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In the early 80’s Oles and Reynolds devised a semantic

model of Algol-like languages using a category of functors

from a category of store shapes to the category of predo-

mains. Here we will show how a variant of this idea can

be used to define the translation of an Algol-like language

to intermediate code in a uniform way that avoids unneces-

sary temporary variables, provides control-flow translation

of boolean expressions, permits online expansion of proce-

dures, and minimizes the storage overhead of calls of closed

procedures. The basic idea is to replace continuations by in-

struction sequences and store shapes by descriptions of the

structure of the run-time stack.

1 Introduction

To construct a compiler for a modern higher-level program-

ming language, one needs to structure the translation to a

machine-like intermediate language in a way that reflects

the semantics of the language. Little is said about such

structuring in compiler texts that are intended to cover a

wide variety of programming languages. More is said in the

literature on semantics-directed compiler construction [1],

but here too the viewpoint is very general (though limited

to languages with a finite number of syntactic types). On

the other hand, there is a considerable body of work using

the continuation-passing transformation to structure com-

pilers for the specific case of call-by-value languages such as

Scheme and ML [2, 3].

In this paper, we will describe a method of structuring

the translation of Algol-like languages that is based on the

functor-category semantics developed by Reynolds [4] and

Oles [5, 6].

An alternative approach using category theory to struc-

ture compilers is the early work of F. L. Morris [7], which

anticipates our treatment of boolean expressions, but does

not deal with procedures.
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2 Types and Syntax

An Algol-like language is a typed lambda calculus with an

unusual repertoire of primitive types. Throughout most of

this paper we assume that the primitive types are

comm(and) int (eger)exp(ression)

int(eger)acc(eptor) int(eger)var(iable) ,

and that the set @ of types is the least set containing these

primitive types and closed under the binary operation +.

We write < for the least preorder such that

intvar < intexp intvar < intacc

When O <19’, 0 is said to be a subtype of 8’.

A type assignment is a mapping from some finite set

of identifiers into types; we write ~“ for the set of type

assignments. Then we write the typing T 1- p : (3 to indicate

that the phrase p has type O under the type assignment m.

We omit both the definition of the syntax of phrases and

the inference rules for typings, beyond noting that phrases

include identifiers and the lambda-calculus operations of ap-

plication and abstraction, and the inference rules include the

standard rules for the typed lambda calculus with subtypes.

3 Functor-Category Semantics

The basic assumption that an Algol-like language is a species

of typed lambda calculus is captured by using a cartesian

closed category to provide its semantics. More specifically,

we assume that there is a functor [–], from El (preordered by

the subtype relation and viewed as a category) to a carte-

sian closed semantic category K, that interprets the type

constructor + as the exponentiation operation of K:

(If the type system includes type constructors for tuples or

records, these will be interpreted by products in K. Intersec-

tion types would be interpreted by pullbacks, as discussed

in [8, 9, 10]. )

The functor [–] interprets types as objects of the se-

mantic category K. In addition, whenever O is a subtype

of 19’ (i.e. O < 0’), it maps the unique morphism from d to

# into an “implicit conversion morphism”, which we denote

by [0 < 0’], from the meaning of O to the meaning of 19’.
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The meaning of type assignments is specified by a func-

tor [–]*, from @* (preordered pointwise and viewed as a

category) to K, that maps each type assignment into an

appropriate product in the semantic category:

[7r]* = ~K [T,].

,Cd.mz
When r k p : 0, the semantics of the phrase p, with

respect to n and 0, is a morphism from the meaning of T to

the meaning of O that we denote by

k]=, ‘ [fin” a [@n

(This redundant use of emphatic brackets is saved from am-

biguity by the subscripts, which qualify the semantics of a

phrase but not the functorial use of the brackets.)

Throughout this paper, we will write A&B to denote

the set of morphisms from A to B in the category C, and

A~Btodenote theexponentiation of Bby Ain C. When

the subscript is omitted, the relevant category is either that

of domains and continuous functions or of predomains and

continuous functions. (Of course, + is also used as the type

constructor for procedural types. )

The semantics ~]=e is specified by giving a semantic

equation for each syntactic construct of the language, plus

an equation describing the effect of implicit conversions:

blx, = b]=,; u~ s 0 when 9< # , (1)

where the semicolon denotes the composition of morphisms

in K (in diagrammatic order).

The above equation is not syntax-directed, i.e. it does

not define the semantics of p in terms of the semantics of its

subphrases, but rather defines one semantics of p in terms

of another. As discussed in [10], this means that ~]=~ must

be defined by structural induction on the proof of the typing

-n R p : 0 rather than on the syntactic structure of p. This

has the advantage that semantics (and similarly translation)

is only defined for type-correct programs, but it introduces

the requirement of coherence, i.e. that different proofs of

the same typing must not lead to different meanings. For-

tunately, the proof of coherence given in [10], for a language

using intersection types, carries over to the much simpler

language discussed in this paper.

If we were defining a purely functional, call-by-name lan-

guage, we could take the semantic category K to be the cat-

egory of domains (c. p.o.’s with least elements) and continu-

ous functions. It is less obvious, however, how to provide a

clear semantics of languages that include assignment. In the

early 80’s, Frank Oles and I devised such a semantics that

makes the block structures of Algol-like languages explicit.

Our basic idea was that the meaning of a type should be a

family of domains parameterized by state sets (which Oles

called “store shape~” ):

[cOmm]S’ = S ~ S.

[intexp]S = S + 2L

[intacc]S = 2 -+ (S + S1)

[intvar]S = [intacc]S x [intexp]S

Similarly, the semantics of a phrase was a family

uous functions parameterized by state sets:

bn.es ~ [d”s -+ [0]s

of contin-

Conslder, for example, the Algol-like program

new x:intvar in (x :=x+ 1 ;

newy:intvar in(y:=x+y; x:=x+l; ... )).

