
Efficient Applicative Data Typest

Eugene W. Myers

Department of Computer Science
The University of Arizona

Tucson, Arizona 8~721

1. Introduction

Applicative programming has long been advo-
cated on theoretical grounds because the formal pro-
perties of such programs are simple and elegant.
Recently, there has been a trend to use the applica-
tive approach in software development tools [3] and
programming languages [2,7]. Unfortunately, the
requirement that operations be free of side-effects
makes it difficult to achieve efficient implementa-
tions [7]. To date, there are only two published algo-
rithms [5,8], which treat the applicative manipulation
of queues and stacks.

This work presents O (IgN) time and space algo-
rithms for the applicative manipulation of linear lists.
A generalization of an AVL tree, called an AVL dag,
is used. While the result is simple, its consequences
are far reaching. Since almost every non-scalar data
type can be modeled with lists, the results presented
here are a powerful method for improving the imple-
mentations of applicative languages. The results also
provide a fast and space efficient method for con-
structing history systems such as editors with unlim-
ited "undos" and version control systems. Finally,
lists can be realized in value-semantic programming
languages, such as PASCAL, with worst case perfor-
mance superior to any previously proposed solution.

Space is at a premium in history systems. An
enhancement that improves absolute space perfor-
mance by a factor of two for applicative editor opera-
tions (e.g. move, transfer, etc.) is also presented. The
O (1) time and space results in [5], suggest the possi-
bility of yet more efficient applicative algorithms for

1"This work was supported by the National Science Foundation
under Grant MCS-8210096.

Permission to copy without fee all or part of this material is grant-
ed provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires n fee and/or specific per-
mission.

© 1983 ACM 0-89791-125-3/84/001/0066 $00.75

the simpler sub-abstractions of list. Algorithms are
presented for arrays that perform in O (KN ~/K) time
and O (K) space where K may be chosen arbitrarily.

2. Motivation

In many applications it is desirable to view a list
data structure as an instance of a "linear list". For
example, programming languages manipulate
"integers", "arrays", "strings", etc. Formally, we
assume that a value-semantic linear list data abstrac-
tion consists of: an arbitrary and time varying
number of objects of type linear list; a fixed finite cob
lection of operators that access and manipulate
objects; and a time varying set of variables, each of
which refers to an object. Variables can be created,
destroyed, and their reference relation can be modi-
fied by assignment. A variable denotes the value of
the object to which it refers. Only assignment can
change the value of a variable.

The state of the data abstraction is the collection of
objects referred to by the current set of variables. A
typical linear list operation repertoire [6] consists of:

(1) LEN(L):Integer
Determine the number of elements in list L.

(2) SEL(L,k):X
Select the ld h element of list L.

(3) RNK(L,x):Integer
Determine the rank of x in an ordered list L.

(4) ADD(L,k,x):List_of_X
Insert x after the k th element of list L.

(5) DEL(L,k):List_of_X
Delete the k th element of list L.

(6) CON(Li ,l.,z):List_of-X
Concatenate L I and L 2.

(7) SUB(L,ij):List_of_X
Select the i th through jt~ elements of L.

The primitives have been formulated as functions.
The constraint that only an assignment can change
the value of a variable forces an implementation in
which an operator may not modify the values con-

66

tained in its operands, i.e. it must operate applica-
tively. Such implementations are applicative data
types.

Height-balanced models such as AVL trees [I,6]
are frequently used to model linear lists because of
their "smooth" O(IgN) worst-case behavior. They
are, however, unsuitable in a value-semantic frame-
work because of their procedural formulation. For
example, the concatenation algorithm is usually for-
mulated as a procedure, CA TENATE(LI,L2,L3),
which places the concatenation of L 2 and L 3 in L I.
The procedure doesn't consume space, but it destroys
its operands L 2 and L 3 through rebalancing and join
operations. The presumed origin of this semantic
choice was the assumption that the preservation of
the operand trees would require that copies be made
at an intolerable cost of O(N) time and space. As
shown in the next section, this assumption is false.

3. AVL Dags

The observation that led to the concept of an
AVL dag and its applicative algorithms is illustrated
by an example. Consider the AVL tree at the left in
Figure I. Suppose that the vertex labeled X is to be
added as the right child of vertex 5. The procedure-
oriented AVL algorithm modifies vertices 4, 5, and 6
to produce the result shown at the upper right. The
list represented by their ancestor, 3, is also indirectly
affected. Let A be the set of vertices directly modi-
fied by an AVL operation. Let A* be the set consist-
ing of A and every ancestor of a vertex in A. It fol-
lows that A* is exactly the collection of vertices, v,
whose list values are modified by the operation.
Thus, the result of the operation can be represented
(while still preserving the original tree) by using
copies of just the vertices in z~*. In the example, this
leads to the dag shown at the lower right of Figure I.

