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1. Introduction

Smalitalk is an object-oriented language designed and
implemented by the Learning Research Group of the
Xerox Palo Alto Research Center [2, 5, 14]. Some features
of this language are: abstract data classes, information
inheritance by a superclass-subclass mechanism, message
passing semantics, extremely late binding, no type
declarations, and automatic storage management.
Experience has shown that large complex systems can be
written in Smalitalk in quite a short period of time; it is
also used to teach programming to children quite
effectively. Object-oriented languages like Smalitalk have
begun to be accepted as friendly languages for novice
programmers on personal computers,

However, Smalltalk has some drawbacks, too.
Smalltalk programs are incfficient compared with Lisp or
Pascal. Late binding is a major reason of this inefficiency;
every time a procedure is called, its implementation in the
current contcxt has to be found.

Because of late binding, ~ whether there is an
implementation of a procedure call or not can only be
found at run-time. This may be convenient in the early
stages of system development; one can run a partially
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completed system, and when he discovers a run-time error
caused by an unimplemented procedure, he can write the
procedure body and proceed the computation from the
point where the error was discovered. However, there is
no way to guarantee that there will be no run-tiine errors.
We found many "completed” systems which still had such
Tun-time €Irors.

Another problem is that it is hard for a novice to read
Smalltalk programs written by other people. The fact that
there arc no type declarations and the fact that the
bindings are late are major causes of unreadability. All the
Smalltalk procedures are so called generic procedures.
Each procedure name is associated with several procedure
bodies declared in diffcrent classes. Depending on the
classes of the arguments of a procedure call different
procedure bodies are invoked. Since the classes of the
arguments may differ according to the context, it is
impossible to statically predict the behavior of the

procedure calls,

We observed that both inefficiency and unreadability
are attributed to late binding; however, early binding can
be cffectively accomplished if we cun tell the classes of the
procedure arguments at compile time. In the long run
probably  Smalitalk  nceds to  have  "type"
declarations-——probably not rigid declarations of Pascal
but rather in the form of hints to compilers and
programmers. Even without changing the language it
would be nice to have a tool that supplies “type”
declarations to current Smalltalk or partially specified

Smalltaik. This will also lead to cfficient compilation.

We thus concluded that we need to introduce "types”



to Smalitalk. The introduction of types is more promising
in Smalltaik than in similarly declarationless language
Lisp, since Smalltalk has a rich user-defined abstract
classes. Therefore, the most straightforward approach to
introduce types is to associate types of variables to classes
that variables denote and to associate types of procedures
to mappings from classes to classes. Since a variable may
denote objects of different classes, we define the type of a
variable to be a union of classes that the variable will ever
denote.

The aim of this research is not to implement compilers
for Smalltalk with type declarations. We intend to design
tools to supply type declarations to current Smalltalk
programs. Compléte type determination is neither
possible nor desirable; people do write Smalltalk programs
that take advantage of late bindings. We are, therefore,
interested in finding a relatively efficient method that can

find types of expressions in a large number of cases.

The problem of statically assigning types to type-
declarationless programs is called type-inference problem.
We can find a number of work on type inference 3, 4, 7,
9, 11, 15]; these techniques are, however, either too
restrictive or too incfficient for our purpose. The only
technique implemented, proven to work for non-trivial
cases, and used extensively was developed by Milner [7] to
deteimine types for ML language of LCF. Even though
ML language is much simpler than Smalltalk, the fact that
there exists an efficient, versatile algorithm encouraged us

to investigate whether we can extend the method.

The LCF type checker produces a set of equations

from procedurc declarations and solves them by
unification {12], to obtain the types of the procedures; it
can run.in linear time due to a fast unification algorithm
invented recently [10]. We extended Milner’s method so
that we can treat unions of types; in our method, we create
a set of equations and inequalities and solve them by
This

technique is general and can be applied to other data-flow

unification and a transitive closure algorithm.

problems.

The advantage of Milner’s method and our method is

that it reduces the problems to purely mathematical
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domain so that we can apply various formula manipulation
algorithms, without considering the execution order or
side-effects. Another advantage is that these methods can
handle functions with polymorphic types.

