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Abstract 

The paradigm of equational programming potentially 
possesses all the features provided by Prolog-like languages. In 
addition, the ability to reason about equations, which is not 
provided by Prolog, can be accommodated by equational 
languages, In this paper, we propose an extended equational 
programming paradigm, and describe an equational logic pro- 
gramming language which is an extension of the equational 
language defined in [Hoff82]. Semantic foundations for the 
extension are discussed. The extended language is u powerful 
logic programming language in the sense of Prolog and thus 
enjoys the programming features that Prolog possesses. 
Furthermore, it provides an ability to solve equations, which 
captures the essential power of equational programming. 

1, I n t r o d u c t i o n  

Equations provide a powerful computational paradigm 

and may be used to program all of the computable functions. 

Among a number of proposals, Hoffmann and O'Donnell 

introduced an equational programming language which was 

baaed on equational logic [Heft82, Heft84, O'Do77}. A program 

written in the language is a set of equations which are eompu- 

tationally used as rewrite rules, and the execution of a pro~ 

gram is a simplification process involving the replacement of 

equal by equals using reduction. The theoretical basis of the 

language is that if each equation in a given equational pro- 

gram is left-linear and the set of all equations as a whole is 

closed, then the program possesses the confluence property 

which is sufficient ~o guarantee the completeness of logical 

consequences of equality. The language is not constrained to 

have the strong termination property {which requires that 

every reduction sequence terminate), provides a form of lazy 
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evaluation, and can be used to specify infinite data structures. 

non-terminating computations. Associated with the language 

are two major merits: its simple semantics which is based on 

logical consequences of equality and the mechanisms that 

enable an efficient implementation. 

In other developments, logic programming has emerged 

as a very promising programming paradigm in recent years, 

mainly due to Kowalski's formalization [Kowa74], and various 

efforts at efficient implementations, most notably the DEC-10 

PROLOG system [Pere78]. From the perspective of functional 

and equational programming, Prolog offers new programming 

features, such us (a) rule-based program construction; {b) 

computations based on relations rather than functions; and 

(c) logical variables that enable suspended variable bindings in 

a computation. All these features contribute to a key charac- 

teristic of Prolog that makes it different from other program- 

ruing paradigms: it generates solutions by reasoning (or "solv- 

ing for variables") rather than direct computing. This reason- 

ing ability is mainly responsible for the declarative program- 

ming style provided in the bgic programming paradigm. Prc~ 

log, however, does not provide facilities for reasoning about 

equalities, which, as argued by Kornfeld [KornSa], will be 

likely to play an important role in future logic programming 

practices. 

Traditional equality-based equational languages, like 

Hoffmann and O'Donnell's language, provide mechanisms to 

compute a semantically equivalent expression from a given 

expression by the mechanism called reduction or rewriting. 

The equivalenee of a computed expression and the original 

expression is therefore a logical consequence of the given 

equational program. Expressions here are called (first-order) 

terms which are composed of function symbols and variables. 

A logical consequence of a program is an assertion which must 

be true whenever the assertions of the program are M1 true, 

no matter how the program is ingerpre~ed. 
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We are interested in another  computational paradigm in 

which the user programs by writing abstract  equations, and 

then supplies a question asking whether an. equation has a 

solution. The machine either responds with an answer (or 

answers} by generating a set of variable bindings which con- 

stigute a solution, or never answers. We refer to this compu- 

tational paradigm as equational logic programming: equa- 

tional programs are accordingly called equational logic pro- 

grams. The paradigm of equational logic programming is 

actually one of reasoning with equations. Equational logic pro- 

grams here are assertions of equality. Given an equation, the 

machine computes a solution, if there exists one, based on all 

the information provided in the program but nothing else. 

Is such a computational paradigm useful? We argue tha t  

the answer is yes. First  of all, it allows an emulation of Horn 

clause logic programming. .As has been argued by several 

researchers (see, for example, [Reddg5]), Prolog programs may 

be systematically " t rans la ted"  into equations defining t ruth-  

vMue functions. An argument along similar lines applies to 

equational logic programming. Horn clauses of the forms 

A. 

