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ABSTRACT 

A chain production is a production of the 
form A->M where A is a nonterminal and M is 
either a terminal or nonterminal. Pager in 
[PagS] has presented an algorithm which removes 
all chain reductions from LR(1) parsers after 
they have been constructed. 

In this paper, we present an algorithm for 
directly constructing LR(k) parsers with arbitrary 
subsets of the chain productions, called the 
useless chain productions, optimized out. If 
this subset is empty, the algorithm is a standard 
one [And i, Kn]. If this subset consists of all 
chain productions, the result is a parser with 
all chain reductions optimized away. The algor- 
ithm, as in [PagS], also eliminates from the 
parsers all nonterminals which occur as the 
left part of useless chain productions. This 
latter optimization along with the chain reduc- 
tion optimization significantly decreases the 
storage space and execution times of the 
parsers. 

This provides an efficient solution of the 
open problem posed by Aho and Ullman [A&U2] for 
all LR(k) grammars. 

INTRODUCTION 

In recent years, much attention has been 
focused on LR(k) techniques [Kor, DeRi, DeR2, 
Pagl to Pag4, A&U2, A&U3, Andl, And2, Jol, LaL]. 
Since LR(k) parsers are efficient and capable of 
parsing a large subset of the context free lan- 
guages, much of the effort has been devoted to 
decreasing its table storage space and increasing 
its parsing speed. One approach for doing this 
has been to eliminate useless chain reductions 
from the parsers [A&U2, A&U3, Andl, PagS]. How- 
ever, all of the techniques used above eliminate 
the chain reductions from the parsers after they 
have been constructed. 

In this paper, we present a technique for 
directly constructing LR(k) parsers in such a 
way that reductions involving useless chain 
productions are eliminated. In addition, all 
references to the nonterminals occurring as the 
left part of these productions are also elimi- 
nated. In practice, these two optimization 

significantly reduces the parser storage space 
and also significantly increases the parsing 
speed. 

BACKGROUND 

In this section, we introduce the basic 
notions necessary for the paper. 

A context free grammar (grammar for short) 
is a four-tuple G = (N,T,P,S) where N and T are 
finite disjoint sets of nonterminals and ter- 
minals respectively, S in N is the goal symbol, 
and P is a finite set of productions of the form 
A->w where A, the left part, is in N and w, the 
right part, is in (NUT)*. The vocabulary is 
NuT. For parsing purposes, we reserve ~ and 4, 
the left and right endmarker, as symbols dis- 
tinct from any used in the vocabulary of our 
grammars. We also assume the productions are 
numbered 1,2,...,p in some order. We abbreviate 
productions A->wl, A->w2,...,A->wn by A->wll... I 
wn. 

Conventions: Let G = (N,T,P,S) be a grammar. 
(I) A,B,C denote nonterminals in N. 
(2) a,b,c denote terminals in T. 
(3) L,M,N denote nonterminals or terminals. 
(4) u,v denote strings in T* and w,x,y,z 

strings in (NUT)*. 
(5) e denotes the empty string. 

A production in P of the form A->M where M 
is in NuT is called a chain production. A useful 
chain production is one so declared by a user, 
otherwise, is useless. For example, if a user 
has semantic actions associated with all pro- 
ductions, he may declare all the chain produc- 
tions to be useful. Alternatively, he may declare 
only a subset to be useful -- perhaps those in 
which the right part is a terminal, etc. 

If AO->Ai, Ai->A2, .... An-li>An is a se- 
quence of useless chain productions, we call AO 
a proper ancestor of An and An a proper descen- 
dant of AO. An ancestor (or descendant) of a 
symbol M in NUT is either M itself or a proper 
ancestor (or descendant) of M. A symbol without 
proper descendants is called a leaf (leaves in 
plural). A graph which displays this relationship 
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is called an ancestor graph. 