In section 2 we review earlier work on type inference.
The brief introduction of the syntax and the semantics of
Smalltalk is done in section 3. Then we introduce the
"types” into Smalltalk in section 4. We discuss the first
part of our algorithm, how to extend LCF type checking
algorithm for liberal unions of types, in section 5. Then in
section 6 the whole algorithm is presented. Section 7 is

concerned with the implementation and experience.

Smalltalk has four major different versions of the
language and implementations. The version we used for
our experiments is Smalltalk-76.

2. Earlier work on type inference

There are essentially two approaches to type inference.
Functional approach is used mainly for applicative
languages; however, as we show in this paper, that is
essentially not the limitation to this approach. Data-flow
approach is used for imperative languages; state vectors
congsisting of the types of the variables at various locations
in the programs are introduced. These state vectors are
pushed through the programs until fixed-points of the
types are obtained.

2.1. Functional approach

Mortis and Reynolds [9, 11] independently considered
the same problem at about the same time.
like
{Reynolds), it is possible to encounter run-time errors such
as applying lists to arguments. So the question that they
posed is: Can one infer types of functions in these typeless
languages, to catch more errors at compile time?

In typeless

languages lambda caleculus  (Morris) or Lisp

Consider a recursive function

map(f,m) = gerif null(m) then nil
else cons(f{car(m)), map(f,cdr(m))).

Suppose the type specifications of null, nil, cons, car, and
cdr are given as follows:



null: &7 list — Bool,

nil: = oo list,

cons: agXaj list - a3 list,

car: ag list — ay,

cdr: ag list — g list,
where aq, ..., a5 are variables that take types as values,
and list is a postfix type constructor. Then we can easily
think that map has the following type:

(a = B)Xalist — B list,

They have given a way to derive types of functions such as
the one shov n above.

Milner {7] has pursued their approach further, and
shown that an efficient way to solve the problem is to use
the unification algorithm. He implemented the algorithm
in LCF, and demonstrated the feasibility of using such a
program as an interactive programming aid: one can write
programs without any type declarations and the tool fills
all the details.

The characteristics of this approach are:

1. The types of functions are given as an expression with
the types of parameters as free variables. Therefore, even
for procedures with polymorphic types, once we compute
the type of a function, no recomputation is necessary when
the function is used with parameters of different types.
This is particularly useful in interactive programming.

2. The domain of types can be infinite.

3. The result types of functions must be uniquely
determined given the types of all the parameters. For

exaraple, determining types of a function like
f(x) =ger if x then 1 else 1.1

is beyond the capability of their system.

2.2, Data-flow analysis approach

Using data-flow analysis techniques to determine
properties which can be described by a finite lattice [6],
various people [3,4,15] showed that one can infer types of
program states at various locations in the program.
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The characteristics of this approach are:

1. It can treat acbitrary union of types.

2. The domain of types must be finite.

3. Input must be constant elements of the lattice for each
analysis.  Therefore, it cannot handle polymorphic
procedures. Unlike the [unctional approach, whenever a
function call is encountered, the function body may have
to be reanalyzed. [t may be possible to apply procedural
data-flow analysis techniques [13, 16], but nobody has
shown how to apply them to type-inference problems of
polymorphic procedures.

3. Smailtalk

There is a paper that describes fragiments of Smalltalk-
76 [2], but the complete language description is yet to be
published [14]. Here, [ will describe the syntax and the
semantics of Smalltalk-76 briefly.

3.1. Syntax

The syntax is described with BNF form with the
following convention: | (alternative), { }+ (repetition of

one or more times).