B :- Q1, Q2 ... . .  Qn" 

can be rewritten as equations 

A - -  true 

B - and(Q r Q2 ... . .  q n )  

where true is a constant  function symbol, and and is a mats- 

function and returns true if all its arguments are "evaluated" 

to true. A Prolog goal of the form 

7" P i '  "'" pn, 

can accordingly be rewritten as a conjunction of equations 

?- P1 -~ true . . . .  ' Pn -~ true, 

or equivalently, 

?- H(P 1 ... . .  Pn) - -  H(~rue . . . .  ~rue), 

where H serves as a new constructor symbol. A solution to 

this equation is a substitution ~ such that the ~erm 

~H(PI,_. ,Pn) is E-equivalent ~o H(~rue ..... ~rue}, i.e.. they are 

equivalent under the Equational theory described by the 

corresponding equational logic program. The existence of 

such u substit~ution implies tha t  the equation of the goal 

s t a tment  is a logical consequence of the given equational logic 

program, tf there is more than one solution, we may be 

interested in a set of solutions containing all moe~t general 

ones, i,e,, all of the other solutions are instances of, or can be 

obtained from some solutions in the set. The problem of sole.. 

ing equations described here is actually the one of unification 

in equational theories as originally formMized in [Plot72]. I~ 

has been shown that  there exists such a general algorithm 

that  can be used to generate all of the most general solutions 

[You85b], tt is clear tha t  such an equational logic program- 

ming language can have the same expressive power aa Prolog- 

like languages. In addition, it allows negative information to 

be explicitly specified; higher-order facilities can also be sup- 

ported (see [Subr84]); last, but  not the least, it provides a 

natural  framework into which equality reasoning is inco> 

porated. Because both equational programming and equa- 

tional logic programming fall into the .same semantic frame- 

work which is based on logical consequences of equality, a 

language can be designed and implemented in a way that  

both programming styles are supported. In view of these 

features, it is clear tha t  the equational logic programming 

paradigm is useful. 

General algorithms for solving equations tend to be very 

inefficient. The one given in [You85bl, for example, is too 

inefficient to be practically useful. The challenging problem is 

then to identify useful classes of systems for which there exist 

efficient solution procedures. 

In this paper we describe an equational logic language. In 

particular, we show how Hoffmann and O'Donnell 's  language 

can be extended to an equational logic language. The formal 

semantics for the proposed language is the classical theory of 

equality, while the operational semantics consists of two 

rules narrowin 9 and deletion upon unification. Narrowing is 

an extended mechanism of reduction: reduction uses a match-. 

ing process (or one-way unification) while narrowing exploits 

the full power of (two-way) unification. The operational 

semantics yields a complete evaluation procedure for a large 

subclass of closed linear equational logic programs (cf. Section 

4). We also show how the underlying semantics can be 

adjusted ~o reflect the lazy narrowing on "conditional 

t e rms" - - the  ~erms that  contain conditional function symbols. 

such as ;(._then eNe and if then. Some implementational 

a~speegs are also discussed. 

2. P r e v i o u s  E f f o r t s  a n d  R e l a t e d  W o r k  

A number  of authors have recently focused at tent ion on 

extensions of functional programming languages so that some 

programming features, initially ~olely enjoyed by Pro]og, can 

also be provided in the functional programming paradigm. 
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Funct ional  languages have traditionally used variat ions of the 

notion of reduction as their operational semantics: replacing 

equals by equals in ground germs. A common theme of the 

more recent extensions has been to use a more general 

replacement  mechanism narrowing or restricted narrowing. 

Leg P / u  denote  the  subgerm of P at occurrence u. A 

germ P narrow~ to a germ Q at  occurrence u, denoted by 

P ~ > [ u , k , p ]  Q' 

if and only if there exists an equation c~ k - - / 3  k such that  p is 

the most  general unifier of P / u  and C~k, and 

Q = p(e[u < -  P~k])' 

where P[u < -  p/3k] denotes the term obtained by subst i tut-  

ing the sub te rm at occurrence u by the term p/3 k. Note tha t  

equations here are used as rewrite rules. 

Pe rhaps  Bandes was among the first people who realized 

tha t  the reduction mechanism was incapable of capturing the 

full semant ics  of equational specifications. A mechanism, 

called constraining-unification was then proposed {Band84]. 

The idea of viewing computat ions  as constraint  activities 

among enti t ies  or "devices"  can be graced hack go the work 

on constraint programming{Born81,Stee79 I. Constra int  pro- 

gramming is like logic programming in that  ig generates solu- 

tions by solving. Const ra in t  programming, however, appears 

to he more of an engineering art than a rigorously based sci- 

ence at the present.  Dershowigz introduced an equational 

programming language b r e d  on the Knuth-Bendi× 

completion procedure,  which only handles germinating term 

rewrit ing sys tems [Ders84]. Recent  interesting work includes: 

an inclusion of logical variables in the functional programming 

language FEL {Lind85}; the use of narrowing as the opera- 

tional semant ics  for a functional programming language 

iRedd851; and regarding programs as , terminating) conditional 

rewrite rules [Ders851. The research reported in 

[Dar185 Sago85, Smo185] is also along ~hese lines. 

