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Abstract
This paper describes the first results and on-going work in the Ver-
Cors project. The VerCors project is about Verification of Concur-
rent Data Structures. Its goal is to develop a specification language
and program logic for concurrent programs, and in particular for
concurrent data structures, as these are the essential building blocks
of many different concurrent programs. The program logic is based
on our earlier work on permission-based separation logic for Java.
This is an extension of Hoare logic that is particularly convenient
to reason about concurrent programs.

The paper first describes the tool set that is currently being
built to support reasoning with this logic. It supports a specification
language that combines features of separation logic with JML. For
the verification, the program and its annotations are encoded into
Chalice, and then we reuse the Chalice translation to Boogie to
generate the proof obligations.

Next, the paper describes our first results on data structure
specifications. We use histories to keep track of the changes to
the data structures, and we show how these histories allow us to
derive other conclusions about the data structure implementations.
We also discuss how we plan to reason about volatile variables, and
how we will use this to verify lock-free data structures.

Throughout the paper, we discuss our plans for future work
within the VerCors project.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Correctness proofs, Formal methods, Validation;
F.3.1 [Specifying and Verifying and Reasoning about Programs]:
Mechanical verification, Specification techniques

General Terms languages, theory, verification

Keywords separation logic, concurrency, permissions

1. Introduction
Increasing performance demands, application complexity and ex-
plicit multi-core parallelism make concurrency omnipresent in soft-
ware applications. However, due to the complex interferences be-
tween threads in an application, concurrent software is also noto-
riously hard to get correct. Instead of spending large amounts of
money to fix incorrect software, formal techniques are needed to
reason about the behavior of concurrent programs.
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Over the last years, program logics have proven themselves to
be useful to reason about the correctness of sequential programs.
In particular, several powerful tools, e.g., Key [7], ESC/Java [15],
Spec# [4], and KIV [50], have emerged and are used to prove
non-trivial programs correct. The theory that underlies these tools
dates back to the sixties and seventies, e.g., the work of Floyd [24],
Hoare [29], and Dijkstra [19]. This transition from theory to tools is
due to several reasons: the increase in computing power, the emer-
gence of languages with a well-defined semantics, such as Java, and
the development of powerful automated first-order provers to prove
the resulting proof obligations.

For concurrent programs, theory on how to verify them dates
back to the seventies (notably the Owicki-Gries method [45]) and
eighties (Jones’s compositional rely-guarantee method [33]). How-
ever, these techniques are too complicated to integrate directly into
the existing tools for sequential program verification. Instead, only
with the emergence of separation logic [43, 44], the development
of tools to verify concurrent programs has come into reach. Orig-
inally, separation logic was developed to reason about programs
with pointers. The main characteristic of separation logic is that it
allows one to reason explicitly about the heap, and in particular that
it allows one to state explicitly that two references are pointing into
disjoint parts of the memory. This makes separation logic also suit-
able to reason about concurrent programs [42], because it allows
one to express naturally that two threads work on disjoint parts of
the memory, and thus cannot interfere with each other.

In earlier work, we have used separation logic to verify con-
current Java programs [26–28]. The logic uses fractional permis-
sions [11] to control read and write accesses. Multiple threads can
simultaneously have a permission to read a location, but only at
most one thread at a time can have a write permission on a loca-
tion. Permissions are modeled as a fraction between 0 and 1. A
write permission is a full permission: 1, and any non-zero fraction
less than 1 gives a read permission. Permissions can be combined,
so that threads can regain write permission on a location. Sound-
ness of the logic ensures that if the program can be verified with
the logic, it is guaranteed to be free of data races.

The logic captures the main concurrency constructs of Java.
In particular, it has rules to reason about thread creation, thread
termination (and in particular, other threads obtaining permissions
from a terminated thread) and about reentrant locks. Every lock has
an associated resource invariant that expresses which permissions
a thread obtains when acquiring the lock.

The VerCors project builds on this existing work, and uses
permission-based separation logic as the basis for verification.
However, while in earlier work the main focus was on proving that
a program had no data races, within VerCors the goal is to reason
also about the functional behavior of an application. In particular,
the VerCors project focuses on the specification and verification of
concurrent data structures. Data structures are an essential building
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block for many different applications, and thus their correctness
is important. In addition, their correctness is really depending on
how they handle the data: one does not only want to know that a
data structure implementation does not have a data race, but also
that data stored in the data structure is handled correctly. In par-
ticular, one wishes to verify properties such as: any data that is
stored in the data structure eventually is retrieved from it, and data
is retrieved in a particular order.

In addition, within the VerCors project, we also will target other
concurrency and synchronization primitives, such as futures, bar-
riers, and reader-writer-locks. This will make the logic applica-
ble to a larger class of Java programs. Moreover, we believe that
it will also lead to the development of a generic verification the-
ory for concurrent programs in different programming languages.
To support this idea, our intention is to find means to separate the
concurrency-specific verification tasks from the functional verifica-
tion tasks. This would allow, for example, to change the synchro-
nization mechanism without redoing the functional verifications.

Within VerCors, we also plan to look at lock-free data structures
and algorithms, and to reason about their correctness. In Java, two
notions of lock-freeness can be identified: in the first case, all
shared data is volatile, and the Java Memory Model [39] ensures
that there are no data races. To support this, the logic has to be
extended to reason about volatile variables. In the second case,
where non-volatile variables are used, there actually might be data
races in the code. For this case, we plan to study whether we can
identify classes of so-called benign data races that may be allowed
explicitly in the code, and where verification still can be done.

This paper describes the very first results and ongoing work in
the VerCors project. In particular, it describes the current state of
the tool set that supports reasoning within VerCors. It is planned
that as a specification language, the tool set uses a combination
of the Java Modeling Language (JML) [36] and assertions of
permission-based separation logic. The tool set leverages exist-
ing program verification tools, in particular Chalice [37] and Boo-
gie [3]. We explain how annotated Java programs are encoded into
Chalice. To allow for easy experimentation with the tool set, we
have also added a simple teaching language as extra input lan-
guage. We will briefly describe the main characteristics of this
language, and how the tool is set up to easily support other input
languages.

To understand the kind of specifications that the tool should
verify, we have also started working on the specification of several
commonly used concurrent data structures and other concurrency
library classes1. We have studied in particular the BlockingQueue
interface, and several of its implementations, and the AtomicInte-
ger class.

For each BlockingQueue object the specification maintains a
history list that keeps track of all changes that are made to the
queue. We sketch how histories can be used to specify the behavior
of the BlockingQueue in such a way that one can conclude that
data is retrieved from the queue in a particular order (e.g., a FIFO
queue, or retrieving the element with the highest priority first).