Note that in Figure !, A* is exactly the set of ver-
tices on the search path from the root to the point of
insertion. For other AVL operations, A* more gen-
erally depends on the balances of search path vertices
and their children and grandchildren. Nonetheless,
the cardinality of A must be O(IgN) for any AVL
algorithm because it operates in O(IgN) time.
Moreover, 4" is O(IgN) because AVL algorithms
modify a tree along just one or two search paths.

The tree resulting from an AVL operation is to be
represented augmentatively and consequently it may
refer to unaltered vertices in its operand trees. Thus
the representation for the state of an AVI. data type
is a dag with the following special properties.

, , ; ; 5

:7 ,;;'
k',

FIGURE 1: THE CENTRAL IDEA

(a) The dag is a binary dag. There is a special vertex
A that has out-degree 0. Every other vertex has
out-degree two and its two children are further
ordered into "left" and "right".

(b) Let the height of a vertex, v, in the dag be the
length of the longest path from v to A. The dag
satisfies the height-balance property: the heights
of the left and right children of every vertex
(except A) differ by at most I.

A dag satisfying these properties is an A VL dag. Fig-
ure 2 gives an example.

q ~ _ _ _ _ ~ % ~ ~L,.~.~.,,Ib_ALCLO,,A.,_C>_/~"~ V - -

. _ f

1 V A t . ' ~ ~ ~ - - S

o V--
AVL DAG

)

AVL TREE(uNaRA]DED COUNTERPART)

FIGURE 2: AVL DAG EXA/tl~

An AVL dag encodes a collection of linear lists as
follows. As for AVL trees, each vertex v (except A) is
labeled with a list element. The value of v, Val(v), is

67

the list of labels encountered in the symmetric and
unmarked traversal of the subdag dominated by v.
Equivalently, one can imagine "unbraiding" this sub-
dag by replicating every vertex with in-degree greater
than one until a tree rooted at v is obtained. This tree
is an AVL tree and its symmetric label list is Val(v).
Thus every vertex in the AVL dag represents an AVL
tree whose symmetric order list is the linear list being
modeled. It then follows [I] that the length of every
path from v to A is O(IgN) where N =lVal(v)~.

4. Applicative AVL Algorithms

An AVL dag models the state of the list data type.
Each variable refers to a dag vertex v; the list denoted
by the variable is Val(v). The list operations require
new vertices and cause current state vertices to
become unused, i.e. the vertex cannot be reached
from any vertex referenced by a variable. Thus a
storage management scheme that allocates and gar-
bage collects vertices is needed. An incremental
reference counter method [10] provides the O(!)
allocation and collection algorithms -- NEW, INC,
DEC. References to vertex v are created and des-
troyed with INC(v)and DEC(v). NEW(I,x,r)gen-
erates an initial reference to a new vertex with label x
and left and right sons i and r. The efficiency of the
method in [10] permits the on-line cost of storage
management to be included in subsequent complex-
ity claims (see Appendix A).

Each AVL list space vertex is modeled by the
record:

Type vertex =
Record

RC: integer (* Reference Count *)
LN,H : integer (* Length and Height *)

L,R :)vertex (* Left and Right Siblings *)
V : X (* Label (List Element) *)

End

Type list =)vertex

The LN field contains IVal(v)~+! and is used in
searching for a list element. The fields LN and H are
maintained by the list space primitive NEW. For
simplicity, the INC and DEC calls needed to main-
tain reference counts will be ignored.

The applicative nature of AVL dags suggests that
a recursive and functional "bottom-up" approach be
used in the exposition of the algorithms. It has long
been recognized that the functional style of program-
ming leads to terse and conceptually clear algo-
rithms.t Consider the operation ADD(v,k,x) which

1" The entire AVL dag implemented list abstraction (in-
cluding storage management) was written in 193 lines of C.

inserts x after the k th element of Val(v). For the
moment, ignore the constraint that the result be
height-balanced. If v -- A then Val(ADD(v,k,x)) =
<x> and thus NEW(A,x,A) generates the
desired reference. Proceeding inductively, if v ~ A
and k < v.L.LN then Val(ADD(v.L,k,x)) --
Val(A DD(v,k,x))[i..v.L. LN] implying that
NEW(ADD(v.L,k,x),v.V,v.R) generates the correct
refereence. Similarly, when k _> v. L. LN, the
desired reference is generated by
NEW(v.L,v.V,ADD(v.R,k--v.L.LN,x)). These facts
lead to the algorithm:

Function ADD(v: list; k: integer; x: base) : list
I. I f v = AThen
2. ADD -- NEW(A,x,A)
3. Else If k < v.L.LN Then
4. ADD -- NEW(ADD(v.L,k,x),v.V,v.R)
5. Else
6. ADD ~ NEW(v.L,v.V,ADD(v.R,k-v.L.LN,x))

The recursion descends along a search path to A and
produces its result by adding new vertices to the AVL
dag as it proceeds back up this path.