In the outer block, where only a single variable is declared,

the appropriate set of states is the set of integers, while in

the inner block, where a second variable is declared, the

appropriate set of states is the set of pairs of integers, Thus

the semantics of the two occurrences of x:=x+1 are provided

by different members of the family [x = x + 1] The
T,comm.

member of this family appropriate to the occurrence in the

outer block is

[X:=x+l] T ,Comnl z E [7r]*z + (,Z + 21) ,

which maps an environment appropriate to states that are

integers into a state-transition function on integers, If ~ is

an environment specifying that x denotes the integer that

is the entire state, then [x := x + 1] Zq will be the
T,comm

function that increases an integer by one.

On the other hand, the member of [x :== x + 1] thatlr, comm
is appropriate to the occurrence in the inner block is

[X,=X+1] 7r,cornm (2X.2)=

[7r]*(z x z) + ((z x z) + (z x 2)1) ,

which maps an environment appropriate to states that are

pairs of integers into a state-transition function on such

pairs. If q is an environment specifying that x denotes the

first component of the state, then [x :=x+1]
?r, conlm

(z x Z)q

will be the function mapping a pair (z, y) into (z + 1, y).

In both cases, command execution is described by a state

transition that preserves the shape of the state. Indeed, this

is generally true since, for any command c,

[c]
r,comm

s E ~7r]*s + (s+ Sl)

implies that [c] Sq preserves the shape S.
7r, c0mm

From the viewpoint of category-theoretic semant its, pa-

rameterization by state sets is realized by taking the seman-

tic category to be the functor category

K = PDOMX ,

where X is a category whose objects are state sets and

PDOM is the category of predomains and continuous func-

tions. Of course, this implies that the meanings of types

are functors that act on morphisms of Z as well as objects,

and that the semantics of phrases are natural transforma-

tions between such functors. In this brief synopsis, however,

we will only remark that a morphism in S ~ S’, called

an ‘<expansion” in [4, 5, 6], shows how a small state in S

can be extracted from a large state in S’ and how a small-

state transition in S s S’l can be extended to a large-state

transition in S’ + S;.

It is shown in [5, 6] that the functor category PDOMX

is cartesian closed (actually for any Z). In particular, expo-

nentiations are functors whose action on objects of X is

(F~G)S=homxSx F~G.

(Here pointwise ordering is used to regard the set on the

right as a predomain, homz is the curried hom-functor for

the category E, and homx SS’ = S ~ S’ is regarded as a

discretely ordered predomain. )
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To see how this exponentiation captures the interaction

of procedures and block structure, suppose

is the meaning of a procedure of type 6’1 + 02. Then p is a

natural transformation such that

ps’ 6 (s -# s’) x [01]s’+- [02]s’

Here S is the state set that is appropriate to the point
in the program where the procedure is defined (and that

contains states specifying the values of any variables occur-

ring globally in the procedure). For example, if p were the

meaning of the procedure in

new x:intvar in

let silly = Ac: comm. (c ; x:=x+ 1 ; c) in

new y: intvar in silly(x :=x + y)

then S would be a set of integers specifying the global vari-

able x.

However, as illustrated by the procedure call in the above

program, the procedure with meaning p can be called from

an inner block where a set S’ of larger states is appropriate,

and these larger states, rather than the members of S, may

be needed to specify variables in the actual parameter of

the call. Thus the state set S’ must be given to p as a

“hidden” argument, and both the explicit argument of p (the

meaning of the actual parameter) and the result of p (the

meaning of the call) must be appropriate to S’. In addition,

p must be supplied with a further hidden argument, which is

a morphism in X showing how a state in S can be expanded

to a state in S’.

In the above program, for example, the meaning of the

procedure call would be pS’ (L, a), where S’ is the set of pairs

of integers, L is an expansion identifying the integers in S

with one component of the pairs in S’, and a e [comm]S’
is the meaning of the actual parameter x := x + y.

For simplicity, we have used direct semantics in this in-
troduction. However, the method applies even more ele-

gantly to continuation semantics, without any change in the

category K. One introduces two new types:

completion) int (eger)compl(etion)

whose meanings are command continuations and integer con-

tinuations, respectively. More precisely,

[compl]S = S +- O [intcompl]S = Z a (S ~ O) ,

where O is an unspecified domain of “outputs”. The remain-

ing types are then defined by exponentiation and (pointwise)

products in K:

[comm] = [compl] ~ [compl]

[intexp] = [intcompl] ~ [compl]

[intacc] = [compl] ~ [intcompl] (2)

[intvar] = [intacc] X [intexp]

[e+ e’] = [e] y [e’] .

In fact, as one might expect from the prevalence of contin-

uations in compiler design, it is this continuation semantics

that will be the starting point for our development of an

intermediate-code generator. (Strictly, it is a cent inuat ion

semantics with respect to the imperative aspects of our il-

lustrative language, but still a direct semantics with respect

to the call-by-name procedural aspects.)

4 Stack Descriptors

During program execution, the variables and other informa-
tion accessible to the program will lie in a sequence of con-

tiguous blocks, called frames, contained within stack; when

this sequence has length n, we will denote its members by

jrame counts between O and n – 1, in order of their their po-

sition from the bottom to the top (most recently allocated

and highest addressed portion) of the stack. We assume

that the frames are organized as a linked list called a static

chain, specifically that a register SR points to the base of
frame n – 1 and that the first (least addressed) word in

each frame except frame O points to the base of the previous
frame.

For simplicity, we also assume that integer variables and

pointers both occupy single words, and that addressing is by
words. (In fact, our approach extends straightforwardly’ to

more complex cases where different kinds of variables require

fields of different sizes, and these fields must be aligned on
different-sized word boundaries.)

During compilation, for each variable the compiler will

know the count Sf of the frame containing the variable, and

the displacement &, which is the distance from the base of

the containing frame to the location of the variable. This

pair S = (Sf, S~) of nonnegative integers is called a stack

descriptor.

As one would expect, the stack descriptors of variables

will be embedded (implicitly) in a compile-time environment

describing the free identifiers of the phrase to be compiled.

