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1. Introduction 

Applicative programming has long been advo- 
cated on theoretical grounds because the formal pro- 
perties of such programs are simple and elegant. 
Recently, there has been a trend to use the applica- 
tive approach in software development tools [3] and 
programming languages [2,7]. Unfortunately, the 
requirement that operations be free of side-effects 
makes it difficult to achieve efficient implementa- 
tions [7]. To date, there are only two published algo- 
rithms [5,8], which treat the applicative manipulation 
of queues and stacks. 

This work presents O (IgN) time and space algo- 
rithms for the applicative manipulation of linear lists. 
A generalization of an AVL tree, called an AVL dag, 
is used. While the result is simple, its consequences 
are far reaching. Since almost every non-scalar data 
type can be modeled with lists, the results presented 
here are a powerful method for improving the imple- 
mentations of applicative languages. The results also 
provide a fast and space efficient method for con- 
structing history systems such as editors with unlim- 
ited "undos" and version control systems. Finally, 
lists can be realized in value-semantic programming 
languages, such as PASCAL, with worst case perfor- 
mance superior to any previously proposed solution. 

Space is at a premium in history systems. An 
enhancement that improves absolute space perfor- 
mance by a factor of two for applicative editor opera- 
tions (e.g. move, transfer, etc.) is also presented. The 
O (1) time and space results in [5], suggest the possi- 
bility of yet more efficient applicative algorithms for 
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the simpler sub-abstractions of list. Algorithms are 
presented for arrays that perform in O (KN ~/K ) time 
and O (K) space where K may be chosen arbitrarily. 

2. Motivation 

In many applications it is desirable to view a list 
data structure as an instance of a "linear list". For 
example, programming languages manipulate 
"integers", "arrays", "strings", etc. Formally, we 
assume that a value-semantic linear list data abstrac- 
tion consists of: an arbitrary and time varying 
number of objects of type linear list; a fixed finite cob 
lection of operators that access and manipulate 
objects; and a time varying set of variables, each of 
which refers to an object. Variables can be created, 
destroyed, and their reference relation can be modi- 
fied by assignment. A variable denotes the value of 
the object to which it refers. Only assignment can 
change the value of a variable. 

The state of the data abstraction is the collection of 
objects referred to by the current set of variables. A 
typical linear list operation repertoire [6] consists of: 

(1) LEN(L):Integer 
Determine the number of elements in list L. 

(2) SEL(L,k):X 
Select the ld h element of list L. 

(3) RNK(L,x):Integer 
Determine the rank of x in an ordered list L. 

(4) ADD(L,k,x):List_of_X 
Insert x after the k th element of list L. 

(5) DEL(L,k):List_of_X 
Delete the k th element of list L. 

(6) CON(Li ,l.,z):List_of-X 
Concatenate L I and L 2. 

(7) SUB(L,ij):List_of_X 
Select the i th through jt~ elements of L. 

The primitives have been formulated as functions. 
The constraint that only an assignment can change 
the value of a variable forces an implementation in 
which an operator may not modify the values con- 
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tained in its operands, i.e. it must operate applica- 
tively. Such implementations are applicative data 
types. 

Height-balanced models such as AVL trees [I,6] 
are frequently used to model linear lists because of 
their "smooth" O(IgN) worst-case behavior. They 
are, however, unsuitable in a value-semantic frame- 
work because of their procedural formulation. For 
example, the concatenation algorithm is usually for- 
mulated as a procedure, CA TENATE(LI,L2,L3), 
which places the concatenation of L 2 and L 3 in L I. 
The procedure doesn't consume space, but it destroys 
its operands L 2 and L 3 through rebalancing and join 
operations. The presumed origin of this semantic 
choice was the assumption that the preservation of 
the operand trees would require that copies be made 
at an intolerable cost of O(N) time and space. As 
shown in the next section, this assumption is false. 

3. AVL Dags 

The observation that led to the concept of an 
AVL dag and its applicative algorithms is illustrated 
by an example. Consider the AVL tree at the left in 
Figure I. Suppose that the vertex labeled X is to be 
added as the right child of vertex 5. The procedure- 
oriented AVL algorithm modifies vertices 4, 5, and 6 
to produce the result shown at the upper right. The 
list represented by their ancestor, 3, is also indirectly 
affected. Let A be the set of vertices directly modi- 
fied by an AVL operation. Let A* be the set consist- 
ing of A and every ancestor of a vertex in A. It fol- 
lows that A* is exactly the collection of vertices, v, 
whose list values are modified by the operation. 
Thus, the result of the operation can be represented 
(while still preserving the original tree) by using 
copies of just the vertices in z~*. In the example, this 
leads to the dag shown at the lower right of Figure I. 

