
E q u a t i o n a l L o g i c P r o g r a m m i n g :

A n E x t e n s i o n t o E q u a t i o n a l P r o g r a m m i n g

Jia-Huai You

Department of Computer Science
Rice University

P.A. Subrahmanyara

AT&T Bell Laboratories Research

Abstract

The paradigm of equational programming potentially
possesses all the features provided by Prolog-like languages. In
addition, the ability to reason about equations, which is not
provided by Prolog, can be accommodated by equational
languages, In this paper, we propose an extended equational
programming paradigm, and describe an equational logic pro-
gramming language which is an extension of the equational
language defined in [Hoff82]. Semantic foundations for the
extension are discussed. The extended language is u powerful
logic programming language in the sense of Prolog and thus
enjoys the programming features that Prolog possesses.
Furthermore, it provides an ability to solve equations, which
captures the essential power of equational programming.

1, I n t r o d u c t i o n

Equations provide a powerful computational paradigm

and may be used to program all of the computable functions.

Among a number of proposals, Hoffmann and O'Donnell

introduced an equational programming language which was

baaed on equational logic [Heft82, Heft84, O'Do77}. A program

written in the language is a set of equations which are eompu-

tationally used as rewrite rules, and the execution of a pro~

gram is a simplification process involving the replacement of

equal by equals using reduction. The theoretical basis of the

language is that if each equation in a given equational pro-

gram is left-linear and the set of all equations as a whole is

closed, then the program possesses the confluence property

which is sufficient ~o guarantee the completeness of logical

consequences of equality. The language is not constrained to

have the strong termination property {which requires that

every reduction sequence terminate), provides a form of lazy

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct eom-
merciM advantage, the AUMI copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission°

© ~1986 ACM-~g9791-175-X-t /86-0209 $00.75

evaluation, and can be used to specify infinite data structures.

non-terminating computations. Associated with the language

are two major merits: its simple semantics which is based on

logical consequences of equality and the mechanisms that

enable an efficient implementation.

In other developments, logic programming has emerged

as a very promising programming paradigm in recent years,

mainly due to Kowalski's formalization [Kowa74], and various

efforts at efficient implementations, most notably the DEC-10

PROLOG system [Pere78]. From the perspective of functional

and equational programming, Prolog offers new programming

features, such us (a) rule-based program construction; {b)

computations based on relations rather than functions; and

(c) logical variables that enable suspended variable bindings in

a computation. All these features contribute to a key charac-

teristic of Prolog that makes it different from other program-

ruing paradigms: it generates solutions by reasoning (or "solv-

ing for variables") rather than direct computing. This reason-

ing ability is mainly responsible for the declarative program-

ming style provided in the bgic programming paradigm. Prc~

log, however, does not provide facilities for reasoning about

equalities, which, as argued by Kornfeld [KornSa], will be

likely to play an important role in future logic programming

practices.

Traditional equality-based equational languages, like

Hoffmann and O'Donnell's language, provide mechanisms to

compute a semantically equivalent expression from a given

expression by the mechanism called reduction or rewriting.

The equivalenee of a computed expression and the original

expression is therefore a logical consequence of the given

equational program. Expressions here are called (first-order)

terms which are composed of function symbols and variables.

A logical consequence of a program is an assertion which must

be true whenever the assertions of the program are M1 true,

no matter how the program is ingerpre~ed.

209

We are interested in another computational paradigm in

which the user programs by writing abstract equations, and

then supplies a question asking whether an. equation has a

solution. The machine either responds with an answer (or

answers} by generating a set of variable bindings which con-

stigute a solution, or never answers. We refer to this compu-

tational paradigm as equational logic programming: equa-

tional programs are accordingly called equational logic pro-

grams. The paradigm of equational logic programming is

actually one of reasoning with equations. Equational logic pro-

grams here are assertions of equality. Given an equation, the

machine computes a solution, if there exists one, based on all

the information provided in the program but nothing else.

Is such a computational paradigm useful? We argue tha t

the answer is yes. First of all, it allows an emulation of Horn

clause logic programming. .As has been argued by several

researchers (see, for example, [Reddg5]), Prolog programs may

be systematically " t rans la ted" into equations defining t ruth-

vMue functions. An argument along similar lines applies to

equational logic programming. Horn clauses of the forms

A.

