
INCREMENTAL DATA FLOW ANALYSIS

Barbara G. Ryder

Department of Computer Science
Rutgers University

New Brunswick, New Jersey 08903

Abstract

In this paper we present ACINCF and ACINCB,

incremental update algorithms for forward and backward

data flow problems, which are based on a linear equations

model of Allen/Cocke interval analysis [Allen 77, Ryder

82a]. We have studied their performance on a robust

structured programming language L. Given a set of

localized program changes in a program in L, we can

identify a priori the nodes in its flow graph whose

corresponding data flow equations will be affected by the

changes. We can characterize these affected nodes by

their corresponding program structures and their relation to

the ongmal change sites,

1. Introduction

A global data flow algorithm gathers information

about the definition and use of data in a program or a set

of programs. The algorithm is usually applied on some

intermediate form of a program. It may be a flow graph

which describes the control flow among basic blocks in a

procedure [Hecht 77]. It also can be a call graph which

describes the calling rela+ions between procedures in a

program [Allen 74, Ryder 79] or a parae tree

representation of a procedure [Farrow 75, Kennedy 77].

In all of these, we have a digraph representation of control

flow. Each node has associated data flow constants which

describe how the code at the node affects data flow in

the program.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is giyen that ~opying is by

permission of the Association for Computing Machinery. TO copy

otherwise, or to republish, requires a fee and/or specific permission.

Data flow analysis algorithms gather this local information

and infer the global data flow from it. This global

information then is specialized to provide data flow

information with respect to any node in the digraph.

An incremental update algorithm for data flow

analysis modifies a known data flow solution to reflect

changes in a problem; that is, an incremental update

algorithm obtains the new solution of an altered problem

without application of the algorithm that originally solved it.

We have designed and analyzed incremental update data

flow algorithms based on elimination methods [Ryder 82a],

Given a program and a known data flow problem solution,

the effects of a set of localized program changes can be

determined without full re-analysis of the program by some

global data flow algorithm. The ease of incremental updating

depends upon the data flow algorithm involved, the type of

data flow problem (i.e., forward or backward), the program

changes allowed (le., control flow changes that affect the

structure of the digraph or changes that affect the local

data flow characteristics of a node) and the structure of

th~ dlgraph (i.e., the presence of nested 100ps, the

edges/nodes ratio etc.).

By developing models of elimination algorithms, which

show how they solve the systems of linear equations that

describe the data flow problems, our investigations were

fccused on the question “can we allow a small change in a

structured system of linear equations, whose solution is

already known, and find the effects of that change without

totally re-solving the system? [Ryder 82b]

@ 1983 ACM 0-89791-090-7/83/001/0167 $00.75

167

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1983 ACM 0-89791-090-7…$5.00

Our model of Allen/Cocke interval analysis traces the tne changes

solution of a sequence of progressively smaller systems of

hnear equations By incrementalizing this model, we

developed incremental update algorithms ACINCF and

ACINCB for forward and backward data flow problems,

respectively [Ryder 82c] ‘

We stud+ed the performance of ACINCF and

ACINCB on a robust, Algol–iike structured programming

language L, with loop exit structures similar to those of

Sail [Reiser 76], We identified program structures that

affect the complexity of incremental updating and

established the extent of this effect offered by

combinations of such structures, Specifically, for rediicible

digraphs we have shown that the elimination phase of

ACINCF updates on each linear system in the derived

sequence, a set of interval head equations and at most the

equations in one interval A similar result holds for

ACINCB.

The depth of loop nesting directly affects the

complexity of incremental updating; it also is a key element

in the calculation of the worst case complexity of

Allen/Cocke interval analysis, We showed that for a

reducible flow graph with loop nesting depths bounded by

a constant, disregarding the work of interval finding,

Allen/Cocke interval analysis has an O(n) worst case

complexity bound [Ryder 82a]. Carrying the analysis of

our incremental algorithms further, we considered program

changes within one interval in a nested loop in a program in

L and characterized the set of all variables whose equations

may be affected, m terms of each variable’s corresponding

program structure and its relation to the original change

site Our result enables us to analyze a flow graph in f

w~th a set of possible program changes identifying a priori

nodes whose equations will be affected by these changes.