Note that in Figure !, A* is exactly the set of ver- 
tices on the search path from the root to the point of 
insertion. For other AVL operations, A* more gen- 
erally depends on the balances of search path vertices 
and their children and grandchildren. Nonetheless, 
the cardinality of A must be O(IgN) for any AVL 
algorithm because it operates in O(IgN) time. 
Moreover, 4" is O(IgN) because AVL algorithms 
modify a tree along just one or two search paths. 

The tree resulting from an AVL operation is to be 
represented augmentatively and consequently it may 
refer to unaltered vertices in its operand trees. Thus 
the representation for the state of an AVI. data type 
is a dag with the following special properties. 

, , ; ;  5 
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FIGURE 1: THE CENTRAL IDEA 

(a) The dag is a binary dag. There is a special vertex 
A that has out-degree 0. Every other vertex has 
out-degree two and its two children are further 
ordered into "left" and "right". 

(b) Let the height of a vertex, v, in the dag be the 
length of the longest path from v to A. The dag 
satisfies the height-balance property: the heights 
of the left and right children of every vertex 
(except A) differ by at most I. 

A dag satisfying these properties is an A VL dag. Fig- 
ure 2 gives an example. 
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. . . . . . . . . . .  _ f  
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o . . . . . . . . .  V-- 
AVL DAG 

) 

AVL TREE(uNaRA]DED COUNTERPART) 

FIGURE 2: AVL DAG EXA/tl~ 

An AVL dag encodes a collection of linear lists as 
follows. As for AVL trees, each vertex v (except A) is 
labeled with a list element. The value of  v, Val(v), is 
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the list of labels encountered in the symmetric and 
unmarked traversal of the subdag dominated by v. 
Equivalently, one can imagine "unbraiding" this sub- 
dag by replicating every vertex with in-degree greater 
than one until a tree rooted at v is obtained. This tree 
is an AVL tree and its symmetric label list is Val(v). 
Thus every vertex in the AVL dag represents an AVL 
tree whose symmetric order list is the linear list being 
modeled. It then follows [I] that the length of every 
path from v to A is O(IgN) where N =lVal(v)~. 

4. Applicative AVL Algorithms 

An AVL dag models the state of the list data type. 
Each variable refers to a dag vertex v; the list denoted 
by the variable is Val(v). The list operations require 
new vertices and cause current state vertices to 
become unused, i.e. the vertex cannot be reached 
from any vertex referenced by a variable. Thus a 
storage management scheme that allocates and gar- 
bage collects vertices is needed. An incremental 
reference counter method [10] provides the O( ! )  
allocation and collection algorithms -- NEW, INC, 
DEC. References to vertex v are created and des- 
troyed with INC(v)and DEC(v). NEW(I,x,r)gen- 
erates an initial reference to a new vertex with label x 
and left and right sons i and r. The efficiency of the 
method in [10] permits the on-line cost of storage 
management to be included in subsequent complex- 
ity claims (see Appendix A). 

Each AVL list space vertex is modeled by the 
record: 

Type vertex = 
Record 

RC: integer (* Reference Count *) 
LN,H : integer (* Length and Height *) 

L,R : )vertex (* Left and Right Siblings *) 
V : X (* Label (List Element) *) 

End 

Type list = )vertex 

The LN field contains IVal(v)~+! and is used in 
searching for a list element. The fields LN and H are 
maintained by the list space primitive NEW. For 
simplicity, the INC and DEC calls needed to main- 
tain reference counts will be ignored. 

The applicative nature of AVL dags suggests that 
a recursive and functional "bottom-up" approach be 
used in the exposition of the algorithms. It has long 
been recognized that the functional style of program- 
ming leads to terse and conceptually clear algo- 
rithms.t Consider the operation ADD(v,k,x) which 

1" The entire AVL dag implemented list abstraction (in- 
cluding storage management) was written in 193 lines of C. 

inserts x after the k th element of Val(v). For the 
moment, ignore the constraint that the result be 
height-balanced. If v -- A then Val(ADD(v,k,x)) = 
<x> and thus NEW(A,x,A) generates the 
desired reference. Proceeding inductively, if v ~ A 
and k < v.L.LN then Val(ADD(v.L,k,x)) -- 
Val(A DD(v,k,x))[ i..v.L. LN] implying that 
NEW(ADD(v.L,k,x),v.V,v.R) generates the correct 
refereence. Similarly, when k _> v. L. LN, the 
desired reference is generated by 
NEW(v.L,v.V,ADD(v.R,k--v.L.LN,x)). These facts 
lead to the algorithm: 

Function ADD(v: list; k: integer; x: base) : list 
I. I f  v =  AThen 
2. ADD -- NEW(A,x,A) 
3. Else If k < v.L.LN Then 
4. ADD -- NEW(ADD(v.L,k,x),v.V,v.R) 
5. Else 
6. ADD ~ NEW(v.L,v.V,ADD(v.R,k-v.L.LN,x)) 

The recursion descends along a search path to A and 
produces its result by adding new vertices to the AVL 
dag as it proceeds back up this path. 

