
AUTOMATIC GENERATION OF NEAR-OPTIRAL LINEAR-TIME TRANSLATORS

FOR NON-CIRCULARATTRIBUTE GRAMMARS

by

Rina Cohen and Eli Harry
TECHNION - Israel Institute of Technology

ABSTRACT
Attribute grammars are an extension of context-

free grammars devised by Knuth as a formalism for
specifying the semantics of a context-free language
along with the syntax of the language. The syn-
tactic phase of the translation process has been
extensively studied and many techniques are
available for automatically generating efficient
parsers for context-free grammars. Attribute
grammars offer the prospect of similarly automat-
ing the implementation of the semantic phase. In
this paper we present a general method of construct-
ing, for any non-circular attribute grammar, a
deterministic translator which will perform the
semantic evaluation of each syntax tree of the
grammar in time linear with the size of the tree.
Each tree is traversed in a manner particularly
suited to the shape of the tree, yielding a near
optimal evaluation order for that tree. Basically,
the translator consists of a finite set of “Local
Control Automata”, one for each production; these
are ordinary finite-state acyclic automata augmented
with some special features, which are used to
regulate the evaluation process of each syntax
tree. With each node in the tree there will be
associated the Local Control Automaton of the
production applying at the node. At any given
time during the translation process all Local
Control Automata are inactive, except for the one
associated with the currently processed node,
which is responsible for directing the next steps
taken by the translator until control is finally
passed to aneighbour node, reactivating its Local
Control Automaton. The Local Control Automata of
neighbour nodes communicate with each other.

The construction of the translator is custom
tailored to each individual attribute grammar.
The dependencies among the attributes occurring
in the semantic rules are analysed to produce a
near-optimal evaluation strategy for that grammar.
This strategy ensures that during the evaluation
process, each time the translator enters some
subtree of the syntax tree, at least one new
attribute evaluation will occur at each node
visited. It is this property which distinguishes
the method presented here from previously known
methods of generating translators for unrestricted
attribute grammars, and which causes the trans-
lators to be near-optimal.

INTRODUCTION. Attribute grammars are an extension
of context free grammars devised by Knuth [K1] for
specifying the semantics of languages along with
the syntax. Each grammar symbol has.an associated

set of attributes specifying the various compon-
ents of its “meaning”, and each production is
provided with semantic rules, defining the
attributes of symbo”ls in the production in terms
of other attributes associated with the produc-
tion. To find the meaning of a string, first we
construct its syntax tree and then we determine
the values of all the attributes of symbols in
the tree, a process which is called semantic
evaluation of the tree. An attribute grammar is
non-circular if the system of semantic definitions
given by the grammar avoids circularity in all
possible instances. The problem of detecting
circularity in an attribute grammar, first solved
by Knuth in [K1,2], was shown in [J&O&R] to be of
inherent exponential complexity.

Since their definition, attribute grammars have
attracted widespread interest in ‘the area of
programming languages. They have been used by
investigators in fields such as natural language
recognition and question answering systems [P],
program optimization ([N&A]),[J2]) and the theory
of program correctness [G]. But their most
important contribution was toward:; the formal
definition of programming languages and automatic
design of compilers. Two high-level programming
languages, namely SIMULA and PL360, were fully
defined and implemented using the attribute
grammar model ([Wi],[D]).

When an attribute grammar is used to specify
the translation and code generation performed by
a compiler, the attributes may represent such
things as data types of expressions, symbol table
records forusein translating identifiers, register
usage information or machine code generated for a
statement. The definition of aprogramrnin glanguag.e
and its compilation process by means of an attri-
bute grammar offers the following advantages:
(i) The semantics is given in a declarative, non-
procedural way, and is independent of any parsing
scheme. (ii) The semantic description is modular,
given on a production by production basis, which
makes the definitions more understandable and
facilitates the addition and removal of features
from the language. (iii) The context sensitive
features of the language can be nai;urally expressed.
(iv) The description of the language can be
checked for consistency and used for automatic
compiler generation.

Despite these advantages, attribute grammars
have not become a widely used tool for compiler
generation because of the difficulty in obtaining
implementations efficient enough for practical
use. Until now, efficient translation algorithms

121

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.© 1979 ACM 0-12345-678-9…$5.00

INTRODUCTION (cent’d)
have been developed only for restricted classes of
attribute grammars ([L&R&sl ,2], [A&U2,3],[B],[Jl],
[K&W]). A general framework for studying determin-
istic implementation of attribute grammars was
developed in [W].

In this paper we present a general scheme for
automatically constructing a near-optimal linear-
time deterministic translator for any non-circular
attribute grammar. The translator will traverse
each parse tree of the grammar in a manner which is
particularly suited to the shape of the tree,
yielding a near-optimal evaluation order for the
tree. As a result, our translator will never
wander around aimlessly in the tree before reaching
a place where new attributes can be computed.
Instead, it is guaranteed that each time the trans-
lator enters some subtree of the syntax tree, at
least one new attribute evaluation will occur at
each of the nodes visited.

The construction of the translator is custom
tailored to each individual attribute grammar. The
dependencies among the attributes in the grammar
are analyzed to produce a near-optimal evaluation
strategy for that grammar. Basically, the
translator consists of a finite set of “Local
Control Automata”, one for each production. These
are finite-state acyclic automata augmented with
some special features, which are used to regulate
the translation process of each given parse tree.
With each interior node of the tree is associated
the Local Control Automaton of the production apply-
ing at the node. During the translation process,
whenever control reaches the particular node, its
Local Control Automaton is reactivated, starting
from the state in which it was last suspended. The
automaton is responsible for directing the evalua-
tion process while control is at the node. When
finally control is passed to a neighbor node
(along with some parameter), the currently active
Local Control Automaton is suspended, and the Local
Control Automaton associated with the neighbor
node will be reactivated. This goes on until
eventually the Local Control Automaton associated
with the root of the tree enters a final state,
at which point the translation process is
complete.

ATTRIBUTE GRAMMARS. An attribute grammar is a
context-free grammar augmented with attributes
and semantic functions. Formally, an attribute

~consists of the followin9:

1. Underlying grammar: A context free grammar

G= (VN,VT,P,S), where V is the setof non–terminals,
N

VT is the set of terminals, P is the set of

productions and SCV.N is the the start symbol. We
assume that there are no useless nonterminals and
that S appears on the left hand side ofa unique
initial production Po, and does not appear on the
right side of any production. Let V stand for VNUT.

A production p~P is written in the following form
p: xo+xlx~ . . . Xn where np~l,xo EVN andxk~v

for l~k~np. For p convenience, we sometimes Wite
p[k]tomean X fork=O,l . ..n . “P,.l.e. PKI denotes the
k’th symbol /from VO appearing in production p.
2. Attributes: For each symbol XEV, there are
two finite disjoint sets, ~- the inherited
attributes of X, and ~ - the synthesized
attributes of X. For X = S and for X&VT, we

require that I(X) = ~. Wewrite~ for I(X) U
s(x). A production

P: ‘o+xlx2 ““” ‘n
P

has the attribute occurrence (a~), O<k<n if— – P’
aEA(Xk).