However, compilation will also be influenced by more gen-

eral information about the stack that is not particular to

any variable; in the simple case considered in this paper

this compile-time information consists of the total number

of frames (minus one) and the size of the top frame. We

call this pair of integers, which will depend upon position

in the intermediate code being compiled, the current stack

descriptor SCU”. Note that the current stack descriptor de-

scribes the beginning of the free portion of the stack, i.e. the

position of the next variable to be allocated.

Stack descriptors are ordered lexicographically:

(Sf, S,) ~ (S}, S~) iff S’f <S} or (Sf = S; and S, ~ S~)

Thus the effect of pushing the stack, either by enlarging the

current top frame or by adding a new frame, is to increase

the current stack descriptor. We also define the addition or

subtraction of a stack descriptor and an integer by

Thus the requirement that a variable described by S“ must

lie within a frame in the currently active portion of the stack

implies that S“ ~ S’”” – 1.

The key to moving from a functor-category description

of semantics to an analogous description of of intermedlate-

code generation is to replace Oles’s the category Z of store

shapes by the ordered set of stack descriptors (viewed as a

category), which we will also denote by X.
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5 The Intermediate Language

The intermediate language into which we translate programs

can be described by an abstract van Wijngaarden grammar

with four stack-descriptor-indexed families of nonterminals:

lefthand sides (Ls), simple righthand sides (Ss), righthand

sides (Rs), and instruction sequences (1s). The intent of the

indexing is that a member of (1s) is an instruction sequence

that can be meaningfully executed when the current stack

descriptor is S:

(L~) ::= S“ when S”~S–1

(SS) ::= (Ls) I lit (integer)

(Rs) ::= (Ss) [ (unary operator) (S.s)

[ (Ss)(binary operator)

(1s) ::= stop

/ (Ls+J) := (Rs) [J] ; (k+J)

}

I if (Ss)(relation operator) [d] when s, + ~ > ~

then (IS+A) else (IS+J)
—

I adjustdisp [6] ; (Is+,) )
I popto S’ ; (is, ) when S ~ S

(Additional forms will be introduced later.) Here sbrs de-

notes a register used to communicate the result of function

procedures that are implemented by closed subroutines, and

lit (integer) is a constant (or in compiler jargon, a literal).

Notice that neither a right operand of the assignment op-

erator := nor a relation following if can contain more than

one oDerator.

In’ various instructions here, the bracket ed integers d

are displacement ad@ments, indicating an amount to be

added to the current stack descriptor when the instruction

is executed. because of the allocation or deallocation of ei-

ther program variables or temporary variables. This adjust-

ment of the current stack descriptor is the only effect of

the adjustdisp instruction. The final instruction popto S’

causes the current stack descriptor to be reset to S’; it is

used to reduce the number of frames and causes a chamze in

the register SR during program execution.

Although a change in the frame count of the current

stack descriptor causes a change in the register SR during

program execution, adjustments of the displacement have no

effect during program execution, since displacements are not

actually computed at run time. However, the compiler must

keep track of these adjustments in translating intermediate

code into machine language.

Strictly speaking, the (Is) are domams of instruction se-

quences, formed by completing the sets described by the

above grammar in the sense of Scott’s lattice of flow dia-

grams [11]. (Equivalently, the (Is) are components of the

carrier of an initial continuous algebra [12] whose many-

sorted signature is specified by the grammar. ) Fortunately,

the only infinite or partial instruction sequences that arise

during compilation can be represented by data structures

wit h loops, which can be implemented using references (in

the sense of ML).

More generally, references can be used to avoid duplicat-

ing code: Whenever an instruction sequence i may be dupli-

cated by the compiler, it is replaced by a unique reference

whose value is i. For example, an instruction sequence of the

form if then c ; z else d ; z (which might arise from the

compilation of a conditional command followed by another

command), would be represented by if then c;relsed; r

where r is a unique reference whose value is i. In the conver-

sion to actual machine code, all but at most one occurrence

of such a reference is replaced by a jump to the code ob-

tained from its value, rather than a copy of such code.

From the viewpoint this paper, however, the treatment of

loops, the avoidance of code duplication, and the distinction

between instructions and their addresses are questions of

representation. The mathematics of compilation is much

cleaner if we abstract away from finite instruction sequences

with references or jumps, to the possibly infinite sequences

that they represent.

6 From Semantics to Compilation

To apply functor-category semantics to intermediate code

generation, in addition to taking Z to be the ordered set of

stack descriptors, one must change the meaning of the basic

types. The translation of a phrase of type compl appropri-

ate to the stack descriptor S is an instruction sequence in

(Is). Thus

[compl]S = (1s)

The translation of a phrase of type intcompl is more com-

plex: Roughly speaking, it is a function from righthand sides

to instruction sequences (which one can think of as an in-

struction sequence containing a hole to be filled by a right-

hand side), but more precisely it is an exponential object in

the functor category:

[intcompl] = 1? ~ [complj ,

where %? is the functor such that

7ZS=(RS).

The remaining types are defined by Equations (2) in ex-

actly the same way as in the functor-category continuation

semantics described earlier.

However, since Z is a preorder (actually a total order)

viewed as a category, the operation of exponentiation in ICE

can be simplified. We have seen that, if

pc(F~G)S=homzSx F~G ,

then

pS’ e (S > S’) x FS’ -+ GS’

But the morphism set S & S’ contains a single morphism

when S ~ S’ and is empty otherwise. Thus a simpler but

equivalent condition is that pS’ belongs to FS’ ~ GS’ when

S ~ S’ and is the empty function otherwise. We indicate

this by

p(S’ > S) c FS’ ~ GS’

or

p(S’ ~ S)(z e FS’) c GS’

We are skirting over the requirement that both the mor-

phisms in K and the members of (F ~ G)S should be

natural transformations. In fact, this requirement must be

relaxed: Where naturality would require pairs of instruction

sequences to be equal, we will only require them to have the
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same denot ational behavior, i.e. to denote the same func-

tional continuation from states to final outputs. In some

cases these instruction sequences will differ operationally,

say by popping the stack at different steps.