While applicatively producing the correct list 
value, ADD does not retain the height balance pro- 
perty because the heights of search path vertices may 
be incremented producing a number of locally unbal- 
anced sights. These local imbalances are rectified by 
a central utility algorithm, BAL(I,x,r), which per- 
forms the applicative equivalent of the single and 
double rotations used in conventional AVL algo- 
rithms. The function BAL(l,x,r) has the same effect 
as the primitive NEW (i.e. returns 
Vai(l),<x>*Val(r)), but in the event that 
I. H- r .H ~ [-2,2], BAL guarantees a height-balanced 
result. 

Function BAL(I: list: x: base: r: list) : list 
I. l f I .H-r .H E [-!,1] Then 
2. BAL -- NEW(I,x,r) 
3. Else If I.H > r.H Then 
4. If I.L.H > I.R.H Then 
5. BAL -'- NEW(I.L,I.V,NEW(I.R,x,r)) 
6. Else 
7. BAL "- NEW(NEW(I.L,I.V,I.R.L), 

I.R.V,N EW(I.R. R,x,r)) 

8. Else 
9. If r.R.H > r.L.H Then 
I0. BAL "-- NEW(NEW(I,x,r.L).r.V,r.R) 
I I, Else 
12. BAL "-- NEW(NEW(I,x,r.L.L),r.L.V, 

NEW(r.L.R,r,V,r.R)) 
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OPERATOR TIME Z~:ORDER ~:ABSOLUTE L~:EXPECTED 

SEL(v,K) 

RNK(v,x) 

ADD(v,K,x) 

DEL(v,K) 

CON(L,R)* 

SUB(v,I,J) 

O(LG N) 0 

O(LG N) 0 

O(LG N) O(LG 

O(LG N) O(LG 

O(LG M) O(LG 

O(LG N) O(LG 

N) 

N) 

M) 

R) 

0 0 

0 0 

s v.H+I .995 LG N + 1.23 

~(v.H-I) .998 LG N - .275 

+½(R.H-1) .966 LG M + .520 _< L.H 

s 3v.H-5 1.94 LG R - .170 

WHERE N = IVAL(v) I M = IVAL(L)I R = J-I 

* WLOG ASSUME L.H z R.II 

TABLE I: AVL DAG PERFORMANCE SUMMARY 

BAL is O(l) and it adds a maximum of three new 
vertices to the dag. To maintain the height-balance 
property in the algorithm ADD above, simply use 
use BAL instead of NEW. 

The algorithms for deletion, concatenation, and 
substring selection are similarly obtained by formu- 
lating the applicative equivalents of their procedural 
AVL tree counterparts (see Appendix A). The selec- 
tion and rank primitives are elementary binary 
search algorithms. By analogy with the classic AVL 
algorithms, these AVL dag algorithms require 
O(IgN) time. Moreover, it follows that BAL is 
called at most O (IgN) times and thus A" is O (igN) 
for every operator. A more detailed analysis yields 
the performance bounds presented in Table I. The 
issue of space performance is new to AVL dag algo- 
rithms. Table 1 includes tight upper bounds for the 
absolute value of A" and its experimently deter- 
mined expected value. The derivations of the tight 
upper bounds are given in [9]. The expected perfor- 
mance statistics were obtained by running a linear 
regression on the average value of A" for a geometric 
series (5 to 2134 in steps of 1.4) of 19 parameter 
values. Each average was obtained by running 500 
experiments on randomly constructed AVL trees of 
the required parameter size. 

The augmentative approach employed here is not 
specific to AVL trees, but can be applied to any tree- 
based method yielding new data structures such as B 
dags, 2-3 dags, heap dags, and dynamic binary search 
dags. The corresponding applicative algorithms have 
the same time performance as their procedural coun- 
terparts; the space performance of a transforma- 
tional primitive (e.g. ADD vs. SEL) is the same as its 
time performance. 

5. Applications 

A. A Value Semantic List Data Abstraction 

The immediate consequence of AVL dags is a 
superior implementation of list algorithms in a 
value-semantic framework. 