B :- Q1, Q2 Qn"

can be rewritten as equations

A - - true

B - and(Q r Q2 q n)

where true is a constant function symbol, and and is a mats-

function and returns true if all its arguments are "evaluated"

to true. A Prolog goal of the form

7" P i ' "'" pn,

can accordingly be rewritten as a conjunction of equations

?- P1 -~ true ' Pn -~ true,

or equivalently,

?- H(P 1 Pn) - - H(~rue ~rue),

where H serves as a new constructor symbol. A solution to

this equation is a substitution ~ such that the ~erm

~H(PI,_. ,Pn) is E-equivalent ~o H(~rue ~rue}, i.e.. they are

equivalent under the Equational theory described by the

corresponding equational logic program. The existence of

such u substit~ution implies tha t the equation of the goal

s t a tment is a logical consequence of the given equational logic

program, tf there is more than one solution, we may be

interested in a set of solutions containing all moe~t general

ones, i,e,, all of the other solutions are instances of, or can be

obtained from some solutions in the set. The problem of sole..

ing equations described here is actually the one of unification

in equational theories as originally formMized in [Plot72]. I~

has been shown that there exists such a general algorithm

that can be used to generate all of the most general solutions

[You85b], tt is clear tha t such an equational logic program-

ming language can have the same expressive power aa Prolog-

like languages. In addition, it allows negative information to

be explicitly specified; higher-order facilities can also be sup-

ported (see [Subr84]); last, but not the least, it provides a

natural framework into which equality reasoning is inco>

porated. Because both equational programming and equa-

tional logic programming fall into the .same semantic frame-

work which is based on logical consequences of equality, a

language can be designed and implemented in a way that

both programming styles are supported. In view of these

features, it is clear tha t the equational logic programming

paradigm is useful.

General algorithms for solving equations tend to be very

inefficient. The one given in [You85bl, for example, is too

inefficient to be practically useful. The challenging problem is

then to identify useful classes of systems for which there exist

efficient solution procedures.

In this paper we describe an equational logic language. In

particular, we show how Hoffmann and O'Donnell 's language

can be extended to an equational logic language. The formal

semantics for the proposed language is the classical theory of

equality, while the operational semantics consists of two

rules narrowin 9 and deletion upon unification. Narrowing is

an extended mechanism of reduction: reduction uses a match-.

ing process (or one-way unification) while narrowing exploits

the full power of (two-way) unification. The operational

semantics yields a complete evaluation procedure for a large

subclass of closed linear equational logic programs (cf. Section

4). We also show how the underlying semantics can be

adjusted ~o reflect the lazy narrowing on "conditional

t e rms" - - the ~erms that contain conditional function symbols.

such as ;(._then eNe and if then. Some implementational

a~speegs are also discussed.

2. P r e v i o u s E f f o r t s a n d R e l a t e d W o r k

A number of authors have recently focused at tent ion on

extensions of functional programming languages so that some

programming features, initially ~olely enjoyed by Pro]og, can

also be provided in the functional programming paradigm.

210

Funct ional languages have traditionally used variat ions of the

notion of reduction as their operational semantics: replacing

equals by equals in ground germs. A common theme of the

more recent extensions has been to use a more general

replacement mechanism narrowing or restricted narrowing.

Leg P / u denote the subgerm of P at occurrence u. A

germ P narrow~ to a germ Q at occurrence u, denoted by

P ~ > [u , k , p] Q'

if and only if there exists an equation c~ k - - / 3 k such that p is

the most general unifier of P / u and C~k, and

Q = p(e[u < - P~k])'

where P[u < - p/3k] denotes the term obtained by subst i tut-

ing the sub te rm at occurrence u by the term p/3 k. Note tha t

equations here are used as rewrite rules.

Pe rhaps Bandes was among the first people who realized

tha t the reduction mechanism was incapable of capturing the

full semant ics of equational specifications. A mechanism,

called constraining-unification was then proposed {Band84].

The idea of viewing computat ions as constraint activities

among enti t ies or "devices" can be graced hack go the work

on constraint programming{Born81,Stee79 I. Constra int pro-

gramming is like logic programming in that ig generates solu-

tions by solving. Const ra in t programming, however, appears

to he more of an engineering art than a rigorously based sci-

ence at the present. Dershowigz introduced an equational

programming language b r e d on the Knuth-Bendi×

completion procedure, which only handles germinating term

rewrit ing sys tems [Ders84]. Recent interesting work includes:

an inclusion of logical variables in the functional programming

language FEL {Lind85}; the use of narrowing as the opera-

tional semant ics for a functional programming language

iRedd851; and regarding programs as , terminating) conditional

rewrite rules [Ders851. The research reported in

[Dar185 Sago85, Smo185] is also along ~hese lines.

Some of ¢~hese extensions are not based on equality;

instead they generally rely on some rather complex deno~a-

gional semantics. For those tha t do provide a form of equality

reasoning, the strong termination property is imposed. The

language we are proposing is based on the classical theory of

equality, the use of which accrues semantic simplicity and the

ability ~o reason about equations. Furthermore. no strong

terminat ion proper ty is imposed in our language.

8. EquationM Logic Programs

DefiniLion 1. An equational logic program is a set
of equations

~0 = '80' C~l = '31'" e n - - fin

where variables appearing in ,8 k must also appear
in c~ k.
A goat of equalities is a conjunction of equalities,
and is of the form

?- A 0 = B0, A 1 = B 1, ..., A m - - Bin,

where A. and B. are terms.
1 1

There is a distinguished goal, called the empty
goal.

