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1. lntrofluction

Smalltalk is an object-oriented language designed and

implemented by the Learning Research Group of the

Xerox Palo Alto Research Center [2, 5, 14]. Some features

of this kmgr,rage are: abstract data chtsses, information

inheritance by a superclass-subclass mechanism, message

passing semantics, extremely fate binding, no type

declarations, and automatic storage management.

13xptxience has shown that large complex systems can be

wrilten in $imalltalk in quite a sholt period of time; it is

also usecl to teach programming to children quite

effectively. Object-oriented languages like SmaIltalk have

begun to be accepted as friendly languages for novice

programmers on personal computers.

However, Smalltalk has some drawbacks, too.

Smalltalk programs a~e inefficient compared with Lisp or

Pascal. Late binding is a major reason of this inefficiency;

every time a procedure is called, its implementation in the

current context has to be found.

Because of late binding, whether there is an

implementation of a procedure call or not can only be

found at run-time. This may be convenient in the early

stages of system development; one can run a partially
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completed system, and when he discovers a run-time error

caused by an unimplemented procedure, he can write the

procedure body and proceed the computation from the

point where the error was discovered. However, there is

no way to guarantee that there will be no run-time errors.

We found many “completed” systems which still had such

run-time errors.

Another problem is that it is hard for a novice to read

Smallta!k programs written by other people. The fact that

there arc no type declarations and the fact that the

bindings are late are major causes of unreadability. .AI1 the

Smalltalk procedures are so called generic procedures.

Each procedure name is associated with several procedure

bodies declared in different classes. Depending on the

classes of the arguments of a procedure call ,different

procedure bodies are invoked. Since the classes of the

arguments may differ according to the context, it is

impossible to statically predict the behavior of the

procedure calls.

We observed that both inefficiency and unreadability

are attributed to late binding; however, early binding can

be effectively accomplished if we cirn tell the classesof the

procedure arguments at compile time. In the long run

probably Smalltalk needs to have “type”

declarations--probably not tigkl declarations of P~scal

but rather in the form of hints to compilers and .

programmers. Even withoul changing the language it

would be nice to have a tool that supplies “type”

declarations to CL1t’rent Smalltalk or partially specified

Smallhtlk. This will Ldso lead to efficient compilation.

We thus concluded that wc need to introduc~ “types”
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to Smalltalk. The introduction of types is more promising

in Stnalltalk than in similarly declarationless language

LISP, since Smalltdk has a rich user-defined abstract

classes. Therefore, the most straightforward approach to

introduce types is to associate types of variables to classes

that variables denote and to associate types of PrOCr3dllreS

to mappings from classes to classes. Since a variable may

denote objects of different classes, we define the type of a

variable to be a union of classes that t-he variable will ever

denote.

The aim of this research is not to implement compilers

for Smalltalk with type declarations. We intend to design

tools to supply type declarations to current Smalltalk

programs. Complete type determination is neither

possible nor desirable; people do write Smalltalk programs

that take advanr~ge of late bindings. We are, therefore,

interested in finding a relatively efficient method that can

find types of expressions in a large number of cases.

The problem of statically assigning types to type-

declarationlcss programs is called type-inference problem.

We can find a nUmber of work on type inference [3, 4, 7,

9, 11, 15]; these techniques are, however, either too

restrictive or too incfficicmt for our purpose. The only

technique implemented, proven to work for non-trivial

cases,and Lised extensively was developed by Milner [7] to

detei mine types for ML language of LCF. Even though

ML language is much simpler than Smalltalk, the fact that

there exists an efficient, versatile algorithm encouraged LIS

to investigate whether we can extend the method.

The LCF type checker produces a set of equations

from procedure declarations and solves them by

unification [1.2], to obtain the types of the procedures; it

can run in iinear time dUe to a fast unification algOrkkII

invented recently [10]. We extended Milner’s method so

that we can treat unions of types; in oLlr method, we create

a set of equations and inequalities and solve them by

unification and a transitive closure algorithm. This

technique is general and can be applied to other data-flow

problems.

T’he advantage of Milner’s method and our method is

that it reduces the problems to purely mathematical

domain so that we can apply various formula manipulation

algorithms, without considering the execution order or

side-effects. Another advantage is that these methods can

handle functions with polymorphic types.