Example 

Consider grammar G1 consisting of the four 
productions E->E+T I T, T->T*a I a. The ancestor 
graph of Gi, where all chain productions have 
been declared useless, is shown in figure l(a). 
The ancestor graph of Gi, where only chain 
production E->T has been declared useless, is 
shown in figure l(b). // 

A grammar G = (N,T,P,S) is reduced if for 
each M in NuT, there is some derivation of the 
form S=>*xMy=>*w where w is in T*. We will 
assume that all our grammars are reduced. 

We define k:x as the first k symbols of x 
if Ixl> k I and as x otherwise. If X is a set of 
strings in (NUT)*, we generalize k:X as {k:x I 
x is in X}. We further define FIRSTGK(X) 
as k:{w in T* I X=>G*W}. We drop G when no 
ambiguity arises. 

Example 

If G is a grammar with productions S->aSbS 
and S->e, then FIRSTi(S) = {e,a}, FIRSTi(b) = 
(b}, and FIRSTi(Sb) = {a,b}. // 

An augmented grammar associated with a gram- 
mar G = (N,T,P,S) is a grammar G' = (Nu{S'},T,Pu 
{S'->S},S') where S' is a new nonterminal not 
in NuT. 

An LR(k) parsing machine M for grammar G = 
(N,T,P,S) based on the set Pu of useless pro- 
ductions of G is-Ga finite state machine (FSM) 
with transition symbols of the form "X" or 
"X if U" where 

(I) X, an action of M, is an element of 
(a) NuT (a shift action), 
(b) P-Pu (a reduce action), or 
(c) {Accept} (an accept action), and 

(2) U, a lookahead set for X, is a subset of 
T* such that each w in U satisfies 
lwl~k. 

A reduce action of the form A->w where 
A->w is the ith production of G is also rep- 
resented by #i, a #-symbol (pronounced number 
symbol) of G. 

We represent a parsing machine by its trans- 
ition graph. As it turns out, an LR(k) parsing 
machine has exactly one final state and this 
final state has no successors. For con- 
venience, we therefore leave the edges leading 
to this final state unterminated. 

A state of the parsing machine is inadequate 
if it contains at least two actions one of which 
is a reduce action; otherwise it is adequate. 
Informally, a state is inadequate if "lookahead" 
is required to resolve between the actions of the 
state. This is not required for a state which 
is adequate. 

1. Ixl stands for the length of x. 

Example 

The transition graph of an LR(1) parsing 
machine M1 for G1 is shown in figure 3(a). 
States 0, 2, 4, 5, and 7 are adequate; all others 
are inadequate. // 

The following algorithm interprets LR(k) 
parsing machines. 

Algorithm 1 An LR(k) parsing machine interpreter. 

Input An LR(k) parsing machine M for grammer G = 
(N,T,P,S) and input string w in T*. 

Output A sequence of productions in P possibly 
followed by the word error. 

Method 

(i) [Initialize] 
Let IO be the initial state of M and let 

and ~ be the left and right end- 
marker. 2 Begin with current state 
p = IO, stack s = (~ ,IO), and current 
input string u : w 4. Iteratively 
perform step (2). 

(2) [Perform one parse step] 
Let u = au' and v = k:u. Perform one of 
(3), (4) 3 or (S) depending on which 
applies. J If none applies, output 
error and stop. 

(3) [Shift Action] 
There exists a "Shift a" action in p with 
v in its lookahead set (if this set 
exists). Stack (a,q) where q is the 
a-successor of p, set p = q, and set u 
= U'. 

(4) [Reduce Action] 
There exists a "Reduce A->w" action in 
p with v in its lookahead set (if this 
set exists). Output A->w, unstack lwl 
pairs from s leaving (M,q) as the top 
pair, stack (A,r) 4 where r is the B- 
successor of q and B is an arbitrary 
descendant of A which is a leaf, and 
set p = r. 

(s) [Accept Action] 
There exists an "Accept" action in p 
with v in its lookahead set (if this 
set exists). If v # ~ , output error. 
In any case, stop. 