Some of ¢~hese extensions are not based on equality; 

instead they generally rely on some rather  complex deno~a- 

gional semantics.  For those tha t  do provide a form of equality 

reasoning, the strong termination property is imposed. The 

language we are proposing is based on the classical theory of 

equality, the use of which accrues semantic simplicity and the 

ability ~o reason about  equations. Furthermore.  no strong 

terminat ion proper ty  is imposed in our language. 

8.  EquationM Logic Programs 

DefiniLion 1. An equational logic program is a set  
of equations 

~0 = '80' C~l = '31'" ...... e n  - -  fin 

where variables appearing in ,8 k must  also appear  
in c~ k. 
A goat of equalities is a conjunction of equalities, 
and is of the form 

?- A 0 = B0, A 1 = B 1, ..., A m - -  Bin, 

where A. and B. are terms. 
1 1 

There  is a distinguished goal, called the empty  
goal. 

D 

Two of the commonly used conditional functions can be 

defined as: 

if then_else(true, X, Y) = X 

if_then_else(false, X, Y) = Y 

if_then(true, X) = X 

where true and false are two cons tant  function symbols  and 

X and Y are variables. 

3.1. O p e r a t i o n a l  S e m a n t i c s  

The  operat ional  semantics  of the equational logic pro- 

grams defined here consists of two inference rules: narrowing 

and deletion upon unification. 

D e f i n i t i o n  2. Let G be a goal of equalities 

?- A 0 - -  B0, A 1 B 1, ..., A m - -  B m. 

N a r r o w i n g :  If A i is narrowable at occurrence u, 0 
< i <  m. i.e.. 

A1 ~ > [u,k/r] A'i '  

then G'  is a goal derived from G and is of the form 

- -  .., A ' . -  ~r(A m ?- cr(A0 B0)' 1 ~r(Bi)' " Bin)' 

D e l e t i o n  U p o n  U n i f i c a t i o n :  If A and B 0 < i 
< m. are unifiable with the most  general unifier o, 
then G' is a goal derived from G, and is of the 
form 

?- a(A 0 : B0, ... 

Ai_ 1 - -  Bi=l, 

Ai+  1 - -  Bi+ 1 . . . .  

A m : Bin). 

We denote by a pair < G ' ,  er>,  the derived goal G'  
and the unifier it is associated with. [] 

211 



Deflnl t lon 3o Let G be a goal of equalities. A sue- 
ce~ful computation from G is an N-derivation 
sequence (narrowing based derivations) which is a 
finite sequence of pairs 

<GO, p0 > ,  <G1, pt > ,  ..., <Gq,  pq>,  

where G O --- G, P0 is the identity substitution, 
C, ,  ~ is a goal derived fr m G~ ann Pi' ~ the umfier 

bv1 . . . .  1 -1 
ae.soolated wi th  this der lvat lonj  and C4 is the  
empty goal. q 

Let W be the set of variables in ©. The computed 
answer with respect to the above sequence is a sub- 
stitution restricted to W, and is defined as: 

= (Pq°Pq_: . . . . .  e l ° @ l  w-  [7] 

Example: 

We use the function append to illustrate the operational 

semantics defined above: 

append({], L) == L 

append(A"X, Y) = A ~ append(X, Y) 

The goal 

?- append(a~Y~[], e~d~[]) = append(a~b~c*[], d~[]) 

generates a substitution {Y < - -  b}. 

As was alluded to earlier, Prolog programs may be 

"translated" into equations in a straightforward way. }'or 

example, the predicate append in Prolog 

append([], L, L). 

append(A~X, Y, A~Z) > append(X, Y, g). 

can be translated into the following equational logic program 

append([1, L, L) = true 

append(A^X, Y, A~Z) = append(X, Y, Z) 

The goal 

?- append(a"Y"[], e"d~[], a%%~d"[D := true 

also generates the binding {Y < - -  b}. 

The program above can be written in a Lisp-like manner 

as follows: 

append(X, Y, Z) = if X ~ [] then Y ~ Z 

e~e and(~rst(X)~ tirst(Z), 
append(rest(X), Y, rest(Z))) 

where we assume the availability of certain builb.in functions, 

which may be defined as: 

first(A"X) == A 

rest(A~X) .... iX 

and(true, true) == true 

arid(faNs, X) =: false 

and(X, false) : false 

A =~= A ..... true. 