D

Two of the commonly used conditional functions can be

defined as:

if then_else(true, X, Y) = X

if_then_else(false, X, Y) = Y

if_then(true, X) = X

where true and false are two cons tant function symbols and

X and Y are variables.

3.1. O p e r a t i o n a l S e m a n t i c s

The operat ional semantics of the equational logic pro-

grams defined here consists of two inference rules: narrowing

and deletion upon unification.

D e f i n i t i o n 2. Let G be a goal of equalities

?- A 0 - - B0, A 1 B 1, ..., A m - - B m.

N a r r o w i n g : If A i is narrowable at occurrence u, 0
< i < m. i.e..

A1 ~ > [u,k/r] A'i '

then G' is a goal derived from G and is of the form

- - .., A ' . - ~r(A m ?- cr(A0 B0)' 1 ~r(Bi)' " Bin)'

D e l e t i o n U p o n U n i f i c a t i o n : If A and B 0 < i
< m. are unifiable with the most general unifier o,
then G' is a goal derived from G, and is of the
form

?- a(A 0 : B0, ...

Ai_ 1 - - Bi=l,

Ai+ 1 - - Bi+ 1

A m : Bin).

We denote by a pair < G ' , er>, the derived goal G'
and the unifier it is associated with. []

211

Deflnl t lon 3o Let G be a goal of equalities. A sue-
ce~ful computation from G is an N-derivation
sequence (narrowing based derivations) which is a
finite sequence of pairs

<GO, p0 > , <G1, pt > , ..., <Gq, pq>,

where G O --- G, P0 is the identity substitution,
C, , ~ is a goal derived fr m G~ ann Pi' ~ the umfier

bv1 1 -1
ae.soolated wi th this der lvat lonj and C4 is the
empty goal. q

Let W be the set of variables in ©. The computed
answer with respect to the above sequence is a sub-
stitution restricted to W, and is defined as:

= (Pq°Pq_: e l ° @ l w- [7]

Example:

We use the function append to illustrate the operational

semantics defined above:

append({], L) == L

append(A"X, Y) = A ~ append(X, Y)

The goal

?- append(a~Y~[], e~d~[]) = append(a~b~c*[], d~[])

generates a substitution {Y < - - b}.

As was alluded to earlier, Prolog programs may be

"translated" into equations in a straightforward way. }'or

example, the predicate append in Prolog

append([], L, L).

append(A~X, Y, A~Z) > append(X, Y, g).

can be translated into the following equational logic program

append([1, L, L) = true

append(A^X, Y, A~Z) = append(X, Y, Z)

The goal

?- append(a"Y"[], e"d~[], a%%~d"[D := true

also generates the binding {Y < - - b}.

The program above can be written in a Lisp-like manner

as follows:

append(X, Y, Z) = if X ~ [] then Y ~ Z

e~e and(~rst(X)~ tirst(Z),
append(rest(X), Y, rest(Z)))

where we assume the availability of certain builb.in functions,

which may be defined as:

first(A"X) == A

rest(A~X) iX

and(true, true) == true

arid(faNs, X) =: false

and(X, false) : false

A =~= A true.

The goat

% append(a~Y^[l, c~d~[], a%%~d"[]) =: true

also generates the binding {Y < - - b}.

The equality predicate _~s defined above can be directly

supported by the operational semantics. An equality A ~ B

is simply "evalua~aed" by narrowing and deletion upon

unification, returning true when the empty goal is derived,

and false when derivation stops with a non-empty goal

(because of undecidability, computations of this type may not

always terminate). We can thus write equations like:

f(X) == if p(a) -~ q(a) then g(X)

which simulates the following clause in Prolog with equality

f(x) : g(X):- p(a) = q(a)

4. S e m a n t i c F o u n d a t i o n s

in this section we show that operational semantics

defined in the last section are faithful to the classical theory

of equality for a large subclass of the closed linear equational

logic programs. That is, for this subclass of equational logic

programs, whenever there exists a solution for a given equa-

tion, the generation of this solution (or a more general one) is

guaranteed by the operational semantics; and whenever the

empty goal is derived, the computed answer is indeed a solu-

tion of the equation.

Def ini t ion 4. Let E be an equational logic pro-
gram. Let F be the set of function symbols that
occur in Eamd V be a set of variables, such that V
A F = ~. The free algebra over V, denoted by
T(F,V) contains the set of all terms constructed
from the function symbols in F and the variables in
V.

The classical theory of equality is defined as the E-
equality, denoted by ~ E ' which is the finest,
congruence on T(F,V), closed under instantiation,
i.e., if A = B is in E, then erA = ~rB is also in E for
any substitution er that maps from variables to
terms in 1IF,V).