In section 2 we review earlier work on type inference.

The brief introduction of the syntm and the semantics of

Smalkalk is done in section 3. Then we introduce the

“types” into Smalltalk in section 4. We discuss the first

part of our algorithm, how to extend LCF type checking

algorithm for liberal unions of types, in section 5. Then in

section 6 the whole algorithm is presented. Section 7 is

concerned with the implementation and experience.

Smalltalk has four major different versions of the

language and implementations, The version we used for

our experiments is SmallLalk-76.

2. Earlier work on type inference

There are cssentiall y two approaches to type inference.

Functional approach is USed mainly for applicative

languages; however, as we show in this paper, that is

essentially not the limitation to this approach. Data-flow

@prOaCh k USed fOr imperative languages: state vectors

consisting of the types of the variables at various locations

in the programs are introduced. These state vectors are

pushed through the programs until fixed-poinK of the

types are obtained.

2.1. Functional approach

Morris and Reynolds [9, 11] independently considered

the same problem at about the same time. In typeless

Ianguagcs like Lambda calculus (Morris) or Lisp

(Reynolds), it is possible to encounter run-time errors such

as applying lists to arguments. So the question that they

posed is: Can one infer types of fhnctions in these typeless

languages, to catch more errors at compile time?

Consider a recursive function

map(f,m) = def if nUll(m) then nil

else cons(f(car(m)), map(f,cdr(m))).

Suppose the type specifications of null, nil, cons, car, and

cdr are given as follows:
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null: al list+ Bool,

nil: -+ a2 list,

cons: ~3Xa3 list -+ ~3 list,

car: LX4list -+ a4,,

cdr: ~5 list -+ a5 list,

where al, ... , ~5 are variables that take types as volLIes,

and list is a postfix type constructor. Then we can easily

think th~t map has the following type:

(a+ ~)Xa list -+/1 list,

They have given a way to derive types of ftmctions such as

the one sl~.~:,n above.

Milner [7] has pursued their approach further, and

~hown that an efficient way to solve the problem is to use

the unification algorithm. He implemented the algorithm

in LCF, and demonstrated the feasibility of using such a

program as an interactive programming aid: one can write

programs without any type declarations and the tool fills

all the details.

The characteristics of this approach are:

1. The types of functions are given as an expression with

the types of parameters as free variables. Therefore, even

for procedures with polymorphic types, once we compute

the type of a function, no recomputation is necessary when

the function is used with parameters of different types.

This is particularly useftd in interactive programming.

2. The domain of types can be infinite.

3. The result types of functions must be uniquely

determined given the types of all the parameters. For

example, determining types of a ftlnction like

f(x) = def if x then 1 eke 1.1

is beyond the capability of their system.

2,2, Data-flow analysis approach

IJsing data-flow analysis techniques to determine

properties which can be described by a finite lattice [6],

various people [3,4,15] showed that one can infer types of

program states at various locations in the program.

The characteristics of this approach are:

1. It can treat arbitrary union of types.

2. The domain of types must be finite.

3. Input must be constant elements of the lattice for each

analysis. Therefore, it cannot handle polymorphic

procedures. Unlike the functional approach, whenever a

fhnction call is encountered, the function body may have

to be reanalyzed. It may be possible to apply procedural

data-flow analysis techniclues [’13, 16], but nobody has

shown how to apply them to type-inference problems of

polymorphic procedures.

3, %alltalk

There is a paper that describes fragments of Smalltalk-

76 [2], but the complete language description is yet to be

published [14]. Here, I will describe lhc syntax and the

semantics of Smalltdk-76 briefly.

3.1. Syntax

‘rhe syntax is described with FINF form with the

following convention: I (alternative), { }+ (repetition of

one or tnore times).

