
On Directly Constructing LR(k) Parsers

Without Chain Reductions

Wilf R. LaLonde

Department of Systems Engineering

Carleton University

Ottawa, Canada. KiS 5B6

ABSTRACT

A chain production is a production of the
form A->M where A is a nonterminal and M is
either a terminal or nonterminal. Pager in
[PagS] has presented an algorithm which removes
all chain reductions from LR(1) parsers after
they have been constructed.

In this paper, we present an algorithm for
directly constructing LR(k) parsers with arbitrary
subsets of the chain productions, called the
useless chain productions, optimized out. If
this subset is empty, the algorithm is a standard
one [And i, Kn]. If this subset consists of all
chain productions, the result is a parser with
all chain reductions optimized away. The algor-
ithm, as in [PagS], also eliminates from the
parsers all nonterminals which occur as the
left part of useless chain productions. This
latter optimization along with the chain reduc-
tion optimization significantly decreases the
storage space and execution times of the
parsers.

This provides an efficient solution of the
open problem posed by Aho and Ullman [A&U2] for
all LR(k) grammars.

INTRODUCTION

In recent years, much attention has been
focused on LR(k) techniques [Kor, DeRi, DeR2,
Pagl to Pag4, A&U2, A&U3, Andl, And2, Jol, LaL].
Since LR(k) parsers are efficient and capable of
parsing a large subset of the context free lan-
guages, much of the effort has been devoted to
decreasing its table storage space and increasing
its parsing speed. One approach for doing this
has been to eliminate useless chain reductions
from the parsers [A&U2, A&U3, Andl, PagS]. How-
ever, all of the techniques used above eliminate
the chain reductions from the parsers after they
have been constructed.

In this paper, we present a technique for
directly constructing LR(k) parsers in such a
way that reductions involving useless chain
productions are eliminated. In addition, all
references to the nonterminals occurring as the
left part of these productions are also elimi-
nated. In practice, these two optimization

significantly reduces the parser storage space
and also significantly increases the parsing
speed.

BACKGROUND

In this section, we introduce the basic
notions necessary for the paper.

A context free grammar (grammar for short)
is a four-tuple G = (N,T,P,S) where N and T are
finite disjoint sets of nonterminals and ter-
minals respectively, S in N is the goal symbol,
and P is a finite set of productions of the form
A->w where A, the left part, is in N and w, the
right part, is in (NUT)*. The vocabulary is
NuT. For parsing purposes, we reserve ~ and 4,
the left and right endmarker, as symbols dis-
tinct from any used in the vocabulary of our
grammars. We also assume the productions are
numbered 1,2,...,p in some order. We abbreviate
productions A->wl, A->w2,...,A->wn by A->wll... I
wn.

Conventions: Let G = (N,T,P,S) be a grammar.
(I) A,B,C denote nonterminals in N.
(2) a,b,c denote terminals in T.
(3) L,M,N denote nonterminals or terminals.
(4) u,v denote strings in T* and w,x,y,z

strings in (NUT)*.
(5) e denotes the empty string.

A production in P of the form A->M where M
is in NuT is called a chain production. A useful
chain production is one so declared by a user,
otherwise, is useless. For example, if a user
has semantic actions associated with all pro-
ductions, he may declare all the chain produc-
tions to be useful. Alternatively, he may declare
only a subset to be useful -- perhaps those in
which the right part is a terminal, etc.

If AO->Ai, Ai->A2, An-li>An is a se-
quence of useless chain productions, we call AO
a proper ancestor of An and An a proper descen-
dant of AO. An ancestor (or descendant) of a
symbol M in NUT is either M itself or a proper
ancestor (or descendant) of M. A symbol without
proper descendants is called a leaf (leaves in
plural). A graph which displays this relationship

127

is called an ancestor graph.

Example

Consider grammar G1 consisting of the four
productions E->E+T I T, T->T*a I a. The ancestor
graph of Gi, where all chain productions have
been declared useless, is shown in figure l(a).
The ancestor graph of Gi, where only chain
production E->T has been declared useless, is
shown in figure l(b). //

A grammar G = (N,T,P,S) is reduced if for
each M in NuT, there is some derivation of the
form S=>*xMy=>*w where w is in T*. We will
assume that all our grammars are reduced.