2. Neither endmarker must be a member of NuT. 

3. The advantage of LR(k) parsing is that the 
choice is unique. Note also that the looka- 
head information is not always needed. 

4. Of course, q must contain a "Shift B" action. 
Also, it is well-known that only the states 
are required for parsing purposes. 
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Example 

The result of applying algorithm 1 to M1 
and a+a*a is shown in figure 2(b). // 

The rest of the section contains the basic 
definitions used in the construction technique 
of the next section. 

Let G = (N,T,P,S) be a grammar and let Pu 
be the set of useless chain productions of G. 
An LR(k) item for G is a pair <A->x.y#i,u> 
where A->xy is the ith production of P and 
lulSk. Symbol #i is called a #-symbol (pro- 
nounced number symbol). If the dot is to the 
left of symbol M, the LR(k) item is said to 
be an M-item (#-item if M is a #-symbol). 

If <A->x.y#i,u> is an LR(k) M-item of G, 
the action (and lookahead set) associated with 
it is either (i), (2), or (3) below according 
to whether M is nonterminal B, terminal a, or 
#-symbol #i. 

(i) "Shift B", 
(2) "Shift a if V" where V = FIRSTk(yu), 
(3) "Reduce A->w if {u)" where A->w is the 

ith production of P. 

We never associate a lookahead set with 
nonterminal shift actions. Two actions are 
inconsistent if they are distinct and yet have 
non-disjoint lookahead sets; otherwise, they 
are consistent. Thus two actions, one of which 
is of type (i), must always be consistent. Two 
actions of the form "Shift a if {u,...}" and 
"Reduce A->w if {u .... }" are inconsistent. So 
are "Reduce A->x i~ {u,...}" and "Reduce B->y 
if {u .... }" for A->x#B->y. 

If there exists actions associated with 
distinct LR(k) items which are inconsistent, 
the LR(k) i'tems are also termed inconsistent; 
otherwise, they are termed consistent. A 
set of LR(k) items is consistent if every pair 
of items is consistent; otherwise, it is in- 
consistent. 

The Algorithm for Constructing LR(k) Parsers 
With Chain Production Optimizations 

Let G be a grammar and let Pu be the set 
of useless chain productions of G. We define 
relations-sand ~, the transition successor 
and immediate successor relations respectively 
of G based on Pu below. 

Let I be the set of LR(k) items of G 
exclusive of those associated with elements 
of Pu, and let M be a leaf of G. 

M • = {(<A->x. Ly#i,u>, <A->xL.y#i,u>) in 
Ixl I L is an ancestor of M (which 
includes M)}. 

= {(<A->x. By#i,u>, <C->.z#j,v>) in 
IxI I C is a descendant of B (which 
includes B) and v is in FIRSTk(yu)) 

M 
Relation =-=) is the transition M-successor 

of G based on Pu. Relation-.mis the union of 
a-ll ,=~)such that M is a leaf of G. 

Example 

Consider grammar G1 of figure 1 where the 
productions have been numbered from 1 to 4. 
Suppose all chain productions are declared use- 
less. We compute the set PO.=--,)~*S where 
P0 = {<E->E.+T#1,+>}. We can write 

P1 = P0--~ = {<E->E+.T#1,+>} 
P2 = P1 ~ = {<T->.T*P#3,+>} since T is a 

descendant of T and + is in FIRST l(e+) = 
FIRST1(+). Note that <T->.a#4,+> is not added 
since T->a is a useless chain production. 

P3 = P2~ = {<T->.T*P#3,*>} since * is in 
FIRSTi(*P+). 

P4 = P3~= P3. Thus the process is finished. 

Therefore Q = {<E->E.+T#1,+>}-=~* = 
{<E->E+.T#1,+>, <T->.T*P#3,+>, <T->.T*P#3,*>}. 
Notice that Q T=|, is undefined since T is not "V 

a leaf of G. However, Q a ~, is defined. 