<expression>

<assignment>

<block>

<concat>

<conditional>

<return expr>

<message>

<selector>

::= <assignment> I <block> I

<con clitional> I <message>! <identifier>

::= <variable> +- <expression>

::= [ <concat> ]

::= <return expr> I <expression>, <concat>

::= [<expression>~[ <concat>]<concal>]

:: =<expression> ] fl<expression>

::= <expression> <unary se~ector> I

<expression> <binary op> <expression> I

<expression> {<selector> <expression>} +

::= <identifier>: I <identifier> g

<unary selector> ::= <identifier>

<binary op> ::= <a sequence of operator chwaclers>

<method> ::= {<selector> <formal pararnetcr>} + I

<temporary vars> <block> I

<binaly op> 1<temporary vars> <block> [

<unary selector> I <temporary ‘Jars>

<block>
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Message is equivalent to procedure call of Algol and

method is equivalent to procedure declaration. A typical

message

r f: e,

which is equivalent to the Simula [1] procedure call r.~(e),

means to invoke the procedure f in the class of r with the

parameter e.

From here on we will use the terms messages and

methods instead of procedure cal Is and declarations.

3.2. Class structure

The only kind of entities in Smalltalk is an object.

Every object belongs to one and only one class; all the

objects in a class respond similarly to messages.

Programmers can c~eate classes freely, but all the classes

form a tree structure; the root is Class Object.

All the objects of a class have the same intermaf

structure. Internal structure of an object is determined by

local variables and a vector of methods descriptors. There

are four’ kinds of variables:

temporary variables: Iocaf to each method

instance ~.ariables: local to each object

class variables: local to each class

global variables: they can be accessed

method.

from every

A subclass is said to inherit all the properties of its

superchiss- all the class variables, instance variables, and

a vector of methods descriptors of the superclass are

implicitly defined for the subclass.

3.3. Scruantics of messages

Consider a message,

r f,: a, f2: q.

IHere r is called a receiver, and a., and ~ are parameters of

the message. f,: and f ~: are the selectors of the message,

and the concatenation of the selectors denote the name of

the method that implements the message. The execution

of this message takes the following steps. First, r, al, q

are evahlated. Let the value of r be an object of class A.

Then, class A is searched whether the method f, :f2: is

declared in it. If it does,, the method f 1:fz: in class A is

invoked with al, a2 as actual parameters off, :f2:. If f, :f2:

does not exist in class A, then its superclass is searched.

This process is repeated until Ctass Object is searched. If

f, :f2: does not exist in Class Object, then it is a run-time

error. This process is shown in Fig. 1.

Ckass Object

F
Ctass A

fl:f2:

Ctass 8
5

This is the class wlu?re r belongs.

Fig, 1, The message invocation of r f 1: al f2: a2,

The CXLZSSof r is B. Since f! :f2: does fioL f?XiSt ii%

Chss A, f 1:f2: tn Ckzss B is invoked.

4. Types in Smalltalk

We Will introduce Syntax of

define how these expressions are

type expressions, and

interpretecf. Then we

will show how we assign type expressions to progmrn

expressions. The purpose of this is to prove that we can

assign types to programs so that programs with type

assignment will not create run-time errors, and to show

that we can actually present such an algorithm.

4.1..Definition of types

.4.1.1. Base type set

There is a

names. B is

finite set B, which consists of all the class

called the base type set.
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4.1.2. ‘Type expressions

We will be assigning type expressions of the form

aXp XY-+8 to functions. These type expressions ‘are

defined as follows:

1. Any subset of the base type set B is a type expression.

2. Greek letters, al, q, . .. denoting type variables are type

expressions.

3. T (top) and L (bottom) are type expressions.

4. If a and p ttre type expressions, then so are ax~, and

~+p.

{Integer, Real}, {Object}, a->p, {Integer}-i~ are all

type expressions.

4.1.3. Partial order

We can also define a partial order relation (per)

between type expressions. The por is defined as follows:

Constant type expressions

Fkst, we consider per’s among constant type

expressions.

1. If a, b g B, then a~b iff a~b.

2. If a G B, then ~Qa and aZ_r_.

3. aGg A b~d iff axb~gxd

a~g A b~d iff g+bga+d

Variable type expressions

Variable type expressions contain type variables as

parts of the expressions.

T&r ~ iff there exists a substitution S such that S7g =

7P

4.1.4. Type descriptions of methods

Type expressions are not sufficient to dcscribc types of

procedures, Consider a method

f I [self is: h’tte~ers [fiself a-d-dlrtt: I ] tkelf cutdReaL

1.0].