A similar situation holds with regard to coherence. Just

as with semantics, the translation ~]me is defined by struc-

tural induction on the proof of the typing m E p : 0. How-

ever, different proofs of the same typing are not required to

lead to the same translation, but merely to translations with

the same denotational behavior. Such translations may vary

in the points where implicit conversions are invoked.

Except for completions, which are translated into in-

struct ion sequences, and integer variables, which are trans-

lated into acceptor-expression pairs, each phrase of the input

language is translated into a functional value in the compiler

that will be applied at compile-time to produce instruction

sequences. Moreover, the type of the phrase in the input

language will determine the type of its translation within

the compiler. However, this categorical type discipline uses

dependent function spaces that cannot be expressed in most

languages (such as ML) in which the compiler might be writ-

ten. In such languages, one must give translations a single

type (e.g. a recursive functional data type in ML) that in-

cludes all the kinds of translations described above, as well

as a variety of nonsensical translations that are guaranteed

by the categorical discipline not to occur during any compi-

lation.

7 Commands

If the phrase c has

~, then

type comm under the type assignment

[4 n,cmnm
c [7r] * ~ [comm] ,

so that

[comm]S = ([compl] ~ [compl])S,

and thus

[c]
7r, comm

S(q c [m]*S)(S’ > S)(K e (Is,)) e (Is, )

Thus the translation of c is a function that accepts an en-

vironment q appropriate to the stack descriptor S and an

instruction sequence K appropriate to a possible larger stack

descriptor S’, and returns an instruction sequence appropri-

ate to S’. In the absence of jumps, ~ will describe the com-

putation to be performed after c, so that the result of this

function will be obtained by prefixing instructions for per-

forming c to the sequence ~. We will call ~ (like its semantic

counterpart) a continuation.

The translation of skip returns its continuation argu-

ment K without change:

[skip] srps’K = i-c.
7r, comm

On the other hand, the translation of c1 ; C2 first prefixes

instructions for cz to ~, and then prefixes instructions for

c1. Put the other way round, the translation of c1 ; cz is the

translation of c1 using a continuation that is the translation

of C2 using the continuation ~ that is to be performed after

c1 ;C2:

[cl ;c21*,=ommw’~= [cln=,commsqs’([c21n,commsqs’~)

The translation of assignment commands is described by

an equation that is formally similar to the previous one:

[a:= e] SqS’~ = [e]=, in,eXP S~S’ ([a]~,i*~.CCsqs’ ‘) ,T,conlm

except for the typing, since the subphrase [a]SqS’ ~ belongs

to [intcompl] rather than [compl]. The value of this sub-

phrase is an instruction sequence with a “hole”, the result of

[e]SqS’ ( ) is obtained by filling this hole with a righthand

side that will evaluate to the value of e, and then prefixing

any instructions needed to set temporary variables appear-

ing in the righthand side.

The close connection between this approach to compi-

lation and functor-category semantics is exemplified by the

fact that all three of the above equations for command trans-

lations are identical to the analogous semantic equations in

functor-category continuation semantics. This pleasant situ-

ation occurs for a surprising number of language constructs.

However, there must be exceptions — somewhere something

must act ually compute intermediate-language instructions.

In fact, there are only three kinds of constructs whose trans-

lation is a nontrivial deviation from functor-category seman-

tics: expressions, where temporary variables must be allo-

cated, variable declarations, where program variables must

be allocated, and closed and/or recursive procedure decla-

rations, where calling sequences must be generated.

A similar situation holds for implicit conversions. Both

the general Equation (1) for implicit conversions and the

specific equations for the conversions from variables to ac-

ceptors and expressions:

[intvar ~ intacc]S(a, e) = a

[intvar ~ intexp]S(a, e) = e

are the same for translation as for semantics. However, if

we extended our illustrative language to include a conver-

sion from, say, integer to real expressions, then the corre-

sponding equation for converting translations would explic-

itly describe the intermediate code for changing numerical

represent at ion.

8 Integer Expressions

If the phrase e has type intexp under the type assignment

n, then

[e]r,intexps(~ ~ [~]*s)(s’ > S)(P c [intcompl]S’) e (1s,) ,

where /3 e [intcompl]S’ implies

~(S” > S’)(T- e (Rs,, )) ● (is,, )

In essence, the translation of e must fill the hole in ~ by ap-

plying /3 to a righthand side r that will evaluate to the value

of e, and then prefix to the resulting instruction sequence

any instructions needed to set up temporary variables in r.

The translation of a constant, when given an integer con-

tinuation ~, simply fills the “hole” in ~ by applying it to an

appropriate lit eral:

U71r,int.-xps’Vs’P = ~S’(lit 7)

On the other hand, the translation of a unary expression
such as —e is obtained by applying the translation of the
subexpression e to an altered integer continuation /?’:

[-elT,i~~,XPSqS’P = [e]m,i~teXPSqS’@
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Here the effect of /3’ depends upon whether the righthand

side r to which it is applied is a simple righthand side. If so,

then –r is a righthand side that evaluates to the value of

—e and cent ains the same temporary variables as r, so that

the original /3 can be filled with –r:

,B’S”T= ps’’(-?’) when r e (Ss// )

Otherwise, however, —r would contain more than one op-

erator, so that a temporary variable must be used instead.

Then the effect of@ is to fill @ with the negation of the tem-

porary, and to prefix to the resulting instruction sequence

an assignment of r to the temporary:

f?S”r = S“ := r[S~ – S!] ; ,bS’’’S”)”) when r @(SS, ) ,

where

s“ = s’ and S“’=s’+1.