To specify classes such as AtomicInteger, we have to extend
the logic and underlying semantics with volatiles, and in addition
we have to specify the behavior of the native compare-and-set
operation. We also discuss how the specification of atomic classes
is necessary to verify implementations of lock-free data structures –
using these volatile variables. We sketch in particular the properties
we plan to verify for a lock-free hash table.

1 The fact that they are commonly used is the result of a statistical analysis
with the Histogram toolset [8] of a large collection of concurrent applica-
tions, found on the internet.

The work that is described in this paper is not finished yet.
Instead, it presents our ideas and work in progress. Throughout
the paper, we give extensive descriptions of our plans on how to
continue the work; as the title says: we are only at basecamp now,
and there is still much work to be done before reaching one of the
peaks in the VerCors mountain region.

Overview After giving a short summary of the permission-based
separation logic that is used to reason about Java in Section 2,
the next two sections describe the ongoing work in VerCors. First,
Section 3 describes the current state of the tool set, its architecture,
the specification language, and how the annotated programs are
encoded into Boogie and Chalice. Next, Section 4 describes the
work on specifying commonly used concurrency classes. Then,
we conclude the paper by describing related work (Section 5),
and by drawing conclusions and detailing our further workplan in
Section 6.

2. A Quick Summary of Separation Logic
Before discussing the first results of VerCors, this section first
briefly summarizes permission-based separation logic. For more
detailed information, we refer to [26–28].

Permissions π are values in the domain (0, 1]. At any point in
time, a thread holds a collection of permissions on locations. If a
thread has a full permission for a certain location, i.e., the value
1, then it has permission to change this location. If a thread has a
fractional permission, i.e., a fraction less than 1, then it has a read
permission on this location. Soundness of the logic ensures that the
total number of permissions on a location never exceeds 1. Thus, at
most one thread at a time can be writing a location, and whenever a
thread has read permission, all other threads holding a permission
on this location at the same time also can have a read permission
only. Permissions can be split and combined, to change between
read and write permissions. Permissions can be transferred between
threads upon thread creation, and upon joining a terminated thread.
Locks are associated with a set of permissions that can only be
obtained by acquiring the lock.

Assertions in separation logic are expressed as first order logic
formulas, extended with three special operators: the points-to pred-
icate, combined with a permission, the separating conjunction (*)
and the separating implication (or magic wand, -*). The syntax of
formulas F is formally defined as follows:

lop ∈ {*, -*, &, |} qt ∈ {ex, fa}
F ::= e | PointsTo(e.f, π, e) | F lop F | (qt T α)(F)

In classical Hoare logic, assertions are properties over the state.
In separation logic, the state is explicitly divided into the heap,
where all object information is stored, and the store, containing
information about the current method call. Intuitively, an assertion
PointsTo(e.f, π, v) (or x.f 7 π−−→ v in traditional notation) holds
for a thread t if the variable x.f points to a location on the heap
that contains the value v, and in addition, the thread t has at
least permission π on this location. A formula φ1 * φ2 holds
for a heap if the heap can be split into two disjoint heaps, and
the first subheap satisfies φ1, while the second subheap satisfies
φ2. A formula φ1-*φ2 holds for any heap that has the following
property: if the heap is extended with a disjoint heap that satisfies
φ1, then the combined heap satisfies φ2. The separating implication
is sometimes also read as a trade operation: the resources specified
by φ1 are exchanged for the resources specified by φ2.

Two important characteristics of separation logic are:

• points-to assertions do not only express that a location holds a
certain value, but they also express that a thread has permission
to access this location; and
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• whenever two expressions are separated by the separating con-
junction, then implicitly they express properties about objects
that are not aliased with each other.

These two characteristics are exploited to reason about concur-
rent Java programs. In particular, rules for field lookup and update
have preconditions requiring that a thread has a permission to ac-
cess or write on a location.

As mentioned above, when a new thread is created, it obtains
some of the resources of the thread that creates it (and this creating
thread has to give up these resources). Technically, such a spec-
ification is associated with the run method of the newly created
thread. The resources from the new thread are separated from the
resources of the creating thread, and thus the two threads can be
verified in isolation. Whenever a thread terminates, other threads
can join this thread, and obtain back resources from the thread –
as specified as the postcondition of the run method. To ensure that
no resources are created, first a special join token is created, and
only threads that hold (part of) this join token can join the thread.
Finally, our logic supports reentrant locks. For each lock a resource
invariant is specified stating which resources it protects. Whenever
a lock is acquired for the first time by a thread, it obtains these re-
sources, and thus can access the data protected by the thread. Upon
final release of the thread, the thread is forced to give up the speci-
fications.

3. The VerCors Tool Set
The VerCors tool set verifies object-oriented code, in particular
Java code. The input for the tool is source code that has been
annotated with contracts. The output is a listing of the contracts that
the tool could not prove to be correct. Each failure can optionally
be accompanied by the full details provided by the underlying
verification engine.

The basic technique of the tool is verification condition genera-
tion. That is, given a method with a contract and an implementation
the tool will generate proof obligations in first order logic, whose
validity implies that the implementation of the method satisfies the
contract.

3.1 Tool Architecture
Currently, we work on supporting two input languages: Java and
a toy language used for the Program Verification course taught at
the University of Twente: PVL. The latter is a very simple class-
based language, e.g., it has no strings and no inheritance. The
specification language that is used for it is separation logic with
abstract predicates, as introduced by Parkinson [46].

Rather than developing yet another verification condition gen-
erator, we have decided to reuse existing verifiers. Specifically, we
have chosen to work with the existing verifiers Chalice [37] and
Boogie [3]. This means that we will encode verification problems
in the input language as either Chalice or Boogie programs.

The tool is built along the classical pattern of a compiler. That is,
the input programs are parsed into an abstract syntax tree on which
several transformations are applied before they are passed on to one
of the back ends. The intermediate data structure, representing the
abstract syntax tree, is called Common Object Language (COL). It
encompasses the typical features of object-oriented languages, and
it is set up in such a way that adding a new language is relatively
straightforward.

The arrows in Fig. 1 indicate the possible paths a problem
can take from input to solver. They reflect that Chalice works
by translating its input into Boogie and Boogie in turn works by
generating a problem for an SMT solver, such as Z3 [18]. The direct
arrows from COL to Chalice and Boogie indicate that the tool will

Java PVL ???

VerCors
Tool

COL

???Chalice Boogie

input languages

Z3

back ends

Figure 1. VerCors Tool architecture.

transform programs into input programs for those tools. We do not
plan to generate proof obligations for an SMT solver directly.

3.2 Supported Specification Language
An important goal of the VerCors project is to build a user-friendly
tool for verifying realistic Java programs. The de facto standard
for writing specifications for Java programs is JML [36]. We will
follow this standard whenever possible. This will allow us to reuse
much of the experience and research on specification writing, and
in addition it will allow users to extend JML specifications with
concurrency details, rather than having to write these specifications
from scratch.

