
CHOCOLATE:

Calculi of Higher Order Communication and LAmbda TErms

(Preliminary Report)

Bard Bloom*

Cornell University, Ithaca, NY

bard@cs. cornell. edu

October 29, 1993

Abstract

We propose a general definition of higher-order pro-

cess calculi, generalizing CHOCS [Tho89] and related

calculi, and investigate its basic properties. We give

sufficient conditions under which a calculus is finitely-

branching and effective. We show that a suitable no-

tion of higher-order bisimulation is a congruence for a

subclass of higher-order calculi. We illustrate our def-

initions with a sample calculus strictly stronger than

CHOCS.

1 Introduction

Higher-order process calculi provide have captured con-

siderable interest recently. These are calculi for con-

currency in which the basic elements of the system,

processes or channels, are presented as first-class ob-

jects. As in sequential programming, higher-order fea-

tures grant programmers a wide variety of programming

methods.

For example, in first-order calculi (CCS, CSP, ACP,

and so forth), servers must use fixed communication

channels. Requests come to the server on channel a,

replies return on channel b, and woe betide the system

if anyone else uses these channels. Clients of the server

will have to have some kind of mutual exclusion or other

access control protocol, requiring some careful program-

ming and introducing more ways to make errors: a bad

thing in a system intended for specifications.

*Supported by NSF grants CCR-9003441

and CCR-9223183.

Permission to copv without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct comm.rci.l edvantege, the ACM copyright notke end the

title of the publication and ittr data appaar, and notica in given
that copying is by parmiaaion of tha Association for Computing
Machinery. To copy otherwise, or to rapublish, raquires a faa

and/or apacific permission.

POPL 94- 1/94, Portland Oregon, USA

@ 1994 ACM 0-69791 -636-9194~1 ..$3.50

Higher-order calculi such as CHOCS [Tho89] and

the related calculus of [Hen93], and the 7r-calculus

[MPW92] address these issues. In these calculi, pro-

cesses and channels may be communicated along chan-

nels. Thus, in CHOCS, a client of a server could send

the server a small process capable of sending messages

back to the client, thereby reducing and encapsulating

the possible misuse of the server. In the n-calculus, the

interface is even cleaner: the client sends the server a

channel to use for the reply.

There is a distinction between two kinds of higher-

order calculi. Some calculi, CHOCS and its relatives,

allow transmission of processes along channels. This is

extremely powerful, and the implications of this pro-

gramming paradigm remain to be fully explored. The

other school, the n-calculus and its relatives, simply al-

low transmission of channels (or channel names) along

channels. Programming in this setting is somewhat

harder (e.g., the implementation of the A-calculus in

the ~-calculus is rather more subtle than in CHOCS),

and the classical operational semantics is considerably

trickier. Implementation of ~-calculus-like systems is

much easier; e.g., the communications fragment of Con-

current ML [Rep91, Rep89] resembles the r-calculus in

flavor.

In this study, we make preliminary investigations of

the general theory of CHOCS-like languages. (The 7r-

calculus is rather more delicate, and will be the subject

of later studies.) The operations provided with CHOCS

and its relatives are the basic concurrent operations:

e.g., a CCS-like parallel composition plq which allows p

and q to either execute independently or communicate.

One useful operation not definable in CHOCS is

broadcast, ~. This associative, commutative binary op-

eration has the property that, if one combines several
processes:

P$q~r@s

if one process, say p, sends a message m on channel

339

a, then all of q, T, and s that are currently capable of

reading from channel a receive m. Unlike anything pro-

grammable with simple parallel composition, this guar-

antees that all possible interested receivers get the mes-

sage, simultaneously. Broadcast in various forms is an

essential programming operation in many distributed

systems [BCG91, BC90].

Another operation which cannot even be simulated

easily in CHOCS is the LOTOS operation of disabling,
[>. The process p [> q behaves like p, until such time

as q takes its first step; thereafter, p is killed and q

executes. This is vital in the higher-order setting: we

may receive a process, start to execute it, discover that

it is misbehaving, and wish to kill it before it can do any

further damage. The process a?x. ((z\{ b}) [> (b?y.0))

receives a process p along a, and runs it — but provides

an “off” switch, as a signal along channel b will cancel

it.