Definition 5. A substitution ~r is a solution of the
system of simultaneous eq~ations

A O - - B 0 , A I = B 1 , , . . ,A m = B m,

if and only if

~rA0 = E orB0' (rA1 = :g ~BI ' - " ~Am g ~Bm'

An equational logic program P denotes the set of all
systems of simultaneous equations ttiat have a ~ lu-
tion. [~

2 t 2

Note that solving a goal of equalities of the form

?- A 0 B0, A 1 == B1, ..., A m = B m

is equivalent to solving the goal

?- H(A 0 ,A 1 A m) = H(B 0 ,B 1 Bin),

where H is u function symbol that is not in F.

Def in i t ion Ig Let E be an equational logic program.
Let W be the set of variables in an equation P := Q.
The notion of E-equality is extended to substitu-
tions restricted to W as follows:

cr - - E p [W] iff vx E W crx = E px.

Let both ~r and p be solutions of P = Q. We say ~r
is more general than p under the equational logic
program E and restricted to W, denoted by

-<-E P [w],

if and only if there exists a substitution r/such that
the composition ~/o ¢ is E-equivalent to p, i.e.,

' ° ~ - - S p [W]"

It turns out that the operational semantics may not

necessarily always coincide with the denotation defined above

for an arbitrary equational logic program. The correctness of

the operational semantics follows from the work of Hullot in

iHull80l; the problematic aspect is completeness. Take, for

example, the rewrite rule a ~ h(u). The goal of equality

?- g(X, X) = g(Y, h(Y))

is solvable with the following substitution a = {X < h(a),

Y < a}. The operational semantics based on narrowing,

however, cannot generate any solution. Solving equations, in

its most general setting, is bhe problem of unification in equa-

tional theories [Plot72]. An equational theory is described by a

set of equations. In this context there can be more than one

most general solution for a given equation. For the purposes

of efficient computation, equations can be ~reated as rewrite

rulem The completeness of using rewrite rules in making

deductions equationally is expressed by the Chureh-Rosser

property, or equivalently, the confluence property, which says

that two terms are E-equivMent if and only if they can be

reduced to an idenficM ~erm. Fay has shown that the nar-

rowing method is complete for canomcal term rewriting sys-

tems [Fay79]. But canonical term rewriting systems do not

usually make use of conditional functions, for the reason that

conditional functions often introduce non-terminating reduc-

tion sequences. Consider. for example, the familiar definition

for factorial

factorial(N) = if N = O then 1 else N * factorial (N-l).

In almost all of the existing functional programming

languages, the conditional if then_else is treated as being

non-strict, thus ensuring termination for apprgpriate compu-

tations. Viewed as a term rewriting system, hd~ever, the ter-

mination property ~ lost; for example, the invocation of fac-

torial(-4) wilt result in an infinite reduction sequence. This

appears to be a major difficulty in attempts to formMize an

equality-based computational model for non-canonical term

rewriting systems.

Our attention is focused on the class of closed linear

term rewriting systems; this class allows non-terminating term

rewriting systems, and is basically the formalization of

Hoffmann and O'Donnell's language. The linearity property

says that no variables can occur more than once in the left-

hand side of an equation and is required in defining the clo-

sure property. Without the linearity property we could not

identify the exact rearrangements of subterms by a reduction.

For example, consider an equation f(X,X) - - X. If we reduce

f(a,a) to produce the term a, we will then have a problem in

identifying which a in f(a,a) the resulting term a is a rear-

rangement of. However, if a variable disappears in the right-

hand side, the linearity condition on the lefthand side can be

removed. This is why equations like

append(A^X, Y, A^Z) - - append(X, Y, Z)

A ~ A - - true

do not pose any problems.

The closure property is a special case of confluence pro-

perty; it ensures a (closed) relationship between reductions at

"outer" occurrences and those at "inner" occurrences. As a

rumple example, consider the equations

f (x) ~ c(x , x)

g(a) - b.

For the term f(g(a)), we have the following picture embodying

the closure property:

f (g (u)) - - > e(g(a), g (a)) - - > c(b, g(a))

J I
V v

f(b) . > c(b,b)

We continue in the next section to give a more formal

account of the class of closed linear term rewriting systems.

and show the soundness and completeness of the operational

semantics.

213

4.1 Cloeed L i n e a r T e r m R e w r i t i n g 8yg t em s

To refer go terms, as well as subterms, function symbols

and variables in a ~erm, we need the following definition.

Def in i t i on 7o Terms in 2~(F,V) can be viewed as
]abeled trees in the following way: a term A is a par-
tial function from N*, the see of finite sequences of
positive integers, to F U V, such tha t its domain
idA) satisfies:

(iO u e ~ t i) ~ i.u c ~ f (h , . - , t i , - . , tn)) ~ < i < n.