In separation logic, both the PointsTo predicate and the Perm
predicate are used. The Perm predicate specifies fractional access
to a field and is defined as follows:

Perm(x.f, π)
def
= ∃v.PointsTo(x.f, π, v) .

The difference between PointsTo and Perm is that the former
gives an integral specification of both access permission and value,
whereas the latter specifies just the access permission. Another way
of expressing the relationship between the two predicates is

PointsTo(x.f, π, v)⇔ Perm(x.f, π) ? x.f = v . (1)

This equivalence has been studied by Parkinson and Summers in
[47]. It allows us to explain the differences in specification styles
between Chalice, VeriFast [31] and our tool. In Chalice, PointsTo
is not supported, so the left hand side cannot be used. In VeriFast it
is forbidden to write x.f = v, so the right hand side cannot be used.
In contrast, our tool will support both styles of specification. To
this end, we exploit the equivalence between the two specification
styles, and we will extend this with translations from one style into
the other.

To achieve modular verification, it is important that the specifi-
cation language addresses the frame problem [40]: when formally
describing a change in a system, how do we specify what parts of
the state of the system are not affected by that change? In a sequen-
tial setting, it often suffices to specify exactly how a method mod-
ifies the state (or value) of an object. In contrast, in a concurrent
setting, it is also essential to make sure that a method has appropri-
ate permissions to access shared data. This means that one is not
allowed to access a shared data structure from either code or con-
tract unless one holds at least a read permission on it. Moreover,
if one does not use the permissions to change a part of the state,
this part of the state must be unchanged. As a consequence, access
permission must be defined for every method.
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public class Counter {
int val;
/*@ modifies val;
* ensures val==\old(val)+1;
*/

void incr(){ val=val+1; }
}

public class Counter {
int val;
/*@ requires Perm(val,1);
* ensures Perm(val,1) &&

val==\old(val)+1; */
void incr(){ val=val+1; }
}

public class Counter {
int val;
/*@ requires PointsTo(val,1,tmp);
* ensures PointsTo(val,1,tmp+1);
*/

void incr(){ val=val+1; }
}

JML Separation Logic, enriched syntax Separation Logic, core syntax

Figure 2. Three specifications of increment.

In Fig. 2, we show three equivalent specifications of the incre-
ment method in a counter. One in JML, one in an enriched separa-
tion logic, which uses Perm and one in pure separation logic, which
is limited to PointsTo. Strictly speaking, the modifies clause in
JML does not specifiy an access permission; instead it specifies
that a certain field might be modified. However, in this particular
case, modifies val; can be read as a permission to write val.
When considering recursive data structures and methods, deriving
the access permissions that are implicitly associated to the modifies
clause is less clear and a more detailed mechanism for specifiying
them will be needed. This relationship will be investigated further.

To provide abstraction in the specifications, the VerCors tool
set will also support abstract predicates [46]. Predicates provide
the means to define properties recursively, e.g., to specify recursive
data structures such as linked lists. Another advantage of abstract
predicates is that it is possible to write a signature of a predicate
without its definition (and later, in a subclass to add a definition).
Therefore, abstract predicates provide a way of writing a complete
specification of an interface without knowing any of the implemen-
tation details. Finally, it should be noted that this entire methodol-
ogy also covers the requirements that inheritance imposes on con-
tracts.

To understand how we support predicates, it is important to
realise that three kinds of predicates can be distinguished:

• value predicates that specify properties of the values of objects
only; those can only be used in the combination with permission
predicates;

• permission predicates that specify only the permissions held
on parts of the object; and

• combined predicates that specify both the value and permis-
sion properties at the same time.

The same distinction can be seen in equation (1): Perm(x.f, π)
is a permission statement, x.f = v is a value statement, and
PointsTo(x.f, π, v) is a combined statement.

The concept of pure methods in JML is quite similar to the con-
cept of value predicates, and therefore we intend to reuse the pure
method mechanism to express value predicates. The difference is
that pure methods allow arbitrary Java code, whereas the current
theory of predicates only considers predicates written in a purely
functional language. So in order to keep things simple, we will ini-
tially impose restrictions on the code used in pure methods, disal-
lowing loops for example. It is future work to establish restrictions
that provide a good balance between expressivity and verifiability.
(In theory, everything can be translated into a functional language.
However, in practice, automatic provers are unlikely to be able to
handle the results of such a translation.)

Eventually, we plan to support all three kinds of predicates in
our tool, but we have started with value predicates and permission
predicates. Thus, we have chosen to use Chalice as a back end,
rather than VeriFast [31], which works with combined predicates

only. As soon as we are able to support all three kinds of predicates
in the tool, we will also support VeriFast as a back end.

3.3 Encoding Verification Problems in Chalice
Chalice [37] is a verifier for concurrent programs. The input lan-
guage has objects, but no inheritance or interfaces. Permissions are
denoted with the acc predicate, which for the purpose of this pa-
per is equivalent to the Perm predicate. The PointsTo predicate
is not supported. The language has support for value predicates in
the form of pure methods, called functions. It also has limited sup-
port for combined predicates using the predicate keyword. The
restriction is that predicates cannot have arguments, which is an es-
sential for writing predicates in pure separation logic. For example,
it means that the PointsTo predicate cannot be defined in Chalice.
Finally, it supports standard locks as opposed to the reentrant locks
in Java.

The lack of inheritance is only a minor inconvenience, be-
cause the additional requirements arising from inheritance are eas-
ily added to existing contracts (cf. desugaring in JML [49]).

The lack of support for predicates with arguments is a bigger
problem. We consider that it is important to be able to state that a
method can perform its task on a structure, given any read permis-
sion. In separation logic this is typically specified using a predicate
with a fraction as argument. Thus, we have to deal with predicates
with arguments that cannot be expressed as functions because they
deal with access permissions. To overcome the lack of arguments
in predicates, we are developing a transformation that explicitly
passes and returns permissions. That is, for every predicate in the
precondition, we add an argument that encodes that the predicate
holds and for every predicate in the postcondition, we return such
an argument.

For example, consider a linked list, with a predicate state(p,q)
that gives fraction p permission on the values in the nodes and frac-
tion q on the structure of the list:

class List {
int val;
List next;
pred state(frac p,q)

= Perm(val,p)
* Perm(next,q)
* next!=null -> next.state(p,q);

}

We encode permissions on such a list with an explicit chain of
permission objects (see Fig. 3). The class List_state is given in
Fig. 4. This encoding is obtained as follows:

• every argument of the predicate becomes a field in the class
(line 8);

• a field about is reserved to point to the object for which the
permission is held (line 6); and
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p p pq q q

Figure 3. Example of a list with explicit permissions.