We define k:x as the first k symbols of x
if Ixl> k I and as x otherwise. If X is a set of
strings in (NUT)*, we generalize k:X as {k:x I
x is in X}. We further define FIRSTGK(X)
as k:{w in T* I X=>G*W}. We drop G when no
ambiguity arises.

Example

If G is a grammar with productions S->aSbS
and S->e, then FIRSTi(S) = {e,a}, FIRSTi(b) =
(b}, and FIRSTi(Sb) = {a,b}. //

An augmented grammar associated with a gram-
mar G = (N,T,P,S) is a grammar G' = (Nu{S'},T,Pu
{S'->S},S') where S' is a new nonterminal not
in NuT.

An LR(k) parsing machine M for grammar G =
(N,T,P,S) based on the set Pu of useless pro-
ductions of G is-Ga finite state machine (FSM)
with transition symbols of the form "X" or
"X if U" where

(I) X, an action of M, is an element of
(a) NuT (a shift action),
(b) P-Pu (a reduce action), or
(c) {Accept} (an accept action), and

(2) U, a lookahead set for X, is a subset of
T* such that each w in U satisfies
lwl~k.

A reduce action of the form A->w where
A->w is the ith production of G is also rep-
resented by #i, a #-symbol (pronounced number
symbol) of G.

We represent a parsing machine by its trans-
ition graph. As it turns out, an LR(k) parsing
machine has exactly one final state and this
final state has no successors. For con-
venience, we therefore leave the edges leading
to this final state unterminated.

A state of the parsing machine is inadequate
if it contains at least two actions one of which
is a reduce action; otherwise it is adequate.
Informally, a state is inadequate if "lookahead"
is required to resolve between the actions of the
state. This is not required for a state which
is adequate.

1. Ixl stands for the length of x.

Example

The transition graph of an LR(1) parsing
machine M1 for G1 is shown in figure 3(a).
States 0, 2, 4, 5, and 7 are adequate; all others
are inadequate. //

The following algorithm interprets LR(k)
parsing machines.

Algorithm 1 An LR(k) parsing machine interpreter.

Input An LR(k) parsing machine M for grammer G =
(N,T,P,S) and input string w in T*.

Output A sequence of productions in P possibly
followed by the word error.

Method

(i) [Initialize]
Let IO be the initial state of M and let

and ~ be the left and right end-
marker. 2 Begin with current state
p = IO, stack s = (~ ,IO), and current
input string u : w 4. Iteratively
perform step (2).

(2) [Perform one parse step]
Let u = au' and v = k:u. Perform one of
(3), (4) 3 or (S) depending on which
applies. J If none applies, output
error and stop.

(3) [Shift Action]
There exists a "Shift a" action in p with
v in its lookahead set (if this set
exists). Stack (a,q) where q is the
a-successor of p, set p = q, and set u
= U'.

(4) [Reduce Action]
There exists a "Reduce A->w" action in
p with v in its lookahead set (if this
set exists). Output A->w, unstack lwl
pairs from s leaving (M,q) as the top
pair, stack (A,r) 4 where r is the B-
successor of q and B is an arbitrary
descendant of A which is a leaf, and
set p = r.

(s) [Accept Action]
There exists an "Accept" action in p
with v in its lookahead set (if this
set exists). If v # ~ , output error.
In any case, stop.

2. Neither endmarker must be a member of NuT.

3. The advantage of LR(k) parsing is that the
choice is unique. Note also that the looka-
head information is not always needed.

4. Of course, q must contain a "Shift B" action.
Also, it is well-known that only the states
are required for parsing purposes.

128

Example

The result of applying algorithm 1 to M1
and a+a*a is shown in figure 2(b). //

The rest of the section contains the basic
definitions used in the construction technique
of the next section.

Let G = (N,T,P,S) be a grammar and let Pu
be the set of useless chain productions of G.
An LR(k) item for G is a pair <A->x.y#i,u>
where A->xy is the ith production of P and
lulSk. Symbol #i is called a #-symbol (pro-
nounced number symbol). If the dot is to the
left of symbol M, the LR(k) item is said to
be an M-item (#-item if M is a #-symbol).