Corollary I: Let A be a list algorithm whose com- 
plexity is O(F)  when list operations are assumed to 
be atomic (i.e. O(l)). Further suppose that A uses 1 
elements of input and constant data and that A out- 
puts O elements of output. Using the AVL dag algo- 
rithms, the real-time complexity of algorithm A is 
O(FlgL+l+O) where L is the average length of a 
list operand. 

Any program must spend time proportional to the 
size of its input and output. O(N) algorithms to 
build and write AVL dag encoded lists of length N 
can be easily constructed. Using AVL dags all opera- 
tions require O (lgN) time and space. Variables can 
be introduced and removed with O(l) INC and DEC 
operations. Of paramount importance is the fact 
that assignment is also O (I): DECrement the current 
variable reference and INCrement a new one to the 
desired value. 

The most pathological possibility for the parame- 
ter L is represented by the algorithm that reads a list 
of length I and then doubles its length in the remain- 
ing F-! steps. That is, L can be I'I(/2F). Thus, in 
terms of F, l, and O, the AVL dag implementation 
guarantees that a list algorithm's real time complex- 
ity is O (F (F  +lgl)+l +0). The best performance of 
previous applicative list algorithms is a real time 
complexity of O (FL +1 +0 ) or O ( FI 2 F +I +0 ). 

Let the size of the current state S be the sum of 
the lengths of every variable's value. The correct 
maintenance of reference counts implies that the 
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number of vertices in the AVL dag is less than S. 
Moreover, the size of the dag may be as small as IgS. 
Thus the method is asymptotically space optimal. In 
practice, it may be more space efficient than co0ven- 
tional methods if the incidence of sharing is high 
enough to compensate for the incumbent overhead of 
the AVL dag model ( -20  bytes per vertex). 

The fundamental improvement expressed in 
Corollary 1 immediately leads to a plethora of new 
results for a variety of specific data abstractions. An 
applicative ordered list data type is obtained by 
employing the primitive RNK. As a result, the 
method provides applicative O(IgN) implementa- 
tions of the numerous sub-abstractions of list or 
ordered list, such as arrays, tables and any complex 
structure encoded as lists. In practical terms, the 
method applies to structures such as text files (a list 
of strings), program states (an array of words), and 
relational data bases (a finite set of ordered lists of 
ordered pairs). 

B. Maintaining Histories 

A history tree of an object is a rooted oriented 
tree in which each vertex denotes a value (called a 
version) of the object. The original version of the 
object is denoted by the root. The version of every 
other vertex is assumed to have been obtained by 
applying a transformational operator (called an 
update) to the version of its parent. The application 
of a passive operation (i.e. one that does not change 
the value of the object) is called a query. The prob- 
lem is to maintain a history tree that permits efficient 
on-line algorithms for: adding a new leaf version 
through the application of an update to an existing 
version; deleting leaf versions; and querying an arbi- 
trary existing version. Any applicative implementa- 
tion solves this problem since the invocation of an 
update is guaranteed not to affect the version being 
operated upon. Thus, the AVL dag method provides 
the corollary: 

Corollary 2: A history tree of lists can be maintained 
in O(igN) time per query or update and O(IgN) 
space per update, where N is the size of the version 
upon which the operator is applied. Versions can be 
deleted in O (1) time. 

The generality and efficiency of the AVL dag 
method is illustrated by contrasting it with the earlier 
work of [4]. Their history problem constrains the 
history tree to be a line-graph and their list abstrac- 
tion only permits the operations ADD, DEL, RNK, 
and SEL (i.e. a table). Their update and query algo- 
rithms require O(ig z N) time. In [4], these algo- 
rithms were applied to a number of geometric inter- 
section problems. The use of AVL dags immediately 

gives better results and holds promise for other prob- 
lems in computational geometry. 

Practical and efficient history systems can be con- 
structed with AVL dag history trees. For example, 
an editor with complete history maintains a history 
line-graph of versions where each version is a text 
file; an update operation is a line-oriented editor 
command that changes the text; and a query opera- 
tion is a passive editor command on a version in the 
current history. A text file is a list of lines and is 
implemented as an AVL dag. Each line-oriented edi- 
tor command can be implemented as a finite compo- 
sition of the AVL dag algorithms. This history editor 
performs updates in O(IgN) time and space and 
queries in O(IgN) time where N is the number of 
lines in the text file. 