1 class List {
2 var val : int;
3 var next: List;
4 }
5 class List_state {
6 var about: List;
7 var about_next: List_state;
8 var p: int; var q: int;
9 predicate valid {

10 acc(about) &&
11 acc(about_next) &&
12 acc(p) && 0 < p && p <= 100 &&
13 acc(q) && 0 < q && q <= 100 &&
14 acc(about.val,p) &&
15 acc(about.next,q) &&
16 (about.next!=null ==> (
17 about_next!=null &&
18 about_next.valid &&
19 about_next.p_is(p) &&
20 about_next.q_is(q) &&
21 about_next.about_is(about.next)
22 ))
23 }
24 function p_is(frac:int):bool requires valid;
25 { unfolding valid in this.p==frac }
26 function q_is(frac:int):bool requires valid;
27 { unfolding valid in this.q==frac }
28 function about_is(l:List):bool requires valid;
29 { unfolding valid in this.about==l }
30 }

Figure 4. The Chalice encoding of the state predicate.

• for every field on which a recursive call is to be made, a match-
ing permission field is added (line 7).

The predicate state with arguments on List is translated to
a predicate valid without arguments on List_state. This predi-
cate states that

• we have full access to the entire predicate object (lines 10-13);
• we have permission on the val and next fields (line 14,15);

and
• we have conditional recursive access (lines 16-22).

Suppose that the class list contains a method m that works with
any permission:

forall p,q:frac;
requires state(p,q);
ensures state(p,q);
void m(){...};

This method will be encoded in Chalice as follows:

m(pre:List_state) returns (post:List_state)
requires pre.valid && pre.about_is(this);
ensures post.valid && post.about_is(this);

&& post.p==pre.p && post.q==pre.q;
{...}

After we have finished the encoding of predicates, we will start
working on the encoding of reentrant locks.

3.4 Future Work
Supporting Other Input Languages By building the tool around
two input languages, we try to ensure that it remains possible to add
support for other languages without major refactoring. We expect
that actually adding support for other languages is beyond the scope
of the VerCors project, but we have identified some languages that
would be of interest to add to the VerCors tool set.

An interesting candidate is Scala [41]. To support Scala, we
would need to add support for algebraic data types and pattern
matching. This would also be useful to support an interactive the-
orem prover as a back end and to support the specification style of
the VeriFast tool.

Due to the many differences between C++ [52] and Java, full
support for C++ is not going to be added soon. However, we may
end up supporting static dispatch and thus cover an essential part of
C++. The reason is that when one is reasoning about predicates,
one needs to reason about the definition of the predicate in not
just the super class and the outermost subclass (similar to dynamic
dispatch), but also about the definition in the current class (similar
to static dispatch). Because predicates are closely related to (pure)
methods, it would be convenient to treat predicates and methods in
the same way. A possible way of doing this is adding support for
static dispatch.

Supporting Other Back Ends We foresee that we will add the
VeriFast tool as a back end. Its specification language is pure
separation logic rather than the extended form we allow, but as long
as the permission predicates and the value predicates follow the
same recursive pattern, translating them into a combined predicate
is straightforward.

We are also considering other back ends, such as a JML back
end, depending on the difficulty this will give us. Currently, we
believe that this might be relatively straightforward, because much
of the work needed would be shared with the VeriFast back end.
Moreover, the explicit permission passing transformation can also
be used to encode our specifications in pure JML. This would
allow us to use the different JML tools to perform all kinds of
verifications (including support for run-time verification).

To satisfy the goal of verifying big chunks of the java.util.
concurrent package, we expect that we may need to verify
(initially?) certain parts with an interactive theorem prover rather
than with an SMT-solver-based back end. A possibility to support
this would be to add KeY [7] as a back end, but this option has not
been investigated further yet.

We do not expect that we need extensive support for native
methods during the VerCors project. Initially, our approach will be
to manually specify their behaviour, and reason with this specifica-
tion. If in a future project, we encounter more extensive native C
libraries, then we might be able to support reasoning about these
libraries via the VeriFast back end, or if the scope is much more
extensive by using VCC for the C code.

Parallelisation of the Verification One of the things that we
would like to build into the VerCors tool is the ability to exploit
available computational resources better. For example, rather than
passing the entire verification problem on to one of the back ends,
we can split it into several chunks (say one method each) and verify
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interface Iterator<E>{
boolean hasNext();
E next();
void remove();

}

Iterator<String> i=...;

String s=i.next();

interface Iterator{
boolean hasNext();
Object next();
void remove();

}

Iterator i=...;

String s=(String)i.next();

interface Iterator {
/*@ Class E */
boolean hasNext();
/*@ ensures result instanceOf E; */
Object next();
void remove();

}
Iterator i=...;
/*@ set i.E = String; */
String s=(String)i.next();

with generics after erasure after annotating erasure

Figure 5. Two ways of treating a program with generics.

these sub-problems in parallel. This would speed up the verifica-
tion task. In addition, it is also possible to apply multiple back ends
to the same sub-problem. This helps because as long as for each
sub-problem there exists at least one back end that can validate the
problem, the overall task will have succeeded.

To enable the addition of such a feature, we structure the back
end execution unit of our tool around a task queue in which tasks
carry information on whether they can be split into sub-tasks and
on whether there is more than one way to perform them.

Reducing the Annotation Workload Writing annotations can be
very tedious. Not only is it necessary to write the contract for every
method, it is also necessary to include many hints to the prover
inside the code. The most common of these are the fold and unfold
statements that indicate when a predicate should be replaced by
its definition (and vice versa). Therefore, it is our goal to reduce
the number of proof hints that must be written to a bare minimum.
Again, we are thinking about reusing existing tools. Both Boogie
and Chalice include several options that can automatically add
annotations to simplify the process. Those will be investigated, also
as part of the parallelisation effort mentioned above.

Another approach that we find interesting is the automatic in-
ference of access permissions by Ferrara and Müller [23]. Not only
would such a tool help writing method contracts, but we think that a
similar constraint solving approach might be used to find out when
to fold and/or unfold predicates.

Clearly, more research and more experience is needed in to find
effective ways to achieve this goal.

Supporting Generics by Compilation The issue of generics is
completely orthogonal to the issue of concurrency, but a practical
tool has to deal with them. We are thinking about a way of dealing
with generics that follows the ’verification by translation’ approach
that we adopted for dealing with concurrency.

Theoreticians tend to think of Java generics as a weak form of
a polymorphic type system. This is however not how it is imple-
mented in Java compilers: those use erasure instead. Effectively
they remove all generics annotations, replacing the generic types
by upper bounds of the possible types (often Object) and adding
cast expressions where they are necessary. We propose to translate
the generics annotations to specifications during the erasure.

For example, consider the code fragment in the left column of
Fig. 5. If erasure is applied the result would be the code in the mid-
dle column. Instead we propose to translate the generics informa-
tion into specifications. Whenever a generic type was introduced,
this information is kept in the form of a ghost variable. Whenever
the type in an argument is erased, we add a precondition. When-
ever a return type is erased, we add a postcondition. The result is
the code in the right column.