Thus, we ascertain all the data flow solutions affected by

‘We also model led Hecht/Ullman T1-T2
analysis [Unman 73] and Tarjan interval analysis [Tarjan

74, Tarjan 79] and designed HUINC, an incremental

algorithm based on the Hecht/Ullman algorithm, which was

com~ared with ACINCF.

At the outset of this research, we found no

previous published work m incremental data flow analysis;

communication with F. Allen conf rmed this fact [Allen 7’91.

At the Eighth Annual ACM Symposium on the Principles of

Programmmg Languages in 1981, B Rosen emphasized the

need for incremental update algorithms m general; he used

global data flow algorithms for illustration. We concur in

his opinion of the inappropriateness of the conventional

worst case error bounds for these algorithms. Our

theoretical studies of algorithm performance on L provide

better insight into incremental algorithm complexity.

There are many applications for incremental global

data flow algorithms. Interprocedural data flow analysis, in

which the call graph of a program is analyzed with respect

to data flow in global variables and parameters is an

obvious application area [Allen 74, Ryder 74]. Interval

analysis based interprocedural data flow algorithms

exist [Allen 73, Sharir 79]. Often in the development of

large software systems, the set of procedures remains

constant while the data flow characteristics of some

procedures change. ACINCF and ACINCB can be adapted

to handle these changes and to perform incremental

interprocedural data flow analysis. Source–to-source

transformation systems depend on data flow information to

validate the triggering of certain transformations that

subsequently change the source code and may change its

data flow characteristics [Burstall 71, Kibler 77, Loveman

77, Paige 77]. Currently, ad hoc methods are used to

accommodate data flow changes, incrementalizing data flow

algorithms that use a parse tree representation of the

program would be preferable [Babich 78a, Babich

78b, Rosen 77] as in [Reps 82]. Interactive programming

environments are popular useful tools for software

development [Alberga 8 1]. Here, data flow information can

ad m debugging and documentation.

In the remaining sections of this paper, first we

present an overview of our linear equations model of

Allen/Cocke interval analysis. Second, we summarize the

168

derivations of ACINCF and ACINCB. Third, we show why

worst case error analysis is inappropriate for incremental

analysis Fourth, we explain our results on the performance

of our algorithms on reducible flow graphs in general and

on flow graphs of programs in f in particular Fifth, we

outline our plans for the implementation of our algorithms.

Finally, we summarize the results presented here which

appear in detail in [Ryder 82a].

2. Alien/Cocke Interval Analysis Model

In this section we define the linear data flow

equations of Interest. Then we describe our model of

Allen/Cocke interval analysis which shows how Gaussian

elimination techniques are used to solve the system of

linear data flow equations [Ryder 82 b].

We are interested in those data flow problems that

are defined by a system of linear equations involving the

binary operators of union and mtarsection. We use the

term linear to refer to a system of equations defined using

two binary operators whose properties enable us to apply

Gaussian elimination techniques to obtain a

solution [Paull 82]. Depending upon the implementation, the

solution of these equations can involve bit vector or set

operations. Each variable in the linear system of n

equations is associated with a unique node in the digraph

2 Each edge in the digraph corresponds ‘o aof n nodes.

term in tha linear system,

The general form of a forward data flow equation is

{amjn XJubmj}ucm
‘m = j=pr$d {m} ~

(1 I

where # can be union or intersection, a b c are
m I m~ m

constants relating to data flow through nodes m and j, and

pred {m] is the set of immediate predecessor nodes of m

in the digraph. For every term X, in equation 1 there is a

corresponding edge (j,m) in the digraph, The general form

of a backward data flow equation is similar to equation 1;

the difference is that the limit on $ is jesucc {m} where

2Because of this one–to–one relation between nodes and

variables, we can use these terms interchangeably.

aucc {m] is the set of Irnmed;ate successor nodes of m in

the digraph.