Another class of history systems currently of 
practical interest are version control systems. For 
example, a source code control system maintains a 
history tree of versions where each version is a source 
code text file; an update operation is the action of an 
editing session on a version; and a query operation 
searches or accesses an arbitrary version of the 
source code. Modeling text file as above, an update 
operation is realized by using the history editor 
above to compute the AVL dag representing the final 
text file of the editing session. This requires 
O(ElgN ) time and O (min (N ,AIgN )) space where E 
is the number of edit commands in the session; N is 
th~ maximum number of lines in the text file; and A 
is the number of lines changed by the session. Query 
operations can access K contiguous lines of an N line 
version in 0 ( K +lgN ) time. 

6. Further Results 

A. Saving Space in Applicative Editor Operations 
The line-oriented editor of the last section mani- 

pulates applicative "text files". A typical operator 
repertoire consists of: 

(I) LEN(T):Integer 
Return the number of lines in text file T. 

(2) FIND(T,a):Line 
Return the a th line of T. 

(3) SCROLL(T,a ,~)  
Starting with the a th line, pass successive 
lines o f T  to the "handler" procedure 
until it returns a halt signal. 

(4) REPLACE(T,a,s):Text_File 
Replace the a th line of T with line s. 

(5) DELETE(T,a,b):Text_File 
Delete lines a through b of T. 

(6) INSERT(T,c, ~):Text_File 
Insert the sequence of lines returned by the 
procedure • immediately after line c of T. 
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(7) MOVE(T,a,b,c):Text_File 
Move lines a through b o f t  immediately 
after line c. 

(8) TRANS FE R(T,a,b,U,c):Text_File 
Place a copy of lines a through b of T 
immediately after line c of U. 

While these operations can be expressed in terms 
of the list operations given in Section 2 
(e.g. DELETE(T,a,b) = CON(SU B(T,I,a-I) ,  
SUB(T,b+I,LEN(T))) ), a closer examination of the 
underlying mechanism reveals an approach that uses 
half as much space. Although this improvement is 
only by a constant factor, it is of great practical value 
because it doubles the size of histories that can be 
maintained. 

The basic action used to achieve the list functions 
CON and SUB is embodied in the applicative func- 
tion JO1N(l,x,r), which has the same effect as BAL 
(i.e. returns Val(l)*<x>*Val(r) ), but is correct 
regardless of the heights of I and r. The procedural 
version of JOIN is treated in [6] where x is called the 
juncture value (see also Appendix A). The applica- 
tive version of JOIN adds a maximum ofll.H-r.H]+l 
vertices to the AVL dag. 

Consider the operator DELETE. The portion of 
the tree to be retained is represented by the height- 
monotone slices depicted in Figure 3. The desired 
result is obtained by successively joining the subtrees 
of the slices together with their interspersed juncture 
values. When formulated as above, DELETE first 
joins the subtrees of the left slice together in height 
increasing order. DELETE then joins the subtrees of 
the right slice. A final application of JOIN on the 
results of the proceeding two steps produces the 
desired list. The sum of the space bounds of each 
application of JOIN telescopes to give a total worst- 
case bound of 2H÷V vertices, where H is the height of 
the heighest subtree in either slice and V is the 
number of subtrees in both slices. 

Since concatenation is associative, any order of 
joins is correct. The improvement is obtained by 
using a better "join order" than the one above. 
Specifically, the subtrees in both slices are simultane- 
ously joined in order of increasing height. This 
merged joining is analogous to the sorting technique 
of merging two ordered lists. With this order, only 
H÷V vertices are added in the worst case. 

For DELETE, the height profile of the slices 
form a "V". For other operations the height profiles 
are more complex and merging opposing slices is 
more subtle. For example, the operator 
TRANSFER requires the joining of four slices as 
depicted in Figure 4. For this "W':profile the 
optimum join procedure is as follows: (1) in a 

T 

i 
..o° . .  

..•° . .  
..°..o " . .  

LEFT SLICE RIGHT SLICE 
FIGURE ~: DELETE(T,A,I) SLICES 

merged fashion join the slice R a,h and the portion of 
slice U,+~,** whose subtrees have height less than 
lea.H; (2) as in (1) join the lower portion of Uo. , and 
all of La. h ; (3) join the results of (1) and (2) with 
juncture value Ica. V; and (4) in a merged fashion join 
the upper portions of Uo, , and U,+j.** using the 
result of (3) to "seed" the merge. With this join 
order, at most H+L+V vertices are used where V is 
the number of subtrees in all the slices, H is the 
height of the heighest subtree, and L is the height of 
the vertex h'a. 

U 

• " ......... 