Any number of other operations have been proposed

and used in first-order process calculi. There are syn-

chronous products which run processes in lock-step par-

allel. There are polling operations, which allow one pro-
cess to ask if another is ready to communicate without
actually performing the communication. Some opera-

tions are simply for programming convenience: sequen-

tial composition p; q and while loops are useful pro-

gramming constructs which can be simulated to some

extent in most process calculi, but might reasonably be

made part of the language.

1.1 Developing a Metat heory

Rather than rebuilding the basic theory whenever a new

operation is needed, we investigate the metatheory of

CHOCS-like process calculi. In particular, we define a

type system and form of rules, called the chocolate rules

in honor of their derivation from CHOCS. CHOCS and

Hennessy’s calculus are chocolate, mutatis mutandis, as

are their extensions by all of the operations mentioned

above and much more.

Chocolate languages have two kinds of computation.

The primary form is process-algebraic: processes pro-

duce signals (carrying other processes as data) and

evolve into other processes, much as in CCS and

CHOCS. The other form of computation is reduction
in a typed A-calculus.l For example, a term that is
prepared to receive a value is written as a function tak-

ing values as arguments. Giving it a value corresponds

to function application. This application is evaluated,

eventually yielding a process capable of engaging in fur-

ther communication. The evaluation part of computa-

ti$m ii+ hiddsa insids ths tw~ Qr tkmw rsleyant ruleti in

CHOCS; it is made explicit (though instantaneous) in

1Typing is not essential to the definition of computation. It
w essential to many finiteness and computability theorems,

chocolate.

Some basic properties hold for all chocolate lan-

guages: in particular, the evaluation part of computa-

tion is strongly normalizing (which is no great surprise,

as the evaluation part of the calculus is little more than

simply typed A-calculus.) We use this fact to give suf-

ficent conditions on chocolate languages guaranteeing

some important properties; e.g., explaining when the

transition relation is computable and finitely branching.

We illustrate with NESTLE, an extension of CHOCS in-

cluding broadcast and channel creation and transmis-

sion.

We then investigate notions of bisimulation. The

most natural and useful definition of bisimulation at

all types is dangerous; technically, it is not a monotone

functional and hence does not necessarily have a great-

est fixed point. The theory may work out appropriately,

but this remains to be shown.

Instead, we provide a generalization of Thomsen’s

notion of higher-order bisimulation. Thomsen’s notion

is not an instance of the natural notion, as we explain

in Section 4. Nonetheless, in a restricted second-order

case, Thomsen’s notion can be generalized to the con-

cept of white chocolate bisimulation.2 We show that

white chocolate bisimulation is a congruence for a re-

spectable class of operations, including those of CHOCS

and Hennessy’s calculus. This suffices for most of the

operations we used to motivate this study. Unfortu-

nately, it fails for the most interesting example, the

channel transmission part of the calculus NESTL15.

1.2 Types and Channels

A fully-fledged higher-order process calculus should al-

low the kinds of programming paradigms that make

higher-order sequential computation powerful: encap-

sulating and transmitting programming constructs,

such as transmission and reception operations. That

is, we should be able to transmit channels, rather in

the style of the x-calculus. Keeping track of types will

prove informative.

Let P be the type of processes. A receiver is a func-

tion that takes an input (of type P) and then acts like

a process. It is thus an abstraction, of type

Ab=P~P

A sender produces a datum (of type P) as output, and

then continues running its main thread of communica-

tion, That is, it simply is a pair of processes (d, p):

d to be used as data, p for computation. It is thus a

wmcwtiwi [Mi191]J vf typs

CO=PXP

‘It’s good, but it’s not real chocolate.

340

Most higher-order process algebras have send and

receive operations, written something like a!v.p and

a?z.p. We follow [Mi191] in considering a! and a? to

be the operations. a! takes a value and a process, and

returns a process. a? takes a function from values to

processes, returning a process. Thus, we have

~! : Snd = CO+P
~? : RCV = Ab+P

Given ~ : Rev, we read a value from r and call it v

by a construct of the form r(Av. U). Given s : Snd, we

transmit n along it by s((n, ❑l)). In both cases, the •l is

the continuation: the process to be executed after the

communication.