In the latter case, [–e]=,in,eXPSqS’~ will give an instruc-

tion sequence of the form

,J2?iEEuj::=r[s’’-s$:s’(’’’(-s”
It is important to understand the roles of the various stack

descriptors here:

. S is appropriate to the environment q and is simply

passed along with q. It describes a portion of the stack

containing any program variables that may be accessed

during the evaluation of –e.

● S’ will be the current stack descriptor before —e is eval-

uated. It may be larger than S since the computation

to be done after evaluating –e may refer to variables

higher in the stack than the portion described by S.

o S“ = S’ describes the temporary variable used to store

the value of e, which is placed on the stack immediately

above the portion described by S’.

● S“ will be the current stack descriptor just before the

assignment S“ := r. It may be larger than S’ since the

stack at this point may include temporaries occurring

in r.

● s’” = S“ + 1 will be the current stack descriptor just

after the assignment S“ := r. It is just large enough to

include the temporary S“.

Thus, the effect of the displacement increment [S:’ – S\]

is to deallocate any temporaries occurring in r and allocate

the temporary S“’.

The equation for [–e] can be written succinctly as

[-elm,intexpsVs’P=

[elT,intexpSqS’ (Usetmp S’(AS”. Ar. @S’’ (–r))) ,

where usetmp is a function encapsulating the use of tempo-

rary variables:

usetmp S’~S”r =

f ~S”r when r e (S.S/ )

Similarly, as the reader may verify, the function usetmp can

be used to handle temporary variables in binary expressions:

[el + e2]T,intexpsqs’P =

[ellm,l.,.XPSnS’ (usetmp S’ (M”, Arl.

iIejlT,l~,,XPSqS” (usetmp S“(JS’”. ~r~.

~S’’’(rl +rz)))))

9 Variable Declarations

The other construct for which translation involves storage

allocation is the variable declaration. Suppose c is a com-

mand in which free occurrences of the identifier L have type

intvar. Then the translation of the command new L: intvar

in c gives an instruction sequence that allocates a new vari-

able, initializes it (say, to zero), executes c, deallocates the

new variable, and finally executes the continuation to be

done after the whole command. Notice that the dealloca-

tion is done by an adjustdisp instruction prefixed to the

continuation:

[new L: intvar in c] 7r>commSq(s’ ~ S)(K e (is, )) =

S“ := lit O [1] ;

Ucl[7rl’:intvar],comm
S“ijS” (adjustdisp[–l] ; ~)

Here

s“ = s’ and S“=s”+l,

so that the new variable is placed just above the stack de-

scribed by S’, and S“ describes the extended stack contain-

ing this variable. The environment used to translate c is

‘ij= [~7r]*(s< S“)q I L:(cL, e)] ,

which is the extension of q that maps L into an acceptor-

expression pair describing the new variable. (We will explain

shortly why [n]” (S < S“ )q occurs here rather than ~.)

The expression component e ● [intexp] S“ fills the hole

in ,B with the stack descriptor S“ for the new variable:

eS’”/3 = /?S’”S” ,

while the acceptor component a ● [intacc] S“ prefixes to its

continuation ~’ an assignment of a hole to S“:

aS”” K’S’’”r = S“ := r[Sj” – S[”] ; K’

Notice that the functor-category discipline insures that S’”

is larger than S“, so that the new variable lies within the

stack described by S’”. The descriptor S“” may be still

larger, since it must include any temporaries occurring in r.

Since the environment fj maps L into (a, e) ● [intvar]S”,

it must belong to [[n [ L: intvar ]]* S“. Thus it cannot be an

extension of q e [T]* S, but must be an extension of some

related environment in [n]* S“. In fact, this environment is

obtained by applying the “raising function” [m]* (S < S“ )

to q.

When F is a functor that is the meaning of a type or

type assignment, we write I’(S < S’) for the application of

the morphism part of F to the unique morphism in X from

S to a larger stack descriptor S’. In general, such an appli-

cation gives a function that serves to “raise” a translation

or environment appropriate to S to a similar entity appro-

priate to S’. For the type compl, this operation prefixes
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an appropriate adjustment of the stack to the instruction
sequence that is its argument:

[compl](S < S’)(K e (Is)) =

{

adjust disp[S~ – S~] ; K when S; = Sf

popto S; K otherwise

For exponentiations, the function f E (F ~ G)S, whose

domain is the set of stack descriptors greater than S, is
restricted to the set of stack descriptors greater than S’:

(F~G)(S<S’)f = fl{S’’\ S’’>}’}.

For products, the morphism parts are defined component-
wise:

(F xx G)(S < S’)(a, e) = (F(S < S’)a, G(S < S’)e)

Similarly, the morphism parts of the meanings of type as-
signments, which are products of meanings of types over sets
of identifiers, are also defined componentwise:

[7r]*(s < S’)rp = [m](s < s’)(?),) .

10 Boolean Expressions and Conditionals

It would be straightforward to translate boolean expressions
in the same manner as integer expressions. However, it is
more interest ing, and in most casesmore efficient, to provide
a “control-flow” translation, in which boolean expressions
are compiled into trees of branch instructions.

To describe this approach, we extend our illustrative lan-
guage with the new types boolexp and boolcompl. The
meaning of boolean expressions is defined analogously to
that of integer expressions:

[boolexp] = [boolcompl] ~ [compl] ,

but boolean completions are defined quite differently:

[boolcompl] = [compl] x [compl] .

The translation of a boolean expression b accepts a pair
(K, ii) of continuations and produces an instruction sequence
that branches to w when b is true or to it when b is false.

In this approach the translation of constants is trivial:

[truelr,boo,expsqs’(~, %)= K

[fawlm,bookp s@’(K, K) = it ,

while the translation of relations gives rise to test instruc-
tions, with temporary variables being handled in the same
way as with binary arithmetic operations:

lel S e21T,boo1exPS@’(~, @ =

Kellm,inteXPSqS’ (usetmp S’(AS”. AT,.

lIe21=,in,.XPS~S’’(usetmp S“(M’”. Ar2.

if T-1< r2[Sj – S$’] then w else it)))) .