If <A->x.y#i,u> is an LR(k) M-item of G,
the action (and lookahead set) associated with
it is either (i), (2), or (3) below according
to whether M is nonterminal B, terminal a, or
#-symbol #i.

(i) "Shift B",
(2) "Shift a if V" where V = FIRSTk(yu),
(3) "Reduce A->w if {u)" where A->w is the

ith production of P.

We never associate a lookahead set with
nonterminal shift actions. Two actions are
inconsistent if they are distinct and yet have
non-disjoint lookahead sets; otherwise, they
are consistent. Thus two actions, one of which
is of type (i), must always be consistent. Two
actions of the form "Shift a if {u,...}" and
"Reduce A->w if {u }" are inconsistent. So
are "Reduce A->x i~ {u,...}" and "Reduce B->y
if {u }" for A->x#B->y.

If there exists actions associated with
distinct LR(k) items which are inconsistent,
the LR(k) i'tems are also termed inconsistent;
otherwise, they are termed consistent. A
set of LR(k) items is consistent if every pair
of items is consistent; otherwise, it is in-
consistent.

The Algorithm for Constructing LR(k) Parsers
With Chain Production Optimizations

Let G be a grammar and let Pu be the set
of useless chain productions of G. We define
relations-sand ~, the transition successor
and immediate successor relations respectively
of G based on Pu below.

Let I be the set of LR(k) items of G
exclusive of those associated with elements
of Pu, and let M be a leaf of G.

M • = {(<A->x. Ly#i,u>, <A->xL.y#i,u>) in
Ixl I L is an ancestor of M (which
includes M)}.

= {(<A->x. By#i,u>, <C->.z#j,v>) in
IxI I C is a descendant of B (which
includes B) and v is in FIRSTk(yu))

M
Relation =-=) is the transition M-successor

of G based on Pu. Relation-.mis the union of
a-ll ,=~)such that M is a leaf of G.

Example

Consider grammar G1 of figure 1 where the
productions have been numbered from 1 to 4.
Suppose all chain productions are declared use-
less. We compute the set PO.=--,)~*S where
P0 = {<E->E.+T#1,+>}. We can write

P1 = P0--~ = {<E->E+.T#1,+>}
P2 = P1 ~ = {<T->.T*P#3,+>} since T is a

descendant of T and + is in FIRST l(e+) =
FIRST1(+). Note that <T->.a#4,+> is not added
since T->a is a useless chain production.

P3 = P2~ = {<T->.T*P#3,*>} since * is in
FIRSTi(*P+).

P4 = P3~= P3. Thus the process is finished.

Therefore Q = {<E->E.+T#1,+>}-=~* =
{<E->E+.T#1,+>, <T->.T*P#3,+>, <T->.T*P#3,*>}.
Notice that Q T=|, is undefined since T is not "V

a leaf of G. However, Q a ~, is defined.

Q0 = Q ~L = {<E->E+T.#1,+>, <T->T.*P#3,+%
<T->T.*P#3,*>} since T is an ancestor of a. It

shown that Q0~ is empty. Hence Q a ~* canQ~e //

Algorithm 2 Construction of LR(k) Parsing
Machines.

Input Grammar G, integer k, and set Pu of useless
chain productions of G.

Output The LR(k) parsing machine C for G based on
Pu.

Method Perform the following steps in succession.
(i) [Initialize]

Let G' = (N',T,P',S') be the augmented
grammar for G = (N,T,P,S,) and number the
productions so that S'->S is the 0th pro-
duction of G' Let--~and ~ be the
transition and immediate successor relations
of G' based on Pu.

(2) [Compute the initial state]
Add I0 = {<S'->.S#0:-~>} ~* 6 to the states
of C (initially empty) and mark it "unpro-
cessed".

(3) [Compute successor states]
For each "unprocessed" state R of C, mark
R "processed", and for each leaf M such
that R contains an LR(k) N-itemwhere N is
mn ancestor__ of M (also for each #-symbol M),
add R-~* to the states of C (as the M-suc-
cessor of R) and mark it "unprocessed" if it
is not already there. If M is a #-symbol,
the successor state will be the empty set.
This state is taken as the sole final state
of C.