A communication channel consists of a way to send,

and a way to receive: a pair (a!, a?), of matching send-

ing and receiving capabilities. They thus have type:

Chan = Snd x Rcv

If, in our process algebra, we are able to communicate

values of type Chan, then we can do much ~-calculus-

like programming straightforwardly. For example, con-

sider a server: a process which repeatedly accepts a

Chan, viz. a pair (s, r) : Snd x Rev, reads a value v

from the channel, performs some computation F, and

sends its result F(v) back along the channel. The server

should be reentrant: once it has gotten a channel, it

can fork off a process r (Av.s(F(v), O)), abbreviated as

TV . s(F(v)) .0, to handle the request along that chan-

nel; the server itself would wait for more requests. Each

request can use a different channel.

S = a?(s, ~) . (S/(~v . s(F(v)) . O)) (1)

Or, without abbreviations:

/S= a?(Ah.sl((nlh) (Av.(nOh)(F(u), O))))

A first draft of a client (sending first the channel b,

as the value (b!, b?); then sending the value 3 coded in

some unspecified way, and sending the answer along the

channel print) would look like:

Co = a!(b!, b?) . b!3 . b?z . print!z .0

To make full use of this, we should have a process

which generates new channels on request. Suppose that

there are actions co, cl, We’d like a process with

roughly the following behavior, repeatedly offering new

channels as values on some fixed channel c:

NC(n) = C!(cn!, cm?) . NC”(n + 1)

(A somewhat more powerful version of the new-channel

process will be provided as a primitive.) A better client

would first get a channel from NC’, and use that channel

to communicate with the server.

Cl = c?(s, ~) . a!(s, ~) . s3. rz .print!x .0 (2)

The whole system will simply consist of the server,

the client, and the channel server in parallel:

System = (SICllNC(l))\{a, b,c, cl, cz,. . .}.

Note that the c! and c? used in NC and Cl are higher-

order communication operations, as they are being used

to communicate values of type Chan.

c? : (Chan + P) + P

= ((::’;:P,)+P)+P

This development of channel transmission was quite

natural and straightforward. It is somewhat surpris-

ing that it requires constants of such high types. We

are now beyond the scope of existing process algebras,

even higher-order ones, and must check to see that the

foundations are solid.

1.2.1 Typed Transition Relations

Hennessy’s calculus has two actions a? and a! for each

channel, and rules

a?Az.p Q- Ax.p a!(9, p) ~ (97P)

We have transitions p ~ q, where p : P, a is an

action, ~ is a type, and q has type (. (The definitions are

sketched in Section 2.4.) The type information renders

the ? and ! redundant. In our system, those transitions

are

., Ab
aAbAz.p — Ax.p aco

(97P) * (q,p)

Type information distinguish between sending and re-

cieving, so we use the same operation and action sym-

bols.

This notion of transition is sensible in practice. It

has the somewhat disturbing property that it doesn’t

respect types in any sense: a process – that is, a closed

term of type P – can take a-transitions to terms of two

different types. This presents no difficulties, though it

may seem odd.

2 Calculi

We generalize the notion of a GSOS language [BIM88,

B1089]. GSOS languages are a first-order generalization

of the rules used to define CCS.3 We add a type system

and higher-typed terms.

sThe acronym Gsos currently stands for “Grand Structmeri
Operational Semantics”.

341

2.1 Types and Terms

The type system is straight from the simply typed A-

calculus with products and one base type, which we call

~+ ’x. Types ~ have the form:

f::== Pl(+(ltxt

Definition 2.1 A Higher Order GSOS Signature is a

set Act of actions, a set of operation symbols, and a

vector of kf types (&fl, . . . , <fkf) for each operation

symbol f, signifying that f takes arguments of types

tfl,..., tf k, and returns a value of type P.

We assume infinitely many variables x(of each type.

We define terms and their types simultaneously:

~e:[

t:(ox(l

7ri(t) : &

t:(cl-+&l, t’:&l

tt’ : fl

ti : &ili 6 {0,1}

(to, tl) :(0 x &

t:(l
Ax~” .t:&J+ &

We use a number of fairly obvious abbreviations to

make processes easier to read. As we are combining

process algebra and ~+’ x, we have in effect two com-

putation systems, plus a rule connecting them.