On the other hand, the translations of boolean opera-
tions and conditional commands simply compose or rear-
range the trees produced by subexpressions:

b %,bookxpS?ps’’(tt, ii) = [b]m,boolexpsqs’( ii, W)

lb or h]m,boolexpth$’(~, R) =

[bdm,boolexps@’(K~ [b2]m,bcdexps@’(K, ‘))

[if b then c1 else c2]
n,comm

Sqs’ K =

[b]m,boolexps~s’ ([cl] m,..mms~s’K, [c2]T,comm%s’4

Notice that the second equation describes “short-circuit”
evaluation for or.

11 Open Procedures

The functor-category semantics of the lambda-calculus as-
pects of Algol-like languages is described by the following
semantic equations, which are determined by the cartesian
closed nature of K and the definition of let L = p in p’ by
the redex (AL. p’)p:

There is also an equation for implicit conversion from one
procedural type to another:

[0, -+ 02 <e; -+ ej]s(f 6 [e, -+ 62]s)

(s’ > S)(a c [6!]s’) =

[% < o;]s’(fs’([oj < !9,]S’LL))

when Oj < 81 and 02 < 8;

These equations all carry over to compilation, where they
describe the translation of (nonrecursive) procedures into
open or “inline” code. (They have been written above in
the simplified form that is appropriate when Z is a partial
order. )

Essentially, these equations describe a compiler where
the lambda-calculus aspects of the source language are com-
pletely reduced at compile-time, leaving target code that is
purely imperative. This is in pleasant contrast with con-
ventional approaches to compiling conventional languages,
where inline implementation of procedures is notoriously
hard to get right.

12 Closed Subroutines

Closed subroutines are necessary for the implementation of
procedures, and other types of phrases, that are defined re-
cursively. (It would be straightforward to also provide a
“letclosed” definition for nonrecursive entities that are to
be implemented by closed subroutines.)

We use the term procedure for lambda expressions and
their meanings, and the term subroutine or closed subroutine
for instruction sequences that may be called from several
points in the intermediate-code program. It is important
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to distinguish these concepts for two reasons: As we have
already seen, a procedure may be implemented by inline ex-
pansion rather than by a subroutine, and on the other hand,
because of the use of call by name, a phrase such as a com-
mand or an expression, even though it is not a procedure,
will be implemented by a subroutine if it is defined by a
recursive defimtion or is a parameter to a procedure that is
implemented by a subroutine.

Similarly, we will distinguish between parameters, which
are source-language phrases passed to procedures, and ar-
guments, which are instruction sequences (actually subrou-
tines) passed to subroutines.

While procedures are classified by types, subroutines are
classified by simple types:

(simple type) ::= compl \ intcompl

] (simple type) -+ (simple type)

The exact connection between types and simple types will
be explained in Section 14. Roughly speaking, however, a
simple type is obtained from a type by replacing

comm by compl -+ compl
intexp by intcompl + compl
intacc by compl + intcompl

For example, a procedure of type

0~+((On4co mm))

would be implemented by a subroutine of simple type

PI ~ ( (p. -+ (compl + compl)) ) ,

(where each p, is the simple type corresponding to 0,), which
would accept n+ 1 arguments. The extra argument of simple
type compl plays the role of a return address.

Thus in the n = O case, even a command is implemented
by a subroutine accepting a ‘(return address” argument of
simple type compl. However, such an argument, or any
other subroutine of simple type compl, accepts no argu-
ments.

Calling a subroutine is a more complex operation than
merely jumping to an instruction sequence, since it may be
necessary to switch context from a frame list appropriate
to the calling program to a frame list appropriate to the
subroutine, and since arguments may be passed by placing
them in a vector accessible from the new frame list. In
general, to call a subroutine one must specify

1.

2.

3.

the subroutine to be called,

the global frame list to be used during execution of the
subroutine,

a list of the arguments, which are themselves subrou-
tines.

To execute the call, when there are one or more arguments,
one switches context to a frame list that is formed by adding
a new frame (allocated on top of the current stack) to the
global frame list, and then sends control to the subroutine.
The context switch causes the register SR to increase by an
amount 6 that is the current frame displacement Sj”’r at
the time of the call.

The new frame contains two words: the lower word points
to the global frame list, while the upper word points to a
call block, which in turn contains the argument list and the
quantity 6. The latter is the distance between the base of
the frame pointing to the call block and the old frame list,
which is in turn the global frame list to be used when calling
the arguments.

Notice that the contents of the call block are the same for
all executions of a particular call, and are known at compile-
time. Thus a single copy of the call block can be placed in
code space, rather than placing multiple copies (in the case
of a recursive call) on the stack.

It is important to distinguish the special case when the
subroutine being called takes no arguments, since in this
case the information in the new frame is vacuous, so that it
is more efficient simply to take the new frame list to be the
global frame list. This will remove from the stack everything
above the most recent frame of the global frame list, but it is
easy to see that this data is inaccessible (since all pointers in
the stack point downward). Indeed this is the ‘(stack pop”
that occurs when a subroutine passes control to its return
address.

The specific method of achieving all this depends upon
whether the subroutine being called is the result of compiling
a definition, or is an argument to a subroutine containing the
call. In the first case, the identity of the subroutine being
called is known at compile time, and Its global frame list is
a tail of the current frame list. If there are arguments, then
the call is performed by executing the instruction sequence

call if(al, . . .. an).

where i is the subroutine being called, ~ is the frame count
of the (top frame of the) global frame list, and al, , an
are the arguments. This instruction sequence changes

Flan

SR

+P

to

SR

El

frame : ~

f a.,.,
and sends control to i. If the subroutine being called takes no
arguments, however, then in place of call i f () one simply
resets SR to point to frame f and sends control to i.