The receiver of this method is denoted by s?lf in the

method. [f the class of the receiver is Integer, then the

result of sending adctlnt: I to seLf is returns; otherwise, the

result of sending addReaL: t.0 to self is returned. If the

type of then-expression is T1 and the type of else-

expression is 72, then the type of the result of the method

is a union of q and T2. If we introduce a union operator

U, we can associate the type of this method with a type

expression

Tf=’r+’ru 1 T2.

Alternatively we can express this using per’s,

‘f = T+Y A TIGY A T2~7,

We took the latter approach for describing types of

methods, because we wanted to reduce the number of

symbols used.

We will describe the type of a method by a type

equation and a set of per’s, which may be empty. We call

this the type description of the method.

Example

f: Y I [self A: y a [tkelf] fly].

equation: Tf = TxXTy+rr

per’s: Tse&Tp Ty~7r

Any Tr which satisfies per’s is a solution; the Icast solution

is Txu7y.

4.2. Type assignments

We assign types to programs in a way similar to Milner

[7]. We need first some notion of a type environment to

give types to the free variables in an expression and assert

per’s obtained From fhnction applications.

A prejix p is a finite sequence of variables. An

assump~ion v is a finite sequence of por’s. A prefixed

expression (pe) has the form <p,v,e>, where every variable

free in e occurs in p. If a pretix or an assumption consist

of a sil@e element, then they are represented by that

element; otherwise the members arc separated by commas

and enclosed in parentheses.

We say that a variable x is active in p if no x occurs to

the right of it in p.

Now a type assignment of a pe <p,v,e> is an assignment

of a type expression or a type description to each element

of p, and to etch subexprxssion of e, A variable x is

assigned a type expression when x is either in p or in e. A

method name f is assigned a type description when f is in
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p, and a type expression when f is in e. Thus one type

assignment of the following pe,

<,,append: r I [self nutl D [or copy]

flsdf car cow: (self Cd?_ append: r)]>

is:

“’append:{ List}X{List]+{List} ‘{List} I ‘seLf{List}

‘W{List}-~{Object} > ‘!r{List} ‘Opy{List}-+{List}]

*seLf{List} car{ List}+_r cOns:Tx{List}-+ {List}

‘seLf {List} cdr{ List} +{ List}

append’ {List} x{ List} +{ List} ‘{ List} ){List}J{List}>

We denote a type assignment of <p, v, e> by <~, 7, e>,

or’ <p, V, co> when we want to indicate the type u assigned

to e itself,

In any <F, V, ~>, and any binding fa of a method name

fin either p or ~, a type variable in u which does not occur

in any enclosing yT binding of a variable y is called a

generic type variable for the binding FO. A generic instance

of u is an instance of o in which only generic type

variables are instantiated.

We now define the notion of a well-typed (wt) pe as

follows:

(i) <P, v, XT> is wt iff either

(a) x is a variable, and XT is active in p, or

(b) x is a method name, and Xa is active in F and, if u

consists of a type equation ,x = 7 and POr’S‘$x, then 7 is a

generic instance of U, and the instantiation of 9X by this

substitution is asserted by 7.

(ii) <L v, (Epfa),> is wt iff <P, v, e>, <P, v, D are wt, and u

~ ~.+B and p~~ and BET are asserted by V.

(iii) <p, v, [~p > [Fo] e“y]~> is wt iff <p, v, e>, <p, v, e’>,

and <p, v, e“> are all wt, and UZ, and yG. are both

asserted by ~.

(iv) <b, t, co ra I Vy [S]7 declared in class A> is W iff <~

) - ‘> is wt, andcone (fl O, ra, vy , v, s u = CIX8 -+ T, where a

is a union of class names of A and subclasses of A that

does not have the declaration of fl ancl its superclass is in

a.

If there is a way to well-type an expression, then the

execution of the expression in the type environment will

not create any run-time errors. This can be easily proved.

The rest of the paper deals with the algorithm to assign

well-typing.

5. Extending the type-inference algorithm of LCF

We first show that we can extend the type-inference

algorithm of LCF so that we can infer the types of

procedures that have liberal unions of types for conditional

expressions. Then we extend further to allow temporary

variables and assignments. The algorithm in this section

are not yet the complete algorithm for the type-inference

problem of Smalltalk.