2.2 The languages NESTLE

and NESTLE/2

Based on the considerations above, we define two

higher-order process calculi, NESTLE and its second-

order subset NESTLE/2 . NESTLE includes all the oper-

ations of CHOCS, plus full higher-order communication,

broadcast, disabling, and channel creation; it illustrates

all the features of the rules given in our study. Our ac-

tion alphabet Act is infinite; a, b, c range over it. It

includes an infinite, coinfinite subset {co, cl, . . .}, and a

distinguished symbol ~. The operation symbols are:

0’()
a< : (~)
+ : (P, P)

I : (P, P)
[> : (P, P)

/s: (P)

[R] : (P)

tic : (P, P)

[.1s : (P)

NCn : ()

Null process

Prefixing at all types, for each action a

Nondeterministic choice

Parallel Composition
Disabling

Restriction: forbid actions in S Q Act

Renaming a’s to R(a) ’s,

where R : Act -+ Act

Broadcasting on channels in C ~ Act

Delimit broadcasting

New channel creator:

absent from NESTLE/2

We write operations in infix in fairly obvious ways.

We use the abbreviations a!p.q = a(p, q) and a?x.p =

a(Az.p). We have one rule for each choice of a, ~, C’,

S, and R. The rules for prefixing and choice are quite

standard:

For parallel composition, we define ylfx’ (where y : (

and x’ : P) to be an abbreviation for the following

term, which has the same communication effect as y

does, but has z’ still running in parallel with it. That

is, if y wants to receive a value (i. e., has type (O + (I),

then ylfO+f, Z’ will receive a value and route it to y.

Similarly, if y wants to transmit a value (viz, has type
to x ,$1), ylf, ‘tIx’ will transmit the same value Toy, and

continue running the rest of y in parallel with x’. This

is the natural generalization of [Hen93].

Ylpx’ = y[x’

YlfO”fl~’ = ((7roy), (my)l(,x’)

Ylfo+l$’ = M .(y.+’cl x’)

Note that ylfx : ~. We omit the symmetric rules, and

use informal ‘pattern matching notation for clarity.

a, t ~ a, f+P
x— Y —Y! ~

, U,(’
= (Y(, Y!)

a, t
Zlx’ — Ylt$’ X1X’ ~ p (YYA)IY;

For example,

(a?x.p)lq
., P+P

Po = — A.z. (pzlq)

PI = (O,!s.t)[u = (s, tlu)

then s is sent top as desired in POIpl:

Po IP1 = (pslq)l(tlti)

Disabling p [> q runs p until q takes a step, then kills

p and runs q. The type extension [>c is defined in the

same way as If.

a>(z, (
x— Y x’ — v’

X[>x’fi y [>~ x’ Z[>x’tiy’

Restriction and renaming must be extended to higher

types in much the same way that parallel composition

is. Let t : f; we define ft(t) as follows:

fp(t) = t

ffo+’t,(t) = xzf”.ffl(tz)

ftoxf, (~) = (~ot, fcl (ret))

342

The restriction and renaming rules are fairly stan-

dard:

x ~yfora$S
% (

x— 9

x\s s lJ\ts x [R] w y[R]&

Broadcasting ~ *C x’ is similar to parallel composi-

tion. It has the parallel composition rules for a @ C,

plus the following rules and their symmetric versions. If

z broadcasts y., then z’ must receive it if it can; either

way, z *C z’ will broadcast y..

a,gx P
x— (Y07Y1)> “ - Y’

XQCX
, a,~x

= (Ye>(YI tc Y’YO))

a,fx P
x— (yo,y,), z’ s

Note

PQcq

x@cx ‘ = (YO,Y1 *C ~’)

t~: a broadcast always emits a value y.. If

- r for some a c C’, then ~ is always a

pair (TO,T1) where To was the value broadcast and rl

the system after the broadcast occurred. Recall that
a, t

ift — u, then t must be a process. We thus need

a broadcast-delimiting operation [z1 C which strips off

the value being broadcast and lets the remaining pro-

cess continue.

a,fx P
x—

at t
Y! a~C x —y, a$C

[Zlc37r,y [Zlc - [Zlc, (

a, P
x— Y

[Xlc = [ylc

So, the idiom for broadcast is

[Ptcq$c”””tc’tcslc

much as the idiom for parallel composition with point-

to-point communication is

(Plql“““ l~ls)\s.