{expression> :1= <assignmentd | <block> |

{conditional> | <message>] <identifier>

<assignment>  ::=<variabled < <expression>
<block> ii= [ <concat> ]
{concat> :i=<return expr> | <expression>.<{concatd

{conditional>  ::=[<expression>=[<concat> Kconcatd]

<return expr>  ::=<expression> | <expression>

{message> ::=<expression> <unary selectord |
<expression> <binary op> <expression> |
<expression> {<selector> <expression>} +

<selector> 1= <identifier>: | <identifier> g

<unary selector> ::= <identifier>

<binary op> .= <a sequence of operator characters)

<method> 1= {<selectord <formal parameter>} + [

{temporary vars> <block> |
<binary op> | <temporary vars> <block> |
<unary selector> | <temporary vars>
<block>



Message is equivalent to procedure call of Algol and
method is equivalent to procedure declaration. A typical

message
Tf:e,

which is equivalent to the Simula [1] procedure call r.fi(e),
means to invoke the procedure f: in the class of r with the
parameter e.

From here on we will use the terms messages and
methods instead of procedure calls and declarations.

3.2. Class structure

The only kind of entities in Smalltalk is an object.
Every object belongs to one and only one class; all the
objects in a class respond similarly to messages.
Programmers can create classes freely, but all the classes

form a tree structure; the root is Class Object.

All the objects of a class have the same internal
structure. Internal structure of an object is determined by
local variables and a vector of methods descriptors. There
are four kinds of variables:

temporary variables: local to each method

instance variables: local to each object

class variables: local to each class

global variables: they can be accessed from every
method.

A subclass is said to inherit all the properties of its
superclass——all the class variables, instance variables, and
a vector of methods descriptors of the superclass are
implicitly defined for the subclass.

3.3. Semantics of messages

Consider a message,
s fi: a1 fzf az'

Here r is called a receiver, and a and a, are parameters of
the message. f;: and f,: are the selectors of the message,
and the concatenation of the selectors denote the name of
the method that implements the message. The execution
of this message takes the following steps. First, 1, a,, da
are evaluated. Let the value of r be an object of class A.
Then, class A is searched whether the method fy:fy: is

190

declared in it. If it does, the method f,:f,: in class A is
invoked with aq, a, as actual parameters of f{:f,:. Iff:fp:
does not exist in class A, then its superclass is searched.
This process is repcated until Class Object is searched. [f
fy:fo: does not exist in Class Object, then it is a run-time
error, ‘This process is shown in Fig. 1.

Class Object

Class A

f1:f2:

Class B

This is the class where 1 belongs.

Fig. 1. The message invocation of r f1: a1 f2: az.
The class of r is B. Since f1:f2: does not exist in

Class A, f1:f2: in Class B is invoked.

4. Types in Smalltalk

We will introduce syntax of type expressions, and
define how these expressions are interpreted. Then we
will show how we assign type expressions to program
expressions. The purpose of this is to prove that we can
assign types to programs so that programs with type
assignment will not create run-time errors, and to show '
that we can actually present such an algorithm.

4.1. Definition of types

4.1.1. Base type set

There is a finite set B, which consists of all the class

names. B is called the base type set.



4.1.2. Type expressions

We will be assigning type expressions of the form
aXpXy—§ to functions. These type expressions are

defined as follows:

1. Any subset of the base type set B is a type expression.
2. Greek letters, ay, a7, ... denoting type variables are type
expressions.

3. T (top) and _L (bottom) are type expressions.

4. If o and B are type expressions, then so are X8, and

a—f.

{Integer, Real}, {Object}, a—p, {Integet}—p are all
type expressions.

4.1.3. Partial order

We can also define a partial order relation (por)
between type expressions. The por is defined as follows:

Constant type expressions

First, we consider por’s among constant type

expressions,

1. If a, b C B, then ab iff aCh.
2. If a € B, then 1Ca and aCT.

3. a—g A blZd iff axbgxd
a—g A bZd iff g—»bZa-d

Variable type expressions

Variable type expressions contain type variables as
parts of the expressions.

ng’rg iff there exists a substitution S such that ng =
T

4.14. Type descriptions of methods

Type expressions are not sufficient to describe types of
procedures. Consider a method

f | [self is: Integer » [Nself addint: 1] Nself addReal:
1.0].

The receiver of this method is denoted by self in the
method.

result of sending addint: 1 to self is returns; otherwise, the

result of sending addReal: 1.0 to self is returncd. If the

If the class of the receiver is Integer, then the

type of then-expression is ry and the type of else-
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expression is 79, then the type of the result of the method
is a union of 7 and 9. If we introduce a union operator
{J, we can associate the type of this method with a type
expression

Tf = 7> 7UT).