_[)(A) is called a set of occurrences of A. The set of
occurrences are partially ordered:

u < viff~w u . w - - v
u < v i g u < v & u C v ,

The quotient u-v of two occurrences u and v is
defined as: u -v = w iff v.w =~ u.

If u < v we then say that u is outer to v and v is
inner to u.

We say t ha t two occurrences are independent,
denoted b y v < > u, iffv ~ u & u ~ v.

We denote by V(A) the set of variables appearing
in A. 0

The rearrangement of subterms by a reduction is charac-

terized by t, he notion of the residue map, which is defined

below.

Definition 8, Let R be an equational logic prep
gram. The residue map r with respect to a linear
term rewriting system is a function, as defined
below:

r> --~{n,kiS]~,

= {u.w.(v-v') 1 ~ (v') e ~ R) g % (v ') = & (w) ~ v' < v }
k if q% u and:rED(A) -

= {v} if u < > v and rED(A)

= ¢ otherwise,

where A B denotes tha t the term A reduces
a r k

go B at, occurrence u using the kth defining equa-
tion.

We say that an occurrence w is a residue of v with
respeegareduct ionA-~fu,klB. , if and only if

w ~ r[A -~(u,k]Blv.

B

Note that the positions o:f the variables in a rewrite rule

indicate the resul~ of t, his rearrangement process.

The definition of the residue map r can be extended go

show how asefi of occurrences is rearranged by a sequence of

reductions~

Def in i t i on 8. Let

S A 0 -*Uo ... --~Un_l A n.

The extended residue map ~ is a function,
defined below:

aS

for any N C D(A0)

?In 0, {Uo, .,,%q)]N

= ? I n n _ 1, {Un_l}]?[a 0. {u 0 na_2}]N

for any M g D(A0)

?{a i, {ui)lM

= U v E M r[Ai -+u. Ai+liV
1

0

Intuitively, the above definition says tha t the residues of

a set of occurrences are the union of the individual residues,

and tha t a residue by a sequence of reductions is the cascaded

residue yielded by the individual residues in the sequence.

We are now in a posit, ion to define the closure property.

Def in i t i on 10o An equational logic program R is
closed if and only if

(i) Vu,v e D(A) ((u < v & A -~u g S~ A -~v C)

~D (S % I a - , s l g D ~ c - % D))

(i i) ~ a e D (A) (a - ~ u B & A - ~ u C) D B = C

S

Clause (i) of fihe closure property is illustrated in Figure

1. The second clause says tha t if two different lefthand sides

match the same term, them the corresponding r ighthand sides

must be the same. The second clause is necessary because

from the first clause alone one cannot derive the confluence

property.

A u B

v t I rtA ~ SJv
V v

co u D

FLute I : The closure property (when n < v).

The closure property can be generalized to reduction

sequences. For this and other detuiled exploration, the reader

should consult [O'Do77, Yo~S5a],

214

It is argued by O'Donnell in the context of subtree

replacement sys tems [0'Do77] (an equational logic program

defines a subtree replacement system), tha t closure is a

na tura l and common property, and the nonclosed subtree

replacement sys tems often represent undesirable axiom sys-

t.ems.

T h e o r e m 1. Let E be a closed linear equational
logic program, and G be a goal of equalities of the
form

?- H(Ao~ A 1 Ak) = H(true, true true).

If G has a solution a, then there exists an N-
derivation which generates a computed answer p
which is more general than p. i.e., there exists u
subst i tu t ion ~ such tha t the composition t/p is E-
equivalent to a.

Conversely, any computed answer a by an N-
derivation from G is a solution to the equation in
the goal, i.e,

GH(A0' A1 ak) = E H(true, true true).

0

Proof: (Sketch)

Q = H(B;, n 1, .

Note that Q is nei ther reducible nor narrowable.

Suppose the equation P - - Q has a solution or. It
can be shown (see. for example, [O'Do77]) that E m
confluent if it is closed. From the confluence pro-
perty, there exists a reduction sequence of the form

(a) ~rh(P,Q) = A 0 ~ u 0 an-1 A n - - h(q,Q),

where h is a new function symbol, serving as a con-
structor.

Let U(cr) denote the set of occurrences in
D(ah(P,Q)) tha t are introduced by the subst i tut ion
a on h(P,Q). It can be shown tha t ~here exist
another subst i tu t ion a ' which is E-equivalent ~o a
and a reduction sequence

. B - - h(Q,Q),
(b) a 'h (P ,Q) - - B 0 Vo vm_ 1 m

such that none of occurrences v i is a residue of any

subterms in c?. Tha t is.

Wi, 0 < i < m - l . v i E ?[B 0, {v0,...,Vi_l}lUia').
It can be fur ther shown that corresponding to each
reduction sequence of the above form. there exists

an N-derivat ion sequence

< G 0, '70>, < G 1, 7 1 > ..., < G m _ 1, 7m_l > ,

such that the composition

u = r/o 7m__ 1 o '7m_2 "~0

is a solution of the equation, i.e., uP - - E uQ = Q,
and is more general than a.