3. Semantic functions: For each production PCP
there is a finite set of semantic functions as
follows : for every synthesized attribute occurrence
(a,k)wit’h k = O, and for every inherited attribute
occurrence (a,k) with 1 s k s np, there is a

semantic function fp (a,k) which defines the value

of attribute occurrence (a,k) from the values of
other attribute occurrences appearing in the same
production. The value of an attribute occurrence
defined by a semantic function is taken from a
given set (possibly infinite) of attribute values.
The semantic functions usually involve simple
operators like assignment, Boolean operators,
numerical sums, etc.

Example 1: The following is an example of an
attribute grammar:

‘N ‘
{S,A B} ‘T = {a,b}

I(S) = @ s(s) = {s,}

I(A) = {ill S(A) = {S1,S2

I(B) = {i1,i2} S(B) = {S1]

Production Semantics

O: S+abA (s., o) =

(i1,3) =

~: A+aAbB (sl,O) =

(s2,0) =

5,>3) +

‘1
,3)

S,,2)

52,2) +

(s2,3)

(s, ,4)

2: A+abb

3: A+ab

(i2,4) = (i, ,0)

(i1,4) = 1

(i1,2) = 1

(s,,0) = 1

(s2,0) = 1

(s,,0) = T

(S290) = (il,O)

4: B+ab (sl,O) = (il,O)

5; B7ba (s150) = (iz,o)

Evaluation of Attribute Grammars: A parse tree of
an attribute grammar is a derivation tree of the
underlying context free grammar, i.e. a finite
tree whose nodes are label led with symbols from V.
For each interior node N there is a production
p&P such that N is label led with the symbol p[O],
has np sons, and for each k, I<k<n the k-th

– P’
son of N is labelled with p[k].– In this case we
say that production p applies at node N. By the
k-th neighbor of node N, for O<k<n , we shall

–P

122

mean the father of N in case k = O, or the k-th son
ofNincasel<k<n . A parse tree with root X,

is a pafie fie~ in which the root is label ledx= ”N;ontermina, x
by

A semantic tree of an attribute grammar is a
parse tree augmented with attributes; i.e. each node
labelled with XeV is a structured variable whose
field selectors are the elements of A(X). Jn order
to determine the “meaning” or “translation” of a
string generated by the underlying context-free
grammar, we first parse the string and build the
semantic tree. Then we have to fill in the fields
of each node by computing the attribute values
according to the semantic functions. This process
is called evaluation of the semantic tree.”

An algorithm which accepts as input~semantic
tree generated by a given attribute’ grammar G and
evaluates it is called a translator(or evaluator)
for G.

The only restriction imposed on the translator
is that at any point in time during the evaluation
process it can only evaluate an attribute occurrence
whose semantic function is ready to evaluate; that
is, all attribute occurrences which are arguments
of the semantic function have been previously evalu-
ated. Thus the translator will move in the tree
from node to node, at each node evaluate some attri-
butes which are ready to evaluate until all attri-
bute occurrences in the tree have been evaluated.

Consider the attribute grammar of Example 1 and
the semantic tree of Fig.1. The fields have been
filled in as prescribed by the semantic functions.
Note, for example, that il of node 11 cannot be
evaluated before S1 of the same node is evalu-
ated, which in turn demands pre-evaluation of S1
of node 6.

In later sections we shall describe how to sys-
tematically construct an efficient translator for
each attribute grammar. The construction of the
translator will be carried out once and for all at
construction time. Once the translator for the
attribute grammar has been constructed, the eval-
uation process for each semantic tree, as described
above, will take place at run time.

The Dependency Graph: Let p be the production
p: XO’+X1X2 . . . +lp “ A convenient tool for

describing production p and its semantic dependen-
cies is the dependency graph of produc~ p,
denoted DD. The nodes of DD are the attribute

occurrenC~s of p. There is a directed arc from node
(a’, k’) to. node (a~k) if (a, k) depen~s on (a’, k’) i.e.

‘he ‘emantlc ‘unctlOn ‘P(a,k) ‘Ses ‘a ‘k’) as argu-
ment. This means that Dp reflects the dependencies
among attribute occurrences imposed by the semantic
functions of p. Fig.2 shows the dependency graph
of production 1 of Example 1.

In order to represent the semantic dependencies
of a whole semantic tree rather than a single pro-
duction, we define the (compound) dependency graph
of a semantic tree T, denoted ~). This graph is
constructed by “pasting together” copies of the
Dp’s for the productions occurring in the tree.

Each one of the Dp’s is selected according to the
production p applying at the interior node of the
tree. Fig.3 shows the compound dependency graph
of the tree of Fig.1.

Circularity: The compound dependency graph of a
semantic tree reflects the flow of information
among the attributes in the tree. In the semantic

tree there is a f’low of information from the root
towards the leaves by the inherited attributes, and
from the leaves towards the root by the synthesized
attributes. Since information may flow in both
directions, a cyc”le may be created. An attribute
grammar is said to be circular if there exists at
least one semantic tree whose dependency graph con-
tains a cycle. Circular grammars are clearly ill-
defined in that there is at least one semantic
tree which cannot be evaluated.

Knuth [kl,2] has presented an algorithm which
tests an attribute grammar for circularity. The
time taken by the algorithm is exponential in the
size of the grammar. A faster but still exponential
algorithm appears in [J&O&R], where it was also
established that the circularity problem for attri-
bute grammars is of inherent exponential time
complexity.

A Normal Form for Attribute Granu: In the
general definition of attribute grammar for each
productionp, every SemantiC fUnCtiOn f~(a,k) may
be defined in terms of all other attribute occur-
rences, excluding (a,k) itself. Without loss of
g~nerality we may assume that a semantic function

‘(a,k#
does not use as argument an attribute

occur ence, which is defined in the same production.
This leads to the following normal form [Jl].

Definition: An attribute grammar is said to be in
normal form if it satisfies the following restric-
tions. For each production p: X. + Xl . ..Xn :

(a) A synthesized attribute occurrence p
(s,0), SES (Xo), may depend onlYon:

(1) ~nj:[~ty~ attribute occurrences (i ,0),

(2) Synthe~ized attribute occurrences (s ,k),
SES(Xk), l:k~np;

(b) An inherited attribute occurrence (i ,k),
icI(Xk), l~k~np, may depend only on:

(1) :n~~~~erj ,attribute occurrences (i ,0),

(2) Synthes~zed attribute occurrences (s,k),
scS(Xk), l~k~np.

There is no loss of generality in imposing the
above restrictions, provided there is no local
circularity for any production p in the grammar.
Local circularity means that the dependency graph
Dp of production p contains a cycle, and its exist-
ence clearly implies circularity.