The following description of our model of

Allen fCocke interval analysis shows how a system of these

linear data flow equations is solved. We partition the

variables into subgroups called intervals [Allen 7 1]. Each

equat!on in an interval is reduced by variable substnutlons

to a linear function of one variable, the interval head

variable. The interval headed by node h IS denoted Ih,

When the equations in an interval are written according to

a hnear order of the variables called interval

order [Allen 7 1], their coef f Icient matrix has a lower

triangular structure for a forward data flow problem and an

upper triangular structure for a backward data flow

problem. Thus, forward substitution or backward

substitution within an interval accomplishes the reduction of

the equations in that interval

The equation Of each interval head variable is

reduced by variable substitutions to a linear function of

other interval head variables. We form the derived linear

system defined by these reduced interval head variable

equations. We define intervals and repeat this process

which is analogous to the variable substitution phase of

Gaussian elimination. Finally, one variable remains; the

solution for this variable ia found and then we begin a

process which is analogous to the back substitution phase

of Gaussian elimination.3 We identify each solution with an .

interval head variable in the previous linear system and then

use its value to back substitute in the reduced equations in

the previous system. In a forward data flow problem, this

process involves substituting the solution for the interval

head variable into all reduced equations of that interval In a

backward data flow problem, this process involves

substituting the solution for each interval head variable into

all reduced equations which are dependent upon it In the

latter case, the solution for a variable is a hnear

3We assume the digraph is reducible; irreducible graphs
are rare and can be handled by node splitting
techniques [Hecht 77, Kennedy 74].

169

combination of interval head variable solutions rather than a

linear function of one interval head variable solution as in

the former case. We repeat this back substitution process

until all solutions in all the linear systems have been

obtained

3. Overview of ACINCF end ACINCB

Given a localized set of program changes, our

incremental update algorithms ACINCF and ACINCB consist

of two phases corresponding to the two phases of our

model in Section 2,. First, all coefficients and constants in

all data flow equations affected by the changes are

recalculated. Second, all affected solutions are recalculated.

in Figure 1 we show the coefficient structure of the

equations of a forward data flow problem for the variables

in Ih assuming the variables are ordered in an interval order.

Possibly non-zero coefficients are indicated by x or $:

Given a change at node m=lh the $; indicate the region in

which coefficients are possibly affected, We must

recalculate the reduced equations in this region when

necessary. Then we must check to see if there has been

an interval head variable equation . affected by these

changes. If no interval head variable equation has been

affected, we are finished tracing coefficient/constant

changes. Otherwise, there is an interval head variable Xj,

such that the reduced equation for XJ is the equation for

XY, where y represents IJ in the derived linear system. In

that system, we find the interval containing y, Ir. Then we

can find the reduced equations in 1, that are affected by

this change in the equation for XY as previously We must

iterate this process through the sequence of systems of

linear equations until all coefficient/constant changes have

been propagated as far as possible

Eventually, ether we will find a linear system where

no interva! head variable equation is affected, or we will

reach the last system of equations. In the former case, we

can re-perform the back substitutions in the changed

reduced equations in this system, obtaining new solutions.

In the latter case, we can solve the equation for the last

variable in the system, obtaining a new solution. In either

columns

< h m .i n
rows

h X.. .xox . . . Xx. ..x

o . . . Oxo ,.. . 00 ...0

0 ,., Oxxo. ..oo. ..o

.,. . .

. . . .

. . . .
m o ,.. Ox. .,xo, ..oo. ..o

o .,.0)’(, ,,*>’:(l. .. (JO . ..0

., . .

.

.