In order to be able to properly express the results of shifting
the generics from code to specification, we will need to be able to
reason about the class hierarchy in separation logic. This means
adding types to the specification language, complete with a func-
tion for getting the dynamic type of a variable and rules or axioms
for dealing with instanceOf and cast expressions.

4. Specification of Concurrent Data Structures
This section discusses the challenges of specifying concurrent data
structures and possible solutions.

The first challenge is to give specifications of concurrent data
structures that are as complete as possible, not just describing that
the data structure implementation does not have any data races, but
also how it will handle the data stored in it. The problem is that one
has to ensure that a postcondition cannot be invalidated by another
thread. For example, as discussed below, for a concurrent queue,
one cannot simply specify that after a put operation the added
element is the last element in the queue. This postcondition would
be unstable, meaning that it can be invalidated by another thread,
before the caller (that relies on the postcondition) can continue its
execution. The solution that we discuss here for this problem is to
use histories that give a serialised representation of how the data
structure state has changed.

Another challenge is that specification constructs such as in-
variants and constraints should have a different semantics in a con-
current setting. For sequential programs, a visible state semantics
is used, meaning for example that invariants have to hold at ev-
ery method border, i.e., whenever a method is called or returns. In
a concurrent setting, at any point inside a method, another thread
might be at a method border for the same object, so one needs a
notion of strong invariant (cf. [6]), specifying properties that have
to hold at any point. We will sketch how such constructs are added
to the logic, and what are the consequences for verification.

Finally, a last challenge is to consider volatile variables. These
are used in lock free data structures. The Java Memory Model [39]
ensures that there cannot be data races on volatile variables, but
their value can be changed at any point by any other thread. When
reasoning about volatile variables, the specifications have to ex-
press whether a variable can be assumed to be stable, i.e., whether
its value can be changed by another thread or not.

This section describes our first ideas on how to develop solu-
tions to these challenges.

4.1 Concurrent Queues
A considerable part of our recent research was focused on writing
specifications for concurrent queues, in which the main target was
the BlockingQueue interface and the classes that implement this
interface from the java.util.concurrent package (Fig. 6). We

76



<<interface>>
Collection

<<interface>>
Queue

<<interface>>
BlockingQueue

DelayQueue

LinkedBlockingQueue

ArrayBlockingQueue

SynchronousQueue

PriorityBlockingQueue

java.util.concurrent

Figure 6. BlockingQueue class hierarchy

present an abstract solution for specifying the BlockingQueue
interface and we show how this specification can be inherited by
the descending classes even though they use different orderings to
store the elements in the queue.

Thread interference leads to difficulties in defining the contracts
for even the most trivial methods. Consider the method put(E e)
from the LinkedBlockingQueue class.

public void put(E e) throws InterruptedException {
. . .
putLock.lockInterruptibly();
try {
. . . enqueue(e);
} finally {

putLock.unlock();
} . . .

}

The method enqueues the parameter e at the end of the queue.
Nevertheless, between the moment of the lock release and the
end of the method, another thread may interfere and cause unpre-
dictable changes to the queue, even possibly removing the newly
added element e. This non-deterministic behavior makes it difficult
to specify the functionality of the method.

We propose an approach based on logging data in a history. Two
variables are defined in the BlockingQueue interface specifica-
tion:

• historyList - a ghost variable that keeps track of every event
that modifies the queue; and

• actualQueue - a model variable that is an abstract representa-
tion of the queue data structure.

Both variables are of type JMLValueSequence (a model class
from the package org.jmlspecs.model defined as an immutable
sequence of values). The historyList node element is a wrap-
per of the queue element and an additional boolean flag exists
that indicates whether the element exists in the queue or not. The
classes that implement the interface are responsible for updating
the historyList and logging the new events, which is supported
by set annotations on historyList. The moment when an element
e is added to the queue, the historyList is extended with a new
element (a wrapper of e with the flag exists=true). Removing
an element from the queue is followed by setting the flag of the
appropriate element in the historyList to false. These updates to

historyList must be done before the lock is released, to guaran-
tee that no other thread will interfere.

We define the contracts of the methods of the BlockingQueue
interfaces in terms of the historyList. For example, for the
put(E e) method, the postcondition expresses that the history-
List contains the wrapper of the element e. However, we cannot
state anything about the value of the exists flag, since it holds
only in case that the element has not been removed after the lock
release.

This pattern can be understood as a background process that ob-
serves the queue behavior and reacts appropriately by logging each
action into the history. While the actualQueue is a shared data
structure accessible by a number of threads, the historyList col-
lects all events executed by different threads and serializes them in
a unique sequence. Since the result of the parallel and sequentially
executed code should be the same, both lists (the historyList
and the actualQueue) should be compatible (see Fig. 7). This
property guarantees that the historyList elements for which the
exists flag holds, match the elements from the actualQueue and
obey the same ordering rule. We define the compatibility property
through a recursively defined predicate compatibleOrdering
(JMLValueSequence actualQueue, JMLValueSequence his-
toryList). Further, the specification contains a (strong) class in-
variant expressing that this compatibility property always has to
hold, In addition, the method’s postconditions guarantee that the
historyList is properly updated, thus our specification abstractly
describes the behavior of the actualQueue too.

actualQueue	
   A B D F

A T B T C F D T E F F T
historyList	
  

Figure 7. Compatible historyList and actualQueue

Ordering The Queue data structure normally, but not always, fol-
lows the FIFO ordering rule. Which rule is followed, is unknown
in the BlockingQueue interface; it is decided by the implement-
ing classes. In order to preserve the compatibility property, the
historyList should follow the same ordering rule (FIFO, LIFO,
etc.) as the actualQueue.

However for some orderings, specifying how the history-
List should be updated might become too complicated. For ex-
ample, the PriorityBlockingQueue class contains Compara-
ble elements that are added in such a way that the queue re-
mains sorted. In order to avoid the problem of writing complex
historyList assignments, we extend the specification of the in-
terface with an additional model boolean variable ordered, and
a new predicate compatibleExistence(JMLValueSequence
actualQueue, JMLValueSequence historyList). Its pur-
pose is to give an opportunity to the one who specifies the de-
scending class to choose between two options: whether to update
the historyList while obeying the same ordering rule as the
actualQueue defines, or to add the elements in the historyList
in an arbitrary order (typically FIFO order). If the second option
is chosen, the class invariant will check the correctness of the
compatibleExistence predicate that only guarantees that the
historyList and the actualQueue are compatible regarding the
existence of the elements, while the elements order is not consid-
ered. This choice is made by choosing a concrete value for the
ordered variable in the implementation.