The new channel creator NCn simply offers new com-

munication channels (on channel co). Let chan(~) =

((+ P) X((XP).

c,, Chan(fjXP
NC. —

((
Az.cnf+p(x), AZcn@p (Z)), NCn+l)

Recursive definition of processes is straightforward as

a consequence of our general theory: we allow constants

defined by an arbitrary set of axioms. For example, the

server of(1) would be defined as a new constant S, with

a single rule

s === A(S, T). (SIT(AV.S(F(V), O))).

NESTLfi is a remarkably powerful calculus, allowing

CHOCS-like and x-calculus-like programming. With

a bit of care (having a single NC operator in parallel,

and avoiding use of Cn for n > O), programming with

dynamically-allocated channels is st~aightforward.

The only ~-calculus operation missing from NESTL6

is matching: [a = b]q behaves like q if the channel names

a and b are the same, and is stopped otherwise. This is

programmable (with some extra ~-moves) in NESTLE.

Suppose that we have two channel values of the same

type <, xl = (sl, T1) and X2 = (sz, ~2), produced by NC.
The two are equal if a signal sent on S1 is received on

T2. We use broadcasting to force the communication.

Let Of be any closed term of type ~. Choose channels

a, by, and b~. The following code will send a signal on bY

if Xl = X2, and on bn otherwise. Let G = {a, co, cl, . . .};

P1 = (~z?z . bY!O . O) + (a?x . bn!O . O)

P= [(sl!o~ . a!O . O) ~~pllG\G

If xl = X2, this will evolve as follows:

“p [a!().o Q7Gb,!o.O]G’\G’P— = ((), ❑)

where ❑ is O inside some communication delimiters.

(There might be another ~-move at one end or the

other.) The use of $~ forces the communication be-

tween S1 and TZ to occur if it is possible.

On the other hand, if XI # X2, then the left-hand

process broadcasts into the void; we have only

computation:

a single

7, P
P— [a!O.O $~ pllG\G

., P
— [0$. bn!O . OIG\G

~ (0,0)

Thus, p can tell if two channels are the same or not.

NESTLE/2 is NESTLIi restricted to second-order

types: no channel creation, and only tuples of processes

can be transmitted. It is strictly between CHOCS and

NESTLE in expressive power, and our stronger theory

applies to it.

2.3 Operational Semantics

A chocolate language consists of a signature and some

structured operational rules defining the behavior of the

343

operators of the signature. The A-calculus fragment is

standard.

Definition 2.2 Higher Order GSOS rules have the

form

all, <II bll, <;
Z1 — Ihl! . ..> 21-----4,

(3)
f(z) = u

There may be infiniteig many antecedents, both positive

and negative; u may be any term. The variables xi and

yaj must ail be distinct, and the only variables appearing
in the term u are xi ‘S and yij ‘s.

Definition 2.3 A chocolate language L over a signa-

ture is a set of higher-order GSOS rules over that sig-

nature.

The evaluation rules for ~-~ x are standard, and not

left up to the language designer.4

(Ax.t)u + t[z:==u] ‘T~((to,tl))+ ti

t=x’ ‘tWt’

tu * t’u 7ri(t) + 7r~(t’)

The transition relation a is deterministic. By stan-

dard theories of typed A-calculus, it is strongly normal-

izing; that is, there are no infinite reductions sequences

pi)-pl+...

Chocolate calculi all use the Instanteous Evaluation

Rule: local computation is instantaneous, and only

communication takes time. This is actually moderately

realistic, in software systems at least: local processing

time are generally insignificant compared to communi-

cation delays.

In the full paper we explain why having evaluation steps

take ~-moves is undesirable.

For example, let p be a process which receives a chan-
nel along a, sends some d along that channel, and stops;

and q be a process which sends a channel b along a,

reads a value from b, and thereafter behaves like that

value.

p = a?(Ac.xo (c)(~, 0))

q = a!((b!, b?), b?(Az.z))

41t would probably make good senseto use a more powerful
calculus, though the finiteness results are unlikely to hold if the
base calculus is not strongly normalizing.

We have transitions:

P - Ac.7r(l (c) (d, o)

q ~ (@!, b?), b?(Az.x))

and hence

Plq = ((At.~o(c)(d,O))(b!, b?)) lb?(Ax.x) = p’lq’

Only the evaluation rule applies to p’. We have

((k~o(c)(d, O))(b!, b?)) =+ ~o((b!, b?))(d, O)

+ b!(d, O) ~ (d, O)

, b,Ab
which matches q“s transition q — Ax.x to give us

a transition
P

P’I!?’ ~ ol(Xz.x)d

That is, p has sent d to q, which is what we intended.