The goat 

% append(a~Y^[l, c~d~[], a%%~d"[]) =: true 

also generates the binding {Y < - -  b}. 

The equality predicate _~s defined above can be directly 

supported by the operational semantics. An equality A ~ B 

is simply "evalua~aed" by narrowing and deletion upon 

unification, returning true when the empty goal is derived, 

and false when derivation stops with a non-empty goal 

(because of undecidability, computations of this type may not 

always terminate). We can thus write equations like: 

f(X) == if p(a) -~ q(a) then g(X) 

which simulates the following clause in Prolog with equality 

f(x) : g(X):- p(a) = q(a) 

4. S e m a n t i c  F o u n d a t i o n s  

in this section we show that operational semantics 

defined in the last section are faithful to the classical theory 

of equality for a large subclass of the closed linear equational 

logic programs. That  is, for this subclass of equational logic 

programs, whenever there exists a solution for a given equa- 

tion, the generation of this solution (or a more general one) is 

guaranteed by the operational semantics; and whenever the 

empty goal is derived, the computed answer is indeed a solu- 

tion of the equation. 

Def ini t ion 4. Let E be an equational logic pro- 
gram. Let F be the set of function symbols that 
occur in Eamd V be a set of variables, such that V 
A F = ~. The free algebra over V, denoted by 
T(F,V) contains the set of all terms constructed 
from the function symbols in F and the variables in 
V. 

The classical theory of equality is defined as the E- 
equality, denoted by ~ E '  which is the finest, 
congruence on T(F,V), closed under instantiation, 
i.e., if A = B is in E, then erA = ~rB is also in E for 
any substitution er that maps from variables to 
terms in 1IF,V). 

Definition 5. A substitution ~r is a solution of the 
system of simultaneous eq~ations 

A O - - B 0 , A  I = B  1 , , . . ,A  m = B  m, 

if and only if 

~rA0 = E  orB0' (rA1 = :g  ~BI '  - "  ~Am .... g ~Bm' 

An equational logic program P denotes the set of all 
systems of simultaneous equations ttiat have a ~ lu-  
tion. [~ 
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Note that  solving a goal of equalities of the form 

?- A 0 .... B0, A 1 == B1, ..., A m = B m 

is equivalent to solving the goal 

?- H(A 0 ,A  1 . . . . .  A m ) =  H(B 0 ,B 1 ..... Bin), 

where H is u function symbol that is not in F. 

Def in i t ion  Ig Let E be an equational logic program. 
Let W be the set of variables in an equation P := Q. 
The notion of E-equality is extended to substitu- 
tions restricted to W as follows: 

cr - - E  p [W] iff vx E W crx = E  px. 

Let both ~r and p be solutions of P = Q. We say ~r 
is more general than p under the equational logic 
program E and restricted to W, denoted by 

-<-E P [w], 

if and only if there exists a substitution r/such that 
the composition ~/o ¢ is E-equivalent to p, i.e., 

' ° ~  - - S  p [W]" 

It turns out that  the operational semantics may not 

necessarily always coincide with the denotation defined above 

for an arbitrary equational logic program. The correctness of 

the operational semantics follows from the work of Hullot in 

iHull80l; the problematic aspect is completeness. Take, for 

example, the rewrite rule a ~ h(u). The goal of equality 

?- g(X, X) = g(Y, h(Y)) 

is solvable with the following substitution a = {X < h(a), 

Y < a}. The operational semantics based on narrowing, 

however, cannot generate any solution. Solving equations, in 

its most general setting, is bhe problem of unification in equa- 

tional theories [Plot72]. An equational theory is described by a 

set of equations. In this context there can be more than one 

most general solution for a given equation. For the purposes 

of efficient computation, equations can be ~reated as rewrite 

rulem The completeness of using rewrite rules in making 

deductions equationally is expressed by the Chureh-Rosser 

property, or equivalently, the confluence property, which says 

that  two terms are E-equivMent if and only if they can be 

reduced to an idenficM ~erm. Fay has shown that  the nar- 

rowing method is complete for canomcal term rewriting sys- 

tems [Fay79]. But canonical term rewriting systems do not 

usually make use of conditional functions, for the reason that 

conditional functions often introduce non-terminating reduc- 

tion sequences. Consider. for example, the familiar definition 

for factorial 

factorial(N) = if N = O then 1 else N * factorial (N-l). 