While applicatively producing the correct list
value, ADD does not retain the height balance pro-
perty because the heights of search path vertices may
be incremented producing a number of locally unbal-
anced sights. These local imbalances are rectified by
a central utility algorithm, BAL(I,x,r), which per-
forms the applicative equivalent of the single and
double rotations used in conventional AVL algo-
rithms. The function BAL(l,x,r) has the same effect
as the primitive NEW (i.e. returns
Vai(l),<x>*Val(r)), but in the event that
I. H- r .H ~ [-2,2], BAL guarantees a height-balanced
result.

Function BAL(I: list: x: base: r: list) : list
I. l f I .H-r .H E [-!,1] Then
2. BAL -- NEW(I,x,r)
3. Else If I.H > r.H Then
4. If I.L.H > I.R.H Then
5. BAL -'- NEW(I.L,I.V,NEW(I.R,x,r))
6. Else
7. BAL "- NEW(NEW(I.L,I.V,I.R.L),

I.R.V,N EW(I.R. R,x,r))

8. Else
9. If r.R.H > r.L.H Then
I0. BAL "-- NEW(NEW(I,x,r.L).r.V,r.R)
I I, Else
12. BAL "-- NEW(NEW(I,x,r.L.L),r.L.V,

NEW(r.L.R,r,V,r.R))

68

OPERATOR TIME Z~:ORDER ~:ABSOLUTE L~:EXPECTED

SEL(v,K)

RNK(v,x)

ADD(v,K,x)

DEL(v,K)

CON(L,R)*

SUB(v,I,J)

O(LG N) 0

O(LG N) 0

O(LG N) O(LG

O(LG N) O(LG

O(LG M) O(LG

O(LG N) O(LG

N)

N)

M)

R)

0 0

0 0

s v.H+I .995 LG N + 1.23

~(v.H-I) .998 LG N - .275

+½(R.H-1) .966 LG M + .520 _< L.H

s 3v.H-5 1.94 LG R - .170

WHERE N = IVAL(v) I M = IVAL(L)I R = J-I

* WLOG ASSUME L.H z R.II

TABLE I: AVL DAG PERFORMANCE SUMMARY

BAL is O(l) and it adds a maximum of three new
vertices to the dag. To maintain the height-balance
property in the algorithm ADD above, simply use
use BAL instead of NEW.

The algorithms for deletion, concatenation, and
substring selection are similarly obtained by formu-
lating the applicative equivalents of their procedural
AVL tree counterparts (see Appendix A). The selec-
tion and rank primitives are elementary binary
search algorithms. By analogy with the classic AVL
algorithms, these AVL dag algorithms require
O(IgN) time. Moreover, it follows that BAL is
called at most O (IgN) times and thus A" is O (igN)
for every operator. A more detailed analysis yields
the performance bounds presented in Table I. The
issue of space performance is new to AVL dag algo-
rithms. Table 1 includes tight upper bounds for the
absolute value of A" and its experimently deter-
mined expected value. The derivations of the tight
upper bounds are given in [9]. The expected perfor-
mance statistics were obtained by running a linear
regression on the average value of A" for a geometric
series (5 to 2134 in steps of 1.4) of 19 parameter
values. Each average was obtained by running 500
experiments on randomly constructed AVL trees of
the required parameter size.

The augmentative approach employed here is not
specific to AVL trees, but can be applied to any tree-
based method yielding new data structures such as B
dags, 2-3 dags, heap dags, and dynamic binary search
dags. The corresponding applicative algorithms have
the same time performance as their procedural coun-
terparts; the space performance of a transforma-
tional primitive (e.g. ADD vs. SEL) is the same as its
time performance.

5. Applications

A. A Value Semantic List Data Abstraction

The immediate consequence of AVL dags is a
superior implementation of list algorithms in a
value-semantic framework.

Corollary I: Let A be a list algorithm whose com-
plexity is O(F) when list operations are assumed to
be atomic (i.e. O(l)). Further suppose that A uses 1
elements of input and constant data and that A out-
puts O elements of output. Using the AVL dag algo-
rithms, the real-time complexity of algorithm A is
O(FlgL+l+O) where L is the average length of a
list operand.