2.4 Definition of the Transition Rela-

tion

A transition p % q occurs in .C iff there is a proof

of this formula from the rules of L, plus the evaluation

rules and the connection rule. The formal definition in

the full paper is nontrivial, especially as we must define
a>(

proofs for p ————++as well. The following lemma shows

that the definitions fit together right:

Lemma 2.4 Let L be any chocolate language, and p :

P any closed term. Then there is a L-proof of p ~ q

for some q ifl the?’e is no ~-proof of p S .

3 Computability

Branching

There are some fundamental

and Finite

concerns about this cal-

culus. Clearly, as we have allowed arbitrary sets of op-

eration symbols, actions, and rules, we cannot expect

anything to be computable, or even countable. It is of-

ten desirable to keep the transition relation computable

and finitely branching.

3.1 Finite Branching

It is frequently important to have some kind of finite-

ness and computability properties. We discuss two im-

portant finite-branching properties.

Suppose that H is a proof about p. The immediate

subproofs of II are either about the arguments of p (if

p = .f(IY)), or about a term p’ with p + p’. This
suggests the following definition:

344

Definition 3.1 p ~ q i~ either p ~ q, or p =

f(Pl,... ,pn) and q = pi for some i such that pi : P.

x is a lousy notion of reduction: it is nondetermin-

istic, non-confluent (though finitely branching), and not

respecting of meaning in any sense. The main excuse

for = is the following:

Lemma 3.2 Let II be a proof about p. If II contains a

subproof about a term p’, then p #-o p!.

The usual proofs for strong normalization of the sim-

ply typed A-calculus can be adapted to show that ~

is strongly normalizing and finitely branching. Thus,

the following function is well-defined:

dur(p) = max {n/dp’.p &o p’}

The heart of the finiteness and computability proofs

are the following lemma, where depth(lI) is the depth

of a proof in the obvious sense.

Lemma 3.3 Let II be a proof about p. Then

depth(II) < dur(p).

Definition 3.4 L is image finite if, for all processes p,

{
actions a, and tppes .$, the set p’lp * p’} is finite.

L is finitely branching if, for all processes p, the set

{(%4,2$)IPx P’} is finite.

Image finiteness is the weakest finite-branching prop-

erty in general use. In many calculi, it is the strongest

property that we want. The NESTLE operation N C~ is

image-finite, but (as it offers channels of all types) is

not finitely branching.

Theorem 3.5 Suppose that there are onlg a finite

number of rules for f(?) * for each f, a, and ~,

and that all rules have a jinite number of positive an-

tecedents. Then .C is image finite.

The essence of the following method to get finite

branching is taken from [Ace92, Vaa93].

Definition 3.6 The trigger of a rule p in the form (3)

is the vector (S1, . . . , S~), where

‘i= {@@~@+J =ante(~)}

Definition 3.7 A chocolate language is finitely trig-
gered if, for each operation sgmbol f and potential trig-

ger T, there are ordg jiniteiy many rules for f with trig-

ger T; and each rule has only finitely many positive

antecedents.

NESTLE is not finitely triggered, as there are infinitely

many rules for NCn with the empty tuple for a trigger.

Without N Cn — or even with NC. restricted to a finite

set of types — it would be finitely triggered.

Theorem 3.8 If L is jinitelp triggered, then it is

finitely branching.

3.2 Computability

There are several possible definitions of computability.

For this study, we choose one of the strongest: that the

computation tree of a process is computable.

{

a, P

}
Definition 3.9 Let D(p) = (a, q)lp — q . Z is

strongly computable iff D(p) is computable in canonical

index as a function of p.

By insisting that appropriate parts of Lemma 3.8 be

computable, we can give sufficient conditions for strong

computability.

Lemma 3.10 Let L be a chocolate language, such that:

1. The sets of actions, operations, and rules have re-

cursive codings, such that equality is recursive.

2. All rules have finite numbers of positive an-

tecedents, and recursive sets of negative an-

tecedents; and that the set of antecedents in canon-

ical index and a program deciding the negative an-

tecedents are computable from the code of rule.