(4) [Introduce an accept action]
Replace transition symbol #0 in state R 7 by
(a) "Accept" if R is adequate, or
(b) "Accept if {4}" if R is inadequate.

5. If R is a relation and X is a set, XR repre-
sents the set {bl(a,b) is in R and a is in
X} and XR* represents the smallest set A
containing X such that if a is in A, then
{a}R is contained in A. The set XRiR2...Rn
represents (...((XRI)R2)...)Rn.

6. Symbol -~ is the right endmarker not in N'oT.

7. Only one state of C will contain transition
symbol #0.

129

(s) [Introduce lookahead sets]
For each inadequate state R of C, and each
transition symbol M of R where M is either
a terminal symbol or #-symbol, add the
lookahead set L where L is the union of the
lookahead sets associated with the LR(k)
M-items of R.

If the set of useless productions is empty,
the above algorithm is a variant of Knuth's
LR(k) table constructor [Kn, A&Ui]. We will
refer to the LR(k) parsing machine for G based
on ~ as the principle LR(k) parsing machine for
G.

As constructed, the actions of a parsing
machine do not always have associated lookahead
sets. 8 However, it is possible to construct the
parsing machine in such a way that the associated
lookahead set is added to each action. When this
is done, we say that the parsing machine has
forced lookahead sets.

Example

Figures 3 and 4 contain the incomplete (i.e.
without lookahead) LR(1) parsing machines Cl and
DI for G1 based on Pu = {E+T, T÷a} and ~ respec-
tively. The completed LR(1) parsing machine Mi'
for G1 based on {E÷T, T÷a} is shown in figure
5(a). The result of applying algorithm 1 to Mi'
and a+a*a is shown in figure 5(b). It is
instructive to compare the number of steps in
figures 2(b) and 5(b). //

Conditions For The Algorithm To Succeed

In this section, we show that the parsing
machine M with forced lookahead obtained from an
LR(k) grammar G with useless chain productions
Pu in conjunction with the interpreter i.e.
algorithm 1 is in fact a parser for G which
outputs an "optimized" bottom up parse of an
input string in L(G) i.e. a sequence of produc-
tions of G exclusive of those in Pu. We begin
with some basic lemmas.

Lemma 1 Let G be an LR(k) grammar, let
<A÷x. My#p,u> be an LR(k) item in some state R
of the principle LR(k) parsing machine for G,
and let w be a string in FIRSTk(Myu). There
exists in R an LR(k) item either of the form

(I) <B÷.#i,w>, or
(2) <B÷~.az#i,v> where w is in FIRSTk(azv).

Proof Obvious. //

Lemma 2 Let G be an LR(k) grammar, let C be the
principle LR(k) CFSM for G, and let Bi, B2, A,
and B be vocabulary symbols of G (B may be
either a terminal or nonterminal) such that

Bi=>*A=>B and B2=>*B
by chain productions where each nonterminal of
the derivations (except B) are different.

If A÷B is the rth production of G and LR(k)
items <Al÷xl. Blyl#p,ul> and <A2÷x2.B2y2#q,u2>
(the latter different from <A÷.B#r,u2>) are in
the same state R of C, then

F = FIRSTk(ylul) N FIRSTk(y2u2) = ~.

Proof Consider S, the B-successor of R. Suppose
the lemma is false. Then there exists a string
w in F. Since Bi:>*A=>B and w is in FIRSTk(ylul),
<A+.B#r,w> is in R. Therefore <A÷B.#r,w> is in S.
Now, consider B2.

If B2#B, there exists some nonterminal D#A
such that B2=>*D=>B in the above derivation.
Therefore there exists an LR(k) item of the form
<D÷.B#s,w> (for some #s) in R. Therefore
<D-~B.#s,w> is in S and it is inconsistent with
<A÷B.#r,w> violating the condition that G is LR(k).