For instance, in the specification of the LinkedBlockingQueue
class, the property ordered is set to true, thus the historyList
will respect the FIFO ordering (defined by the LinkedBlocking-
Queue class), and the invariant expresses that this corresponds to
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the ordering of the elements in the actual queue. In the Priority-
BlockingQueue we set ordered = false, thus we do not have
to obey the ordering rule when adding elements to the historyList.
Instead, we agree that only the existence of the elements, without
the ordering, will be guaranteed. As a side remark, in case of the
PriorityBlockingQueue class, which is based on a heap data
structure, the order of the elements can be easily expressed by
adding an additional invariant that guarantees the correctness of
the heap rule, i.e., the value of every parent node is smaller than
that of both child nodes.

Summary of the History-Based Specification Approach We
summarize the ingredients of our approach in Table 1. It gives a
general overview of the specifications in the BlockingQueue in-
terface and in the descending classes. The table illustrates the ab-
stractness of our approach: most of the specifications are defined
in the interface, and only a small effort has to be done to specify a
descending class.

BlockingQueue Descending class
Define a ghost variable historyList Update the historyList
Define a model variable actualQueue Define a concrete representation

for the actualQueue
Define a model variable ordered Define a concrete representation

for ordered
Define a predicate compatibleOrdering
Define a predicate compatibleExistance
Define a class invariant that checks the
correctness of the proper predicate
Define methods contracts

Table 1. Specifications overview

An important question is how a client class of the BlockingQueue
interface can take advantage of the history-based specifications. It
is currently too early to give a full answer to this question. How-
ever, we believe it is important that the proposed specifications al-
low one to prove meta properties about the queue, such as that the
BlockingQueue object has a regular structure, holds the correct
elements, and respects a certain ordering rule. The history has pub-
lic visibility, thus it can be freely used outside the BlockingQueue
class. This gives clients the possibility to reuse the history spec-
ifications and to reason about other desired properties regarding
the current queue state as well as its state during the history. We
intent to investigate more in this direction and to analyze the clients
needs in different realistic applications, in order to make our ap-
proach also useful for client classes.

Finally, it should be remarked that currently our approach pro-
vides a poor mechanism for updating the historyList. It requires
ghost variables assignments scattered through the code, which may
be error-prone. Therefore, as future work, we plan to study how we
can systematically generate these assignments.

The specifications that we provide are still not integrated in
the tool that we develop, but this is planned in the next stage of
the VerCors project. Nevertheless, we believe that these ideas are
important ingredients that will guide the tool development to the
right directions. We also plan to extend this work by specifying
other concurrent data structures, for which we believe that the same
pattern can be reused.

4.2 Lock-free Data Structures
Lock-free data structures form an efficient approach to parallel
computing. Atomic operations like Compare-and-Swap (CAS) are
the main elements of these data structures. First we look at atomic
classes for volatile variables and then we explain our study of more
complicated lock-free data structures.

Atomic Classes Java provides the java.util.concurrent.
atomic package to support lock-free and thread-safe program-

ming on single variables. It enables those variables to be manip-
ulated atomically. The atomic package contains a set of classes
that essentially provide a wrapper for volatile variables with
appropriate atomic operations. In Java, when a variable is marked
as volatile, the Java Memory Model guarantees that always the
last written value to the variable is visible to all threads (volatile
read and write actions are synchronized actions, just as lock, and
unlock).

To understand how we can reason about volatile variables, we
first need to briefly discusses the Java memory model (JMM) [39].
The JMM uses a happens-before relation to order memory events.
If an event ei happens-before ej , then ei is visible to and ordered
before ej . Two accesses to the same variable are called conflicting
if at least one of them is a write access. If a given program contains
two conflicting accesses not ordered by the happens-before rela-
tion, then the program contains a data race. A program is called
data race free if in each sequentially consistent execution of the
program, there is a happens-before relation between each pair of
conflicting actions. To rephrase the semantics of volatile variables
in terms of the JMM, we say that a write to a volatile field happens-
before every subsequent read of that field. Therefore, the JMM al-
lows volatile variables to be accessed (reading or writing) concur-
rently without mutual exclusion.

Most Java semantics do not have special treatment of volatile
variables. To the best of our knowledge, only Boyland [12] de-
scribes an operational semantics for a Java-like language including
volatile variables. Boyland proposes the notion of write-key to dis-
tinguish between a volatile and a normal variable read/write. For
volatile variables all threads are sharing the same key knowledge.
Each thread writing to a volatile variable extends the key knowl-
edge with its write-keys, thus making the write visible to all other
threads. Any thread updating a normal variable extends its local
key knowledge. This ensures that a parallel thread does not read
this value, because it does not have the new write-key in its local
knowledge. Sharing a global write-key set permits concurrent ac-
tions on volatile variables, while inconsistencies between the local
key sets model conflicting actions on normal variables.

As mentioned above, within the VerCors project, we use a logic
that is based on fractional permissions. In particular, any thread that
does not have a full permission is not allowed to update a normal
variable. We are working on extending the logic with a distinction
between volatiles and non-volatiles variables. The main idea that
we are developing is that a volatile variable can be updated with
any non-zero permission, but only if a thread has a full permission,
it can rely upon the value in the volatile variable not being changed
by another thread. We will investigate if we can use the write-key
technique to describe the semantics of the volatile variables, and
then prove our logic for volatiles sound w.r.t. this semantics.

An important aspect of this work is to write the specifications
for atomic variables in the atomic package. All the atomic vari-
able classes in this package provide a compareAndSet primitive,
which is implemented using the fastest native construct available
on the platform. We are currently working on a specification for
the AtomicInteger class that implements all the atomic opera-
tions for an integer variable.

In order to keep track of the values written to the volatile field of
an AtomicInteger, we are using a value history list, as proposed
above for the concurrent queue specifications. However, a history
list in this class does not contain the boolean existence flag. Instead,
we specify that the current value of the field in the class must be the
same as the last value in the history list. Again, this is expressed
as a class invariant. To ensure that this class invariant is never
invalidated, we have to ensure that the history list is updated as one
atomic action with the write operation. Therefore, we propose an
extension to the specification language: a specificataion instruction
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atomic(L) that specifies an operation on a ghost variable that must
be done in one atomic action with the program statement labeled
L. The following code illustrates this for the specification written
for the method AtomicInteger::set(int newValue).

public class AtomicInteger extends ...{
//@ invariant value == vList.getLast();
private volatile int value;
...
/*@ requires PointsTo(this.value,p,_) && 0<p<=1;
@ ensures PointsTo(this.value,p,_) && 0<p<=1
@ && vList.contains(newValue);
@*/
public final void set(int newValue){

//@ set atomic(L) vList.add(newValue);
L: value = newValue;

}
}

Since the methods of the atomic classes are calling native meth-
ods exported in sun.misc.unsafe, writing the specifications for
AtomicInteger also forces us to write specification for those na-
tive methods. These are mostly low level operations on Java object
fields.