-i o . . . 0 *$C*, .. *$: 00 ...0

Figure 1: Affected Coefficients, Forward Problem

case, we identify each changed solution in the final system

with an interval head variable solution in the previous

system. We substitute each changed interval head solution

in the reduced equations for all variables within that intervsl,

obtaining all solutions in the interval. This back substitution

process continues through the sequence of linear systems

in the reverse of derived order, updating all solutions

corresponding to changed equations and/or changed interval

head variable solutions.

Our incremental update algorithm ACINCB is similar

to ACINCF; the differences deal with the dissimilarities in

the coefficient matrix structure and the reduced equation

form. Figure 2 IS analogous to Figure 1, showing the

coefficient structure of the equations of a backward data

flow problem for the variables in Ih, assuming the variables

are ordered in an interval order,

Given a change at node m=ln the ~~ indicate the

region in whtch coefficients are possibly affected. We

must recalculate the reduced equations in this region when

necessary. Then we must check to see if there has been

an interval head variable equation affected by these

changes. Because an interval i$ a single-entry, connected

subgraph there can be only one interval head equation

affected by these changes, namely the equation of Xb. AS

in the forivard case, the reduced equation for X is the
h

equation of XY where y represents 10 in the derived linear

170

columns
1 h j n

rows

1 a=

\/+ ‘a
h

m

-i

Xo. ..oxoo. .oo $: . . . *X O.. .O
Xo. ..oxoxcloxcl)t . . . *X O.$. O
Xo. ..oxox. .ox 00: :... >Ixo. ..()

.

.

.
Xo. ..oxoxo. oxo . ..o.’:. .. ft x,(),()

. Ox. .,x , . .

. . ,.. . . .

.

Xo. ..oxox. .ox () . . . Xxo. ..o
Xo. ..oxox. .ox 0.. . Oxo. ..o

Figure 2: Affected Coefficients, Backward Problem

system. We find the interval containing y in the derived

system, 1,. Then we can find the reduced equations in I
r

that are affected by this change in the equation for XY as

previously. We must iterate this process through the

sequence of systems of linear equations until all

coefficient/constant changes have been propagated as far

as possible.

Finally, we reach the last linear system and solve for

the final variable. We identify this solution with an interval

head variable solution in the previous system, Then we

must recalculate all solutions in the previous system

corresponding to reduced equations containing that interval

head variable. We also recalculate all solutions in the

previous system corresponding to an equation whose

coefficients/constants have been changed by the change

propagation phase. This back substitution process continues

through the sequence of linear systems in the reverse of

derived order, updating all solutions corresponding to

changed equations and/or changed interval head variable

solutions.

4. Complexity

Worst case error analysis is inappropriate for

incremental update algorithms. There are pathological

digraphs on which incremental updating is tantamount to

re-performing the data flow analysis algorithm, Unman

presented such a digraph of n nodes [Unman 73] shown in

Figure 3 for n=8; the annotations represent definitions of

fg>i)
Figure 3: Pathological Digraph for Allen/Cocke Algorithm

variable a (a=) and uses of variable a (=a).

Consider applying ACINCF to update the solution of

the reaching definitions problem [Hecht 77] on this

digraph. Deletion of the definition of variable a at node 3

requires the recalculation of all the reduced equations in all

the linear systems associated with this example, it also

causes all the solutions to be recalculated. On a graph of

this type with n nodes, the worst case complexity of

ACINCF and that of Allen/Cocke interval analysis is bounded

above by 0(n2). However, such heavily nested loop

structures are uncommon in modern programming language

usage [Allen 79, Elshoff 76, Kennedy 77, Knuth

71, Robinson 76], Therefore, this is not an appropriate

measure of the complexity of ACINCF. We have shown

that on a reducible digraph of n nodes with loop nesting

depth bounded by a constant, the equation solution work of

Allen/Cocke interval analysis exhibits linear worst case

performance (i.e., O(n)) [Ryder 82al.