In almost all of the existing functional programming 

languages, the conditional if then_else is treated as being 

non-strict, thus ensuring termination for apprgpriate compu- 

tations. Viewed as a term rewriting system, hd~ever, the ter- 

mination property ~ lost; for example, the invocation of fac- 

torial(-4) wilt result in an infinite reduction sequence. This 

appears to be a major difficulty in attempts to formMize an 

equality-based computational model for non-canonical term 

rewriting systems. 

Our attention is focused on the class of closed linear 

term rewriting systems; this class allows non-terminating term 

rewriting systems, and is basically the formalization of 

Hoffmann and O'Donnell's language. The linearity property 

says that no variables can occur more than once in the left- 

hand side of an equation and is required in defining the clo- 

sure property. Without the linearity property we could not 

identify the exact rearrangements of subterms by a reduction. 

For example, consider an equation f(X,X) - -  X. If we reduce 

f(a,a) to produce the term a, we will then have a problem in 

identifying which a in f(a,a) the resulting term a is a rear- 

rangement of. However, if a variable disappears in the right- 

hand side, the linearity condition on the lefthand side can be 

removed. This is why equations like 

append(A^X, Y, A^Z) - -  append(X, Y, Z) 

A ~ A - -  true 

do not pose any problems. 

The closure property is a special case of confluence pro- 

perty; it ensures a (closed) relationship between reductions at 

"outer" occurrences and those at "inner" occurrences. As a 

rumple example, consider the equations 

f (x)  ~ c(x ,  x )  

g(a) - b. 

For the term f(g(a)), we have the following picture embodying 

the closure property: 

f ( g ( u ) ) - - >  e(g(a), g ( a ) ) - - >  c(b, g(a)) 

J I 
V v 

f(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  > c(b,b) 

We continue in the next section to give a more formal 

account of the class of closed linear term rewriting systems. 

and show the soundness and completeness of the operational 

semantics. 
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4.1 Cloeed  L i n e a r  T e r m  R e w r i t i n g  8yg t em s  

To refer go terms, as well as subterms, function symbols 

and variables in a ~erm, we need the following definition. 

Def in i t i on  7o Terms in 2~(F,V) can be viewed as 
]abeled trees in the following way: a term A is a par- 
tial function from N*, the see of finite sequences of 
positive integers, to F U V, such tha t  its domain 
idA)  satisfies: 

(iO u e ~ t  i) ~ i.u c ~ f (h , . - , t i , - . , tn ) )  ~ < i < n. 

_[)(A) is called a set of occurrences of A. The set of 
occurrences are partially ordered: 

u < viff~w u . w - - v  
u < v i g u  < v & u C v ,  

The quotient u-v  of two occurrences u and v is 
defined as: u -v  = w iff v.w =~ u. 

If u < v we then say that u is outer to v and v is 
inner to u. 

We say t ha t  two occurrences are independent, 
denoted b y v  < >  u, iffv ~ u & u  ~ v. 

We denote by V(A) the set of variables appearing 
in A. 0 

The rearrangement of subterms by a reduction is charac- 

terized by t, he notion of the residue map, which is defined 

below. 

Definition 8, Let R be an equational logic prep 
gram. The residue map r with respect to a linear 
term rewriting system is a function, as defined 
below: 

r> --~{n,kiS]~, 

= {u.w.(v-v') 1 ~ (v') e ~ R )  g % ( v ' ) = & ( w )  ~ v' < v }  
k if q% u and:rED(A) - 

= {v} if u < >  v and rED(A) 

= ¢ otherwise, 

where A . . . .  B denotes tha t  the term A reduces 
a r k  

go B at, occurrence u using the kth defining equa- 
tion. 

We say that an occurrence w is a residue of v with 
respeegareduct ionA-~fu,klB. ,  if and only if 

w ~ r[A -~(u,k]Blv. 

B 

Note that  the positions o:f the variables in a rewrite rule 

indicate the resul~ of t, his rearrangement process. 

The definition of the residue map r can be extended go 

show how asefi of occurrences is rearranged by a sequence of 

reductions~ 

Def in i t i on  8. Let 

S .... A 0 -*Uo ... --~Un_l A n. 

The extended residue map ~ is a function, 
defined below: 

aS 

for any N C D(A0) 

?In 0, {Uo, .,,%q)]N 

= ? I n n _  1, {Un_l}]?[a 0. {u 0 ..... na_2}]N 

for any M g D(A0) 

?{a i, {ui)lM 

= U v E M r[Ai -+u. Ai+liV 
1 

0 

Intuitively, the above definition says tha t  the residues of 

a set of occurrences are the union of the individual residues, 

and tha t  a residue by a sequence of reductions is the cascaded 

residue yielded by the individual residues in the sequence. 