Verification of Lock-free Data Structures The specifications of
the basic atomic classes will provide us the building blocks to
specify and reason about other lock-free data structures, developed
in Java, using these atomic classes. Currently, as a first case study,
we are investigating how we can verify the correctness of a (Java
version) of a lock-free hash table [35]. This hash table is originally
designed in C as part of the LTSmin tool set [9]. It is intended to be
used for state space exploration in multi-core model checkers. The
data structure acts as a shared state storage to store visited states.
Thus a state is either in the storage or it has to be added. Figure 8
shows the algorithm for state space exploration using a closed set
V as a shared state storage.

Figure 9 presents the algorithm for find-or-put. A bucket is
always either empty (E) or it contains a pair of a memoized hash
code and the write status for the data. The algorithm probes the
cache line to find the data.

• If the corresponding bucket is empty (E), an atomic write tries
to insert the data (writing status is indicated with W). It then
updates the bucket status (D indicates DONE), and returns
false to indicate the absence of the data.

• If the related bucket is not empty, the data is either available
(visited state, indicated as D) or being written (by another
thread). In the second case, the thread waits for the data to
be written completely. In both cases, the method returns true,
indicating that the data has been found.

The crucial property for the correctness of this data structure
is: whenever a write started for a hash value, the state of the
bucket can never become empty again, nor can it be used for any

T={S0}; V={ };
while(state==T.get()){

for(succ in next_state(state))
if( V.find_or_put(succ) )

T.put(succ);
}

Figure 8. State space exploration

find_or_put(v){
h = hash(v);
...
if( Bucket[i] == E ) {

if( CAS(Bucket[i], E, <h,W>) ) {
Data[i] = v;
Bucket[i] = <h,D>;
return false;

}
}
if( Bucket[i] == <h,_> ) {

while( Bucket[i] == <_,W> ) do;
if( Data[i] == v )

return true;
}
...

}

Figure 9. Lock-free find-or-put algorithm

other hash value. So the written value can never change. We are
investigating how we can formally specify and verify this property.

As mentioned above, in a concurrent setting, the visible state se-
mantics for invariants no longer applies, because multiple threads
can execute code to update shared variables simultaneously. In-
stead, we have to rely upon strong invariants (cf. [6]), specifying
properties that have to hold in all execution states. For the hash ta-
ble, we can specify that the bucket status is always one of the values
from {E,W,D}. Formally, this is expressed as the following strong
class invariant for the hash table (assuming we have a bucket field
b, where for simplicity we omit the hash value):

this.b 7 π−−→ E ∨ this.b 7 π−−→W ∨ this.b 7 π−−→ D .

Moreover, we also have to express that the state transitions of the
hash table buckets are one-way transitions (from E to W and from
W to D). In a sequential setting, constraints relate two consecutive
visible states in an execution. But again, in a concurrent setting, we
need to specify that the one-way transition property holds in all the
execution steps of the method. Therefore, we use the notion of a
strong constraint. A strong constraint expresses a relation between
every two consecutive execution states. The following predicate
defines the strong constraints for the hash table, using \pre to
indicate the pre-state of the bucket[i], denoted as bi:

(\pre(this.bi) = E =⇒ this.bi = E ∨ this.bi = W ) ∧
(\pre(this.bi) = W =⇒ this.bi = W ∨ this.bi = D)∧
(\pre(this.bi) = D =⇒ this.bi = D)

As mentioned above, originally, this lock-free hash table has
been implemented in C. The Java version of this hash table imple-
mentation uses class AtomicLongArray for the Bucket. Once we
have defined the semantics and verification techniques for volatile
variables and the specifications of the classes in the atomic pack-
age, the Java version of the concurrent hash table will be verified.

It should be noted that so far, we have only been looking at
safety properties of the hash table. As future work, it might be
worth to investigate how one can also prove progress of the hash
table algorithm. For this we might be able to reuse the work of
Leino and Müller on deadlock-free channels [38], the work of
Brotherston et al. on proving termination using a combination of
separation logic and cyclic proofs [13], or the work of Gotsman et
al. on proving liveness properties of non-blocking algorithms [25].
However, this topic is not on the agenda in the near future.
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In the literature, several other verifications of lock-free data
structures have been described (see Section 5). We are investigating
if we can reuse some of this work to verify our target lock-free
hash table. However, because of our focus on real Java, and our
specification language that is inspired by JML, these earlier results
cannot be reused directly.

5. Related Work
Tools Several other teams develop theory and tools to reason
about concurrent programs. Closely related to our approach is the
work on Chalice [37]. As mentioned above, our tool builds on this:
an annotated Java program is encoded into Chalice. However, the
language that Chalice can reason about is more limited in scope
than general-purpose Java programs, and it is not clear if we can
encode everything in Chalice, or whether we will need to use a
direct translation into Boogie.

Appel et al. have developed a separation logic for a subset of
C (see [2] for an overview). Their work is completely formalized
within the Coq theorem prover, including the program semantics, a
compiler formalization and soundness proofs of the logic. Their fo-
cus is more on having a completely formalized tool chain, whereas
our focus is on having a practically usable tool set that can reason
about realistic programs.

VeriFast is a separation-logic based tool to reason about con-
current C and Java programs [31]. VeriFast requires a user to
write many of the intermediate assertions explicitly, which makes
it mainly usable for expert users. One of the topics that we will
work on within the VerCors project is the generation of annotations,
so that hopefully we can provide a higher level of automation. As
mentioned above, we would like to provide support to have VeriFast
as a back end. This would mean that we would have to encode our
specification language with JML features into the pure separation
logic of VeriFast.

The Spec# programming system can verify C# [4]. It uses a
permission model that organises access permissions as a forest of
trees. This is similar in expressive power to what can be done
with predicates and separation logic, but the details of how the
permissions are managed is quite different. The same permission
model is used in the VCC verifier for C code [14]. More than our
own tool, the VCC verifier is aimed at large scale verification of
existing code. To support the verification effort, it also encompasses
several tools that provide insight in the reason why verification
failed.

The KIV system is a dynamic logic-based program verifier. It
has a rely-guarantee-based extension with temporal logic, to reason
in a local way about concurrent programs [51].

Klebanov has proposed an extension of dynamic logic in the
Key system, to reason about the behavior of programs with data
races, respecting the Java Memory Model [34]. In contrast, our
intention is to reason only about programs that are sequentially
consistent, either because they have no data races, or because their
data races can be considered benign.

Further, there are several tools that allow to reason about se-
quential Java programs. We mention in particular the separation-
logic-based jStar tool [21], ESC/Java [15] and OpenJML (see
sourceforge.net/apps/trac/jmlspecs/wiki/OpenJml. The
latter two use JML as a property specification language. We intend
to combine separation logic with features of JML, and where ap-
propriate we will reuse the verification approach implemented in
these tools.