Alternatively we can express this using por’s,
==y Ay Anpy.
We took the latter approach for describing types of

methods, because we wanted to reduce the number of
symbols used.

We will describe the type of a method by a type
equation and a set of por’s, which may be empty. We call
this the type description of the method.

Example
fry | (self A:y » [Nself] Nyl
equation: rp = Ty Xry=Ty

por’s: Tself{;'rr, Ty;'rr

Any - which satisfies por’s is a solution; the lcast solution

is TXL]Ty.

4.2. Type assignments

We assign types to programs in a way similar to Milner
[7]. We need first some notion of a type environment to’
give types to the free variables in an expression and assert
por’s obtained from function applications,

An
A prefixed

A prefix p is a finite sequence of variables.
assumption v is a finite sequence of pot’s.
expression (pe) has the form <p,v,e>, where every variable
frec in e occurs in p. If a prefix or an assumption consist
of a single element, then they are represented by that
element; otherwise the members arc separated by commas
and enclosed in parentheses.

We say that a variable x is acrive in p if no x occurs to

the right of it in p.

Now a type assignment of a pe <p,v,e> is an assignment
of a type expression or a type description to each element
of p, and to each subexpression of e, A variable x is
assigned a type expression when x is either in p or ine. A
method name f is assigned a type description when f is in



p, and a type expression when fis in e. Thus one type
assignmeént of the following pe,

Cappend: | [self null » [nr copy]
Niself car cons: (self cdr append: NP
is:
appendey ey {List}-{Listh "{Listt | P {List}
MUy ssti— f0bjectt = UM {List} SOPY{List}— {List})
fself st ¥ fListy > " 1 x{List}— {List}
S (Lisy ¥ {Lisy > {List}
WPEN: 1 Lo { Listy— {List} {List} {ListH{List}
We denote a type assignment of <p, v, > by <p, 7, &,
or <p, v, €,> when we want to indicate the type o assigned
to e itself.

In any <p, 9, &, and any binding f of a method name
fin either P or g, a type variable in ¢ which does not occur
in any enclosing y_ binding of a variable y is called a
generic type variable for the binding f,. A generic instance
of ¢ is an instance of o in which only generic type
variables are instantiated.

We now dcfine the notion of a well-typed (wt) pe as
follows:

@) <p, ¥, x> is wt iff either

(a) x is a variable, and x_ is active in p, or

(b) x is a method name, and x is active in p and, if ¢
consists of a type equation ry = ¢ and por’s %, then r is a
generic instance of o, and the instantiation of ¥, by this
substitution is asserted by ¥.
(i) <p, 9, (épf'a)T> is wt iff <p, ¥, €, <p, ¥, D> are wt, and o

(iil)

and <p, v, &> are all wt, and o+ and y°+ are both

a—f and pl_a and BCCr are asserted by V.
<p, 7, [ép > [&,] é”YL,) is wt iff <p, v, &, <p, ¥, €,

asserted by V.
i)

cone (f1 g, 15, vY), v, D iswt, and o

<p, v, i, 15| vy [§l, declared in class A> is wt, iff <p

aX$§ — 7, where a
is a union of class names of A and subclasses of A that
does not have the declaration of f: and its superclass is in

.

If there is a way to well-type an expression, then the

execution of the expression in the type environment will
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not create any run-time errors, This can be easily proved.

The rest of the paper deals with the algorithm to assign
well-typing.

5. Extending the type-inference algorithm of LCF

We first show that we can extend the type-inference
algorithm of LCF so that we can infer the types of
procedures that have liberal unions of types for conditional
expressions. Then we extend further to allow temporary
variables and assignments. The algorithm in this section
are not yet the complete algorithm for the type-inference

problem of Smalltalk.

5.1. Type inference algorithm for union of types
Let us consider the following append: function, which
takes two lists as arguments and returns a list:

append: r | [self null » [Or copy] Nself car cons: (self
cdr append: 1]

We assume that all the functions in the definition of
append: have the type descriptions as follows:

null {List} — {Object}
copy {List} — {List}

car {List} - T

cdr {List} — {List}

cons: T X {List} — {List}.