Conversely, for any N-derivation sequence issuing
from hiP,Q), let u be the computed answer gen-
erated by the sequence. It can b~ shown that there
exists a reduct ion sequence

-~h(q,Q). ~,h(P,Q) *

This implies tha t v is indeed a solution to the e q u ~
tion P - - Q. This completes the proof. 0

A complete proof of Theorem 1 involves several lemmas,

proofs of which can be found in [You85a]. The role tha t the

closure property plays here is that a reduction sequence of the

form (a) can be " t r an s t b rmed" to a reduction sequence of the

form (b) in a finite number of s t eps The proof of the existence

of an N-derivation sequence corresponding to a reduction

sequence of the form (b) is a variant of the one presented in

[Hull80]. It should be mentioned tha t there may not always

exist an N-derivation sequence for an arbitrary reduction

sequence of the form (~) [You85c].

When a goal of equalities is of the form

?. H(A0, A 1 Am) -~ H(true, t rue true),

the rule of deletion upon unification can be ignored. This is

described in the following proposition.

P r o p o s i t i o n 2. Let P = H(A0,...,Am) and Q - -
H(true,. . . , true). Let also h be a function symbol
not in F. For a goal of equalities of the form ?- P
= Q, there exists a narrowing sequence

h(P,Q) ~ C O

CO ~ > [u0,k0;'70] " ~?>[u q - l ' kq - l ;Tq-1] Cq

C -- h(Q,Q),
q

such that the composit ion ~q-1 °'7q-2 70 is a
solution of P - - Q.

P r o o f : Since Q is composed of constant function
symbol true, the rule of deletion upon unification Is

no~ applicable unless A., for some i. h ~ narrowed to
• 1

true. Applications of the rule of deletion upon
unification on trivial equations of the form true
t rue can obviously be suspended until no narrowing
is possible. Theorem 1 therefore guarantees the
existence of a narrowing sequence leading ~so h(Q Q).

[3

Now when a goal is an arbi trary equation, completeness

is not always guaranteed even for closed linear term rewrit ing

sysl~ems. For example, the rewrite rule a ~ h i s) ment ioned

earlier is trivially closed linear A fur ther property, called the

non-repetition property needs to be imposed to eliminate such

"undesirable equatmnal logic programs. IntUitively. if a term

rewrit ing sys tem is non-terminat ing, there are non-

terminat ing reduction sequences, in which some rewrite ruleis)

mus t be used for reductions infinitely many times. For exam-

ple, suppose tha t f(t , t) g(s s) is a rewrite rule tha t
1 ""' n 1 ' " " m .

is used infinitely many t imes in a non- terminat ing reduction

215

sequence. We then have an infinite number of subterms

(within the reduction sequence) tha t are reduced by this rule:

f(t[1,1],"',t[1,n]), f (t{2 ,1] , , t [2,n]) f(t[k,1 } t[k,n])

This yields an infinite set of subterms Qf, <dements of which.

are reduced by the same rewrite rule defining the function f.

Some of these terms may be equivalent, i.e.,

f(t[i,1]'""t[i,n]) - - E f(t[j,1]"'"t[j,n])

for some i and j. These terms are thus partitioned into

equivalence classes. The non-repetition property requires tha t

all such equivalence classes be finite. Accordingly, the allow-

able non-terminating sequences are those tha t have an infinite

number of such equivalence classes, each class being finite.

We argue tha t "normal" equational programs, where

constructors are heavily used, possess the non-repetition pro-

perty. As an example, rewrite rules of the form

f (x) ~ x ~ f (c (x))

are often used to generate infinite data structures in program-

min t languages with a lazy evaluation mechanism, where e is

a constructor. If we do not have a rewrite rule of the form,

say, a ~, e(a), then f(x) and f(e(x)) wilt not be equivalent no

mat ter how the variable x is instantiated, and the program

hence possesses the non-repetition property. Furthermore,

such undesirable equational logic programs may be syntacti-

cally detected, or even detected at execution tinge so tha t the

user would know there is a possibility of not getting an

answer even if one exists IYougSe].

For the class of closed linear term rewriting systems with

the non-repetition property, the soundness and completeness

of the operationM semantics is ensured by the following

theorem.

T h e o r e m 3o Let E be a closed linear equational
logic program with the non-repetition property, and
]et O be a goal of equalities of the form

?- H(A 0, A 1 , A m) - - H(B 0, B 1, . - , Bin).