THE CHARACTERISTIC GRAPHS. We now construct for
each nonterminal of the attribute grammar a collec-
tion of directed graphs, called the characteristic
graphs of the nonterminal. These graphs play a
major role in Knuth’s test for circularity [Kl]and
are essential for the understanding of the evalua-
tion process and translator construction to be
described in subsequent sections.

Definition: For each semantic tree Tx with root X,
the root dependency graph of the tree TX is derived
from the compound dependency graph of TX by “pro-
jecting” the attribute dependencies on the root X
as follows. The set of nodes of the root dependency
graph is A(X), and there is an arc from inherited
attribute i to synthesized attribute s if the
compound dependency graph of TY has a path from i
to s.

Figure 4 shows
subtree rooted at

,.

the root dependency graph of the
node 4 of the tree in Fig. 1.

123

—.

(o -“

N“

—,
--i---i ///--’

W
-.-.

N

w

-n—.
La
K

2
N

IH
124

Observing the compound dependency graph of Fig. 3,
one can see that there is a path from il of the node
4 to i2 of node 8 continuing to s of the same node
and ending in S2 of node 4. This lath yields the arc
from il to s2 in Fig. 4.

The root dependency graph of a semantic tree Tx
reflects the dependencies among the attribute occur-
rences of the root X induced by the tree Tx. Since
the node set is A(X), there can be only finitely
many distinct root dependency graphs for trees with
root X. In the evaluation process of semantic trees
to be described in the following sections, each
subtree of the semantic tree will be characterized
by its root dependency graph. Define acharacteristic
@ of nonterminal X to be any graph Cwith node
set A(X). s.t. C is the root dependency graph ofat
least one semantic tree T with root X. LetCx =
{C, ,C7,. ... Cmvl denote the set of all characteris-

tic g;aphs ofAnonterminal X.
Definition: Let Do be the dependency graph for
production

p: Xo’+X~X~ . . . Xnp> and let

Gl,G2,. ..,Gn ~ be any given set of directed graphs

s.t. for each k = 1 ,...,n , the nodes of Gk are the
elements of A(Xk). Then ‘the merged gr~, denoted
DP[G1,G2,. . .,Gnnl, is the directed graph obtained

from D by addi~g an arc from (a,k) to (a’,k’) when-

ever t~e graph Gk has an arc from a to a’.
The above definition is illustrated in Fig. 5.

Let Dp be the graph of production A+ aAbBin Fig.2,
let G2 and G4 be the graphs shown in Fig.5 (on
top) and let G1 and G3 be the empty graphs (corres-
ponding to the terminals a and b with noattr%butes).
The merged graph Dp[Gl,G2,G3,G4] is shown in Fig.5.

for instance, the arc from (il,2) to (s1,2) origin-

ates from the arc from il to S1 in Gz.

Algorithm 1 - Construction of the Sets of
Characteristic Graphs:
(i) Initialization: For each XCVN let CX be the

empty set, and for each XCVT let Cx contain a

single graph whose nodes are A(X) and which has no
arcs. (ii) Repeat until no more graphs can be
added to any of the sets Cx: For each production

p: xo+x,x2. ..xn and for every choice of np graphs
n

C1’.”4D s.t. ~k c Cx for k = l,. ..,np, form the
k

graph C’ with node set A(X), s.t. C’ has an arc
from node i, i &l(XO), to jode s, SSS(XO), whenever

the merged graph DD[C1,C2,. ..,Cn_] has a path from

(i,O) to (s,0). 1} C’ is not P yet in Cx then
add it to C’x o

It is cle~r that the above process must ultim-
ately terminate with no more graphs created since
there exist only finitely many such graphs. Fig.6
shows the sets of characteristic graphs generated
by Algorithm 1 for the attribute grammar of
Example 1. Knuth has shown that for each nonterminal X
the set CX constructed in Algorithm 1 is precisely

the set of all characteristic graphs of X. Thus,
for every semantic tree T with root X, there is in
Cx a corresponding characteristic graph of X(which

coincides with the root dependency graph of T),
and vice-versa, for each graph in Cx there corres-

ponds at least one semantic tree with root X. From
now on, the root dependency graph of a semantic
tree T will be referred to as the characteristic
graph of the tree T.—

AN OVERVIEWOF THE EVALUATION PROCESS. Given a
semantic tree witlh root S (the start symbol), the
evaluation proces:s consists of evaluating the
semantic functions of the attribute occurrences in
the tree. Sometimes the goal of the evaluation pro-
cess is defined ‘to be the evaluation of some
distinguished attribute of the root S. Herewe shall
consider evaluation to be complete only when all
attribute occurrences in the tree have keen evaluated.

The evaluation process is carried out in two
phases, The first phase serves as a preparation for
the evaluation itself, which takes place in the
second phase.

The first phase consists of a depth-first left
to right postfix traversal of the semantic tree.
The computation in each node takes place after all
of its sons have been computed. During this phas,e,
the translator will compute for each node NX
(label led by X e V) of the semantic tree, the char-
acteristic graph clf the subtree rooted at Nx. This
characteristic graph belongs to the set Cx of char-
acteristic graphs of X, and represents the depen-
dencies among the attributes of Nx imposed by the
structure of the subtree of Nx.

During the second phase the translator will again
process the s=ic tree; however, this time the
order in which the nodes are processed is not known
a priori, but is determined dynamically at runtime
according to the individual structure of the tree.

We may view the second phase as a processor with
control that always points to some “current” node
of the semantic tree. While at a node Nx, the pro-
cessor may perform one of the following types of
elementary actions (or instructions):
(i) CALL(a,k) - call for the evaluation of semantic
function fp ,,where p is the production applying

(a,k)
at the node Nx.

(ii) TRANSFERDOWN- transfer control down to a
specific son of the current node Nx.
(ii i) TRANSFERUP - transfer control up to the
father of the current node.

Starting with control pointing to the root of
the semantic tree, the translator will process the
tree until all attribute occurrences in the tree
have been evaluated, at which point control returns.

Let us examine the evaluation process from the
point of view of an individual node N . During

hevaluation control is moving around t e tree, and
in the meanwhile the processor computes new attri-
bute values. From the point of view of our node Nx,
nothing seems to happen until for the first time
control arrives at Nx from above Some semantic
functions associated with the prc)duction applying
at NX may then be evaluated, and afterwards control
leaves Nx in some clirection. Later on control re-
turns from the same direction it left, perhaps some
more attribute occurrences are evaluated, and again
control leaves the node. This goes on until eventu-
ally all attribute occurrences of the production
applying at Nx have been computed and control leaves
Nx going towards the root, never to return. Thus
from a local point of view, evaluation consists of
comings and goings of control, interspersed with
evaluations of attributes performed while at our
node. We shall refer to a part of the evaluation
process from the point control leaves our node NX

125

towards its k-th neighbour, and until the next time
control returns to our node, as a visit to the k-th
neighbour of Nx.