5.1. Type inference algorithm for union of types

Let LISconsider the following append: ftlnction, which

takes two lists as arguments and returns a list:

append: r I [self nutls [frr copy] tlself car cons: (self

Gdr append: r)],

We assume that all the fhnctions in the definition of

append: have the type descriptions as follows:

nllll {List} -+ {Object}

cop y {List} + {List}

car {List} --+ T

cdr {List} + {List}

cons: T x {Lk@ + {List}.

We develop an algorithm that can handle this example.

Algorithm L: (Milner’s algorithm to infer types for ML

language of LCF).

Algorithm A: (We allow liberal unions of types. Namely,

conditional expressions may evaluate to objects of different

classes according to whether then-branch is taken or else-

branch is taken.)

Step 1: Let the fhnction definition to which we are

assigning a type be

E r ] A(x).

Assign new type variables to this declaration as follows.
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First we introduce an equation:

Tf = TXXT r + PO.

This formula represents that the types of the function, the

arguments, and the result are ~~ TX, .Tr, and P.

respectively. Then we will assign fresh type variables to all

the expressions and argument positions of method in A(x).

For the case of append:, it is done as in Fig.2 by

introducing type variables PI to P19.

&
pl

p2

p3

plo

pll

p16

Fig, 2. Assignment of type uariuws to cxpresstin of

appeti

The meaning of this assignment is that the type of

each expression is represented by the type variable

attached to it. Also all the messages have type variables

attached to their argument positions. They are types

expected for the arguments.

According to Fig.2 self car cons: (self cdr appemk

r) gets the type p7, and their arguments self car and

self cdr append: r are assigned P9 ancI p13 respectively.

Step 2: Obtain type equations and per’s from the fresh

type variable assignments. Type equations are created

from messages. We also obtain per’s from the

comparisons between actual parametem and argument

positions. If there is a message e, f: e2 and the fresh

variable assignments are

Pi + el f: ez

pj + the first argument position of f;

Pk + the second argument

PI - q

Pm + e2,

then the equation produced is

TL = PjxPk + Pi,

position of f:

and the per’s produced are pl~pj, Pm~Pk.

Per’s are also created from conditional expressions and

from references to formal parameters. If there is a

condhional expression

[e D [S11 S21

and the fresh variables are assigned as follows:

P5-+ [e 2 [S1l S21

P1 4 %

P2 4 S2,

then the per’s produced are

PILPS P2GPS.

From Fig.2 we obtain the

per’s:

‘null =P2-’Pl

Tcopy =P5+’P4

‘car = Plf) + P9

‘cdr = P16 + P15

following equations and

‘append: = P14xP18 + P13

‘cons: = p8~p12 + p7

‘sel@3~ P3~P2J ‘r~P6~ P6~P5~ 7sel~Pll~

Pll~PIOJ P9~P8Y 7self~P17~ P17~P16J P15~P14J

‘r~P19~ P19~P18! P13~P12, P4~P0, P7~Po.

Step 3: Unify the equations of functions created in Step 2,

against the definitions of functions using Algorithm L.

From the unification of the equations for append:,

we obtain the following most general unifier:

({object}~pl)({ List}~p2)({List}~p4)({List}/p5)(~/p9)

({List}/p~~)({List}/p~5)({List}/p~6)(l_/p 8)({List}/p7)

({List}/p12)
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Step 4: Collect all the por’s. Then solve them to obtain all

the relations among parameters and results. The way to

solve these per’s is discussed in 5.2. Finally substitute the

per’s using the most general unifier obtained in Step 3.

In the above example, the per’s are:

Therefore, the type description of append: is,

‘append: = ‘selfx7r + POJ

‘sel&{List}> ‘r~{Listl, {list}PPo.

This says, the arguments of append: are of class List

and the result must be of class List.

End of Algorithm

5.2. Solving the set of partial order relations

We will explain the algorithm to solve a set of per’s

required in Step 4 of the previous algorithm.

The partial order relations are all of the form e~b,

where e and b are either constants or variables. These

variables can be divided into two classes: variables

representing parameters, which we call terminal variables,

and results and variables used to represent subexpressions,

which we catl non-terminal variables.