We are now in a posit, ion to define the closure property. 

Def in i t i on  10o An equational logic program R is 
closed if and only if 

(i) Vu,v e D(A) ((u < v & A -~u g S~ A -~v C) 

~D (S % I a - , s l g  D ~ c - %  D)) 

( i i ) ~ a e D ( A ) ( a - ~ u B & A - ~ u  C) D B = C  

S 

Clause (i) of fihe closure property is illustrated in Figure 

1. The second clause says tha t  if two different lefthand sides 

match the same term, them the corresponding r ighthand sides 

must  be the same. The second clause is necessary because 

from the first clause alone one cannot  derive the confluence 

property. 

A u B 

v t I rtA ~ SJv 
V v 

co u D 

FLute I :  The closure property (when n < v). 

The closure property can be generalized to reduction 

sequences. For this and other detuiled exploration, the reader 

should consult [O'Do77, Yo~S5a], 
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It is argued by O'Donnell  in the context of subtree  

replacement  sys tems [0'Do77] (an equational logic program 

defines a subtree  replacement system), tha t  closure is a 

na tura l  and common property,  and the nonclosed subtree 

replacement  sys tems often represent  undesirable axiom sys- 

t.ems. 

T h e o r e m  1. Let E be a closed linear equational 
logic program, and G be a goal of equalities of the 
form 

?- H(Ao~ A 1 . . . . .  Ak) = H(true, true . . . . .  true). 

If G has a solution a, then there exists an N- 
derivation which generates a computed answer p 
which is more general than p. i.e., there exists u 
subst i tu t ion ~ such tha t  the composition t/p is E- 
equivalent to a. 

Conversely,  any computed answer a by an N- 
derivation from G is a solution to the equation in 
the goal, i.e, 

GH(A0' A1 ..... ak) = E  H(true, true ..... true). 

0 

Proof: (Sketch) 

Q = H(B;,  n 1, . 

Note that  Q is nei ther  reducible nor narrowable. 

Suppose the equation P - -  Q has a solution or. It 
can be shown (see. for example, [O'Do77]) that  E m 
confluent if it is closed. From the confluence pro- 
perty,  there exists a reduction sequence of the form 

(a) ~rh(P,Q) = A 0 ~ u 0  . . . .  an-1  A n - -  h(q,Q),  

where h is a new function symbol,  serving as a con- 
structor.  

Let U(cr) denote  the set of occurrences in 
D(ah(P,Q)) tha t  are introduced by the subst i tut ion 
a on h(P,Q). It can be shown tha t  ~here exist 
another  subst i tu t ion a '  which is E-equivalent ~o a 
and a reduction sequence 

. . . . .  B - -  h(Q,Q), 
(b) a 'h (P ,Q)  - -  B 0 Vo vm_ 1 m 

such that  none of occurrences v i is a residue of any 

subterms in c?. Tha t  is. 

Wi, 0 < i < m - l .  v i E ?[B 0, {v0,...,Vi_l}lUia'). 
It can be fur ther  shown that  corresponding to each 
reduction sequence of the above form. there exists 

an N-derivat ion sequence 

< G  0, '70>,  < G  1, 7 1 >  ..., < G m _  1, 7m_l  > ,  

such that  the  composition 

u = r/o 7m__ 1 o '7m_2 . . . . .  "~0 

is a solution of the equation, i.e., uP - - E  uQ = Q, 
and is more general than a. 

Conversely,  for any N-derivation sequence issuing 
from hiP,Q),  let u be the computed answer gen- 
erated by the sequence. It can b~ shown  that  there 
exists a reduct ion sequence 

-~h(q,Q). ~,h(P,Q) * 

This implies tha t  v is indeed a solution to the e q u ~  
tion P - -  Q. This  completes the proof. 0 

A complete proof of Theorem 1 involves several lemmas, 

proofs of which can be found in [You85a]. The role tha t  the 

closure property plays here is that  a reduction sequence of the 

form (a) can be " t r an s t b rmed"  to a reduction sequence of the 

form (b) in a finite number  of  s t eps  The  proof of the existence 

of  an N-derivation sequence corresponding to a reduction 

sequence of  the form (b) is a variant  of the one presented in 

[Hull80]. It should be mentioned tha t  there may not  always 

exist an N-derivation sequence for an arbitrary reduction 

sequence of the form (~) [You85c]. 