Any program must spend time proportional to the
size of its input and output. O(N) algorithms to
build and write AVL dag encoded lists of length N
can be easily constructed. Using AVL dags all opera-
tions require O (lgN) time and space. Variables can
be introduced and removed with O(l) INC and DEC
operations. Of paramount importance is the fact
that assignment is also O (I): DECrement the current
variable reference and INCrement a new one to the
desired value.

The most pathological possibility for the parame-
ter L is represented by the algorithm that reads a list
of length I and then doubles its length in the remain-
ing F-! steps. That is, L can be I'I(/2F). Thus, in
terms of F, l, and O, the AVL dag implementation
guarantees that a list algorithm's real time complex-
ity is O (F (F +lgl)+l +0). The best performance of
previous applicative list algorithms is a real time
complexity of O (FL +1 +0) or O (FI 2 F +I +0).

Let the size of the current state S be the sum of
the lengths of every variable's value. The correct
maintenance of reference counts implies that the

69

number of vertices in the AVL dag is less than S.
Moreover, the size of the dag may be as small as IgS.
Thus the method is asymptotically space optimal. In
practice, it may be more space efficient than co0ven-
tional methods if the incidence of sharing is high
enough to compensate for the incumbent overhead of
the AVL dag model (-20 bytes per vertex).

The fundamental improvement expressed in
Corollary 1 immediately leads to a plethora of new
results for a variety of specific data abstractions. An
applicative ordered list data type is obtained by
employing the primitive RNK. As a result, the
method provides applicative O(IgN) implementa-
tions of the numerous sub-abstractions of list or
ordered list, such as arrays, tables and any complex
structure encoded as lists. In practical terms, the
method applies to structures such as text files (a list
of strings), program states (an array of words), and
relational data bases (a finite set of ordered lists of
ordered pairs).

B. Maintaining Histories

A history tree of an object is a rooted oriented
tree in which each vertex denotes a value (called a
version) of the object. The original version of the
object is denoted by the root. The version of every
other vertex is assumed to have been obtained by
applying a transformational operator (called an
update) to the version of its parent. The application
of a passive operation (i.e. one that does not change
the value of the object) is called a query. The prob-
lem is to maintain a history tree that permits efficient
on-line algorithms for: adding a new leaf version
through the application of an update to an existing
version; deleting leaf versions; and querying an arbi-
trary existing version. Any applicative implementa-
tion solves this problem since the invocation of an
update is guaranteed not to affect the version being
operated upon. Thus, the AVL dag method provides
the corollary:

Corollary 2: A history tree of lists can be maintained
in O(igN) time per query or update and O(IgN)
space per update, where N is the size of the version
upon which the operator is applied. Versions can be
deleted in O (1) time.

The generality and efficiency of the AVL dag
method is illustrated by contrasting it with the earlier
work of [4]. Their history problem constrains the
history tree to be a line-graph and their list abstrac-
tion only permits the operations ADD, DEL, RNK,
and SEL (i.e. a table). Their update and query algo-
rithms require O(ig z N) time. In [4], these algo-
rithms were applied to a number of geometric inter-
section problems. The use of AVL dags immediately

gives better results and holds promise for other prob-
lems in computational geometry.

Practical and efficient history systems can be con-
structed with AVL dag history trees. For example,
an editor with complete history maintains a history
line-graph of versions where each version is a text
file; an update operation is a line-oriented editor
command that changes the text; and a query opera-
tion is a passive editor command on a version in the
current history. A text file is a list of lines and is
implemented as an AVL dag. Each line-oriented edi-
tor command can be implemented as a finite compo-
sition of the AVL dag algorithms. This history editor
performs updates in O(IgN) time and space and
queries in O(IgN) time where N is the number of
lines in the text file.

Another class of history systems currently of
practical interest are version control systems. For
example, a source code control system maintains a
history tree of versions where each version is a source
code text file; an update operation is the action of an
editing session on a version; and a query operation
searches or accesses an arbitrary version of the
source code. Modeling text file as above, an update
operation is realized by using the history editor
above to compute the AVL dag representing the final
text file of the editing session. This requires
O(ElgN) time and O (min (N ,AIgN)) space where E
is the number of edit commands in the session; N is
th~ maximum number of lines in the text file; and A
is the number of lines changed by the session. Query
operations can access K contiguous lines of an N line
version in 0 (K +lgN) time.

6. Further Results

A. Saving Space in Applicative Editor Operations
The line-oriented editor of the last section mani-

pulates applicative "text files". A typical operator
repertoire consists of:

(I) LEN(T):Integer
Return the number of lines in text file T.