.5nce a loop IS a strongly connected component of

the digraph, it is reasonable that a program change in a

loop may affect every solution jn that loop The back

substitution work necassary to obtain those new solutions

is proportional to the number of nodes in the loop The

equation update work is bounded as well. Given any

reducible digraph with a localized set of changes (I.e.. all

changes within one interval in the original linear system), the

effects generated by these changes on any of the derived

systems of equations are hm!ted That is, for a forward

data flow problem in any derived system the equations

171

affected consist only of a set of interval head equations

and, at most, the equations in one interval in the system

For a backward data flow problem m any derived system

the equations affected consist only of an interval head

equation and, at most, the equations in one interval in the

system [Ryder 82c].

To refine our understanding of the equation updating

Process we defined a robust, structured programming

language L which conwsts of straight-line code (e.g.,

assignment, i/o statements), while statements, compound if

statements, done <label> statements and continue <label>

statements. We assumed semantics for these statements

similar to those in Sail [Reiser 76]. The done <label>

statement causes control to pass to the statement following

the while loop labeled <label> or following the syntactically

innermost while loop containing the done statement, if

<label> is null. The continue <label> statement causes

control to pass to the test of the while loop labeled

<label> or to the test of the syntactically innermost while

loop containing the continue statement, if <label> is null.

In order to state our complexity results, we used the

term g-loop to refer to an interval in a program written in

L noting that virtually but not all intervals correspond to

while loops. If g-loop h is syntactically nested within loop

w, then g-loop h is a descendant g-loop of loop w; by

syntactic nesting we mean that there is a path from the

entry node of loop w to the entry node of g–loop h in

the digraph and a path from the entry node of g–loop h to

the entry node of loop w. Likewise, loop w is a parent

loop of g–loop h, If g-loop h is syntactically nested within

loop w and is not nested within any other loop that is

nested in loop w, then g–loop h is an immediate

descendant g-loop of loop w; loop w ts the immediate

parent loop of g–loop h If two g-loops have the same

!mmediate parent loop, they are sibling g-loops A g-loop

q is a right (left) sibling g-loop of g–loop h, if both are

sibling g-loops such that there is a path from an exit of

g-loop h(q) to the entry node of g-loop q(h). We

abbreviate these terms rsib and Isib.

We categorized g–loops with respect to when all

their variables are eliminated from the sequence of linear

systems G–loop s is a right greater (equal to) sibling of

g–loop h if g–loop s is an rsib of g–loop h and all the

variables m g–loop h are eliminated before (at the same

time as) all the variables in g–loop s We abbreviate these

terms rgsib and resib. Corresponding definitions exist for

Igsib and Iasib. In Figure 4, loop w is a parent loop of

g-loops h, s, t and q and an Immediate parent loop of all

but g-loop t. G–loop q is an resib of g–loop h, g-loop h

is an Iesib of g–loop q. g–loop s IS an rgsib of g–loop h

and g–loop s is an Igsib of g-loop q. As seen in Figure 4,

these sibling relations roughly correspond to a measure of

the loop nesting depth within a g–loop. When all of the

variables in a g-loop have been eliminated from the linear

system. we call that g–loop collapsed in that system.

Figure 4:

Given a program

flow problem solution

L

Examples of G-1oops

written in L with a forward data

and a set of localized program

changes, we characterized the equations affected by these

changes in terms of their corresponding program structures

and the sites of the original changes. Also, we indicated

the degree of increased complexity introduced by loop exit

statements used singly or in concert.

Figure 5 depicts cwr results for ACINCF on a

k–nested g-loop in a program r L Each triangle with top

vertex Iabelled p represents a set of paths through the

interval 1~. The entry nodes of the nested loops are

Pk ,p.=r. =r ordered from outermost to innermost. If

program changes occur in I, then the variables whose

equations may be affected correspond to nodes along the

dashed paths in Figure 5 If no done statements occur

172

L
P~<.

//
P2.; ::.