Q0 = Q ~L = {<E->E+T.#1,+>, <T->T.*P#3,+% 
<T->T.*P#3,*>} since T is an ancestor of a. It 

shown that Q0~ is empty. Hence Q a ~* canQ~e // 

Algorithm 2 Construction of LR(k) Parsing 
Machines. 

Input Grammar G, integer k, and set Pu of useless 
chain productions of G. 

Output The LR(k) parsing machine C for G based on 
Pu. 

Method Perform the following steps in succession. 
(i) [Initialize] 

Let G' = (N',T,P',S') be the augmented 
grammar for G = (N,T,P,S,) and number the 
productions so that S'->S is the 0th pro- 
duction of G' Let--~and ~ be the 
transition and immediate successor relations 
of G' based on Pu. 

(2) [Compute the initial state] 
Add I0 = {<S'->.S#0:-~>} ~* 6 to the states 
of C (initially empty) and mark it "unpro- 
cessed". 

(3) [Compute successor states] 
For each "unprocessed" state R of C, mark 
R "processed", and for each leaf M such 
that R contains an LR(k) N-itemwhere N is 
mn ancestor__ of M (also for each #-symbol M), 
add R-~* to the states of C (as the M-suc- 
cessor of R) and mark it "unprocessed" if it 
is not already there. If M is a #-symbol, 
the successor state will be the empty set. 
This state is taken as the sole final state 
of C. 

(4) [Introduce an accept action] 
Replace transition symbol #0 in state R 7 by 
(a) "Accept" if R is adequate, or 
(b) "Accept if {4}" if R is inadequate. 

5. If R is a relation and X is a set, XR repre- 
sents the set {bl(a,b ) is in R and a is in 
X} and XR* represents the smallest set A 
containing X such that if a is in A, then 
{a}R is contained in A. The set XRiR2...Rn 
represents (...((XRI)R2)...)Rn. 

6. Symbol -~ is the right endmarker not in N'oT. 

7. Only one state of C will contain transition 
symbol #0. 
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(s) [Introduce lookahead sets] 
For each inadequate state R of C, and each 
transition symbol M of R where M is either 
a terminal symbol or #-symbol, add the 
lookahead set L where L is the union of the 
lookahead sets associated with the LR(k) 
M-items of R. 

If the set of useless productions is empty, 
the above algorithm is a variant of Knuth's 
LR(k) table constructor [Kn, A&Ui]. We will 
refer to the LR(k) parsing machine for G based 
on ~ as the principle LR(k) parsing machine for 
G. 

As constructed, the actions of a parsing 
machine do not always have associated lookahead 
sets. 8 However, it is possible to construct the 
parsing machine in such a way that the associated 
lookahead set is added to each action. When this 
is done, we say that the parsing machine has 
forced lookahead sets. 

Example 

Figures 3 and 4 contain the incomplete (i.e. 
without lookahead) LR(1) parsing machines Cl and 
DI for G1 based on Pu = {E+T, T÷a} and ~ respec- 
tively. The completed LR(1) parsing machine Mi' 
for G1 based on {E÷T, T÷a} is shown in figure 
5(a). The result of applying algorithm 1 to Mi' 
and a+a*a is shown in figure 5(b). It is 
instructive to compare the number of steps in 
figures 2(b) and 5(b). // 

Conditions For The Algorithm To Succeed 

In this section, we show that the parsing 
machine M with forced lookahead obtained from an 
LR(k) grammar G with useless chain productions 
Pu in conjunction with the interpreter i.e. 
algorithm 1 is in fact a parser for G which 
outputs an "optimized" bottom up parse of an 
input string in L(G) i.e. a sequence of produc- 
tions of G exclusive of those in Pu. We begin 
with some basic lemmas. 

Lemma 1 Let G be an LR(k) grammar, let 
<A÷x. My#p,u> be an LR(k) item in some state R 
of the principle LR(k) parsing machine for G, 
and let w be a string in FIRSTk(Myu). There 
exists in R an LR(k) item either of the form 

(I) <B÷.#i,w>, or 
(2) <B÷~.az#i,v> where w is in FIRSTk(azv). 