At each stage of the above evaluation process,
the choice of the next elementary action to be
taken by the evaluator at the particular node Nx
may depend on the following: (a) The production p
which applies at the node Nx, and its associated
semantic functions; (b) The current ’’state ofaffairs”
of the evaluation process, as regards our node NX,
i.e. the set of attribute occurrences of the pro-
duction p applying at Nx, which are currently
available; (c) The dependencies among the attri-
butes of Nx, which are induced by the subtree
rooted at Nx; these dependencies are represented by
the characteristic graph of this subtree, which has
been computed during the first phase.

To keep track of the sets of available attributes
and to regulate the evaluation process at the par-
ticular node Nx, the Local Control Automaton, ~)
Al for production p is introduced. The Local Con-

trol Automaton is an ordinary finite state automaton
augmented with some special features in its transi-
tion function. Each state of the Local Control
Automaton represents a set of attribute occurrences
of production p, which are available upon entering
this state. Each transition in the automaton rep-
resents an instruction of one of the types CALL
(a, k), TRANSFERDOWNor TRANSFERUP.

Associated with each node of the semantic tree is
the Local Control Automaton ~of the production p

which applies at the node. The LCAAJ is respon-

sible for directing control when it arrives at the
node, and it calls for the evaluation of the sem-
antic functions of production p. Whenever control
arrives at a node, it (re-)activates its LCA; ifit
is the first time control reaches this node, then
the LCA starts from its initial state; otherwise
it resumes action from the state in which it left
off .

In our translator control must be capable of
passing parameters among the various LCA’S. This
passing of parameters serves as a means of commu-
nication between the LCA’S of neighbour nodes and
is used for two main purposes: (a) When
control is transferred down toason of the’current
node, the translator has to inform the receiving
LCA what activities took place while the latter
was inactive. Specifically, the parameter passed
down is a set of inherited attributes of the
receiving node, which are currently available.
These inherited attributes are used bythe receiv-
ing LCA to determine its next move, and their
values may be used by the translator as arguments
in computing semantic functions. (b) When control
is transferred up in the tree, the translator has
to inform the father’s LCA about the activities
which took place in the subtree just visited.
Specifically, the parameter returned to the father
is the set of synthesized attributes of the son
just visited, which are currently available.

In both cases, we see that the parameter carried
along by control is a set of currently available
attributes of thenode visited. Such parameters will
be called transmitted sets.

The evaluation process described above uses the
LCA’S as basic building blocks. In order to obtain
a translator for a given attribute grammar, a finite
set of LCA’S, one for each production, will have to
be constructed.

LOCAL CONTROLAUTOMATA. As mentioned above, an
LCA.4D will be associated with each production pof

the ~tribute grammar. At runtime, to each node of
the semantic tree there will be attached the LCA of
the production applying at the node. Whenever con-
trol reaches a particular node, the LCA of the node
will be reactivated, and will dictate the next
elementary actions to be taken by the translator.
When eventually control is transferred to a neigh-
bour node, the LCA will be suspended and will send
along with control a parameter -the transmitted set.

Definition: Consider a production p: Xo+XlX2.. .X .

Let ~denote the set of all attribute occurr- ‘P

ences of p. For each k = O,l,. ..,np, define:

(a) For each set of attributes T < A(Xk)

T* k={(a,k)\asT}.

(b) For each set of attribute occurrences A < A(p)

if k = O then asS(Xk)
A/k = {a I (a,k) CA

if l~k~np then ?IE~(Xk))
The operator * transforms a set of attributes of

+onto the corresponding set of attribute occurr-
ences of production p, while the operator / maps a
set of A of attribute occurrences of production p
onto a set of A/k of attributes ofXk. Note that for
k = O, A/k contains only synthesized attributes,
while for 1 < k < n A/k contains only inherited

– P’
attributes. A/k will be called the k-th projection
of A.

Definition: A Local Control Automaton (~) ~for

production X. + XlX2. ..Xn is an ordinary finite

state automaton augmentedpwith some features in
its transition function.

The set of states is divided into two subsets:
(a) Active states. Each active state is labelled
with a set of attribute occurrences A~A(p). No
two active states are labelled with the same set A.
An active state will therefore be identified by its
label A, and will be denoted by [A]p (the super-
script p will be omitted when p is understood.
(b) SUSPENDstates. Each suspend state is
labelled by a pair: (k,A), where O~k<n
and A GA(p) as above. For each pair (k,A) therep
is at most one SUSPENDstate labelled with this
pair. We shall denote this state by SUSk[A]p (with
the superscript p omitted when p is understood).

During the evaluation process, whenever LCA ~ is

found in an active state [A] or enters a SUSPEND
state SUSk[A] (O~k~np), then A is precisely the

set of attribute occurrences of production p which
have been evaluated so far.

There are severaltypes of transitions in an LCA:
Transitions leaving Active states: Each transition
leavina an active state corres~onds to one of the
following three types of instructions:
(i) CALL(a,k) - call for the evaluation of semantic

‘unction‘~a, k) ;

(ii) TRANSFERO- transfer control up to the O-th
neighbour (i.e. father) of the current node;

(ii i) TRANSFERk (1 ~ k~no) - transfer control down

to the k-th neighbour (i’.e, k-th son) of the
current node.

126

Every active state [A] may have precisely one of
the following three types of exits:
(i) CALL transition - Exit from [A] leading to
another active state [A]. Such a transition is
labelled by CALL(a,k), where (a,k)EA(p)-A and A’ =
A U {(a,k)}. There can be no other transition leav-
ing state [A].

A transition CALL(a,k) represents an instruction
for evaluating the semantic function fp
storing the result in the appropriate (a, k) :~~,d

of the semantic tree. Such an instruction is
executable only if the semantic function fp
ready to evaluate. Therefore we shall

(a,k) ‘s

impose the additional requirement that whenever
transition CALL(a,k) leaves state [A]p, all attri-
bute occurrences (a’,k’) which are used as argu-

‘ents ‘n ‘~a, k)
are contained in A. Figure 7

illustrates a CALL transition; note that the active
states are represented by circles.

(ii) Unconditional TRANSFERTransition - A transi-
tion from active state [A] to a SUSPENDstate
SUSk[A], where O < k~n and XkcV The transi-— P’ N“
tion is labelled with TRANSFERk and represents an
instruction to the translator to transfer control
to the k-th neighbour LCA. Again this is the only
transition leaving state [A]. Fig. 8 illustrates
an unconditional TRANSFERtransition. Note that
the SUSPENDstates are represented by squares.
(iii) Conditional TRANSFERTransitions - A set of
t+l exits (for some 1 < t < np) from active state
[A], leading to t+l dislinct suspend states
SUS. [A], SUS. [A] ,.. .,SUSi [A], SUSOIA] (same A as

‘1 ‘2 t
for the active state), wherel~ il <i2<...<it~ n~

and Xj is a nonterminal for j = il,i2,. ..,it~ Tie

transition into state SUSj[A] is labelled by the

pair (TRANSFERj,C(J)), where C(J) is a subset of

Cx., the set of characteristic graphs of nonterminal
J

‘j” The last transition into state SUSOIA] is

labelled by TRANSFEROonly. Figure 9 illustrates a

set of conditional TRANSFERtransitions.