(2) FIND(T,a):Line
Return the a th line of T.

(3) SCROLL(T,a ,~)
Starting with the a th line, pass successive
lines o f T to the "handler" procedure
until it returns a halt signal.

(4) REPLACE(T,a,s):Text_File
Replace the a th line of T with line s.

(5) DELETE(T,a,b):Text_File
Delete lines a through b of T.

(6) INSERT(T,c, ~):Text_File
Insert the sequence of lines returned by the
procedure • immediately after line c of T.

70

(7) MOVE(T,a,b,c):Text_File
Move lines a through b o f t immediately
after line c.

(8) TRANS FE R(T,a,b,U,c):Text_File
Place a copy of lines a through b of T
immediately after line c of U.

While these operations can be expressed in terms
of the list operations given in Section 2
(e.g. DELETE(T,a,b) = CON(SU B(T,I,a-I) ,
SUB(T,b+I,LEN(T)))), a closer examination of the
underlying mechanism reveals an approach that uses
half as much space. Although this improvement is
only by a constant factor, it is of great practical value
because it doubles the size of histories that can be
maintained.

The basic action used to achieve the list functions
CON and SUB is embodied in the applicative func-
tion JO1N(l,x,r), which has the same effect as BAL
(i.e. returns Val(l)*<x>*Val(r)), but is correct
regardless of the heights of I and r. The procedural
version of JOIN is treated in [6] where x is called the
juncture value (see also Appendix A). The applica-
tive version of JOIN adds a maximum ofll.H-r.H]+l
vertices to the AVL dag.

Consider the operator DELETE. The portion of
the tree to be retained is represented by the height-
monotone slices depicted in Figure 3. The desired
result is obtained by successively joining the subtrees
of the slices together with their interspersed juncture
values. When formulated as above, DELETE first
joins the subtrees of the left slice together in height
increasing order. DELETE then joins the subtrees of
the right slice. A final application of JOIN on the
results of the proceeding two steps produces the
desired list. The sum of the space bounds of each
application of JOIN telescopes to give a total worst-
case bound of 2H÷V vertices, where H is the height of
the heighest subtree in either slice and V is the
number of subtrees in both slices.

Since concatenation is associative, any order of
joins is correct. The improvement is obtained by
using a better "join order" than the one above.
Specifically, the subtrees in both slices are simultane-
ously joined in order of increasing height. This
merged joining is analogous to the sorting technique
of merging two ordered lists. With this order, only
H÷V vertices are added in the worst case.

For DELETE, the height profile of the slices
form a "V". For other operations the height profiles
are more complex and merging opposing slices is
more subtle. For example, the operator
TRANSFER requires the joining of four slices as
depicted in Figure 4. For this "W':profile the
optimum join procedure is as follows: (1) in a

T

i
..o° . .

..•° . .
..°..o " . .

LEFT SLICE RIGHT SLICE
FIGURE ~: DELETE(T,A,I) SLICES

merged fashion join the slice R a,h and the portion of
slice U,+~,** whose subtrees have height less than
lea.H; (2) as in (1) join the lower portion of Uo. , and
all of La. h ; (3) join the results of (1) and (2) with
juncture value Ica. V; and (4) in a merged fashion join
the upper portions of Uo, , and U,+j.** using the
result of (3) to "seed" the merge. With this join
order, at most H+L+V vertices are used where V is
the number of subtrees in all the slices, H is the
height of the heighest subtree, and L is the height of
the vertex h'a.

U

• "

, ,*

~(!T[A~'~ ~ "°" ,,"LCA'", . 'L~U[[B!~
Uo,c LA,r, RA,m Uc+l,-

FIGURE q. TRANSFER (T,A,s,U,c) SLICES

The number of subtrees in any slice is less than
the difference in height between the lowest and
highest subtrees of the slice. Thus V < 2H in the
analysis of DELETE• This implies an upper bound
of 3H vertices when joins are merged and 4H vertices
otherwise. However, these bounds are somewhat
coarse as the space efficiency of the JOIN operations
is not independent of the parameter V. As V

71

OPERATOR

FIND(v,A)

SCROLL(v,A,P)

REPLACE(v,A,S)

DELETE(v,A,B)

INSERT(v,c,p)

TRANSFER(w,A,B,V,C)

MOVE(v,A,B,C)

TIME /~:ORDER ~':EXPECTED ~Q:EXPECTED
--'(UNOPTIMIZED) --(OPTIMIZED)