Proof Obvious. // 

Lemma 2 Let G be an LR(k) grammar, let C be the 
principle LR(k) CFSM for G, and let Bi, B2, A, 
and B be vocabulary symbols of G (B may be 
either a terminal or nonterminal) such that 

Bi=>*A=>B and B2=>*B 
by chain productions where each nonterminal of 
the derivations (except B) are different. 

If A÷B is the rth production of G and LR(k) 
items <Al÷xl. Blyl#p,ul> and <A2÷x2.B2y2#q,u2> 
(the latter different from <A÷.B#r,u2>) are in 
the same state R of C, then 

F = FIRSTk(ylul) N FIRSTk(y2u2) = ~. 

Proof Consider S, the B-successor of R. Suppose 
the lemma is false. Then there exists a string 
w in F. Since Bi:>*A=>B and w is in FIRSTk(ylul), 
<A+.B#r,w> is in R. Therefore <A÷B.#r,w> is in S. 
Now, consider B2. 

If B2#B, there exists some nonterminal D#A 
such that B2=>*D=>B in the above derivation. 
Therefore there exists an LR(k) item of the form 
<D÷.B#s,w> (for some #s) in R. Therefore 
<D-~B.#s,w> is in S and it is inconsistent with 
<A÷B.#r,w> violating the condition that G is LR(k). 

If B2=B, LR(k) item <A2÷x2B2.y2#q,u2> is in S. 
If y2=e, it is inconsistent with <A*B.#r,w>, 
violating the condition that G is LR(k). If y2#e, 
there also exists in S an LR(k) item either of the 
form <D-~.#i,w> or <D-~.az#i,v> where w is in 
FIRSTk(azv) by lemma i. But both of these are 
inconsistent with <A÷B.#r,w>. // 

A pair <Al÷xl.yl#i,ul> and <A2+x2.y2#j,u2> of 
LR(k) items satisfies the FIRSTk condition if 
FIRSTk(ylul)~FIRSTk(y2u2) = ~. Two sets S1 and 
$2 satisfy the FIRSTk condition if every pair of 
elements pl and p2 in S1 and $2 respectively 
satisfy the FIRSTk condition. 

Lemma 3 Let G be an LR(k) grammar, let C be the 
principle LR(k) parsing machine for G, let R1 and 
R2 be states of C (not necessarily distinct), and 
let M1 and M2 be transition symbols of R1 and R2 
respectively such that Mi=>*M and M2=>*M. If each 
pair of Mi- and M2-items in R1 and R2 respectively 
satisfies the FIRSTk condition, then so does each 
pair in the Ml-successor and M2-successor of R1 
and R2 respectively. 

Proof If pl = <Al+xl.Mlyl#i,ul> and 
p2 = <A2+x2.M2y2#j,u2> are arbitrary LR(k) Mi- and 
M2-items in R1 and R2 respectively, then 
FIRSTk(Mlylul) ~FIRSTk(M2y2u2) = ~. Since Mi=>*M 
and M2=>*M, M must generate strings of length less 
than k. Otherwise, the FIRSTk condition would not 
hold. Let n be the maximum length of the generated 
strings. It follows that first of all 
FIRSTk_ n(ylul) n FIRSTk_ n(y2u2) = ~ and therefore 
FIRSTk(ylul)~ FIRSTk(y2u2) = ~ since l~k-n<k. // 

A proper subset of a set of items is the 
largest subset which excludes those items 
associated with useless chain productions. 

Lemma 4 Let G be an LR(k) grammar, let C be the 
principle LR(k) parsing machine for G, and let R1 
and R2 be states of C with proper subsets S1 and 
$2 satisfying the FIRSTk condition. Then SIVS2 
is consistent. 

Proof Obvious. // 

Theorem 1 Let G be a grammar, let Pu be a set of 
useless chain productions of G, let C be the prin- 
ciple LR(k) parsing machine for G, and let C' be 
the LR(k) parsing machine for G based on Pu. If 
G is LR(k), each state of C' is consistent. 