On the other hand, if the subroutine being called is an
argument then it will occur, say in position j, in a call block
pointed to by a frame, say with frame count f, in the cur-
rent frame list, and the relevant global frame list will also
be pointed to by the frame f. If the subroutine being called
takes arguments, then the call is performed by the instruc-
tion sequence

acalljf (al, . . .. an).
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which changes corresponding formal parameter, e.g. the parameter x in

L-1

Er
frame 6’

f

6’

and sends control to a;. If the subroutine being called takes
no arguments, however, then in place of acall j ~ () one
resets SR to point to frame f and then executes

ajump j ,

which changes

+

a$

#
‘R

}

6’

to

SR --El

and sends control to a:.
In summary, three new forms of instruction sequence

have been introduced for calling subroutines:

(Is) ::= call (If+) f (( SRJ’),..., (SR~n))

I acall j f ((SR$’),. . . . (SR~”))

[ ajump j

where f < Sj, f+ = (f +1,3), n ~ 1, andj ~ 1. Here SR$
denotes a subroutine of simple type q whose global frame
list is described by the stack descriptor S:

(SR}) ::= (Is) when p < {compl, intcompl}

(SR}) ::= (1s+) otherwise ,

where (Sf, S~)+ = (Sf + 1,3).
In passing, we note that the calling conventions described

here differ from those used in traditional Algol compilers
[13, 14] in that all arguments to a subroutine are associated
with the same global frame list, instead of each argument
having its own global frame list. The advantage of our ap-
proach is that it reduces the amount of stack storage used
to call subroutines. The disadvantage is that, when a recur-
sive call has an actual parameter that is identical with the

letrecp =h. ~x . . ..pl)xl) x.. in. ...

an nth-level evaluation of the parameter will invoke a chain
of n subroutines. However, this inefficiency can be avoided
if the programmer (or an optimizing compiler) eliminates
the parameter by using a global identifier.

In any event, although we have not pursued the matter,
we expect that more traditional calling conventions should
also be expressible within the functor-category framework.

13 Compiling Subroutines and their Calls

Subroutines and their calls are compiled by three families
of functions indexed by simple types. The translation of a
phrase is mapped into a subroutine by

mk-subrq S e [p]S -+ (SR~) ,

while a subroutine is mapped into a call (more precisely
into a function that, when applied to appropriate arguments
yields a call) by

mk-callPS G (SR’$) + [p]S .

Finally, there is a family of functions that produce calls of
arguments:

mk-argcallp S GN -+ [p]S ,

where JV denotes the set of positive integers. Specifically,
mk-argcallv S j gives a call of an argument of simple type p
that is the jth argument in the call block accessed from the
top frame of the frame list described by S.

These three families of functions are defined by mutual
induction on simple types, reflecting the fact that compil-
ing a subroutine involves compiling calls of its arguments,
and compiling a call involves compiling subroutines for ar-
guments:

mk-subrCO~PIS K = K

mk-callco~PIS i = i

mk-argcallcO~PIS j = a.iump j’ ,

and when v = ql ~ (. . . ~ (pn ~ compl) . . .) for some
7221:

mk-subr~ S(c e [p]S) =

c S+ (mk-argcallvl S+l) . . . S+ (mk-argcallvn S+n)

mk-callPSi Sl(al e [P1]S1) ~Sn(a~ G [p~]Sn) =

call i Sf

mk-subrwm S“([pn](S” < S“)an))

mk-argcallWSj Sl(al e [pl]Sl) . . . Sm(a~ c [P~]S~) =

acall j Sf
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Further equations deal with the cases where p ends in
intcompl rather than compl, which arise when function
procedures or expressions are compiled into closed subrou-
tines. Here the special register sbrs is used to transmit
integer results. Let saveres c [intcompl] ~ [compl] be.
the function such that

saveres S/3 = S“ := sbrs [S: – S~] ; /3S’ S“ ,

where
S’=s and S’=s”+l.

Then
mk-subrintco~P)S ~ = saveres S ~

rnk-call,ntCOmPISi S’ r = sbrs := r [S~ – Sj] ; i

mk-argcallintCOmPlSjS’r =sbrs:=r[S~– S~] ;ajumpj ,

and when p = PI -+ (. . ~ (pm ~ intcompl) .) for some
n>l:

mk-subrW S(9 ● [p]S) = saveres S+ (

,8S+ (mk-argcallp, S+l) S+ (mk-argcallwn S+n))

mk-callWSi Sl(al ● [pl]Sl) .

Sn(a~ G [p~]Sn)S’(r c (R,s )) =

sbrs := r [S: – Sj] ;

call i Sf

mk-subrp. S“ ([p~] (Sn < S“ )a~))

mk-argcallWSj S1(al ● [pl]Sl)

Sn(an ● [pn]Sn)S’(r ● (R,s )) =

sbrs := r [S$ – S:] ;

acall j Sf

(mk-subrWISn([p~ ](S’ < Sn)aI),

mk-subr~. Sn([(fn](sn < S’)%))

Using these functions, it is straightforward to translate
recursive definitions:

[letrec ~ - pin p’]me, Sv = ~’]~xl,,q~,o,sq’ ,

Here q’ and z are mutual fixed points. This can be repre-
sented in the compiler by making the instruction sequence
i a loop, e.g. by making the i-field of the call instruction
generated by ink-call a reference whose value is eventually
set to i,

The reader may wonder why the contents of the register
sbrs is stored in a temporary variable immediately upon
return from a subroutine that produces a result. The reason,
illustrated by the integer expression

letrecx -.inletrecy~ ..inx+y,

is that sbrs may be reset by later calls before its contents
is used.

14 Subroutines for Product Types

The method for compiling closed subroutines described in
the previous section does not deal with integer variables or
with boolean expressions. Specifically, the mapping from
types to simple types does not apply to types containing
intvar, boolcompl, or boolexp.

The key to filling this lacuna is that the meanings of a
type such as

are isomorphic to pairs of meanings of the types

L91+ (. (On + intexp) )

Thus a procedure of the first type can be implemented by
a pair of subroutines corresponding to the second and third
types.