O(LG N) 0 0 0

O(LG N + K) 0 0 0

g(LG N) g(LG N) .99 LG N + .28 .95 LG N -.28

O(LG N) O(LG (N-R)) 1.89 LG (N-R) -.99 1.04 LG (N-R) + .28

g(LG N + K) g(LG N + K) 1.85 LG N + K -.89 1.00 LG N + K + .23

g(LG N + LG M) g(LG N + LG R) 1.83 (LG N + LG R) - .47 1.07 (LG N + LG R) + 1.11

B(LG N) g(LG N) 1.95 (LGN +LG R$)- 1.19 1.13 (LGN+ LG RS) + .41

WHERE N = IVAL(v) I M = IVAL(w) I R =IB-AI S =Ic-BJ

K = No. OF LINES PROCESSED BY P,

~ : APPLICATIVE EDITOR PERFORMANCE SUMMARY

approaches 2H, the height differences between suc-
cessive subtrees in each slice (and their merged
sequence) become smaller until almost every such
difference is 0 or I. JOIN(I,x,r) requires]I.H-r.HI+I
vertices only when]l. H-r.H] >2; otherwise it uses just
]l.H-r.H] vertices. Thus as V approaches 2H, the
joins become more space efficient. It can be shown
that at most 2H vertices are used when joins are
merged and 3H otherwise. These bounds are tight
and imply that merging joins improves space perfor-
mance by ! / 3 in the worst case.

Table lI lists the asymptotic performance bounds
for the applicative editor operators and shows the
results of experiments designed to determine the
expected-case space usage of both optimized and
unoptimized operators. The experiments reveal that
merging improves space utilization by roughly 45%
in the expected case. A prototype editor using these
primitives has been built. Its speed is comparable to
that of "ed" under UNIX. With a megabyte of
memory, a history of !,750 to 3,500 versions of a
10,000 line text file.can be maintained.

B. Applicative Arrays

An array is a fixed length list with the operator
repertoire:

(1) SEL(A,k):X
Select the k th element of array A.

(2) ASN(A,k,x):Array_of_X
Assign x to the k th element of array A.

While arrays could be modeled applicatively by
encoding them as lists, a more space efficient scheme
is desirable as the length of arrays are frequently very

large. (For example, consider a history system that
maintains versions of a program's state modeled as
an array of words.)

First consider modeling an array as a reference to
a singly-linked list in which each cell encodes an ele-
ment of the array as an <index,value> pair.
ASN(A,k,x) is easy: push a cell containing the pair
<k,x> onto the front of the linked list referenced by
A. This is applicative (the original linked list is not
modified) and requires only O(l) time and space.
SEL(A,k) is achieved by searching A for the first cell
containing index k and returning the associated
value. This requires time proportional to the length
of the linked list which can, unfortunately, be made
arbitrarily large through the repeated use of ASN
operations.

The next refinement guarantees a worst-case time
of O (N) for SEL where N is the size of the array.
Let each cell further contain an auxiliary
<index,value> pair with the following properties.
The auxiliary index of a cell is one more (modulo
N+l) then the auxiliary index of its successor in the
linked list. The auxiliary value of a cell v is SEL(v,a)
where a is the auxiliary index of v. From these pro-
perties it follows that SEL(A,k) can be achieved by
returning the value associated with the first auxiliary
or regular index that matches k. Moreover, at most
N cells must be searched before a cell with auxiliary
index equal to k is found. The one drawback is that
now ASN must engage in an O(N) SEL in order to
establish the auxiliary value of the cell it pushes onto
the linked list. Thus this second approach requires
O (i) space and O (N) time for both operators.

72

Finally, consider modeling an N-element array
A[0..N-I] with a K-dimensional array
B[0 . .W-I]" " ' [0 . . W - I] and for simplicity assume
N = W r. Let the i th element of A correspond to the
i th element in the lexicographical order of elements in
B. That is, let A[i] = B[il][iz]. • • [iK] where ill2 • • • i K
is the K-digit representation of i in the radix-W
number system. Now view B as a W-element array of
(K-l)-dimensional arrays, each of which is a W-
element array of (K-2)-dimensional arrays, and so
on. Applicatively model each of the W-element
arrays using the simple method above. Observe that:

SEL(A,i) = B K

where Bj = SEL(Bj_ I,iJ) for J = I to K
and B 0 = B

Thus a selection into the N-element array requires K
selections into the W-element arrays for a total of
0 (KN I/x) time. Further observe that:

ASN(A,i,x) = C I

where Cj = ASN(Bj_I,ij,Cj+I) for J = I to K
and CK+ I =x

Thus applicatively assigning an element in the N-
element array requires K applicative assignments and
selections into the W-element arrays for O (KN j/A")
time and O (K) space.