\
pi=r-~:=

/r
/ \

\
J! _-_>

Figure 5: ACINCF on a k-nested Loop

within the loop pk, these variables correspond to the entry

nodes of: rgsibs or resibs of g–loop r, parent loops of

g-loop r, or rgsibs or resibs of parent loops of g-loop

r. If done statements do occur, the variables correspond to

the entry nodes of: rsibs of g-loop r, parent loops of

g-loop r, or rsibs of parent loops of g-loop r.

Figure 6 shows the same k–nested loop structure as

Figure 5. Itillustrates the behavi~r of ACINCF during a

step of the change propagation phase. Nodes

corresponding to variables with affected equations are

indicated by dashed circles or lie on dashed paths. Assume

the equation of Xq was changed in the previous linear

system and that g–loop q is collapsed in the current linear

system. Consider which equations can be affected by the

changes in the equation for Xq.4 There are three cases

1. If there are no done or continue statements

in loop pk, then variables corresponding to

entry nodes of the immediate parent loop of
g-loop q, loop p“+ ,, or rgsibs of q can be

affected.

2. If there are no done statements, but there are
continue statements,

variables correspond

rgsibs of g–loop

{p“+1rPn+2,. . .jPkl.

then possibly affected

to the entrv nodes of

3. If there are done and continue statements in

loop pkr then possibly affecled variables

correspond to entry nodes of rgsibs of

g–!oop q a subset of {pn+ ,, Pn+2.. . .,Pk}

and/or nearest rsibs of a

{Pn+ ,P”+2. . .?PJ

$
P“+*

/- . . .
5

.&Jk.

Pn=q - ‘-’-

(i.)

Figure 6:

L!\,’6;)-,/-.
!.?k-’,

,--.’

(ii.)

subset of

‘ ;;~,

L.-. ,,--,,
P .F. J., ~-l,
:--’

(-P-n:; ~

L

---.x
,-- ---- _’-.h

!,PJ:l,$

A
‘\

P“=@l -->

Snapshot of ACINCF

(iii.)

Figure 7 is analogous to Figure 5 and depicts our

results for ACINCB on a k–nested g–loop in a program in

L. If program changes occur in Ir then the variables whose

equations may be affected correspond to nodes along the

dashed paths m Figure 7. Any variables affected

correspond to the entry nodes of a parent loop of g–loop

r, an Igsib or Iesib of a parent loop or an Igsib or Iesib of

g-loop r itself, In this case, the presence of done and

continue statements does not affect our result

Figure 8 shows the same k-nested loop structure as

Figure 7. Itillustrates the behavior of ACINCB during a

step of the change propagation phase. Assume the

q and a ‘ subset of equation of XG is changed in the previous linear system and

4The code in loop Pk

possibly affected variables

change.

determines

are actually

which of these

affected by this

g–loop q is collapsed in the current linear system

Irrespective of the type of loop exit statements in loop ph,

the same variables can be affected as a result of this

change because the data flow Information travels m the

173

Figure 7: ACINCB on a k–nested Loop

direction which is the reverse of the control flow. The

nodes corresponding to these affected variables are

indiceted by dashed circles or lie on dashed paths in

Figure

parent

us to

8. They are the entry nodes of pn+, the immediate

loop of g-loop q or Iesibs or Igsibs of g-loop q,

/.,;:;,>
. .

.’ .---,

*“:--- pn=q 1

Figure 8: Snapshot of ACINCB

The analytic results described in this section enable

perform a priori analysis of the data flow effects

of program changes. They limit the variable substitution

work of ACINCF and ACINCB to a prescribed set of

equations related to the g–loop structure of the program

near the changes [Ryder 82c],

5. Future Work

The obvious next step in

ACINCF and ACINCB for a

programming language such as

empirical “average complexity”

our work is to implement

widely used high level

Pascal or C and gather

reformation on algorithm

performance We also can gather more current information

on programming language usage to augment the emprical

studies cited here. This will enable us to concentrate our

attention on program changes whtch occur sufficiently

often to insure that our efforts to accommodate them in

incremental updating will “pay off”