The input of the algorithm is the set of per’s and the

output is the set of per’s c~d, where c and d are either

constants or terminal variables, such that they represent all

the relations among constants and terminals inferred from

the input.

This can be solved by transitive closure algorithm.

Step]: Replace each constant by each fresh variable ~.

Step2: Apply transitive closure algorithm to por’s.

Step3: For each terminal variable, obtain all the terminal

variables and constants related by the closure of ~

relation.

5.3. Type inference for temporary variables and

assignments

The second step is to introduce local variables,

assignments, and statement series into the language. This

requires a flow analysis to detelmine definition points and

application points of variables.

Consider the following program:

x+e. (1)

Unti.Lg X f dog (2)

[x + g], (3)

The value of x at (2) is defined by the values of x assigned

at both (1) ,and (3). Algorithms L and A require that any

name, whether it may denote a function or an objec~

retains the same type whenever it is referred, On the other

hand it is actually possible that a variable denote objects of

different classes at different locations. Therefore, if we

need finer details of type infolrnation, we give different

names to the different occurrences of a local variable. We

then use the partial order relations among these different

type variables of the same temporary variable to give the

data-flow information among these variables.

This will certainly increase the complexity of the

algorithm. On the other hand if we assign one type

variable to one local variable we may not obtain fine

details we may need for some procedures. Therefore, we

have to choose a method according to the requirements on

the time of computation, the ease of implementation, and

the degree of accuracy.

Algorithm B: (Assigning types to the language with

temporary variables and assignments).

Step 1: Put suffix to temporary variables for each

occurrence.

In the above example, we suffix as follows:

xl + e, (1)

until.: X2 f do: (2)

[X3 + g]. (3)
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Step 2: Obtain type equations and type formulas for the

program using Algorithm A; except, for an assignment

y+e

we create a por

Te=T Y“

From our example the per’s obtained

7e=Txl, 7g=Tx3, 7X cTf
2 pre”

are:

Step 3: Obtain per’s describing the data-flows.

Now at the application instmce (2), x2 can be both xl

and x3. Therefore, we create two per’s:

TX Lrx , TX LTX .
1232

Step 4: Solve the por’s.

In the example we obtain

TeLT fPre$‘g= fpre.

End of Algorithm

6. Algorithm to infer types in Smalltalk

The features that Smalltalk has and LCF does not have

are:

1. temporary variables and assignments,

2. arbitrary union of types,

3. late bindings, and

4. global variables and assignments.

We have shown algorithms for 1 and 2, We will develop

the rest of the algorithms in this section.

6..t. Late bindings

All the algorithms we presented require that we know

the types of messages used in a method, except the type of

itself if it has a recursive call. We have not described how

we can treat multiple recursion, but we can cleal with

multiple recursion by a trivial extension of Algorithm L.

The problcm that the late bincling causes for the

previous algorithms is that we do not know the association

between a mess~ge and methods so that we cannot tell the

types of the messages, Furthermore, the association may

change dynamically. Therefore, all we can do at the

beginning is to assume the worst czwe and assume that

each message may invoke all the possible methods.

Therefore, we assume the type of the message to be some

kind of a union of all the types of all the methods invoked.

Using these types of the messages we can use

Algorithm B to obtain the type description of the method.

Then, wc may obtain more accurate information about the

type of the method; hence, more information about

bindings of each message.

We iterate this process until we can no Iongcr obtain

more accurate information. This iteration should

terminate since the number of different type descriptions

is finite and the iteration will always decrease the ordering

of the type description.

The data structure used to perform this algorithm is a

table with message ntamesas keys, l-he values of this table

are lists of pairs of class names and the data

called the type trees. A type tree consists of a

Parameter types, the temporary-variable types,

type, and a list of por’s. This is shown in

Message name

t I f

structures

list of the

the result

Fig. 3.

Ctass name Type tree

Object -

f A \
.

Ft.g, 3, Type rxabte

There is also a table of back references with a key of a

message name; each value of the table consists of a list of

pairs of a class and a method where this message is

referred.

Following is the type-inference algorithm for late

binding.

Algorithm C: (Late binding)

Step 1: Initialize the type trees.