, ,* 

~(!T[A~'~ ~ "°" ,,"LCA'", . 'L~U[[B!~ 
Uo,c LA,r, RA,m Uc+l,- 

FIGURE q. TRANSFER (T,A,s,U,c) SLICES 

The number of subtrees in any slice is less than 
the difference in height between the lowest and 
highest subtrees of the slice. Thus V < 2H in the 
analysis of DELETE• This implies an upper bound 
of 3H vertices when joins are merged and 4H vertices 
otherwise. However, these bounds are somewhat 
coarse as the space efficiency of the JOIN operations 
is not independent of the parameter V. As V 
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OPERATOR 

FIND(v,A) 

SCROLL(v,A,P) 

REPLACE(v,A,S) 

DELETE(v,A,B) 

INSERT(v,c,p) 

TRANSFER(w,A,B,V,C) 

MOVE(v,A,B,C) 

TIME /~:ORDER ~':EXPECTED ~Q:EXPECTED 
--'(UNOPTIMIZED) --(OPTIMIZED) 

O(LG N) 0 0 0 

O(LG N + K) 0 0 0 

g(LG N) g(LG N) .99 LG N + .28 .95 LG N -.28 

O(LG N) O(LG (N-R)) 1.89 LG (N-R) -.99 1.04 LG (N-R) + .28 

g(LG N + K) g(LG N + K) 1.85 LG N + K -.89 1.00 LG N + K + .23 

g(LG N + LG M) g(LG N + LG R) 1.83 (LG N + LG R) - .47 1.07 (LG N + LG R) + 1.11 

B(LG N) g(LG N) 1.95 (LGN +LG R$)- 1.19 1.13 (LGN+ LG RS) + .41 

WHERE N = IVAL(v) I M = IVAL(w) I R =IB-AI S =Ic-BJ 

K = No. OF LINES PROCESSED BY P, 

~ :  APPLICATIVE EDITOR PERFORMANCE SUMMARY 

approaches 2H, the height differences between suc- 
cessive subtrees in each slice (and their merged 
sequence) become smaller until almost every such 
difference is 0 or I. JOIN(I,x,r) requires ]I.H-r.HI+I 
vertices only when ]l. H-r.H] >2; otherwise it uses just 
]l.H-r.H] vertices. Thus as V approaches 2H, the 
joins become more space efficient. It can be shown 
that at most 2H vertices are used when joins are 
merged and 3H otherwise. These bounds are tight 
and imply that merging joins improves space perfor- 
mance by ! / 3 in the worst case. 

Table lI lists the asymptotic performance bounds 
for the applicative editor operators and shows the 
results of experiments designed to determine the 
expected-case space usage of both optimized and 
unoptimized operators. The experiments reveal that 
merging improves space utilization by roughly 45% 
in the expected case. A prototype editor using these 
primitives has been built. Its speed is comparable to 
that of "ed" under UNIX. With a megabyte of 
memory, a history of !,750 to 3,500 versions of a 
10,000 line text file.can be maintained. 

B. Applicative Arrays 

An array is a fixed length list with the operator 
repertoire: 

(1) SEL(A,k):X 
Select the k th element of array A. 

(2) ASN(A,k,x):Array_of_X 
Assign x to the k th element of array A. 

While arrays could be modeled applicatively by 
encoding them as lists, a more space efficient scheme 
is desirable as the length of arrays are frequently very 

large. (For example, consider a history system that 
maintains versions of a program's state modeled as 
an array of words.) 

First consider modeling an array as a reference to 
a singly-linked list in which each cell encodes an ele- 
ment of the array as an <index,value> pair. 
ASN(A,k,x) is easy: push a cell containing the pair 
<k,x> onto the front of the linked list referenced by 
A. This is applicative (the original linked list is not 
modified) and requires only O( l )  time and space. 
SEL(A,k) is achieved by searching A for the first cell 
containing index k and returning the associated 
value. This requires time proportional to the length 
of the linked list which can, unfortunately, be made 
arbitrarily large through the repeated use of ASN 
operations. 

The next refinement guarantees a worst-case time 
of O (N) for SEL where N is the size of the array. 
Let each cell further contain an auxiliary 
<index,value> pair with the following properties. 
The auxiliary index of a cell is one more (modulo 
N+l) then the auxiliary index of its successor in the 
linked list. The auxiliary value of a cell v is SEL(v,a) 
where a is the auxiliary index of v. From these pro- 
perties it follows that SEL(A,k) can be achieved by 
returning the value associated with the first auxiliary 
or regular index that matches k. Moreover, at most 
N cells must be searched before a cell with auxiliary 
index equal to k is found. The one drawback is that 
now ASN must engage in an O(N) SEL in order to 
establish the auxiliary value of the cell it pushes onto 
the linked list. Thus this second approach requires 
O (i) space and O (N) time for both operators. 
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Finally, consider modeling an N-element array 
A[0..N-I] with a K-dimensional array 
B[0 . .W-I ]"  " ' [ 0 . . W - I ]  and for simplicity assume 
N = W  r.  Let the i th element of A correspond to the 
i th element in the lexicographical order of elements in 
B. That is, let A[i] = B[il][iz]. • • [iK] where ill2 • • • i K 
is the K-digit representation of i in the radix-W 
number system. Now view B as a W-element array of 
(K-l)-dimensional arrays, each of which is a W- 
element array of (K-2)-dimensional arrays, and so 
on. Applicatively model each of the W-element 
arrays using the simple method above. Observe that: 