The above set of conditional TRANSFERtransitions
leaving state [A] has the following meaning. During
the evaluation process of a given semantic tree, if
LCA.40 is associated with node Nxn, and An enters,.

“ r

state [A], the exit to be taken from [A] depends on
the characteristic graphs of the sons of NXO in the

tree. Specifically, for each j = il,i2,. ..,i+, the

conditional TRANSFERtransition labelled by -

(TRANSFER., C(j)) will be called admissible iff the
J —

characteristic graph attached to the j-th son of Nx

in the semantic tree belongs to C(j). As we shall 0

see below, a transition (TRANSFER,i,C(J)) is admis-

sible precisely when the corresponding visit to the
j-th son of the current node Nxo is guaranteed to

produce at least one new synthe~ized attribute of
the j-th son. Therefore when the LCA of node Nxo
enters state [A], the conditional TRANSFER
transitions leaving state [A] will be checked one
by one until the first admissible transition is en-
countered; this will be the transition to be taken.

If, however, none of the first t transitions is
admissible, then the TRANSFEROtransition will be
taken. Thus control will be transferred up to the
father of Nx only if in the current situation, no
more attribu?e occurrences can be evaluated for
production p, not even after some more processing
of the subtree of Nxo. Before any further evalua-

tion at Nx can take place, some new inherited

attributes”of Nx must become available.
o

Transmitted Sets. Whenever a TRANSFERk instruction
(either conditional or unconditional) leading into
state SUSk[A] is executed, a transmitted set T is
passed as parameter to the k-th neighbour LCA along
with control. Specifically, this set is T = A/k -
the projection of A on the k-th neighbour. For
k=O this set T consists of all synthesized attri-
butes of Xo, which are currently available, and for
k=l,2,. ..,n T consists of all inherited
attributes ofp’Xk which are currently available.

Transitions Leaving SUSPENDStates. Every state
s = SUSkiA] may have several, say–! > 1, exits,—
each labelled with a distinct set T., l<i< !, of
attributes of Xk, s.t. Ti * k $ A. lLet~h~e exits

be denoted by E(s,T1),E(s,T2),. ..,E(s,TL). If k=O

then Ti is a set of inherited attributes of the
L.h.s. Xo, and if k > 0 then T. is a set of synthe-
sized attributes of the son Xk.l ‘The exit labelled
by E(s,Ti) will lead to the active state [A UTi*k].

Since b.y assumption Ti * k4A , no transition leav-

,.—-
10 illustrates the exits from a SU~P~ND”state.

explain the meaning of the sets Ti, recall
during runtime, when the LCAAP attached to

Nxo enters state SUSk[A], a ‘TRANSFERk instruc-

leading into this state is executed. The LCA

ing sta~e SUS~[Al will’ lead~into state rAl aaain.
Fig.

To
that

node

tion

of node Nxo is then suspended, and control is

transferred to the k.=th neighbour LCA. After some
activities take place in other regions of the tree,
control finally returns to the node Nxofrom its

k-th neighbour, carrying with it a transmitted set
T. At this point tlhe LCAAP at Nxo is reactivated,

starting from the same state SUSk[A]. The exit

taken from this state is chosen according to the
transmitted set T received; namely, it will be
precisely the exit whose label T. coincides with T.
In this way, the transmitted setlreturned by the
k-th neighbour determines the next move of the LCA
after it resumes action in state SUSk[A]. The sets
Ti labelling the exits from SUS [A] represent all
possible transmitted sets, whit k can be returned
by any k-th neighbour LCA in any particular situation.

Initial and Final S“=.
(1) Each LCA has precisely one initial state, a
state with no in-arcs, which is~state SUS.[A1
(for some set A).

“. -

(2) Each LCA has at least one terminal state, a
state with no out-arcs. Every terminal state is a
state SUSOIA] (for some set A).

Let us now summarize the structural properties
of LCA’S:

127

‘2

‘1

O

‘2
Q

DprG, ,G2,G3,G41

G4

‘1 ‘2

‘d

(il,O) (s, ,0) (s2,0)

Figure 5

1

1

0s1
1

Figure 6.

2

2

A1 z~u{(a,k)}

Figure 7

o---+TRANSFERk
A SUSk[A]

Figure 8.

Figure 9

A’
/0

Lo :9’

T

El””<d’ ‘“
‘c 1

A’=A U{(a, k), (b, k]}
A’”

A“=A U{(a, k) ,(d, k)]

A’” = AU{(b, k), (c, k)}

Figure 10

128

(1) Each LCA is acyclic. This is because for every
path in the LCA, the sets of attributes A labelling
both active and SUSPENDstates along the path must
be ordered by inclusion, and no more than two con-
secutive states can be label led by the same set.
(2) Every SUSPENDstate SUSk[A] (excluding the ini-
tial state) has precisely one in-arc (from the
active state with same label [A]), while there may
be several in-arcs for any active state.

Figure 11 illustrates a complete set of LCA’S for
the attribute grammar of Example 1. Each state is
given a number, C is an abbreviation for CALL tran-
sitions, the set A of available attribute occurrences
and the label TRANSFERkwere omitted.

HOWTO EVALUATE A SEMANTIC TREE WITH A GIVEN SET OF
LCA’S. Suppose that we are given a trarislator for
some noncircular attribute grammar, The translator
is made up of a finite set of LCA’S, one for each
production.

In order to carry out the evaluation process, two
variables will be associated with each node NX of
the semantic tree:
(1) A variable indicating one of the characteristic
graphs Ci of non-terminal X, namely the characteris-
tic graph of the subtree rooted at node Nx. This
variable is computed during the first phase of the
evaluation process. (2) A variable which, during
the second phase, will store the state of the LCA
of Nx at the time it is suspended, while control

wanders in other regions of the semantic tree.
When control returns to Nx, the LCA of NX will be

reactivated, starting from this state. This vari-
able is initialized during the first phase.

The First Phase: The first phase consists of a
depth-first left to right postfix traversal of the
semantic tree. During this traversal, with each
node of the tree, there will be associated the
characteristic graph of the subtree rooted at the
node. The characteristic graph associated with a
terminal node Nt, t s VT, will be the trivial

graph with node set A(t) and no arcs. Due to the
postfix manner of traversal, when the translator
reaches a nonterminal node NX to compute its

characteristic graph, the characteristic graphs of
all sons of NX have already been computed.

Let us describe the construction of the char-
acteristic graph for node Nx, where the production
applying at the node is p:

Xo~ X1X2... Xn ,and X=Xo.

Let the characteristic graphs associated with
nodes Nx , i = 1,2. ..,np, be Di. Form a graph

i
C whose nodes are A(XO) such that C has an arc,

from inherited attribute i to synthesized attri-
bute s whenever the merged graph

DP[D1,D2>.... Dn] has a path from (i,O) to (s,0).
D

C is precisely the characteristic graph of node XN.