We develop an algorithm that can handle this example.

Algorithm L: (Milnet’s algorithm to infer types for ML
language of LCF).

Algorithm A: (We allow liberal unions of types. Namely,
conditional expressions may evaluate to objects of different
classes according to whether then-branch is taken or else-
branch is taken.)

Step 1: Let the function definition to which we are
assigning a type be

f:r} A®x).

Assign new type variables to this declaration as follows.



First we introduce an equation:
Tf = Ty X7p > 20

This formula represents that the types of the function, the
arguments, and the result are rg 7y, 7, and pp
respectively. Then we will assign fresh typé variables to all
the expressions and argument positions of method in A(x).

For the case of append:, it is done as in Fig.2 by
introducing type variables py to pyg.

p0

Fig. 2. Assignment of type variables to expression of
append:

The meaning of this assignment is that the type of
each expression is represented by the type variable
attached to it. Also all the messages have type variables
attached to their argument positions. They are types
expected for the arguments.

According to Fig.2 self car cons: (self cdr append:
1) gets the type p7, and their arguments self car and
self cdr append: r are assigned pg and pq3 respectively.

Step 2: Obtain type equations and por’s from the fresh
type variable assignments. Type equations are created
from messages. We also obtain por’s from the

comparisons between actual parameters and argument

positions. If there is a message ey f: e; and the fresh
variable assignments are

pi > ¢ fi e
pj — the first argument position of f:
pk — the second argument position of f:
L g
pm > 62’

then the equation produced is
TR T PXek > 0)s

and the por’s produced are PI=pj PmEpk-

Por’s are also created from conditional expressions and

from references to formal parameters. If there is a

conditional expression
[e > [sy]s5]
and the fresh variables are assigned as follows:

ps—>[e > [s1];]
P13
P Sy,

then the por’s produced are

p1C s, P2 s

From Fig.2 we obtain the following equations and

por’s:
Tnull =P el
Tcopy = p5 7 P4
Tcar = P10 7 P9
Tedr = P16 — P15
Tappend: = P14%Xp18 > P13
Tecons: = P8API2 ™ 7

Tself=p3: P3=p2 Ti=pg  PEl=p5.  Telf=P1l:
P11=P10: POPSs Tself=p17, P17=P16 P15=P14
=019, p195018. p135P12, p45P0, #75P0

Step 3: Unify the equations of functions created in Step 2,
against the definitions of functions using Algorithm L.

From the unification of the equatinns for append:,
we obtain the following most general unifier:

({Object}/p))({List}/p,)({List} pg){List}/ps)T/p9)
({List}/p1p)({List}/p15)({List}/p16)(T/pg){List}/p7)
({List}/p19)



Step 4: Collect all the por’s. Then solve them to obtain all
the relations among parameters and results. The way to
solve these por’s is discussed in 5.2. Finally substitute the
por’s using the most general unifier obtained in Step 3.

In the above example, the por’s are:

self=r3 P32 Tiers prs. Tselfsrlls
p11=r10: P9y Toelf=p17: P17=Pl6 P15EP14
=p19, 19018, 135012 P4Ep(. 7R

Therefore, the type description of append: is,

Tappend: = TselfXTr > PO
reelf={List}, 7 "{List}, {list}pg.

This says, the arguments of append: are of class List
and the result must be of class List.

End of Algorithm
5.2. Solving the set of partial order relations

We will explain the algorithm to solve a set of por’s
required in Step 4 of the previous algorithm.

The partial order relations are all of the form eb,
where e and b are either constants or variables. These
variables can be divided into two classes: variables
representing parameters, which we call terminal variables,
and results and variables used to represent subexpressions,
which we call non-terminal variables.

The input of the algorithm is the set of por’s and the
output is the set of por’s ¢=d, where ¢ and d are either
constants or terminal variables, such that they represent all
the relations among constants and terminals inferred from
the input.