3. For any operation symbol and finite trigger, the set

of rules for that symbol and trigger is computable

in canonical index.

Then L is strongly computable.

These conditions are not sufficient, for stupid reasons at

least: e,g., a thoroughly nonrecursive language without

constants would have no closed terms, and thus no pro-

cesses and an easily compatible (viz., empty) transition

relation.

4 Bisimulation as a Congru-

ence: White Chocolate

There are technical obstacles to defining bisimulation

for chocolate languages in general. The definition that

we would like is

De flnMon 4.1 A relation between closed terms of the

same type, -, is a V bisimulation relation if it is sgm-

metm”c and whenever p w p’:

345

e If P,P’ : P, then whenever p-@+ q, there is a

q’vq such thatp’ ~ q’.

e Ifp, p’ : CO ~ &, then forailq w q’ of type (o,

Pq w P’(l’.

(This isakind oflatebisimulation.) We would then

define s to be the largest V bisimulation relation. It

works for first-order processes; the first-order parts of

this definition are monotone, and thus there is indeed

a well-defined notion of e. However, for higher-order

processes, the universal quantifier in the CO+ (I case

of the definition makes the definition non-monotone;

the more processes of type <O which are related, the

harder it is to be related at type CO -+ (I. It k an

open question whether or not there is a maximum V

bisimulation relation.

There are several variant definitions, replacing the

universal quantifier at functional type with an exis-

tential: if p = p’ : (O + CI, for every q there is a

9’ w q such that pq w p’q’. This definition is mono-

tone at least, so there is a well-defined & relation, but

the weaker definition complicates the analysis. For this

study, we restrict attention to a much smaller class of

languages, scarcely more powerful than CHOCS. Defi-

nitions specific to this weaker class are termed “white

chocolate.”

We take a restricted type system, the White Choco-

late Type System:

(:= PIP”IP’ + P

where n ~ O. We do not bother to identify P, PI,

and PO -+ P. We define the natural generalization of

Thomsen’s notion of higher-order bisimulation, which

does not try to relate functions directly; instead, it ap-

plies them arguments in all ways and relates the result-

ing processes.

Let nf(q) be the =+-normal form of q.

Definition 4.2 A relation w between closed terms of

type P is a white bisimulation relation iff it is symmet-
ric, and whenever p - p’, we have:

p: Ifp* q, then there exists q’ u q such that

a, P
P’ — 9’.

Pk: If p
., Pk

—+ q, then there exists q’ such that

., P
P’ — q’, such that nf(q) is componentwise v

to nf(q’).

pk ~ p: ~fp “P’+ q, then for every closed r : Pk,

there is a r’ componentwise - to r and a q’ such
P’+P

that p’ - q’ and q?’ w q’r’.

Processes p and p’ a?’e white bisimilar, p ~Wh?te p’, if

there exists a white bisimulation relation relating them.

The definition of white bisimulation is monotone, and

thus the usual basic bisimulation theory applies; e.g.,

~w~zte is itself a white bisimulation. Note that ~~~~tc
is a rather peculiar bisimulation. Suppose that we have

the following operation, where b is a fixed action, but a

and ~ ranges over types.

That is, f(p) behaves like p if p has a b-transition at

type P on its first move, and O otherwise. Consider the

processes

P = (a?z.0) + (a?x.x) = a(Ax.0) + a(Ax.x)

P’ = p+ (a?z.f(x)) = p -t a(Az.f(x))

Clearly, p’ can evolve via an a-transition into the state

Az. f(x), which is clearly different from both O and

Ax.x. That is, p and p’ are intuitively not bisimilar.

However, we have p ti~h,t. p’. Clearly both of p’s

moves match moves of p’, and two of p’s moves match

moves of p. For any ~ : P, we have q?’ =pn f(T), which

is either bisimilar to r or to O depending on whether or

not T can take a b action at P. In particular, the usual

intuitions of bisimulation, of “staying in related states

on all actions,” have been lost in white bisimulation.5

Nonetheless, white bisimulation is a worthwhile no-

tion. It enjoys many of the properties of bisimulation in

ordinary process algebra; e.g., the method of “bisimu-

lation up to =Whtte” works. More importantly, =White

is a good notion of process equivalence on a suitable

class of languages; that is, all suitably defined opera-

tions respect &Whl~..