If G has a solution ~r, then there exists an N-
derivation generating a computed answer p which is
more general than p. i.e., there exists a substitution
~ such tha t the composition ~ o p ks E..equivalent to

Conversely, any computed answer o" by an N-
derivation t~om G is a solution go the equation in
the goal, i.e,

c~H(ao' 11 ' "" Am) = E cfft(Bo' BI ' : " Bin)"

Proof: (Sketch) Notice that here the term
H(B~ B Bin) is no longer composed of constant
funetmn syni~ols. In such a case, for an arbitrary
reduction sequence and some term R

(i) ah(e ,Q) = A 0 --~u0 ... -~Un_l A n =: h(R,R),

there exists a reduction sequence

. - ~ B = h (R , a), (ii) c~ h(P,q) B 0 VO Vm__l m

such tha t ~' is E-equivalent to and none of
occurrences v. is a residue of any occurrence ill
U(o"). Given Ithis, the remainder of the proof of
Theorem 1 follows through unmitigated/ []

5. Lazy Narrowing on Conditlonal Terms

A term involving a conditional function symbol, such as

if then else and if then, is said to be a "conditional term".

In almost all functional languages, conditional functions are

treated as being non-strict; only the conditional part is

evaluated at first, and the expression then gets reduced

according to the result of tha t evaluation.

To incorporate a similar strategy into equational logic

programming, we need to adjust the definition for E-equality.

Recall tha t the free algebra ir~F,V) is divided into congruence

classes, closed under instantiation, each of which contains

equivalent terms. Let T be a congruence class, which is the

union of two disjoint subsets

T == T c U T n

where T is the set of all conditional terms and T the set of
C n

all non-conditional terms.

We now interpret ==E to be the congruence of Tn'S ,

tha t is, all the conditional terms are taken out. We believe

that this interpretation also reflects the intuition of using con-

ditional equations ' in programming: conditional terms are not

considered as "final results" but intermediate results tha t

need to be evaluated further to yield nonconditional terms.

This interpretation yields the desired result by forcing the

operational semantics to perform narrowing on the condi-

tiona.1 part, and never perform the rule of deletion upon

unification for conditional terms, since equalities are no longer

considered for conditional terms.

Al though this semantic adjustment seems to violate the

pure meaning of symbolic coraputagion and has all "opera-

t ional" flavor, we believe that the equality-based semantics is

not greatly impacted, and the simplicity of the semantics is

preserved.

216

6. I m p l e m e n t a t i o n C o n s i d e r a t i o n s

We have described the basic formMization of an equa-

tional logic programming language wherein closed linear term

rewriting systems serve as programs, Several programming

constructs and implementation strategies might be useful

under this formalization.

* A User-Controlled Reduction Construct - - The use of
this construct in a program will force the reduction to be
performed until the subterm under consideration is not
reducible. The need for this construct is based on the fact
that although we have used narrowing as part of the

operational semantics, the reduction mechanism is still u
useful one. First, the matching procedure (used in reduc-
tion) can be implemented more efficiently than unification
(used in narrowing). This is particularly true for left-
linear equational programs. Secondly, because of the
confluence property, reduction steps are not subject to
backtracking while narrowing steps are. Moreover, the
reduction construct itself serves as an evaluation mechan-
ism for an equational language.

* Ignoring the Rule of Deletion upon Unification --- Recall
that the operational semantics consists of two rules, one
of which is called deletion upon unification. When u goal
is of the form A = true, only narrowing derivations need
be carried out on A, aa described in Proposition 2. The
rule of deletion upon unification needs to be applied only
when no further narrowing is possible.

* Embedding the Rule of Deletion upon Unification into
Narrowing --- At each point during the execution of a
goal, both the rules of narrowing and deletion upon suc-
cessful unification should be tried. Also, narrowing steps
are subject to backtracking (if so implemented). Redun-
dant narrowing sequences should be eliminated in an
implementation. For example, an equation like g(a) ,=
h(f(X)), where g and h are constructors, is not solvable no
matter how many narrowing steps are performed on f(X).
Furthermore, the work done by deletion upon successful
unification should not entirely ignored when backtracking
occurs. A method that accommodates these observations
is described in [You85c I.

7. C o n c l u s i o n

We have proposed an equational logic computational

paradigm and argued its usefulness. An equational logic

language was described and some practical considerations

were discussed.

The equational logic language described here can be

embedded into Prolog to obtain a language which provides

logic programming with equality, and in which usual Horn

clause logic programming and functional programming are

both supported. The theoretical basis for this approach stems

from the results in [Ptot721 where it was shown how equa-

tional theories could be built into resolution procedures.

Theorem 3 presented in Section 4 is actually u completeness

theorem for the class of closed linear term rewriting systems

with the non-repetition property.

A c k n o w l e d g m e n t s

We would like to thank Gary Lindstrom for his helpful

comments on an earlier version of this paper. Jia~Huai You

would like to thank Uday Reddy for several inspiring discus-

sions with him on the issues relating to this work.