This can be solved by transitive closure algorithm.
Stepl: Replace each constant by each fresh variable €.

Step2: Apply transitive closure algorithm to por's.

Step3: For each terminal variable, obtain all the terminal
variables and constants related by the closure of [
relation.
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5.3. Type inference for temporary variables and
assignments

The second step is to introduce local variables,
assignments, and statement series into the language. This
requires a flow analysis to determine definition points and
application points of variables.

Consider the following program:

X €e. ¢))
untilg x f dog @
[x « gl ®

The value of x at (2) is defined by the values of x assigned
at both (1) and (3). Algorithms L and A require that any
name, whether it may denote a function or an object,
retains the same type whenever it is referred. On the other
hand it is actually possible that a variable denote objects of
different classes at different locations. Therefore, if we
need finer details of type information, we give different
names to the different occurrences of a local variable. We
then use the partial order relations among these different

type variables of the same temporary variable to give the
data-flow information among these variables.

This will certainly increase the complexity of the
algotithm. On the other hand if we assign one type
variable to one local variable we may not obtain fine
details we may need for some procedures. Therefore, we
have to choose a method according to the requirements on
the time of computation, the ease of implementation, and

the degree of accuracy.

Algorithm B: (Assigning types to the language with
temporary variables and assignments).

Step 1. Put suffix to temporary variables for each

occurrence.

In the above example, we suffix as follows:

Xy € e. ¢))
untilg x, f dog @
[x3 ¢ gl 3)



Step 2: Obtain type equations and type formulas for the
program using Algorithm A; except, for an assignment
yee

we create a por
're='ry.
From our example the por’s obtained are:
‘re='rx1, "g:"x3’ -rxz[___xrfpre.
Step 3: Obtain por’s describing the data-flows.

Now at the application instance (2), Xy can be both x1
and x3. Thercfore, we create two por’s:

rxl_[;-rxz, 'rx3|;‘rx2.
Step 4: Solve the por’s.

In the example we obtain
C s Tole .
1'e’_Tfpre 8 Tfpre

End of Algorithm

6. Algorithm to infer types in Smalltalk

The features that Smalltalk has and LCF does not have
are;

1. temporary variables and assignments,

2. arbitrary union of types,

3. late bindings, and

4. global variables and assignmeats.

We have shown algorithms for 1 and 2. We will develop

the rest of the algorithms in this section.
6.1. Late bindings

All the algorithms we presented require that we know
the types of messages used in a method, except the type of
itself if it has a recursive call. We have not described how
we can treat multiple recursion, but we can deal with
multiple recursion by a trivial extension of Algorithm L.

The problem that the late binding causes for the
previous algorithms is that we do not know the association
between a message and methods so that we cannot tell the
types of the messages. Furthermore, the association may

change dynamically. Therefore, all we can do at the
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beginning is to assume the worst case and assume that
each message may invoke all the possible methods.
Therefore, we assume the type of the message to be some
kind of a union of all the types of all the methods invoked.

Using these types of the messages we can use
Algorithm B to obtain the type description of the method.
Then, we may obtain more accurate information about the
type of the method; hence, more information about
bindings of each message.

We iterate this process until we can no longer obtain
This iteration should
terminate since the number of different type descriptions

more accurate information.
is finite and the iteration will always decrease the ordering
of the type description.

The data structure used to perform this algorithm is a
table with message names as keys. The values of this table
are lists of pairs of class names and the data structures
called the type trees. A type tree consists of a list of the
parameter types, the temporary-variable types, the result

type, and a list of por’s. This is shown in Fig. 3.

Message name

Class name  Type tree

OUJZC': At e 99

f _f A b
‘—-\

Fig. 3. Type table

There is also a table of back references with a key of a
message name; each value of the table consists of a list of

pairs of a class and a method where this message is
referred.

Following is the type-inference algorithm for late
binding,

Algorithm C: (Late binding)

Step 1: Initialize the type trees.

The first parameter, which is the recciver of the



method, is initialized to a set of class names; class names
included in this sct are the class name of the method and
class names of subclasses in which the method is not
declared and their superclasses are in this set. Then the
rest of parameters are initialized to 1 and the result is to
T.