To avoid the need for storing characteristic
graphs as part of the translator, and then al;
runtime comparing the characteristic graph C con-
structed above against all graphs in the set Cx ,
some kind of Goedel numbering for graphs can o
be used. Edch graph will be identified by its
“Goedel number” (which will constitute the first

variable of the node Nx) and during runtime compar-
ison will take place only between the Goedel numbers,

An alternative way for obtaining the characteris-
tic graph C would Ibe to use a look up table, which
gives for each production p and for each set of
characteristic gral~hs {D1,D2,. ..,Dn } as above, the

P
corresponding chariicteristic graph C. Such a look
up table can be prepared once and for all at con-
struction time, while computing the characteristic
graphs. When using this method there is no need for
Goedel numbering and each graph will be represented
simply by its inde;(in the set Cx . The graphs

o
themselves need not be kept in memory, but the
look up table will have to be stored as part of the
translator.

After determining the characteristic graph of
NX and the appropriate LCAAD according to the

production p applying at nod: Nx, the second vari-

able of the node is initialized to the initial
state of A .

P

The Second Phase. The manner in which the semantic
tree is traversed during the second phase is custom
tailored to the individual structure of the tree.
Evaluation begins by sending control to the root
LCA A Control begins executing the instructions

Po”

of A
P. ‘

which after a while transfers control downto

one of its sons. Thus control will start wandering
in the tree from node to node in an order dictated
by the LCA’S, and by the characteristic graphs
associated with the nodes. At each point in time
during the evaluation process, all LCA’S of the
tree are dormant except for one which is active.
The active LCA may call for the evaluation of seman-
tic functions, or it may direct control to one of
its neighbour LCA’S. Eventually, when all subtrees
of the semantic tree have been evaluated, control
will return for the last time to the root LCA,
which (possibly after executing a few CALL instruc-
tions) will enter its final state SUSOIAI, and
control will leave the tree from above. Evaluation
is then complete.

Algorithm 2 - Evaluation of a Semantic Tree
(1) Perform the first phase.
(2) Transfer control to the initial state of the
root LCA A

P.
along with an empty transmitted set.

(3) Repeat-until a terminal state of ~p is entered:
o

Let the currently active LCA Ap be in state s =

SUSk[A] and let T be the transmitted set received
upon reactivation of this LCA.

(i) Take the exit from s label led by T: let t be
the active state entered.

(ii) Execute the instructions Of A , starting from
the state t, until a SUSPENDstate,p say SUS,,,[A],
is reached.
(iii) Transfer control to the k’-th neighbou~ LCA
along with the transmitted set A’/k’. Reactivate
the k’-th neighbour LCA, starting from the SUSPEND
state stored in the second variable of the k’-th
neighbour node.

Figure 12 illustrates the evaluation process of
a semantic tree of the grammar of Ex. 1 according
to Algorithm 2, using the set of LCA’S in Fig.11.

12 9

2 3 5 6

0 ‘+

1
I

Suso

1 2 3
4

+o

2
I

Suso

3

1 2 3

0 ‘$

I Suso

o 3

5
I

Sus i Susn

1ns

+

ns

Figure 12

Figure 11:
A Complete Set of LCA’S

+

a

Evaluation Process

Parse Tree 130

Starting from the root, control moves down to node
2 (due to entering state 3 in LCAAO), then down to
node 3; for each node visited, the attributes
evaluated at the node are indicated in the figure;
e.g. at node 3, S1 and S2 are evaluated and then
control moves up back to the root. After evaluat-
ing the inherited attribute il of node 2, control
moves down again, this time to node 4; after evalu-
ating S1 for node 4, then S2 of node 2, con:trol
returns to the root, and evaluation is complete. We
see that every visit to every node in the tree pro-
duces at least one new attribute value,

To ensure that step 3(i) in Algorithm 2 can always
be carried out, the set of LCA’S must satisfy the
following condition.

The Closure Condition: Whenever at runtime, control
is transferred to an LCA A with transmitted set T,
the resumed SUSPENDstate ‘in Ap must have an exit
labelled by T.

The above Closure Condition assures us that
Algorithm 2 will always terminate upon entering a
final SUSO state of the root LCAA

., P. “

Theorem 1: If the set of LCA’S for attribute
grammar G satisfies the Closure Condition, then
Algorithm 2 terminates for each semantic tree T
after executing O(ITI) elementary operations (where
ITl indicates the size of T).

The Completion Attribute: To guarantee that the
above evaluation aglorithm will result in the com-
plete evaluation of every semantic tree, a slight
modification of the attribute grammar has to be
made. A new dummy synthesized attribute, called
the completion attribute, is added to each non-
terminal. For each production p: Xo+Xl . . . Xn ,

the completion attribute of X. is defined in p

terms of~ inherited attributes of X. and of all

synthesized attributes (including the completion
attribute) of all sons Xk, l~k~n .

An attribute grammar to which a !ompletion attri-
bute as above has been added for each nonterminal
will be called an augmented attribute grammar. In
an augmented grammar, the completion attribute is
dummy in the sense that it is not computed at run-
time. However, this attribute enables us to
construct such translators in which the complete
evaluation of every semantic tree will be enforced.
For this reason we add to the definition of LCA’S
the following condition:

Completion Condition: For each terminal state

Suso [A]p 0 of the root LCA A , the set A must
P.

contain the completion attribute of the start
symbol S.

Theorem 2: For every augmented attribute grammar G
and for every set of LCA’S for G which satisfies
both the Closure Condition and the Completion Condi-
tion, Algorithm 2 fully (and correctly) evaluates
each semantic tree of G in time proportional to the
size of the tree.

THE CONSTRUCTIONOF A TRANSLATORFOR A GIVEN
ATTRIBUTE GRAMMAR

In this section we describe informally how a
complete set of LCA’S satisfying the Closure Condi-
tion and the Completion Condition can be systemati-
cally built for each non-circular attribute grammar.

The LCA’S are constructed in parallel, state by
state and transition by transition, until all of
them are complete. The construction is based on
simulation of all possible situations that can
arise at runtime.

Before starting the actual construction of LCA’S,
the set of characteristic graphs Cx for each non-
terminal X is constructed. After this preliminary
computation the construction mocess is initialized
by defining fo~ e~ch production an LCA consisting
of the initial st,~te alone. As the algorithm pro-
ceeds the LCA’S are expanded by adding new states
and new transitions in a specific order, so as to
ensure that the C“losure Condition will be always
satisfied. For this reason, whenever we add to
LCA.4P a TRANSFERk transition leading into state

SUSk[A], we must be able to identify all SUSPEND
states in all LCA”S, which at runtime might be
reactivated as a consequence of executing this
TRANSFERk instruction; each of these SUSpEND
states must have an exit labelled by the trans-
mitted set T = A/k.