Observe that K can be chosen arbitrarily. Space
consumption is constant when K is fixed at a small
integer, e.g. K = 3 gives O(N I/3) time and O(I)
space. Logarithmic search time and less than
0 (lgN) space are simultaneously attained by choos-
ing K = / g N / i g lgN (giving O(/g 2N / Ig IgN)
time). When K = i g N performance coincides with
that of the list algorithms.

Acknowledgements

The author would like to thank Chris Fraser, Gary
Levin, and David Hanson for their many helpful
suggestions.

References

I. Adel'son-Vel'skii, G.M. and Landis, E.M. "An
Algorithm for the Organization of Informa-
tion." Dokl. Akad. Nauk SSSR 146 (1962),
263-266 (Russian). English translation in Soviet
Math. Dokl. 3 (1962), 1259-1262.

2. Backus, J. "Can Programming Be Liberated
from the yon Neumann Style? A Functional
Style and Its Algebra of Programs." Comm.
ACM21, 8 (1978), 613-641.

3. Broy, M. and Pepper, P. "'Combining Algebraic
and Algorithmic Reasoning: An Approach to
the Schorr-Waite Algorithm." A CM Trans. on
Prog. l.anguages and ,~vstems 4, 3 (1982), 362-
381.

4. I)obkin, l).P. and Munro, J.i. "Efficient Uses
of the Past." Proc. 21st A CM Syrup. on Foun-
dations of Computer Science (1980), 200-206.

5. Hood, R. and Melville, R. "Real-Time Queue
Operations in Pure LISP." Inform. Process.
Lett. 13, 2 (198 I), 50-54.

6. Knuth, D.E. The Art o f Computer Program-
ruing (Vol. 3) Sorting and Searching. Addison-
Wesley, Reading, M ass. (1973), 451-468.

7. Morris, J .H., Schmidt, E. and Wadler, P.
"Experience with an Applicative String Process-
ing Language." Proc. /h ACM Symp. on the
Print'. o f Prog. Languages (1980), 32-46.

8. Myers, E.W. "An Applicative Random-Access
Stack" lnfi~rm. Process. Lett. (to appear).

9. Myers, E.W. "AVL Dags" TR 82-9, Dept. of
Computer Science, U. of Arizona, Tucson, AZ
(1982).

10. Weizenbaum, J. "Symmetric List Processor."
Comm..4 CM 6, 9 (1963), 524-536.

Appendix A: The List Algorithms

This appendix contains a complete specification
of the applicative list algorithms discussed in Sec-
tions 2 through 4. The following conventions insure
that reference counts are correctly maintained: (i)
every function returns a new (INCremented) refer-
ence to its result, and (2) every reference passed as an
argument to a function is consumed (DECremented)
by the function. In what follows, the abbreviation
"@<list>" denotes the expression INC(<list>).

The list data abstraction is assumed to be imple-
mented in a work space consisting of some suffi-
ciently large, say D A G M A X , array of vertex records.
A special record is set aside to model A. its H-field is
0, its LN-field is i, and its RC-fieid is initially
2 * I) A G M A X - I . At the outset, every other record is
in a free list with its RC-field set to 0 and its L- and
R-fields referencing A.

The work space is manipulated through the prim-
itives INC, DEC, and NEW. The absence of cyclic
substructures guarantees that a reference counter
strategy suffices to detect all unused vertices. If a
vertex v becomes free in a call to DEC, it is added to
the free list. The processing of v's internal references
does not proceed at this time but is deferred until v is
reallocated in a call to NEW. At the time of realloca-

73

tion, v's offspring are collected but the processing of
their internal references is again deferred. This stra-
tegy yields the following O (i) on-line implementa-
tions of NEW, INC, and DEC:

Function INC(v: list) : list
I. v .RC -- v .RC+i
2. INC -- v

Procedure DEC(v: list)
!. v .RC -- v .RC-I
2. If v .RC = 0 Then Push v onto the free list

Function NEW(I: list; x: base; r: list) : list
Var v: list

!. I f free list is empty Then
2. Abor t : "Ove r f l ow"
3. Else
4. Pop v from the free list
5. DEC(v.L)
6. DEC(v.R)
7. N E W -- INC(v)
8. v.V ~ x
9. v.L ~ 1
10. v.R ~ r
I1. v.H -- max(I .H,r .H)+l
12. v.LN ~ v.L.LN + v.R.LN

The functions BAL(I,x,r) and JOIN(I ,x , r) per-
form the fundamental operat ion of concatenat ing
AVL subtrees (dags) in a manner that preserves the
height-balance property. Both return a list whose
value is Vai(l)*<x>,Val(r) . BAL produces a height-
balanced result whenever]i.H-r.H] < 2. J O I N uses
BAL to produce a height-balanced result regardless
of the heights o f I and r.

