

J. O’Donnell. A correctness proof of parallel
scan. Parallel Processing Letters, 4(3):329-338,
1994.

Y. Onoue, Z. Hu, H. Iwasaki, and M. Take-
i&i. A calculational fusion system HYLC. In
IFIP TC 2 Working Conference on Algorithmic
Languages and Calculi, Le Bischenberg, fiance,
February 1997. Chapman&Hall.

T. Sheard and L. Fegaras. A fold for all sea-
sons. In Proc. Conference on Functional Pro-
gramming Languages and Computer Architec-
ture, pages 233-242, Copenhagen, June 1993.

D.B. Skillicom. Architecture-independent par-
allel computation. IEEE Computer, 23(12):38-
51, December 1990.

David B. Sldllicom. Foundations of Paral-
lel Progmmming. Cambridge University Press,
1994.

” :“(.;.
.: 1

, , ;” 1-

,: ::: :
,.

. . i

[Ski94bj D.B. Slcillicom. The categorical data type ap-
proach to generaI-purpose parallel computa-
tion. In B. Pehrson and I. Simon, editors, Work-
shop on General-Purpose Parallel Computing,
13th IFIP World Congress, volume IFIP Trans-
actions A-51, pages 565-570. North-Holland,
September 1994. .

[Ski92] D. 3. Skillicorn. The Bird-Me&ens Formalism
as a Parallel Model. In NATO ARW ‘Software
for Parallel Computation”, June 92.

[TM951 A. Takano and E. Meijer. Shortcut defor-
estation in calculational form. In Proc. Con-
ference on Functional Programming Languages
and Cvntputer Architecture, pages 306-313, La
Jolla, California, June 1995.

.‘:

I

328