Definition 4.3 A White Chocolate Language is a set

of operations over a white chocolate type system, and a
set of rules, subject to the following condition. For each

rule p, let u be either the target of p (if the target has

type P or Pk), or the normal form of target(p) applied

to a fresh variable .z (if the target has type Pk + P).

Then, we require that

1. If a target variable y of type Pk -i P appears in u,

then it appears onlg once, and that occurrence is in

a subterm of the form y(p) for some term p.

5This may also be construed as a flaw in the higher-order
transition system.

346

2. There are no abst?’actions in u.

For example, if we restrict NESTLfi to white chocolate

types, we get a white chocolate language. Consider the

restriction rule. Ignoring some tupling and projecting

that the actual system requires, we have the rule

a, P’+P
x— P
pl+

x\s ~ p Aw.(yw)\s

Then u = (Azo. (yw)\S)z =Pm (yz)\S, which satisfies

the definition.

Theorem 4.4 Let L be a white chocolate language.

White bisimulation is a congruence for L.

This subsumes, e.g., Thomsen’s result that white bisim-

ulation (his higher-order bisimulation) is a congruence

for CHOCS; it also implies that white bisimulation is

a congruence for Hennessy’s somewhat more elaborate

language, and for NESTLE/2.

5 Acknowledgements

lVe would like to asknowledge Paul Taylor for his dia-

gram package, which was helpful for drawing the many

sorts of amazing arrows used in this study.

References

[Ace92]

[BC90]

[BCG91]

[BIM88]

Luca Aceto. Eliminating junk rules from

GSOS languages. (Unpublished note; to ap-

pear, probably as part of something else.),

July 1992.

Kenneth Birman and Robert Cooper. The

Isis project: Real experience with a fault tol-

erant programming system. Technical Re-

port 90-1138, Department of Computer Sci-

ence, Cornell University, July 1990.

Kenneth P. Birman, Robert Cooper, and

Barry Gleeson. Programming with pro-

cess groups: Group and multicast semantics.

Technical Report 91-1185, Department of

Computer Science, Cornell University, Jan-

uary 1991.

Bard Bloom, Sorin Istrail, and Albert R.

Meyer. Bisimulation can’t be traced (pre-
liminary report). In Conje’rence Record of

the Fifteenth Annual ACM Symposium on

Principles of Programming Languages, pages

229-239, 1988. Also appears as MIT Tech-

nical Memo MIT/LCS/TM-345.

[B1089]

[Hen93]

[Mi191]

[MPW92]

[Rep89]

[Rep91]

[Tho89]

[Vaa93]

Bard Bloom. Ready Simulation, Bisimula-

tion, and the Semantics of CCS-Like Lan-

guages. PhD thesis, Massachusetts Institute

of Technology, August 1989.

Matthew Hennessy, A fully abstract de-

notational model for higher-order processes

(extended abstract). In Proceedings of the

Eighth Annual IEEE Symposium on Logic

in Computer Science, pages 397–408. IEEE

Computer Society Press, 1993. (Full version

in Sussex TR 6/92).

Robin Milner. The polyadic r-calculus: A

tutorial. In PTOC. International Summer

School on Logic an dAlgebr’a of Specification.

Ma~ktoberdorf, 1991.

Robin Milner, Joachim Parrow, and David

Walker. A calculus of mobile processes I and

II. Information and Computation, 100:1-40

and 41–77, 1992.

John H. Reppy. First-class synchronous op-

erations in Standard ML. Technical Report

89-1068, Department of Computer Science,

Cornell University, December 1989.

John H. Reppy, CML: A higher-order

concurrent language. SIGPLAN Notices,

26(6):293-305, June 1991.

Bent Thomsen. A calculus of higher or-

der communicating systems. In Confe?’cnce

Record of the Sixteenth Annual ACM Sym-

posium on Principles of Programming Lan-

guages, pages 142-154, 1989.

Frits Vaandrager. Expressiveness results for

process algebras. In de Bakker, de Roever,

and Rozenberg, editors, Semantics: Foun-

dations and Applications, pages 609-620.

Springer-Verlag, 1993. LNCS 666. Also ap-

pears as CWI Tech Report CS-R9301.

347