We envision the use of our incremental update

algorithms as part of an interprocedural data flow analysis

tool. Our experience with the PFORT Verifier attests to the

need for even the most rudimentary data flow information

with respect to interprocedural analysis of software

systems [Ryder 74, Ryder 79]. In software maintenance

there is a need to delineate the scope of a system change;

today often a “let’s try it and see” attitude prevails. Large

applications often maintain histories of source code changes

during system development and maintenance. Studies of

these histories would yield information about the kinds of

changes large systems are likely to undergo. This

information alone would be valuable to software designers,

as the transformation of a set of algorithms and data

structures into a working software system is not well

understood in large practical applications, although various

software design techniques exist.

6. Summary

We have presented incremental update algorithms for

data flow analysis based on Allen/Cocke interval analysis.

We have shown the mappropriateness of worst case error

bounds for these incremental algorithms. We have

complexity results for our algorithms on a robust,

structwed programming language L, which enable us .s

priori to characterize those variables whose equations are

affected by a set of localized progrem changes with

respect to their corresponding program structures and the

original site of the changes. These results verify the

desirability of incremental update algorithms for data flow

174

analysis. We have indicated areas of application of these

methods. We have outlined our implementation plans for

continuing work in this area.

7. Acknowledgments

We acknowledge the help and support of Marv Paull,

our thesis adviser, throughout our research. We also thank

F. Allen, J Ferrante, B. Rosen and M Wegman for their

helpful comments on this presentation.

[Alberga 811

[Allen 71]

[Allen 73]

[Allen 74]

[Allen 77]

[Allen 79]

[Babich 78al

[Babich 78b]

References

Alberga, C. N., Brown, A. L., Leeman,

G. B., Mikelsons, M. and Wegman, M, N.
A Program Development Tool
In Conference Record of the Eighth

Annual ACM Symposium on
Principles of Programming

Languages, pages 92-104.
Association for Computing

Machinery –SIGPLAN, January, 1981.

Allen, F. E.

A Basis for Program Optimization.
In Proceedings of 1971 I FI P Congress,

pages 385-390. Institute of
Electrical and Electronics Engineers,

Inc., North Holland Publishing

Company, Amsterdam, Holland,
1971.

Allen, F. E. and Schwartz, J. T.
Determining the Data Relationships in a

Collection of Procedures.
1973.

Allen, F. E.

Interprocedural Data Flow Analysis.
In Proceedings of 1974 IF I P Congress,

pages 398-402. Institute of
Electrical and Electronics Engineers,
inc., North Holland Publishing

Company, Amsterdam, Holland,
1974.

Alien, F. E. and Cocke, J.
A Program Data Flow Analysis

Procedure.
Communications of the ACM

19(3)137-147, 1977.

Allen, F. E.
private communication.

Babich, W. A. and Jazayeri, M.
The Method of Attributes for Data Flow

Analysis, Part I Exhaustive Analysis.
Acts In formatica 10:245-264, 1978.

Babich, W. A. and Jazayeri, M.
The Method of Attributes for Data Flow

Analysis, Part II Demand Analysis.
Acts In formatica 10:265-272, 1978.

[Burstall 71]

[Elshoff 76]

[Farrow 75]

[Hecht 77]

[Kennedy 74]

[Kennedy 77]

[Kibler 77]

[Knuth 711

[Loveman 77]

[Paige 771

Burstall, R. and Darlington, J.

A Transformation System for

Developing Recursive Programs.

Journal of the ACM 24(1)44-67,

January, 1971.

Elshoff, J.
A Numerical Profile of Commercial PL/1

Programs.

Software Practice and Experience
6(4)505-525, 1976.

Farrow, R,, Kennedy, K. and Zucconi, L.

Graph Grammars and Global Program
Data Flow Analysis.