SEL(A,i) = B K 

where Bj = SEL(Bj_ I,iJ) for J = I to K 
and B 0 = B 

Thus a selection into the N-element array requires K 
selections into the W-element arrays for a total of 
0 (KN I/x ) time. Further observe that: 

ASN(A,i,x) = C I 

where Cj = ASN(Bj_I,ij,Cj+I) for J = I to K 
and CK+ I =x 

Thus applicatively assigning an element in the N- 
element array requires K applicative assignments and 
selections into the W-element arrays for O (KN j/A" ) 
time and O ( K )  space. 

Observe that K can be chosen arbitrarily. Space 
consumption is constant when K is fixed at a small 
integer, e.g. K = 3  gives O(N I/3) time and O( I )  
space. Logarithmic search time and less than 
0 (lgN) space are simultaneously attained by choos- 
ing K = / g N / i g  lgN (giving O(/g  2N / Ig IgN) 
time). When K = i g N  performance coincides with 
that of the list algorithms. 
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Appendix A: The List Algorithms 

This appendix contains a complete specification 
of the applicative list algorithms discussed in Sec- 
tions 2 through 4. The following conventions insure 
that reference counts are correctly maintained: (i)  
every function returns a new (INCremented) refer- 
ence to its result, and (2) every reference passed as an 
argument to a function is consumed (DECremented) 
by the function. In what follows, the abbreviation 
"@<list>" denotes the expression INC(<list>). 

The list data abstraction is assumed to be imple- 
mented in a work space consisting of some suffi- 
ciently large, say D A G M A X ,  array of vertex records. 
A special record is set aside to model A. its H-field is 
0, its LN-field is i, and its RC-fieid is initially 
2 * I ) A G M A X - I .  At the outset, every other record is 
in a free list with its RC-field set to 0 and its L- and 
R-fields referencing A. 

The work space is manipulated through the prim- 
itives INC, DEC, and NEW. The absence of cyclic 
substructures guarantees that a reference counter 
strategy suffices to detect all unused vertices. If a 
vertex v becomes free in a call to DEC, it is added to 
the free list. The processing of v's internal references 
does not proceed at this time but is deferred until v is 
reallocated in a call to NEW. At the time of realloca- 
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tion, v's offspring are collected but the processing of  
their internal references is again deferred. This stra- 
tegy yields the following O (i) on-line implementa-  
tions of  NEW, INC, and DEC:  

Function INC(v: list) : list 
I. v .RC -- v .RC+i  
2. INC -- v 

Procedure  DEC(v:  list) 
!. v .RC --  v .RC-I  
2. If  v .RC = 0 Then Push v onto  the free list 

Function NEW(I:  list; x: base; r: list) : list 
Var v: list 

!. I f  free list is empty Then 
2. Abor t  : "Ove r f l ow"  
3. Else 
4. Pop  v from the free list 
5. DEC(v.L)  
6. DEC(v.R)  
7. N E W  -- INC(v) 
8. v.V ~ x  
9. v.L ~ 1  
10. v.R ~ r 
I1. v.H -- max(I .H,r .H)+l  
12. v.LN ~ v.L.LN + v.R.LN 

The functions BAL(I,x,r) and JOIN(I ,x , r )  per- 
form the fundamental  operat ion of  concatenat ing 
AVL subtrees (dags) in a manner  that preserves the 
height-balance property.  Both return a list whose 
value is Vai( l)*<x>,Val(r) .  BAL produces a height- 
balanced result whenever ]i.H-r.H] < 2. J O I N  uses 
BAL to produce a height-balanced result regardless 
of  the heights o f  I and r. 