The work by Jia-Huai You was supported in part by

ONR Contract N00014-Sa-K-0317, and was done when he was

at the Computer Science Department, University of Utah.

Refe rences

Band84.
Bandes, R.G., "Constraining-unification and the pro-
gramming language Unicorn," in Proc. 11th POPL, pp.
108-110, Salt Lake City, Utah, January, 1984.

Born81.
Borning, A., "The Programming language aspects of
ThingLab, a constraint-oriented simulation laboratory,"
A C M TOPLAS, vol. 3, no. 4, pp. 353-387, October, 1981.

Dar185.
Darlington, J., A.J. Field, and H. Pull, "The unification
of functional and logic programming," in Logic program-
ming: relations, functions, and equations, ed. G.
Lindstrom, Prentice-Hall, 1985.

Ders84.
Dershowitz, N., "Equations as programming language,"
in Proc. ~th Jerusalem Conference on h~formation Tech-
nology, pp. 114-123, May, 1984.

Ders85.
Dershowitz, H. and D. Plaisted, "Logic programming
cum applicative programming," in Proc. 1985 Interna-
tional Symposium on Logic Programming, Boston, Mass.,
,July, 1985.

Fay 79.
Fay, M.3., "First-order unification in an equational
theory," in Proc. dth Workshop on Automated Deduction,
pp. 161-167, Austin, Texans, July, 1985.

Hoff82.
Hoffmann, C.M. and M. O'Donnell, "Programming with
equations," A CM Transaction on Programming
Languages and Systems, vol. 4, no. 1, pp. 83-112, Janu-
ary, 1982.

Hoff84.
Hoffmann, C.M. and M. O'Donnell, "implementation of
an interpreter for abstract equations," in Proe. l l t h
POPL, pp. 11t-121, Salt Lake City, Utah, January,
1984.

HullS0.
Hullot, J.M., "Canonical forms and unification," in Proc.
5th Conference on Automated Deduction, pp. 318-334,
1980.

Korn83.
Kornfeld, W.A., "Equality in Prolog," in Proc. 8th Inter-
national Joint Conference on Artificial lntetligencq
Karlsruhe, West Germany, 1983.

Kowa74.
Kowalski, R.A., "Predicate logic as programming
language," in Prec: IFIP 74, pp. 556-574, Amsterdam:
North Holland, 1974.

217

iAnd85.
Lindstrom, G., "Functioned programming mid t, he logical
variables, in Pro& 12fh POPL, New Orle~ms. Jmmarv,
10~:-;

O'Do77.
O'Donnelt, M., "Computing in systems described by
equations," ill Lect~re ~ofes in comp'uter sciences, vo]. 3R.
Springer-\"erb4.% New York, 1977

P .~e78.
Pereirs. L.M, F.C.N. Pereira, and D.tt.I). W~.~rren,
U,ser % g'i~ir! to PECsgstem-.tO Prolog, University of Edin-
burgh, 1978.

P1o[72.
Plotkin, C'., :Builcting°in equational theories/' in
it,[achine [nfe//igeszce 7, pp. 73-90, Edinburgh University
Press, 19]':2.

Redd85.
Red@, U., "Narrowing a~ the operational semantics of
functional languages," in Proc. 19S5 Infernatlosal S,4m-
posium o;z Logic Progra~zrni~z 9, Boston, Mass., July,
1985.

Sa~o85.
Sago, M. and T. Sakurgi, "QUTI3: a functional language
based on unification,:" in Logic programming: rdaHons,
)q~nc~ior~< and eClUaHo~s, ed. G. Lindstrom, Prentice-
Hail, 1985.

q mot85.
Smolka, G. and P. Ps.nangaden, ':A higher*order applica-
tive language based on u~ification and generic
q~gntification," in Logic progra~rming: relations, j~mc-
tion.s, az~d eq~a~ions, ed. G. Lindstrom, Prentice-Hall,
t985.

Stee79.
Steele, ©.L. and G,J. Sussman, "Constraints," in Proc.
APL 79 (Part i), pp. 208-225, .June, 1979.

SubrS-l.
Subrahmanyam, P.A, and J.-H. You, "Pattern driven
lazy reduction: a unifying evaluation mechanism for
functional and logic programming," in Proc. ll~h POPL,
pp. 228-234, Salt Lake City, Utah, January, 1984.

YougSa.
You, J..-H. and P,A. Subrahmanyam, A class of term
rewriting s~,ster;as and u~jfca~io~, May, 198,.5. (unpub-
iished manuscript).

You88b.
You, J.-H. and P.A. Subrahmanyam, Ors ~he corr~/ete-
sees of fir~-order um~ca~io~ ira equational theories, June,
1985. (unpublished manuscript).

You88c.
You, J - H , Y'h'st-order unification in equational theories
and its application to logic programming, Ph.D. Thesis,
Computer Science Department, University of Utah, 19~8

218