Logic Parkinson et al. [48] verified a non-blocking stack algo-
rithm using separation logic. Vafeiadis and Parkinson propose
a combination of rely/guarantee reasoning and separation logic,
named RGSep [53], to tame the complexity of the verification of

concurrent algorithms. Bornat and Amjad [10] employed RGSep
to prove correctness of two inter-process buffers algorithms.

Inspired by RGSep, Dinsdale-Young et al. propose a composi-
tional technique using concurrent abstract predicates (CAP) [20].
A given client program using a concurrent module is verified
against the module’s abstract predicates. This allows the client
program to use different versions of the module as long as the
predicates hold and thus the client’s verification remains valid.
Predicates are defined using an assertion language in which both
states (thread-local and shared) and interferences (as actions) are
specified.

As an alternative to CAP, Jacobs and Piessens propose a
procedure-modular technique to specify and verify fine-grained
concurrent programs [32]. The proposed solution is based on pass-
ing ghost actions as procedure arguments. Then the underlying
code is able to instantiate the required operation on ghost variables.
Compared to CAP, in which the designer defines the restrictions of
using the module in form of abstract predicates, in this technique
the client program manages the restrictions.

Abraham et al. [1] develop an assertional proof system for a
multithreaded Java-like language. The behavior of a single instance
is specified using local assertions and the connection between ob-
jects is expressed by global assertions. Histories of the local up-
dates and the communication are recorded in separate auxiliary
variables. Given an annotated program, a tool called Verger, gen-
erates verification conditions and then PVS is employed to prove
the generated verification conditions. The focus of the work is on
developing a sound and complete program logic for Java, not on
having a practical verification tool. In particular, it is based on
Owicki-Gries reasoning, which makes the number of proof obli-
gations easily explode.

To control the complexity of correctness proofs for concurrent
programs, de Boer et al. [16] propose a concurrency model where
concurrent objects are extended with futures. They develop a lan-
guage and proof system for distributed concurrent objects. This
work might be of interest when verifying distributed programs,
however it cannot be mapped directly onto Java’s concurrency
model.

Concurrent Data Structures and Synchronisation Techniques
With respect to specifications of concurrent data structures and
synchronization techniques, we are not aware of much work in
this direction. Recently, Aquinas and Hobor presented a separation
logic-based specification of a barrier [30]. However, they did not
verify whether for example the Java reference implementation of
a barrier respected their specification, and they just looked at this
particular case. Our intention is to identify commonalities in speci-
fications, and to verify whether the Java reference implementations
respect our specifications.

Dovland et al. [22] use histories to model the behavior of com-
ponents in a distributed environment. However, their histories keep
track of communication events, i.e., a communication history, rep-
resented as a sequence of messages denoting events as object cre-
ation, method invocation or method completion. A prototype tool-
support for run-time checking of JML annotated code extended
with communication histories has been developed by De Boer et
al. [17]. In contrast to this event-based history, our history is data-
based, which allows one to reason about the data elements that are
logged in it.

6. Conclusion
This paper gives an overview of the VerCors project. As the title
mentions: we are only at base camp now, and there is still a long
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way to go to reach the peaks in the VerCors area2. However, we
have taken the first steps, and with every step we get a better idea
of the road that is ahead of us.

The goal of the VerCors project is to develop techniques to
reason about concurrent programs and concurrent data structures
in particular. Permission-based separation logic for Java [26–28] is
the basis of our work, as it has proven to be an adequate approach
to keep verification of concurrent programs tractable.

Our intention is to express not just that a data structure im-
plementation is free of data races, but also its functional proper-
ties. Therefore, our specification language is not purely separation
logic-based, but we intend to leverage work on existing specifica-
tion languages such as JML. As explained above, we use a history-
based approach to express functional properties of data structures:
the specifications maintain a history that serialises the behavior of
the data structure, and that at any point can be related to the actual
contents of the data structure. The serialised history can then be
used to establish properties such as the preservation of the order in
which elements are stored.

A special focus point are so-called lock-free algorithms, using
volatile variables. We are currently working on extending the logic
to reason about such variables, and we are exploring how we can
use this to prove correctness of a lock-free hash table implementa-
tion.

We consider that all techniques should be practically usable.
This means in particular that they should all be supported by the
VerCors tool set. The tool set focuses on reasoning about Java
programs (intending to be as complete as possible), but is set up
in such a way that, given an appropriate variant of the logic, it can
easily be extended to another programming language. Its internal
design leverages the use of existing tools to reason about concurrent
programs, in particular using Chalice and Boogie. The VerCors tool
is intended to be usable for an (experienced) Java programmer,
therefore particular attention will be given to support annotation
generation and to automate the program verification process.

To reach these goals, we have identified the following main
steps.

• An initial version of the tool set should be available soon, which
can automatically reason about absence of data races in pro-
grams with fork/join parallelism and reentrant locks. To see
whether this goal is reached, the tool will be applied on all ex-
amples in the papers introducing permission-based separation
logic for Java [26–28]. As mentioned above, the tool set is set
up to be easily extendable, both for input languages and back
ends. The plan is to take advantage of this later; for example
by choosing the most appropriate back end for each different
verification tasks. However, to make sure there is a complete
working version of the tool soon, we have chosen to use only
Chalice and Boogie as back ends initially.

• The next step will be to extend the tool, so that it can parse
and create proof obligations for the history-based specifications
of the queue hierarchy. We expect that not all proof obligations
will be proven automatically, so the next step will then be to un-
derstand how we can help the prover to do this. Various options
for this will be explored, in particular generating annotations to
get smaller proof obligations, or developing dedicated decision
procedures. This approach will then be validated by specifying
and verifying other classes from the concurrency library.

• A similar approach will be taken to extend the tool set to reason
about lock free algorithms. We expect this will take longer,
because we have also have to investigate what is the appropriate

2 On http://parc-du-vercors.fr one can see why those peaks are
worth a visit.

logic for this case. As a test case, we plan to verify several (Java
versions) of lock-free data structures and algorithms developed
for multi-core model checking.

• Once we know how to verify data structures in isolation, we
plan to also verify a complete application, using the specified
and verified data structures. As it will take some time before we
have reached this state, we do not have a concrete application
in mind yet.

What is important to realise is that our intention is not to build
a new verification tool from scratch. Instead, we intend to build on
the wide range of tools that are available and to tune them to our
needs, so that they can be used to verify non-trivial properties of
multithreaded Java programs. The major effort in tool development
will thus be on encoding the specifications and programs into the
input languages of the different verification tools around.

Finally, in the long run, we would like to also address more open
questions such as: can we separate the verification of the locking
policy from the functional specification; can we identify classes
of data races (of non-volatile variables) where we can still reason
about a program’s behavior; and how can we adapt the logic to
other synchronization and concurrency primitives? However, we do
not have any concrete ideas on these issues yet.
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