Function BAL(I: list; x: base; r: list) : list
i. If I .H-r.H E [- I , I] Then
2. BAL ~ NEW(@l,x ,@r)
3. Else i f I.H > r.H Then
4. i f I.L.H _> i.R.H Then
5. BAL ~ NEW(@I.L, I .V,NEW(@I.R,x ,@r))
6. Else
7. BAI. -- NEW(NEW(@I.L, I .V,@I.R.L) ,

I. R. V, N E W(@I. R. R,x,@r))
8. Else
9. If r .R.H _> r .L.H Then
10. BAL ~ NEW(NEW(@I,x ,@r .L) , r .V,@r .R)
I I. Else
12. BAL -- NEW(NEW(@I,x ,@r .L.L) , r .L .V,

N EW(@r.L. R,r .V,@r.R))
13. DEC(I,r)

Function JOIN(i : list; x: base; r: list) : list
2. i f I.H-r.H ~ [-2..2] Then
2. J O I N -- BAL(@I,x,@r)
3. Else i f r.H > I.H Then
4. J O I N -- BAL(JOIN(@I,x ,@r.L) , r .V,@r.R)
5. Else
6. J O I N -- BAL(@I.L,I .V,JOIN(@I.R,x,@r))
7. DEC(I,r)

The remaining algori thms constitute the opera-
tors o f the applicative list data type. They are simply
applicative adapta t ions of their procedural counter-
parts. However, note that the change in perspective
has permitted these algorithms, considered difficult
by many, to be tersely and clearly expressed.

Function SEL(v: list; k: integer) : base
1. i f k < v .L.LN Then
2. SEL -- SEL(@v.L,k)
3. Else i f k > v .L.LN Then
4. SEL -- SEL(@v.R,k-v .L .LN)
5. Else
6. SEL ,-- v.V
7. DEC(v)

Function RNK(v: list; x: base) : integer
I. I f v = A T h e n
2. R N K ~ 0
3. Else i f x < v.V Then
4. RNK ~ RNK(@v.L ,x)
5. Else
6. RNK ~ v .L.LN + RNK(@v.R,x)
7. DEC(v)

Function A D D (v : list; k: integer; x: base) : list
!. i f v = A T h e n
2. A D D -- BAL(@A,x ,@A)
3. Else i f k < v .L.LN Then
4. A D D ~ BAL(ADD(@v.L ,k , x) , v .V ,@v .R)
5. Else
6. A D D -- BAL(@v.L ,v .V,ADD(@v.R,k-v .L .LN,x))
7. DEC(v)

Function DEL(v: list; k: integer) : list
I. I f v . L = A a n d v . R = A T h e n
2. D E L -- @A
3. Else I f k < v .L.LN and v.L # A Then
4. i f k = v .L.LN Then
5. D E L -- BAL(DEL(@v.L ,k- i) ,

SEL(@v.L,k- i) ,@v.R)
6. Else
7. D E L -- BAL(DEL(@v.L,k) ,v .V,@v.R)

74

8. Else
9. i f k = v .L.LN Then
I0. D E L -- BAL(@v.L ,SEL(@v.R , I) ,

DE L(@v. R, I))
I I . Else
12. DEL ~ BAL(@v.L,v.V,DEL(@v.R,k-v.L.LN))
13. DEC(v)

Funct ion CON(I,r: list) : list
I. l f I . H < r . H Then
2. CON ---- J O I N (D E L (@ I , I . L N - I) ,

SEL(@I, I .LN-I) ,@r)
3. Else
4. CON . - J O I N (@ I , S E L (@ r , i) , D E L (@ r , I))
5. DEC(I,r)

Function SUB(v: list; i,j: integer) : list

Funct ion Left(v: list; k: integer) : list
I. l f v = A T h e n
2. Left - - @A
3. Else i f k < v .L .LN Then
4. Left - - JOIN(Lef t (@v.L ,k) ,v .V ,@v.R)
5. Else
6. Left - - Lef t (@v.R,k-v .L .LN)
7. DEC(v)

Funct ion Right(v: list; k: integer) : list
. Symmet r ic analog of Left" • • •

I . l f j < i Then
2. SUB - - @ A
3. Else l f j < v .L .LN Then
4. SUB -- SUB(@v.L,i , j)
5. Else i f i > v .L .LN Then
6. SUB -- SUB(@v.R, i -v .L.LN, j -v .L.LN)
7. Else
8. SUB -- JOIN(Lef t (@v.L, i) ,v .V,

Right(@v. R,j-v. L. LN))
9. DEC(v)

75