Function BAL(I: list; x: base; r: list) : list 
i. If  I .H-r.H E [ - I , I ]  Then 
2. BAL ~ NEW(@l,x ,@r)  
3. Else i f  I.H > r.H Then 
4. i f  I.L.H _> i.R.H Then 
5. BAL ~ NEW(@I.L, I .V,NEW(@I.R,x ,@r))  
6. Else 
7. BAI.  --  NEW(NEW(@I.L, I .V,@I.R.L) ,  

I. R. V, N E W(@I. R. R,x,@r)) 
8. Else 
9. If  r .R.H _> r .L.H Then 
10. BAL ~ NEW(NEW(@I,x ,@r .L) , r .V,@r .R)  
I I. Else 
12. BAL -- NEW(NEW(@I,x ,@r .L.L) , r .L .V,  

N EW(@r.L.  R,r .V,@r.R)) 
13. DEC(I,r)  

Function JOIN(i :  list; x: base; r: list) : list 
2. i f  I.H-r.H ~ [-2..2] Then 
2. J O I N  --  BAL(@I,x,@r) 
3. Else i f  r.H > I.H Then 
4. J O I N  --  BAL(JOIN(@I,x ,@r.L) , r .V,@r.R)  
5. Else 
6. J O I N  --  BAL(@I.L,I .V,JOIN(@I.R,x,@r))  
7. DEC(I,r)  

The remaining algori thms constitute the opera- 
tors o f  the applicative list data type. They are simply 
applicative adapta t ions  of  their procedural  counter- 
parts. However,  note that  the change in perspective 
has permitted these algorithms, considered difficult 
by many,  to be tersely and clearly expressed. 

Function SEL(v: list; k: integer) : base 
1. i f  k < v .L.LN Then 
2. SEL --  SEL(@v.L,k)  
3. Else i f  k > v .L.LN Then 
4. SEL --  SEL(@v.R,k-v .L .LN)  
5. Else 
6. SEL ,-- v.V 
7. DEC(v)  

Function RNK(v:  list; x: base) : integer 
I. I f v = A T h e n  
2. R N K  ~ 0 
3. Else i f  x < v.V Then 
4. RNK ~ RNK(@v.L ,x )  
5. Else 
6. RNK ~ v .L.LN + RNK(@v.R,x)  
7. DEC(v)  

Function A D D ( v :  list; k: integer; x: base) : list 
!. i f v = A T h e n  
2. A D D  --  BAL(@A,x ,@A)  
3. Else i f  k < v .L.LN Then 
4. A D D  ~ BAL(ADD(@v.L ,k , x ) , v .V ,@v .R)  
5. Else 
6. A D D  --  BAL(@v.L ,v .V,ADD(@v.R,k-v .L .LN,x) )  
7. DEC(v)  

Function DEL(v:  list; k: integer) : list 
I. I f v . L = A a n d v . R = A T h e n  
2. D E L  --  @A 
3. Else I f  k < v .L.LN and v.L # A Then 
4. i f  k = v .L.LN Then 
5. D E L  --  BAL(DEL(@v.L ,k- i ) ,  

SEL(@v.L,k- i ) ,@v.R)  
6. Else 
7. D E L  --  BAL(DEL(@v.L,k) ,v .V,@v.R)  
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8. Else 
9. i f  k = v .L.LN Then 
I0. D E L  --  BAL(@v.L ,SEL(@v.R , I ) ,  

DE L(@v. R, I )) 
I I .  Else 
12. DEL ~ BAL(@v.L,v.V,DEL(@v.R,k-v.L.LN)) 
13. DEC(v)  

Funct ion CON(I,r:  list) : list 
I. l f I . H  < r . H  Then 
2. CON ---- J O I N ( D E L ( @ I , I . L N - I ) ,  

SEL(@I, I .LN-I ) ,@r)  
3. Else 
4. CON . -  J O I N ( @ I , S E L ( @ r , i ) , D E L ( @ r , I ) )  
5. DEC(I,r)  

Function SUB(v: list; i,j: integer) : list 

Funct ion Left(v: list; k: integer) : list 
I. l f v = A T h e n  
2. Left - -  @A 
3. Else i f  k < v .L .LN Then 
4. Left - -  JOIN(Lef t (@v.L ,k ) ,v .V ,@v.R)  
5. Else 
6. Left - -  Lef t (@v.R,k-v .L .LN)  
7. DEC(v)  

Funct ion Right(v: list; k: integer) : list 
. . . . .  Symmet r ic  analog of  Left"  • • • 

I .  l f  j < i Then 
2. SUB - - @ A  
3. Else l f j  < v .L .LN Then 
4. SUB -- SUB(@v.L,i , j )  
5. Else i f  i > v .L .LN Then 
6. SUB --  SUB(@v.R, i -v .L.LN, j -v .L.LN) 
7. Else 
8. SUB --  JOIN(Lef t (@v.L, i ) ,v .V,  

Right(@v. R,j-v. L. LN)) 
9. DEC(v)  
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