If B2=B, LR(k) item <A2÷x2B2.y2#q,u2> is in S.
If y2=e, it is inconsistent with <A*B.#r,w>,
violating the condition that G is LR(k). If y2#e,
there also exists in S an LR(k) item either of the
form <D-~.#i,w> or <D-~.az#i,v> where w is in
FIRSTk(azv) by lemma i. But both of these are
inconsistent with <A÷B.#r,w>. //

A pair <Al÷xl.yl#i,ul> and <A2+x2.y2#j,u2> of
LR(k) items satisfies the FIRSTk condition if
FIRSTk(ylul)~FIRSTk(y2u2) = ~. Two sets S1 and
$2 satisfy the FIRSTk condition if every pair of
elements pl and p2 in S1 and $2 respectively
satisfy the FIRSTk condition.

Lemma 3 Let G be an LR(k) grammar, let C be the
principle LR(k) parsing machine for G, let R1 and
R2 be states of C (not necessarily distinct), and
let M1 and M2 be transition symbols of R1 and R2
respectively such that Mi=>*M and M2=>*M. If each
pair of Mi- and M2-items in R1 and R2 respectively
satisfies the FIRSTk condition, then so does each
pair in the Ml-successor and M2-successor of R1
and R2 respectively.

Proof If pl = <Al+xl.Mlyl#i,ul> and
p2 = <A2+x2.M2y2#j,u2> are arbitrary LR(k) Mi- and
M2-items in R1 and R2 respectively, then
FIRSTk(Mlylul) ~FIRSTk(M2y2u2) = ~. Since Mi=>*M
and M2=>*M, M must generate strings of length less
than k. Otherwise, the FIRSTk condition would not
hold. Let n be the maximum length of the generated
strings. It follows that first of all
FIRSTk_ n(ylul) n FIRSTk_ n(y2u2) = ~ and therefore
FIRSTk(ylul)~ FIRSTk(y2u2) = ~ since l~k-n<k. //

A proper subset of a set of items is the
largest subset which excludes those items
associated with useless chain productions.

Lemma 4 Let G be an LR(k) grammar, let C be the
principle LR(k) parsing machine for G, and let R1
and R2 be states of C with proper subsets S1 and
$2 satisfying the FIRSTk condition. Then SIVS2
is consistent.

Proof Obvious. //

Theorem 1 Let G be a grammar, let Pu be a set of
useless chain productions of G, let C be the prin-
ciple LR(k) parsing machine for G, and let C' be
the LR(k) parsing machine for G based on Pu. If
G is LR(k), each state of C' is consistent.

8. This is because they are not always necessary.

130

Proof Suppose G is LR(k), If Pu is empty, there
is nothing to prove since our algorithm becomes
the standard one. Suppose Pu is non-empty,

Suppose for induction that state R in C' is
the union of the proper subsets of states Ri,R2,..
.,Rn in C pairwise satisfying the FIRSTk condition.

For the basis, the initial state I' of C'
consists of the proper subset of the initial
state I of C. The above is therefore satisfied
trivially.

We wish to show that each successor of R
satisfies the above. Suppose R has an M-successor
S. If M is a #-symbol, S is empty (trivially
satisfying the above condition). Otherwise, S is
the union of the proper subsets of the following
states in C: the L-successor of Ri (if it exists),
l~i~n, where L is an ancestor of M. If only one
such successor exists, we are done since each
state of C is consistent. Otherwise, consider
any two such distinct successors S1 and $2. Then
there exists some ancestors L1 and L2 of M and
some p and q where l~p,q~n such that S1 is the
Ll-successor of Rp and $2 is the L2-successor of
Rq. If p#q, the proper subsets of S1 and $2
satisfy the FIRSTk condition by lemma 3. If p=q,
then there exists some M' such that Li=>*M'=>*M
and L2=>*M'=>*M by chain productions where every
nonterminal (except M') in the derivations from
L1 and L2 to M' are different. Suppose arbi-
trarily that L1 is different from M'. Then we
can write Li=>*A=>M' and L2=>*M' for some
nonterminal A. By lemma 2, respective pairs of
Mi- and M2-items in the proper subset of Rp=Rq
satisfy the FIRSTk condition. By lemma 3, the
proper subsets of S1 and $2 satisfy the FIRSTk
condition. //

If p0,pl,...,pn is a sequence of productions
of G, the result of removing those productions
which are members of Pu is said to be trimmed
according to Pu.