8. This is because they are not always necessary. 
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Proof Suppose G is LR(k), If Pu is empty, there 
is nothing to prove since our algorithm becomes 
the standard one. Suppose Pu is non-empty, 

Suppose for induction that state R in C' is 
the union of the proper subsets of states Ri,R2,.. 
.,Rn in C pairwise satisfying the FIRSTk condition. 

For the basis, the initial state I' of C' 
consists of the proper subset of the initial 
state I of C. The above is therefore satisfied 
trivially. 

We wish to show that each successor of R 
satisfies the above. Suppose R has an M-successor 
S. If M is a #-symbol, S is empty (trivially 
satisfying the above condition). Otherwise, S is 
the union of the proper subsets of the following 
states in C: the L-successor of Ri (if it exists), 
l~i~n, where L is an ancestor of M. If only one 
such successor exists, we are done since each 
state of C is consistent. Otherwise, consider 
any two such distinct successors S1 and $2. Then 
there exists some ancestors L1 and L2 of M and 
some p and q where l~p,q~n such that S1 is the 
Ll-successor of Rp and $2 is the L2-successor of 
Rq. If p#q, the proper subsets of S1 and $2 
satisfy the FIRSTk condition by lemma 3. If p=q, 
then there exists some M' such that Li=>*M'=>*M 
and L2=>*M'=>*M by chain productions where every 
nonterminal (except M') in the derivations from 
L1 and L2 to M' are different. Suppose arbi- 
trarily that L1 is different from M'. Then we 
can write Li=>*A=>M' and L2=>*M' for some 
nonterminal A. By lemma 2, respective pairs of 
Mi- and M2-items in the proper subset of Rp=Rq 
satisfy the FIRSTk condition. By lemma 3, the 
proper subsets of S1 and $2 satisfy the FIRSTk 
condition. // 

If p0,pl,...,pn is a sequence of productions 
of G, the result of removing those productions 
which are members of Pu is said to be trimmed 
according to Pu. 

Theorem 2 Let G be an LR(k) grammar, let Pu be 
the set of useless chain productions of G, and 
let C and C' be the LR(k) parsing machines with 
forced lookahead based on ~ and Pu respectively. 
If algorithm 1 with input C and w outputs 

(i) bottom up parse p0,pl ..... pn or 
(2) a partial bottom up parse followed 

by error, 
then algorithm 1 with input C' and w respective- 
ly outputs 

(I) pO,pl ..... pn trimmed according to Pu, or 
(2) a partial bottom up parse trimmed 

according to Pu followed by error. 

Proof It can be shown by induction that 
algorithm 1 with C' "simulates" all non-proper 
actions (those excluding reductions by useless 
chain productions) of algorithm 1 with C, 
including error detection. The proof found in 
Pag5 for LR(1) grammars can be suitably 
generalized to LR(k) grammars. // 

If each state of C' (in the above theorem) is 
consistent, we claim that algorithm 1 with C' is 
a "trimmed" parser for G even if G is not LR(k). 
For instance, if G is S+AIB, A+a, B+a, then each 
state of the LR(k) parsing machine for G based on 
{A+a, B-~a} is consistent. 

If the parsing machine for G does not have 
forced lookahead, there are cases where the 
parser (algorithm i) will fail to detect 
erroneous strings (though it will work correctly 
for strings in L(G)). Consider the grammar 
S-+alblac. The LR(1) parsing machine for this 
grammar based on {S÷a, S÷b} is shown in figure 6. 
Algorithm 1 applied to this machine accepts the 
string acc (among others) provided only that 
symbol a rather than symbol b be chosen as the 
arbitrary leaf descendant of S when reducing ac 
to S. On the other hand, if lookahead is forced, 
the reduction of ac to S is possible only when 
the lookahead string is ~ (thus the error is 
detected). 
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