Definition: For every non-initial SUSPENDstate

SUSk[A]p in LCAAF,, define the set REACTIVATE(S)

to be the set of all SUSPEND statics in

all LCA’S to which, under certain conditions at

runtime, control might be transferred as conse-

quence of suspending LCAAP in state SUSk[A]. The

states in REACTIVATE(SUSk[A]p) maY below to anY

LCAAP,, which, in some semantic tree, interacts

with LCAAP as its “k-th neighbor”. Therefore

if k # O then p[k] must coincide with P’[0] and if

k = O then PIO] must coincide with one of the sons

of p’.

The next definition enables us to keep track of
the states in which the neighbour LCA’S were left
after the “most recent” visit.

Definition: For each exit E[s,T] from a SUSPEND

state s = SUSk[A]p, define the set SOURCE(E[s,~l)

to be the set of all SUSPENDstates SUSkl[A’]p in

all LCA’S, which at runtime may pass control to

LCAAP and cause it to be reactivated in state s

and take the exit IEIs,T]. Clearly SOURCE(EIS,T]) ,

will consist only of states of the form SUSkl[A’lp

whose transmitted !;et A’/k’ coincides with T.

Moreover, if k = O, then p’[k’] = p[O], while if

k+ O then p[k] = p’[0].

Thus each SUSPENDstate s is associated with its
REACTIVATE set, and each transition E[s,T] leaving
a SUSPENDstate s is associated with its SOURCE
set SOURCE(EIS,T]), These sets are kept in memory
and updated during the construction Process.

A central role in the construction process is
played by the”queu;! Q. Q consists of couples of
the form:

(E[sp,Tj,sp’), where Sp and Sp’ are

SUSPENDstates in .4p and Ap, respectively and

E[sP,T] is an exit from sp labelled by T.

131

The meaning of such a couple appearing in Q is that

exit E[sP,T] has to be created in Ap (unless already

there), and state Sp’ must be added to SOURCE

(E[SP,T]). Note that by definition of the SOURCEset

it follows that T must be precisely the transmitted

set of sp’.

The construction process is based on retrieval and

processing of couples from Q, one at a time. The pro-

cessing of a couple (E[SP,T],SPL) consists of creat-

ing the exit E[sP,T] and adding Sp’ to its SOURCE

set. The exit will lead to an appropriate active

state [A U T * k] which must also be added if absent.

This new active state will then be “developed”,
which in turn may cause the addition of some new
couples to Q. The process goes on until eventually
Q remains empty, at which point construction is
completed.

Developing an Active State. Recall that an active

state [A]p may have three types of exits: a single

CALL(a,k) transition, a single unconditional TRANS-

FERk transition, or a set of conditional TRANSFER

transitions. In developing the active state [A]p,

we first try to construct a CALL(a,k) transition

out of this state, for some attribute occurrence

(a,k) of production p s.t. (a,k) 4A. Such a tran-

sition can be created only if the semantic function

‘~a,k)
is ready to evaluate, i.e. depends only on

attribute occurrences in A. If such an exit is

indeed created, it leads into another active state

[Au {(a,k)}] and we proceed to develop this new

state (unless this state already existed before in

Ap).

In case no CALL(a,k) exit out of state [A]p can

be created, we attempt to construct an unconditional

TRANSFERkexit for some k = l,. ..,np. If this

turns out to be impossible as well, a set of con-

ditional TRANSFERtransitions will be constructed.

Processing a New SUSPENDSTATE. When a new
SUSPENDstate s is created, it is not “developed”
in the usual sense, i.e. no exits from it are
constructed right away. Instead, the REACTIVATE
set of s is computed, giving rise to a set of
couples to be entered into the queue Q. These
couples represent the need to construct new exits
(label led with the transmitted set of s) from all
SUSPENDstates in REACTIVATE(s). It follows that
exits from SUSPENDstates are created only via
retrieving and processing couples from the queue Q,
and different exits from the same SUSPENDstate are
created at different times.

The Construction Algorithm uses a subroutine
Develop ([A]p) for developing an active state.
After computing the characteristic graphs and
initializing the queue Q and the LCA’S, a loop for

processing the queue Q is entered. Unfortunately, a
full presentation of the Construction Algorithm
requires quite a few additional technical defini-
tions and is therefore omitted here. The reader is
referred to [C&H] for a complete formal description
of the algorithm, including a proof of the
following theorem:

Theorem 3: For every augmented non-circular attri-
bute grammar, the Construction Algorithm terminates
with a set of LCA’S which have the structure
described above and which satisfy both the Closure
Condition and the Completion Condition.

MAIN THEOREM: For every augmented non-circular
attribute grammar, there can be constructed a
translator, based on a set of LCA’S, which will
perform the complete evaluation of each semantic
tree (using Algorithm 2) in time proportional to
the size of the tree and in a near-optimal fashion.

RELATION TO PREVIOUS WORK: The first implementation
of attribute grammars is due to Fang [F], who used
parallel processes, one for each semantic function.

A deterministic approach was first developed by
Lewis, Rosenkrantz and Stearns [L&R&Sl] and by
Bochman [B], who introduced an algorithm which
traverses the tree in a depth-first left-to-right
fashion, performing evaluation of all attributesin
a single pass. Because of this restriction, the
class of attribute grammars for which this method
applies (named “L-attributed” in [L&R&Sl ,2]) is
rather limited. To increase the class of attribute
grammars that can be efficiently evaluated, Bochman
proposed to allow evaluation to occur In several
left-to-right passes such that on each pass the
attributes evaluated by previous passes can also
be used.

Jazayeri [Jl], observing that not all programming
language features are amenable to evaluation from
left to right, extended Bochman’s method by intro-
ducing the “Alternating Semantic Evaluator” that
alternately makes left-to-right, then right-to-left
passes. Jazayeri showed that certain left-recursive
situations could be evaluated by a single right-to-
left pass, even though no fixed number of left-to-
right passes was sufficient. Kennedy and Warren
[K&W] noted that Jazayeri ’s extension still leaves
many attribute grammars which cannot be evaluated
by any fixed number of alternating passes. They
exhibited an example of an attribute grammar with a
left-recursive rule B+Bb, such that the first visit
to a B-node son cannot be made until during the
second visit to its B-node father. No method of
evaluation in passes can handle such a grammar, for
which “nested passes” are required. Kennedy and
Warren were the first to develop a deterministic
approach in which the traversal o,rder is not deter-
mined a priori, but is tailored to given attribute
grammars by analyzing their dependency constraints.
Their “treewalk evaluator” works like a recursive
routine with a tree node to visit as parameter;
while at a node, the evaluator may evaluate semantic
functions or call itself recursively to visit sons.
Their construction works only for a restricted class
of attribute grammars - the “absolutely noncircular”
grammars. For a grammar in this class, the evalua-
tor’s action at a node need not depend on the
structure of the node’s subtrees. In our terminol-
ogy, the absolutely noncircular attribute grammars
are the ones for which our translator construction
will yield LCA’S without any conditional transfer
instructions. For such grammars the evaluation
algorithm can be significantly simplified by

132

eliminating altogether the first phase, because in
this case the characteristic graphs of the subtrees
need not be computed. In [Wa] Warren introduced a
general model for deterministic evaluation of attri-
bute grammars, called the “coroutine evaluator”,
and developed general methods for constructing such
evaluators. However, both the “treewalk evaluator”
and the “coroutine evaluator”, are not near-optimal,
because they may wander in the tree making a lot of
futile visits to subtrees before finally reaching a
node where a new attribute value can be procluced.