Step 2: For each method do the following:

For each message in the method, obtain the types by
taking type unions of methods involved. How to take type
unions of methods are described in 6.2. The methods

involved may be all the methods if the receiver is T.

Then apply Algorithm B to determine types of
parameters, temporaries, and results. [ the computation
yields smaller types than the types at the beginning for any
of the entities, then we replace them by the new types, and
mark the method that it is updated.

{f the types of parameters or results change, then all
the methods that calls the method being computed must
also be marked for recomputation. However, if only the
temporaries change, then wé only necd to recompute the
current method.

Step 3. After scanning all the methods, repeat Step 2 for
each method marked for recomputation.

Ind of Algorithm
6.2. Type unions of methods

Tn Step 2 of Algorithm C, we had to take unions of
types of methods to obtain the type of a message. How
should this union bc taken?

Consider a message f and the corresponding methods
in Class A and B. We distinguish these methods by
putting suffixes using class names, then the types are ’rfA
and rrfB. The type union must behave as follows: if we
assign ’rfA@’rfB to f and the program is well-typed, then
the program should still be well-typed even if TfA is

assigned to f and Ty is assigned to f.

Consider an example,

q-fA = 1-1 - 7‘2’ Tl;{A}, {C, D}l;’l'z,
TfB g 1—1 —> 72, "1[;{8}’ {D, E}E’Tz.

Then the message f can be successfully sent to objects of
both class A and B. The result may be C, D, or E.
Therefore,

'rfAEBrfB =1 -, ={A, B} {C, D, ElCr).

In the case of multiple parameters, the treatment of the
parameters other than the first one is different.

Consider,
TgA = 71X1) = 73, r1={A}, rH{C, D}, {E, Fir3,
'rgB = TyX1) = 73, TIE{B}, TZ[;{D, G} {F, H}(;'r3

Let the union be

TgAEBTgB = 71)(12 - 73
The message can be sent to objects of class A and B,
therefore,

'rl;{A, B}.

However, when the assignment of TgAEBTgB produces

well-typing, the assignments of TgA and TgB should also

produce well-typing. So we have to take simple
intersections of types for the rest of the parameters.

Therefore,
mC{D}, {E, F, H}Cr3.
6.3. Example for Algorithm C

Now let us look at how Algorithm C works with an
example. There are two classes A and B, where the
following methods are defined.

Class A
nuil
add.:
car
cdr
append: x | r
r « x.
untitg v null dos
[self <« self add: r car, v & 1 cdrl
fiself].

Class B
add:
car
cdr.
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We will show that we can infer that the type of append: is
{A}X{A} - {A}

We assume that we know the Llypes of all the other

methods as listed below.

Class A

null  {A} - {Object}

add: TIXT =71, 1] ={A}

car {A}l-T

cdr TP T 71 :{A}.
Class B

add: mXT -y, 717 ={B}

car {B}->T

cdr 1~ T 1 ={B}.
Step 1

Let us first examine the body of append:. There are
four messages:

null, add:, car, and cdr.

We compute the types of messages by taking type unions:

null {A} - {Object}
add: TXT =1, v1 ={A, B}
car {A, B} » T
cdr 1~ T 11 ={A, B}
append:  refXry — 713

Step 2

We put suflixes to temporary variables and obtain the
following version of append:,

append: x | r
[ry ¢ x
untils r, null dog
[self, « self; add: rg car. ry « 15 cdrl
fNseify 1.

Now obtain the partial order relations by unification.

Step 3: We solve this set of por’s and obtain

TY = 71'1[;71‘2: 1'1-3 = 1r4: TrSI;{A},
{A}=r selfl':—:"selfzz Tself3E{A’B}’ Tself2;7self L3
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Now we can assign as follows:
'rrl = 'rrz = 71-3 = 'rr4 = 71-5 = {A} and
{A}= Tselfy = "self, = Tselfy-

Then compute the types using the message-types of Class
A. The result is

={AL {AlCHs.

6.4. Global and own variables.

Finally, we have to consider global and own variables.
Here we mean own variables to be variables whose values
at the beginning of the computation of methods depend
on the previous history of computation.