In Proceedings of Seventeenth Annual

IEEE Symposium on the

Foundations of Computer Science,

pages 42-56. Institute of Electrical

and Electronics Engineers, Inc.,
November, 1975.

Hecht, M. S.
Flow Analysis of Computer Programs.

Elsevier North-Holland, 1977.

Kennedy, K,

Schaeffer’s Node Splitting Algorithm

SETL Newsletter # 125, February 6,
1974, Courant Instituta of

Mathematical Sciences, New York

University.

Kennedy, K. and Zucconi, L.
Application of a Graph Grammar for

Program Control Flow Analysis.
In Con feretrce Record of the Fourth

Annual ACM Symposium on
Principles of Programming
Languages, pages 72-85.

Association for Computing

Machinery -SiGPLAN, January, 1977.

Kibier, D, F,, Neighbors, J, M, and

Standish, T. A.
Program Manipulation Via Efficient

Production Systems,

SIGPLAN Notices 12(8)163-173,
August, 1977.

Knuth, D, E.
An EmDirical Studv of FORTRAN

Programs. ‘
Software Practice and Experience

1:105–133, 1971.

Loveman, D.

Program Improvement by

Source-to-source Transformation.
Journal of tha ACM 24(1)121 -145,

January, 1977.

Paige, R. and Schwartz, J. T.
Expression Continuity and the Formal

Differentiation of Algorithms.
In Conference Record of the Fourth

Annuat ACM Symposium on
Principles of Programming

Languages, pages 58-71.
Association for Computing
Machinery –SIGPLAN, January, 1977’.

175

[Reps 821

[Paull 82] Paul!, M C.
Design of Algorithms.

in preparation, 1982.

[Reiser 76] Reiser, J. (editor)

SA IL.
Stanford Artificial Intelligence Laboratory

Memo AIM-289, Stanford

University, Auw.rst. 1976

Reps, T.

Optimal–time Incremental Semantic
Analysis for Syntax–directed Editors.

In Conference Record of the Ninth
Annual ACM Symposium on
Principles of Programming

Languages, pages 169-176
Association for Computing

Machinery -SIGPLAN, January, 1982.

[Robinson 76] Robinson, S K. and Torsun, 1. S.
An Empirical Analysis of FORTRAN

Programs

Computer Journal 19(1)56-62, 1976

[Rosen 77] Rosen, B. K,
High-level Data Flow Analysis,

Communications of the ACM
20(10).7 12-724, October, 1977.

[Ryder 74] Ryder, B G.
The PFORT Verifier.

Software Practice and Experience
4359-377, 1974

[Ryder 79] Ryder, B. G.

Constructing the Call Graph of a
Program.

IEEE Transactions on Software
Engineering SE–5(3):2 16–225, May,
1979,

[Ryder 82al Ryder, B. G.

Incremental Data Flow Analysis Based
on a Unified Model of Elimination

Algorithms.
PhD thesis, Department of Computer

Science, Rutgers University, 1982

also available as Department of

Computer Science Technical Report
#DCS-TR- 117.

[Ryder 82b] Ryder, B. G, and Paull, M, C.
A Unified Model of Ellmmation

Algorithms,
1982
in preparation.

[Ryder 82cI Ryder, B G. and Paull, M. C
A Comparison of Incremental Data Flow

Analysis Algorithms
1982.

in preparation.

[Sharir 79] Sharir, M.
Interprocedural Analysis of Global

Variable Usage,
1979.

[Tarjan 74] Tarjan, R, E.

Testing Flow Graph Reducibility,

Journal of Computer and System

Sciences 9.355-365, 1974 .

[Tarjan 79] Talr!an R E

Fast Aigorit.hrns for Solving Path

Proh!errx

Compmer Science Department Technical

Report STAN– CS–7%–734, Stanford

Urxversity, April, 1979

[Unman 73] Unman, J D.
Fast Algorithms for the Elimination of

Common Subexpresslons

Acts In formatica 2(31:191 -213. 1973

176