In this paper, following the deterministic
approach suggested in [K&W] and [W], we have pre-
sented a general construction of a near-optimal
translator for any non-circulator attribute grammar.
By introducing the characteristic graph as the main
tool for analysing (and representing) dependencies
among attribute occurrences in a semantic tree, we
have been able to obtain a near-optimal evaluation
strategy which takes into account the structure of
the subtrees of the node being processed. The trans-
lators introduced in this paper will usually be
smaller than the ones constructed in [W], dueto some
reduction techniques used here (implicitly) which
produce minimal LCA’S (as opposed to the tree shaped
evaluators in [W] which tend to be redundant).
Because of this and due to their being near optimal,
our translators will be by far more efficient.

COMPLEXITY ISSUES: The translators constructed in
this paper all work in linear time w.r.t. the size
of the parse tree, provided that one unit of timeis
charged for the evaluation of a semantic function,
and assuming a random access memory. In fact, as
was noted in [L&R&Sl], one could always produce a
linear-time evaluation strategy for each individual
parse tree by analysing the dependencies in the tree
at runtime; one would then construct the compound
dependency graph of the tree and perform a topolo-
gical sort on that graph. By the method presented
here the dependency analysis is done once ancl for
all for each grammar during the translator ccmstruc-
tion, thus saving us a considerable runtime cwerhead.

As for the time complexity of the translator
construction, admittedly, it may grow exponentially
with the size of the grammar. In fact, this is
unavoidable in view of the inherent exponential
complexity of the circularity problem [J&O&R]l, as
our construction will also detect circularity. The
size of the translators may also be exponential, as
the set of characteristic graphs may be of exponent-
ial cardinality (which is precisely what accounts
for the exponentiality of Knuth’s circularity test).

A similar situation occurs with respect to parser
construction. For instance, it is a well known
fact that LR(k) parsers can have number of states
which is exponential with the size of the grammar.
Moreover, the problem of determining whether an
arbitrary context-free grammar is LR(k) (with k
unspecified) was shown to be NP-complete when k is
expressed in unary (complete for non-deterministic
exponential time when k is expressed in binary)
[H&S&U].

Nevertheless, both the parser and the translator
may be worth constructing once and for all for each
attribute grammar, to be later on jointly used for
the efficient implementation of the entire transla-
tion process. Furthermore, both can be generated
automatically when an attribute grammar specifying
a programming language and its translation is given
as input to a compiler generating system.

REFERENCES:

[A&Ul]

[A&U2]

[A&U3]

[B]

[C&H]

[D]

[F]

[G]

[Jl]

[J2]

Aho, A.V. and Unman J.D. “Properties of
Syntax Directed Translations”. J. Corn uter
Systems Sc~., *No. 3, pp. 319-364,
Aho, A.V. and Unman, J.D. The Theory of
Parsin g, Translation, and Compiling, Vol. 2,
Prentice-Hall, Englewood Cliffs, N.J. (1973).

Aho, A.V. and Ullrnan, J.D. “Translationson
a Context Free Grammar”. Inform. Contr.
19,5, pp. 439-475, (1971).
Bochman”, J.V. “Semantic Evaluation from
Left to Right”. Comm. of the Acut. Vol. 19,
No.2, pp. 55-62,11976).
Cohen, R. and Harr, E. “Automatic Genera-
tion of Near-Optimal Linear-Time Translators
for Non-Circular Attribute Grammars”,
Technical Report #120, Dept. of Computer
Science, Technion, Israel, March 1978.
Dreisbach, T.A. A Declarative Semantic
Definition of PL360. UCLA-7289, Computer
Science Dept. UCLA (1972).
Fang, 1. FOLDS, a Declarative Formal
Language Definition System. STAN-72-329,
Computer Science Dept., Stanford Univer-
sity (1972).
Gerhart, S. “Correctness - Preserving Pro-
gram Transformations”. Proc. Second SIGACT-

SIGPLAN Symp. on Principles of Programming
Languages, Palo Alto, pp. 54-66 (1975).
Jazayeri, M. On Attribute Grammars and the
Semantic Specification of Programming
Languages. Ph.D. Thesis, Computer and Inf.
Sci. Dept. Case Western Reserve University
(1974).
Jazayeri, M. Live Variable Analysis, attri-
bute Grammars, and Program Optimization:
Draft, Depl;. of Comp. Sci., University of
N. Carolina, Chapel Hill, N.C. (1975).

[J&o&R] Jazayeri, M., Ogden, W.F. and Rounds, W.C.
“The Intrinsically Exponential Complexity
of the Circularity Problem for Attribute
Grammars”. Comm. of theACM, Vol. 18, No.lZ
pp. 697-706 (1975).

[Kl]

[K2]

[K3]

[K&W]

Knuth, D.E. “Semantics of Context Free
Languages”. ~., No. 2,
pp. 127-145 (1968).
Knuth, D.E. “Semantics of Context Free
Languages: Correction”.
Theory J., vNo. 5, p. 95 (1971
Knuth, D.E. “Examples of Formal Semantics”,
Symp. ”on Semantics of Algorithm Lanuages,
Lecture notes in Mathematics, Vo. 188,
Springer-Verlag, New York (1971).
Kennedy, K. and Warren, S.K. Automatic
Generation of Efficient Evaluations for
Attribute Grammars. Proc. of the 3rd ACM
Symp. on POPL.

[L& R&Sl] Lewis, P. M., Rosenkranz, D.J. and Stearns,
R.E. “Attributed Translations”. J. of
Comp. and S stem Sciences, vol. 9, No. 3,

~pp. 279-307 1974
[L& RM2]Lewis, P. M., Rosenkranz, D.J. and Stearns,

R.E. Corn iler Design Theory. Addison
+Weslev 1976).

[L&S] Lewis: P.M. and Stearns, R.E. “Syntax
directed Translations”, JACM, vol. 15, No.
3, pp. 654-683 (1968).

[N&A] Neel, D. and Armichahy, M. “Removal of
Invariant Statements from Nested Loops in
a Single Effective Compiler Pass”. SIGPLAN
Notices, vol. 10, No. 3, pp. 87-96~

133

REFERENCES(cent’d)

[P] Petrick, S.R. Semantic Interpretation in
;~~7:~QUEST System. IBM Res. Report, RC-4457

[w] Warre~, S.K. The Coroutine Model of Attri-
bute Grammary Evaluation. Ph.D. Thesis,
Rice University, Houston, Texas (1976).

[H&S&U]Hunt III, H.B. Szymanski, T.G. and Unman,
J.D. “On the Complexity of LR(k) Testing”.
~, vol. 18, !Io. 12, pp. 707-726 (1975).

134