There are three kinds of global and own variables:
instance variables, class variables, and global variables.
Actually there are pool variables, but they behave exactly
like global variables except that they have to be explicitly
imported to classes.

Instance variables are local to each object. They are
created whenever an object is created, and their values can
Class

They are created

be only accesscd from the methods of the class.
variables are local to each class.
whenever a class is created, and they can be accessed from
every object of the class. Global variables are accessed
from every object of Smalltalk. We will treat all of them
in a similar manner; we will only present an algorithm
which works for all of them.

The difficulty of handling global variables is that
unlike temporary variables the flow of control among all
the occurrences of global variables is totally unpredictable.
Therefore, in general we have to consider a value of a
global variable at one location to be affected by all the
assighments to that variable in the entire system.

Therefore, what we will do is to assume the type of a
global variable to be the union of all the types of objects
that the variable may ever denote in the system.

Algorithm D: (Handling of global variables).

Step 1: We assign two types to each global variable. One
is access lype and the other is assign type. Initialize access
types to T and initialize assign types to L.



Step 2: Compute the types of methods using Algorithm C.
Whenever, global variables are accessed, we use access
types as their types. On the other hand we accumulate all
the assigniments and argument restrictions to assign types.
Namely, if a global variable is assigned an object with type
7, we replace the type of the assign type of that global
variable by the union of + and the previous value of the
assign type.

Step 3: After the computation, compare access types and
assign types. If assign types are smaller than access types,
replace access types by assign types, Then repeat Step 2
on all the methods which refer the global variables whose
access types are changed.

7. Implementation

The type-inference algorithm has been implemented in
Smalltalk-76. It is intended ‘to type-check the Smalltalk
kernel system, which consists of about 60 classes and 1300
methods. Out of these methods 98 are implemented
outside of the system by microcode and Bepl programs.
The types of these primitive methods are hand coded and

fed into the type-checking systera.

We have actually implemetned a simpler version of the
algorithms presented in this paper; we treated temporary
variables (local variables) to take the same value in the
entire method in Algorithm B, and we assumed all global
variables to have T as their values in Algorithm D. This
decision was made from the following reasons:

a) we wanted the system to run fast,

b) we needed some data on how well a simple algorithm
will work before implementing an elaborate algorithm, and
) of Smalltalk methods
straightforward so that they do not have the behavior that

most are simple and

their types differ depending on the locations.

One of the most useful features of this algorithm is that
it detects whether the method returns self, NIL, or one of
the parameters. Since many Smalltalk methods return self
or NIL, this capability was very important.

We have not yet tested the type inference on the entire
Smalltalk kernel, because Smalltalk-76 has a severe

limitation on the number of objects to be created and the
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entire data structure does not fit into the memory. The
system is planned to be expanded shortly and we can
report the result of the entire system. So far we have been
testing on the subset of the kernel that is concerned with
numbers.

8. Conclusion

After embarking on this project, Al Perlis suggest to
me another approach to obtain more information on types.
The approach is, we run the system against some examples
and record all the types of arguments and the results. This
will probably converge quite quickly and we can obtain
information close to the actual types of the methods. This
idea is also found in the thesis by Mitchell [8].

It is possible to implement an efficient compiler using
this technique. We gather not only the types of arguments
but also the frequency and the distribution of these types.
Suppose a message invokes one method very often, say
90% of the time, we can create the following code: The
class of the rcceiver is checked to see whether that
represents the most frequent case. 1f so, it jumps o the
corresponding  method  directly; otherwise, it searches
methods by the standard way.

However, these information we obtain from statistics
can never be better than the actual type. What we obtain
is the lower bound of the actual type.

On the other hand we obtain the upper bound of the
actual type by type inference program. If both agree, then
we are sute of the accuracy of our algorithm. [t is always
important to obtain both these information in a type
inference system.

- Furthermore, the statistics can never give us the
Many Smalltalk
programs can be simply analyzed that they return one of

information on polymorphic types.

the parameters as the results, and this fact is very

important for various purposes.
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