When  a goal of equalities is of the  form 

?. H(A0, A 1 . . . . .  Am) -~ H(true, t rue . . . . .  true), 

the rule of deletion upon unification can be ignored. This  is 

described in the following proposition. 

P r o p o s i t i o n  2. Let P = H(A0,...,Am) and Q - -  
H(true,. . . , true).  Let also h be a function symbol  
not  in F. For  a goal of equalities of the  form ?- P 
= Q, there exists a narrowing sequence 

h(P,Q) ~ C O 

CO ~ >  [u0,k0;'70 ] " ~?>[u q - l ' kq - l ;Tq-1]  Cq 

C -- h(Q,Q), 
q 

such that the composit ion ~q-1 °'7q-2 . . . . .  70 is a 
solution of P - -  Q. 

P r o o f :  Since Q is composed of constant  function 
symbol  true, the rule of deletion upon unification Is 

no~ applicable unless A., for some i. h ~  narrowed to 
• 1 

true. Applications of the rule of deletion upon 
unification on trivial equations of the form true 
t rue can obviously be suspended until no narrowing 
is possible. Theorem 1 therefore guarantees the 
existence of a narrowing sequence leading ~so h(Q Q). 

[3 

Now when a goal is an arbi trary equation, completeness  

is not  always guaranteed even for closed linear term rewrit ing 

sysl~ems. For  example, the rewrite rule a ~ h i s  ) ment ioned 

earlier is trivially closed linear A fur ther  property,  called the 

non-repetition property needs to be imposed to eliminate such 

"undesirable  equatmnal  logic programs.  IntUitively. if a term 

rewrit ing sys tem is non-terminat ing,  there are non- 

terminat ing reduction sequences, in which some rewrite ruleis ) 

mus t  be used for reductions infinitely many times. For  exam- 

ple, suppose tha t  f( t , t ) g(s s ) is a rewrite rule tha t  
1 ""' n 1 ' " "  m .  

is used infinitely many t imes in a non- terminat ing  reduction 
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sequence. We then have an infinite number  of subterms 

(within the reduction sequence) tha t  are reduced by this rule: 

f(t[1,1],"',t[1,n]), f ( t{2 ,1] , , t  [2,n ]) . . . . .  f(t[k,1 } ..... t[k,n ]) . . . .  

This yields an infinite set of subterms Qf, <dements of which. 

are reduced by the same rewrite rule defining the function f. 

Some of these terms may be equivalent, i.e., 

f(t[i,1]'""t[i,n]) - - E  f(t[j,1]"'"t[j,n]) 

for some i and j. These terms are thus partitioned into 

equivalence classes. The non-repetition property requires tha t  

all such equivalence classes be finite. Accordingly, the allow- 

able non-terminating sequences are those tha t  have an infinite 

number  of such equivalence classes, each class being finite. 

We argue tha t  "normal"  equational programs, where 

constructors are heavily used, possess the non-repetition pro- 

perty. As an example, rewrite rules of the form 

f (x)  ~ x ~ f ( c (x ) )  

are often used to generate infinite data  structures in program- 

min t  languages with a lazy evaluation mechanism, where e is 

a constructor. If we do not have a rewrite rule of the form, 

say, a ~, e(a), then f(x) and f(e(x)) wilt not be equivalent no 

mat ter  how the variable x is instantiated, and the program 

hence possesses the non-repetition property. Furthermore, 

such undesirable equational logic programs may be syntacti- 

cally detected, or even detected at execution tinge so tha t  the 

user would know there is a possibility of not getting an 

answer even if one exists IYougSe]. 

For the class of closed linear term rewriting systems with 

the non-repetition property, the soundness and completeness 

of the operationM semantics is ensured by the following 

theorem. 

T h e o r e m  3o Let E be a closed linear equational 
logic program with the non-repetition property, and 
]et O be a goal of equalities of the form 

?- H(A 0, A 1 ..... , A m)  - -  H(B 0, B 1, . - ,  Bin).  