Theorem 2 Let G be an LR(k) grammar, let Pu be
the set of useless chain productions of G, and
let C and C' be the LR(k) parsing machines with
forced lookahead based on ~ and Pu respectively.
If algorithm 1 with input C and w outputs

(i) bottom up parse p0,pl pn or
(2) a partial bottom up parse followed

by error,
then algorithm 1 with input C' and w respective-
ly outputs

(I) pO,pl pn trimmed according to Pu, or
(2) a partial bottom up parse trimmed

according to Pu followed by error.

Proof It can be shown by induction that
algorithm 1 with C' "simulates" all non-proper
actions (those excluding reductions by useless
chain productions) of algorithm 1 with C,
including error detection. The proof found in
Pag5 for LR(1) grammars can be suitably
generalized to LR(k) grammars. //

If each state of C' (in the above theorem) is
consistent, we claim that algorithm 1 with C' is
a "trimmed" parser for G even if G is not LR(k).
For instance, if G is S+AIB, A+a, B+a, then each
state of the LR(k) parsing machine for G based on
{A+a, B-~a} is consistent.

If the parsing machine for G does not have
forced lookahead, there are cases where the
parser (algorithm i) will fail to detect
erroneous strings (though it will work correctly
for strings in L(G)). Consider the grammar
S-+alblac. The LR(1) parsing machine for this
grammar based on {S÷a, S÷b} is shown in figure 6.
Algorithm 1 applied to this machine accepts the
string acc (among others) provided only that
symbol a rather than symbol b be chosen as the
arbitrary leaf descendant of S when reducing ac
to S. On the other hand, if lookahead is forced,
the reduction of ac to S is possible only when
the lookahead string is ~ (thus the error is
detected).

[A6U1]

[A&U2]

[A&U3]

[Andl]

[And2]

[DeR1]

[DeR2]

[Earl]

[Jol]

[Knu]

[Kor]

[LaL]

[Pagl]

References

A.V. Aho and J.D. Ullman, The Theory of
Parsing, Translation, and Compiling.
Prentice-Hall, Englewood Cliffs, N.J.,1973
A.V. Aho and J.D. Ullman, "Optimization of
LR(k) Parsers", J. Computer and System
Sciences, Vol. 6, Dec 72, pp. 573-602.
A.V. Aho and J.D. Ullman, "A Technique for
Speeding Up LR(k) Parsers", Siam J. Comp.,
Vol 2, June 73, pp. 106-127.
T. Anderson, "Syntactical Analysis of LR(k)
Languages", Ph.D. Thesis, Univ. of
Newcastle Upon Tyne, Computing Lab.
T. Anderson, J. Eve, and J.J. Horning,
"Efficient LR(1) Parsers", Acta Informatica
2 (1973), pp. 12-39.
F.L. DeRemer, "Practical Translators for
LR(k) Languages", Tech. Report MAC TR-65,
Project MAC, Mass. Inst. of Tech.,
Cambridge, Oct 69.
F.L. DeRemer, "Simple LR(k) Grammars",
CACM, Vol. 14, July 71, pp. 453-460.
J. Earley, "An Efficient Context-Free
Parsing Algorithm", Ph.D. Thesis,
Carnegie-Mellon Univ., Pittsburgh, PA.
also see CACM 13:2, Feb 70, pp. 94-102.
M.L. Joliat, "On The Reduced Matrix
Representation of LR(k) Parser Tables",
Tech. Report CSRG-28, Computer Systems
Research Group, Univ. of Toronto, Oct 73.
D.E. Knuth, "On the Translation of Langua-
ges from Left to Right", Inf. Contr.
Vol. 8, Oct 65, pp. 607-639.
A.J. Korenjak, "A Practical Method for
Constructing LR(k) Processors", CACM,
Vol. 12, Nov 69, pp. 613-623.
W.R. LaLonde, "An Efficient LALR Parser
Generator", Tech. Report CSRG-2, Computer
Systems Research Group, Univ. of Toronto,
Toronto, 1971.
D. Pager, "A Solution to an Open Problem
by Knuth", Inf. Contr., Vol. 17, Dec 70,
pp. 462-473.