The first parameter, which is the receiver of the
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method, is initialized to a set of class names; class names

included in this set are the class name of the method and

class names of subclasses in which the method is not

declared and their superclasses are in this set. Then the

rest or parameters are initialized to ~ and the result is to

T.

Step 2: For each method do the following:

For each message in the method, obtain the types by

taking type unions of methods involved, How to take type

unions of methods are described in 6.2. The methods

involved may be all the methods if the receiver is T.

Then apply Algorithm B to determine types of

parameters, temporaries, and results. If the computation

yields smaller types than the types at the beginning for any

of the entities, then we replace them by the new types, and

mark the method that it is updated.

[f the types or parameters or results change, then all

the methods that calls the rne~hod being computed must

also be marked for recomputation. However, if only the

temporaries change, then we only need to recompute the

CL!rrent method.

Step 3: After scanning all the methods, repeat Step 2 for

each method markecl for recomputation.

ErId OJ Algori~hm

6.2. Type unions of methods

In Step 2 of Algorithm C, we bad t-o take unions of

types of methods to obtain the type of a message. How

should this union bc taken?

Consider a message f and the corresponding methods

in Class A and B. We distinguish these methods by

putting suffixes using class names, then the types are 7fA

and ~fB. The type union must behave as follows: if we

assign 7fA@~fB to f and the program is well-typed, then

the program should still be well-typed even if ~f is
A

assigned to f and ~f is assigned to f.
B

Consider an example,

TfA = 71 + 723 qG{A}, {C, DZ72>

TfB
= ~1 “ T2, 71~{B}, {D, E}G72.

Then the message f can be successfully sent to objects of

both class A and B. The result may be C, D, or E.

Therefore,

TfA@Tf’ = T1 + Q,

B
~IC{A, B}, {C, D, E}G~2.

In the case of multiple parameters, the treatment of the

parameters other than the first one is different.

Consider,

‘gA = 71X72 + T3>TID{A], T2L{C> ~}, {E, F}QT3,

‘gB
= TlXT2 + T3, TIG{B}, T2Q{D, G}, {F, H}LT3.

Let the union be

‘gA @’gB = T~x T’2 -+ 73.

The message can be sent to objects of class A and B,

therefore,

Tl~{A, B}.

However, when the assignment of TgA@TgB produces

well-typing, the assignments of rgA ancl 7gB should also

produce Weli-typing. So we have to take simple

intersections of types for the rest of the parameters.

Therefore,

T2G{DI, {E> F> HKT3.

6.3. Example for Algorithm C

Now let us look at how Algorithm C works with an

example. There are two classes A and B, where the

following methods are defined.

Class A

null

add:

car

Gdr

append: x I r

[r ‘+ x.

unttlg r nutl dog

[self ‘+- self radcl: r car. r + r cctr].

oself ].

Class B

add:

car

cdr,
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We will show that we can infer that the type of append: is

{A}X{A} + {A}.

We assume that we know the lypes of all the other

methods as listed below.

Class A

null {A} -+ {Object}

add: .qxT -+ 71, 71 ={A}

car {A} + T

cdr 71 -+ ‘q, q ={A}.

(lass B

add: TIXT -+ ?1, T1 ={B}

car {B} + T

cdr T1 + T1, ‘q ={ B}.

step 1

Let us first examine the body of append:. There are

four messages:

null, add:, car, and cdr.

We compute the types of messages by taking type unions:

null {A} -+ {Object}

add: qXT + ’71, q ={A, R}

car {A, B} -+ T

cdr ‘q -+ 71, q ={A, B}

append: 7selFx7x + 73.

Step 2

We put suffixes to temporary variables and obtain the

following version of append.:,

append: x I r

[rl + x.

Until,g T-2 YILLtt. dog

[selfz + self3 add: t’3 car, rq + r5 cctr].

llself~ ].

Now obtain the partial order relations by unification.

Step 3: We solve this set of per’s and obtain

Tx=Tr ET~ =Tr ‘Tr
1–234

= +{A},

{A} ‘TselflQ~self2 = 7self3~{A’B~’ 7self2~Tself4g73

Now we can assign as follows:

Then compute the types using the message-types of Class

A. The result is

6A. Global ml own variables.

Finally, we have to consider global and own variables.