If G has a solution ~r, then there exists an N- 
derivation generating a computed answer p which is 
more general than p. i.e., there exists a substitution 
~ such tha t  the composition ~ o p ks E..equivalent to 

Conversely, any computed answer o" by an N- 
derivation t~om G is a solution go the equation in 
the goal, i.e, 

c~H(ao' 11 '  ""  Am) = E  cfft(Bo' BI '  : "  Bin)" 

Proof: (Sketch) Notice that  here the term 
H(B~ B . . . . .  Bin) is no longer composed of constant  
funetmn syni~ols. In such a case, for an arbitrary 
reduction sequence and some term R 

(i) ah(e ,Q)  = A 0 --~u0 ... -~Un_l A n =: h(R,R), 

there exists a reduction sequence 

. . . . . .  - ~  B = h ( R , a  ),  (ii) c~ h(P,q) B 0 VO Vm__l m 

such tha t  ~' is E-equivalent to and none of 
occurrences v. is a residue of any occurrence ill 
U(o"). Given Ithis, the remainder of the proof of 
Theorem 1 follows through unmitigated/ [] 

5. Lazy Narrowing on Conditlonal Terms 

A term involving a conditional function symbol, such as 

if then else and if then, is said to be a "conditional term". 

In almost all functional languages, conditional functions are 

treated as being non-strict; only the conditional part is 

evaluated at first, and the expression then gets reduced 

according to the result of tha t  evaluation. 

To incorporate a similar strategy into equational logic 

programming, we need to adjust  the definition for E-equality. 

Recall tha t  the free algebra ir~F,V) is divided into congruence 

classes, closed under instantiation, each of which contains 

equivalent terms. Let T be a congruence class, which is the 

union of two disjoint subsets 

T == T c U T n 

where T is the set of all conditional terms and T the set of 
C n 

all non-conditional terms. 

We now interpret ==E to be the congruence of Tn'S , 

tha t  is, all the conditional terms are taken out. We believe 

that  this interpretation also reflects the intuition of using con- 

ditional equations ' in programming: conditional terms are not 

considered as "final results" but  intermediate results tha t  

need to be evaluated further to yield nonconditional terms. 

This interpretation yields the desired result by forcing the 

operational semantics to perform narrowing on the condi- 

tiona.1 part, and never perform the rule of deletion upon 

unification for conditional terms, since equalities are no longer 

considered for conditional terms. 

Al though  this semantic adjustment  seems to violate the 

pure meaning of symbolic coraputagion and has all "opera- 

t ional" flavor, we believe that  the equality-based semantics is 

not greatly impacted, and the simplicity of the semantics is 

preserved. 
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6. I m p l e m e n t a t i o n  C o n s i d e r a t i o n s  

We have described the basic formMization of an equa- 

tional logic programming language wherein closed linear term 

rewriting systems serve as programs, Several programming 

constructs and implementation strategies might be useful 

under this formalization. 

* A User-Controlled Reduction Construct - -  The use of 
this construct in a program will force the reduction to be 
performed until the subterm under consideration is not 
reducible. The need for this construct is based on the fact 
that although we have used narrowing as part of the 

operational semantics, the reduction mechanism is still u 
useful one. First, the matching procedure (used in reduc- 
tion) can be implemented more efficiently than unification 
(used in narrowing). This is particularly true for left- 
linear equational programs. Secondly, because of the 
confluence property, reduction steps are not subject to 
backtracking while narrowing steps are. Moreover, the 
reduction construct itself serves as an evaluation mechan- 
ism for an equational language. 

* Ignoring the Rule of Deletion upon Unification --- Recall 
that the operational semantics consists of two rules, one 
of which is called deletion upon unification. When u goal 
is of the form A = true, only narrowing derivations need 
be carried out on A, aa described in Proposition 2. The 
rule of deletion upon unification needs to be applied only 
when no further narrowing is possible. 

* Embedding the Rule of Deletion upon Unification into 
Narrowing --- At each point during the execution of a 
goal, both the rules of narrowing and deletion upon suc- 
cessful unification should be tried. Also, narrowing steps 
are subject to backtracking (if so implemented). Redun- 
dant narrowing sequences should be eliminated in an 
implementation. For example, an equation like g(a) ,= 
h(f(X)), where g and h are constructors, is not solvable no 
matter how many narrowing steps are performed on f(X). 
Furthermore, the work done by deletion upon successful 
unification should not entirely ignored when backtracking 
occurs. A method that accommodates these observations 
is described in [You85c I. 

7. C o n c l u s i o n  

We have proposed an equational logic computational 

paradigm and argued its usefulness. An equational logic 

language was described and some practical considerations 

were discussed. 

The equational logic language described here can be 

embedded into Prolog to obtain a language which provides 

logic programming with equality, and in which usual Horn 

clause logic programming and functional programming are 

both supported. The theoretical basis for this approach stems 

from the results in [Ptot721 where it was shown how equa- 

tional theories could be built into resolution procedures. 

Theorem 3 presented in Section 4 is actually u completeness 

theorem for the class of closed linear term rewriting systems 

with the non-repetition property. 
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