The general situation is that a type is mapped into a
sequence of simple types by the function r such that

r compl = compl

r intcompl = intcompl

r comm = compl + compl

r intexp = intcompl -+ compl

r intacc = compl -+ intcompl

r intvar = compl -+ intcompl, intcompl + compl

17boolcompl = compl, compl

17boolexp = compl -+ compl + compl ,

and if

r6=p1, . . ..pm and ro’=p; ,.. .,p:

then

Although the details are too tedious to record in this paper,
it is straightforward to define two functions GoS and QoS
such that, when rO = pl, . . ..pn.

is an isomorphism.
When 176= pi,. .,p~, this isomorphism can be used

to define the compilation of a phrase p of type .9 into a
collection of n subroutines of simple types WI, , pn. In
place of the equations at the end of the previous section, we
have:



where

q’ = [v 1L: VeS(mk-callW, Sil, . . . . mk-callvn Sin) ]

il = mk-subr~l S al

in = mk-subrvn S an

(al,..., an) = @eS(lMCTl,:el,OS~’).

Here q’ and il, . . .. in are mutual fixed points that can be
represented in the compiler by using a reference for each of
the instruction sequences il, . . .. in.

It is clear that the method outlined in this section could
also be used to deal with source language types, such as
record or object types, that are defined by products. To
treat binary products, for example, one would take

r(e x e’)= (re) o (re’),

where o denotes concatenation of sequences of simple types.

15 Completions and Iteration

Although the type compl plays a major role in our ap-
proach to compilation, it does not occur in the original type
structure of the illustrative language. In contrast, the Algol-
like language Forsythe [9] includes phrases of type compl
(though not intcompl or boolcompl) that provide a capa-
bility similar to goto’s and labels in Algol 60.

To extend our illustrative language similarly, we intro-
duce the type compl into the language, as a subtype of
comm, with the implicit conversion

[compl < comm]S@~’ = [compl](S < S’)K.

A completion can be constructed by joining a command and
a completion with a sequencing operator:

[Cl ; c2nm,comp,s71 = [cln=,commsns([czn=,comp,s~) ,

or by joining two completions with a conditional:

[if b then c1 else c2]=,cOmP,Sq=

[blm,boolexpsvs( [cll=,complsn> Mm,comp,sq)

We also provide an escape command that binds an iden-
tifier to a completion that causes an exit from the escape
command:

[escape L in c] s7pSK=
x,comm

M[=,’:comp,],.omm
S’[[7T]*(S < s’)~ I L: K]S’K .

All of these equations are the same for translation as for
semantics.

Once the language includes completions, various itera-
tive constructs can be defined a syntactic sugar. A trivial
example is a recursive definition of the completion loop c
that repeats the command c ad infinitum (until c executes
an escape):

loop c ‘~f letrec k = c ; kin k ,

where k is an identifier not occuring free in c. By substitut-
ing this syntactic definition into the translation equations,

and using the definitions of mk-subr and ink-call, one ob-
tains the translation

[loop c] s–
r,compl q — 2 where i = [c] r,commSrlSi .

A less trivial example is the while command:

while b do c ‘Sf escape e in

letrec k s if b then (c; k) else e in k ,

where e and k are identifiers not occuring free in b or c. This
definition leads to the translation

[while b do c] SrlS’K = i ,
z,comm

where

i = [b]m,boolexps’([7r]*(s < S’)q)s’

([c]
r,comln

s’([7r]*(s < S’)q)s’i, K)

This is a correct translation, but

s s’ ([c]‘i = [b]=, bOOleXP ~ m,mnm S?psi,K)

gives a simpler translation with the same denotational be-
havior that sometimes pops the stack sooner.

16 An Example

The following example illustrates many of the aspects of
translation discussed in this paper. Let P be the command

new x: intvar in

letrec pr S Ac: comm. (c ; x:=x+ 1 ;

if x < 10 then pr(c ; c) else skip)

in new y: intvar in pr(y := y + x x x) .

Then [P][l,cOmm, applied to appropriate arguments for trans-
lating a complete program, is

Pl[],c.mm (o,o)[] (o,o)stop=

(0,0) := lit O[1] ; (O, 1) := lit O[1]
(0,0) (0,1)

call i O ((1,3) := (0,0) x (0,0) [1]
(0,2) (1,3)

(0,1) := (0,1)+ (1,3) [-1]
(1,4)

ajump 1,
(1,3)

adjustdisp[–1] ; adjustdisp[–1] ; stop) ,
(0,2) (0,1) (0,0)

where i is

acall 11 ((O, O) := (0,0) + lit 1 [0] ;
(1,3) (1,3)

if (O,O) < lit 10 [0] then
(1,3)

call i O (acall 11 (acall 11 (ajump l)),
(1,3) (2,3) (2,3) (2,3)

ajump 2)
(1,3)

else ajump 2)
(1,3)
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Under each instruction sequence in the above displays, we
have placed the stack descriptor that will be current when
the sequence begins execution.

17 Conclusions

In the spring of 1994, the basic approach described here was
used in an undergraduate compiling course to construct an
intermediate code generator, written in Standard ML, for
a simple Algol-like language. In the coming months, we
hope to extended it for use in implementing the language
Forsythe.

A major research question is to what extent the approach
can be extended to generate more efficient intermediate-
Ianguage code. We suspect that a richer form of stack de-
scriptor can be devised that will provide information about
the caching of variables in registers and the use of displays
(groups ofregisters pointing directly to active frames). On
the other hand, theapproach depends soheavilyon the use
of continuations that it may be difficult to vary evaluation
order (say, byinterleaving the evaluation ofsubexpressions)
with sufficient flexibility, especially for RISC machines.

A second question is whether the approach will lend it-
self to a proof of compiler correctness. One would expect
that the close connections between functor-category seman-
tics and our approach to code generation would lead to sim-
ple proofs of the relationship between semantics and compi-
lation. However, we have not yetpursued this topic beyond
intuitive arguments.
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