131

[Pag2]

[Pag3]

[Pag4]

[P a g 5]

D. Pager, "On Combining Compatible States
in LR(k) Parsing", Tech. Report PE 257,
Information Sciences Program, Univ. of
Hawaii, Honolulu, July 72.
D. Pager, "A Compaction Algorithm for
Combining the Symbol-action Lists of an
LR(k) Parser", Tech. Report PE 259, Univ.
of Hawaii, July 72.
D. Pager, "On the Decremental Approach to
Left-to-right Parsers", to appear in Siam
J. Computing.
D. Pager, "On Eliminating Unit Productions
from LR(k) Parsers", Tech. Report from the
Information Sciences Program, Univ. of
Hawaii, Honolulu.

List of Figures

T

i~ { * }

mCEPT l~ {4)
STEP.

,NO. STAge

) z ~o

E 2 [0a4

8 ~T l

5

T+a

* if {'1 f

~+g÷T if { ÷ , ~ } 12

P~MAINING

l~Tlrr

a+a*a 1

@a'at

[0Ex+2r~ ~al

{~D+2T~*% v 4

t°r'+2T + .I
[°E~

ACCEPT

(.)

The t r m l ~ i t i o u grnph of hE(I)

pa r s i ng t~achine E1 for Cl:

E~E4T{3 T,T+~]a

(b)

Using a l g o r i t h ~ l with

input HI and a+~*a

}IC. p

(a) (b)

The ancestor graph of Gl: The ancestor graph of Gl:

E+E+TIT T+T*.[. E-E+T[T T+T*.I.

where all chain productions are where only E+T is a useless chain

useless production

FIG. I

STATE 0

.__~ <E'*.E#O, {-~ }> [
"g+" E+T# I ' {+'~ }> I
<z+.Z*a#3, {*,+,4 }>]

.t
<E'÷E.#0,{4 }> I

STATE 1 <E+E-+T#1 ,[+,~ } > #0
<T+T.*a#3, {*,+,~ }>

STATE 2 I <T~T*.a#3, {*,+,q }> ~ STATE 3 [<E+E+.T#I, {+,~ }>]

STATE 4 <T+~T*a.#3,{*,+,~}>~ STATE ~[<E+E+T.#1,{+,~}> "
• - - T " I < T ~ ' ~ # 3 , (* , + , q)> "~| "1

The "incomplete" LR(1) pa;sing machine for GI based on

Pu ~ (E+T, T+a}

GI: E+E+TIT T+Ttala

Note: Pu is the set of useless chain productions of GI

FIG. 3

132

STAT I °

STATE/o STATE'-M2

<E÷.E÷T#1, {+,.~ }> I |<To.T,a#3, {*,+, ~ }>1
<E~.T#2, {+,.~]>] |<T÷. a#4, {*,+,.~ }> I
<T~.T,a#3, {,+, I }>] /L --"--'-T'--- .L

#2 I<E-,,r.#2,~..l}, I ~ £ . # 4 , { ; , + , ~ } > [I

"1 " ! STATE 5 * STATE 6

a #1

STATE 7

I <T~T*v" #3' {*'+'~ }>I

• #3 i

The "incomplete" principle LR(1) parsing machine for Cl

GI: E+E+TIT T~T*a[a

FIG. 4

<S"~'S#0'{II<S~.aC#3,{ ~ | | <S~a'c#3'{ }> I L

C if {c} [] Reduce S÷ac

l

t :s: ,/:1 A ~S.#0,(

Tkc. LR(1) parsing ~chine for G based on Pu

G: S+alblac

Pu = {S-~a, S,b}

Fig. 6

~ ~ STEP. NO, STACK RE~LAINING INPUT

~CCEPT if <4 1 p -+~*~4
2 ~°a* +a'a4

4 ~°.l+3as *al

5 ~0al÷3aS*2 al

• e F°al+3aS*2a ~

T-~T*a E*E÷T if {+,~ }

(a)

The LR(1) parsing machine Mi'

for GI based on

Pu = {E-T, Tea}

C1: E~E+T[T T~T*a[a

(b)

Using slsorithm I ~rfth input HI'

and a+a*a. Note: in step(7),

action "Reduce T4T*a" is interpreted.

Since syr~bol a is n leaf descendant

of T, the T-successor of 3 is taken as

the e-successor of 3.

Similarly for step(8).

FIG. 5

133