Here we mean own variables to be variables whose values

at the beginning of the computation of methods depend

on the previous history of computation.

There are three kinds of global and own variables:

instmce variables, class variables, and global variables.

Actual] y there are pool variables, but they behave exactly

like global variables except that they have to be explicitly

imported to classes.

[nstance variables are local to each object. They are

created whenever an object is created, and their values can

be only accessed from the methods of the ckass. Class

variables are local to e~ch class. They are created

whenever a class is crcatcd, and they can be accessed from

every object of the class. G Iobsd variables are accessed

from every object of SmallEdk. We will treat all of them

in a similar manner; we will only present an algorithm

which works for all of them.

The difficulty of handling global variables is that

unlike temporary variables the flow of control among all

the occurrences of global variables is totally unpredictable.

Therefore, in general we have to consider a value of a

global variable at one location to be affected by all the

assignments to that variable in the entire system.

Therefore, what we will do is to assume the type of a

global variable to be the union of all the types of objects

that the variable may ever denote in the system.

Algorithm D: (Handling of global variables).

Step 1: We assign two types to each global variable. One

is access type and the other is assign type. Initialize access

types @ T and initialize assign types to L

197



Step 2: Compute the types of methods using Algorithm C.

Whenever, global variables are accessed, we use access

types as their types. On the other hand we accumulate all

the assignments and argument restrictions to assign types.

Namely, if a global variable is assigned an object with type

,, we replace the type OF the assign type of that global

variable by the union of r and the previous value of the

assign type.

Step 3: After the comput~tion, compare access types and

assign types. If assign types are smaller than accesstypes,

replace access types by assign types, Then repeat Step 2

on all the methods which refer the global variables whose

access types are changed.

7. Implementation

The type-inference algorithm has been implemented in

SmaWalk-76. It is intended to type-check the Smalltalk

kernel system, which consists of about 60 classes and 1300

methods. Out of these methods 98 are implemented

outside of the system by microcode and Bcpl programs.

The types of these primitive methods are hand coded and

fed into the type-checking system.

We have actually implcmetr~ed a simpler version of the

algorithms presented in this paper; we treated temporary

variables (local variables) to take the same value in the

entire method in Algorithm B, and we assumed all global

variables to have T as their values in Algorithnl ~. This

decision was made from the following reasons:

a) we wanted the system to run fast,

b) we needed some data on how well a simple algorithm

will work before implementing an elaborate algorithm, and

c) tnost of Smalltalk methods are simple and

straightforward so that they do not have the behavior that

their types differ depending on the locations.

One of the most useful fessturesof this algorithm is that

it detects whether the method returns self, NIL, or one of

the parameters. Since many Smalltalk methods return self

or NIL, this capability was very important.

We have not yet tested the type inference on the entire

Smalltalk kernel, beCaUse Smalltalk-76 has a severe

limitation on the number of objects to be created and the

entire data structure does not fit into the memory. The

system is planned to be expanded shortly and we can

report the result of the entire system. So far we have been

testing on the subset of the kernel that is concerned with

numbers.

8. Conclusion

After embarking on this project, Al Perlis suggest to

me another approach to obtain more information on types.

The approach is, we run the system against some examples

and record all the types of arguments and the results This

will probably converge quite quickly and we can obtain

information close to the actual types of the methods. This

idea is also found in the thesis by Mitchell [8].

It is possible to implement an efficient compiler using

this technique. We gather not only the lypes of arguments

but also the frequency and the distribution of these types.

Suppose a message invokes one method very often, say

90% of the time, we can crrxate the following code: The

class of the receiver is checked to see whether that

represents the most frequent case. [f so, it jumps to the

corresponding method directly; otherwise, it searches

methods by the standard way.

However, these infomlation we obtain from statistics

can never be better than the actual type. What we obtain

is the lower bound of the actual type.

On the other hand we obtain the upper bound of the

actual type by type inference program. If both agree, then

we are sure of the accuracy of our algorithm. [t is always

important to obtain both these information in a type

inference system.

Furthermore, the statistics can never give us the

information on polymorphic types. Many Smalltalk

progmms can be simply analyzed that they return one of

the parameters as the results, and this fact is very

important for various purposes.
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