
Automata-Driven Indexing of Prolog Clauses t

R. Ramesh
Department of Computer Science

University of Texas at Dallas
Richardson, TX 75083.

I.V. Ramakrishnan and D.S. Warren
Department of Computer Science

State University of New York at Stony Brook
Stony Brodk, NY 11794.

Abstract

Indexing Prolog clauses is an important optimization
step that reduces the number of clauses on which uni-
fication will be performed and can avoid the pushing
of a choice point. It is quite desirable to increase the
number of functors used in indexing as this can con-
siderably reduce the size of the filtered set. However
this can cause an enormous increase in running time if
indexing is done naively. This paper describes a new
technique for indexing that utilizes all the functors in
a clause-head. More importantly, in spite of using all
the functors, this technique is still able to quickly select
relevant clause-heads at run time. This is made pos-
sible primarily by a finite-state automaton that guides
the indexing process. The automaton is constructed at
compile time by preprocessing all the clause-heads.

I Introduction

The fundamental computational step in execution of
Prolog programs is the selection and unification of
clause-heads with goal. A successful unification results
in the creation of several subgoals and each of these in
turn must be unified with additional clause-heads. This
process continues until either all the subgoals created
axe satisfied by the facts or one of them fails to unify
with any clause-head. Thus the repeated selection of
unifiable clause-heads is an important operation criti-
cal to the efficiency of Prolog program execution. De-
veloping techniques to significantly enhance the speed
of this selection process is therefore a problem of prac-
tical importance to Prolog compilation and execution
technology.

tResenrch partially supported by NSF grant CCR-8805734

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear. and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-3434/90/0001/0281 $1.50 281

Fast selection techniques that have been proposed,
typically first filter the clause-heads to form a (presum-
ably small) set that are likely to unify and then per-
form unification on each of the filtered clause-head in
this set. These techniques can be broadly grouped into
two classes.

The techniques in the first group basically index on
the outermost functor of one or more arguments in the
clause-head. A hash table is built on these functors
which is then accessed for retrieving the filtered set of
clause-heads. This approach is quite popular as seen
by its use in the WAM (warren abstract machine)[l2],
Quintus Prolog [9], Stony Brook Prolog [Il] and several
other Prolog systems [2,13]. The problems with this
approach are that firstly it fails to distinguish between
distinct clause-heads that do not differ in the functor
of the argument indexed on. For instance, by indexing
on the outermost functor of the first argument it fails
to distinguish p(f(a, b), c) from p(f(a, c), d). Secondly,
if the goal has a variable corresponding to the srgu-
ment indexed on then again it will fail to distinguish
between clause-heads. These two situations can some-
times be handled by allowing the programmer to spec-
ify the indexing argument. The selection process now
is no longer transparent and to write efficient programs
the programmer must be aware of the indexing method
used in the Prolog system and organize the program to
exploit it effectively.

The second group of techniques transforms every
clause into a binary codeword by first transforming each
of its argument into a codeword and then OR’ing all of
them together. The filtered set is obtained by search-
ing for the goal’s codeword among the codewords for
clause-heads. This technique has been studied in [lo].
The problem with this method is that such an encoding
is an imperfect representation of a clause-head. Specif-
ically, important structural information in clause-heads
is lost in the transformation process. Thus, although
p(a,b) and p(b,a) are structurally dissimilar, yet they
are assigned the same code. Note that this method is

well-suited for database applications where arguments
are atomic. However, Prolog clauses are complex struc-
tures containing variables. Known transformation tech-
niques for dealing with them are quite ad hoc and result
in significant loss of structural information quite critical
for filtering.

Increasing the number of symbols used in indexing
can result in reducing the size of the filtered set. But
doing so can increase running time if indexing is done
naively. A ‘good’ indexing technique therefore should
be able to utilize all the (non-variable) symbols in
clause-heads without losing significant structural infor-
mation and have good run time performance. In this
paper we address the important problem of designing
such a technique.

1.1 Brief Overview and Related Re-
sults

We describe a new technique for indexing Prolog clause-
heads. Unlike known techniques it utilizes all the non
variable symbols in clause-heads for indexing. Further-
more even structurally different clause-heads containing
the same functors (such as p(a, b) and p(b,a)) are dis-
tinguished. In our approach each clause-head is trans-
formed into a set of strings by doing a left-to-right pre-
order traversal and removing nodes labelled with vari-
ables. Thus f(a, g(X, b)) is transformed into fag and b.
Observe that the clause-head stringa so obtained con-
tain all the non variable symbols in its head. As each
function symbol is assumed to have unique arity in Pro-
log implementations, these strings also retain the head’s
structure, i.e., we can reconstruct the clause-head given
its preorder sequence.

Given a goal we perform a series of complex string
matching steps involving clause-head strings and goal
strings. The outcome of these steps are then correlated
to obtain the titered set. These string matching steps
require repeated inspection of goal strings and therefore
performing each such step independently is inefficient.
Hence we construct a finite-state automaton (based on
the clause-head strings) and use it to guide our index-
ing process. The information embodied in the states of
the automaton is now used to avoid reinspection of se-
quences of symbols in goal strings and thereby improve
the performance of our technique. The following are
some important features of our technique.

l The finite-state automaton is constructed at com-
pile time by preprocessing all the clause-heads.

l Selecting a clause-head at run time is accomplished
within time (in the worst case) proportional to the
number of variables in the clause-head and goal.

l Time to construct the automaton (at compile time)
and its space requirements are both quadratic in

the size of the clause-heads (in the worst case).
Both can be made linear by increasing the con-
stant in the running time of clause selection and
we briefly outline how this is accomplished.

a An important aspect of our technique is that a se-
lected clause-head will unify with the goal if they
are both linear (i.e., each variable is restricted to
at most one occurrence). In other words among
the selected clause-heads only those that have re-
peated variables may fail to unify. Often clause
selection in typical Prolog programs involves linear
terms only. This fact can be gainfully exploited
by our technique to obtain the unifier during the
indexing process. In contrast, known methods do
this by performing unification on each clause-head
in their filtered set (which is at least as large as
the one constructed by our technique). Unification
of each such clause-head requires time proportional
to the sum of its size and that of the goal (using
known linear-time unification algorithms in [a]).

l Our technique generalizes the known methods of
indexing on functors of specified arguments. It is
also transparent to the programmer who need no
longer organize the program to effectively exploit
the indexing method used by the compiler.

Finally, we also discuss another indexing technique
(that also utilizes all the functors in a clause-head) for
a machine model in which we can perform bit-string
operations of union and intersection in constant time.
This technique is of practical importance as long as the
number of clause-heads with the same predicate name
does not exceed the wordsize.

This paper is organized as follows. In the follow-
ing section issues related to compiling clause-heads for
fast indexing are identified. Based on these issues we
describe their compilation into a finite-state matching
automaton in section 3. The clause-heads are selected
based on the outcome of scanning the goal with the
automaton at run time. A method to do this scan ef-
ficiently is outlined in section 4. A variant of the in-
dexing technique that results in reducing the space re-
quirements of the automaton is described in section 5.
In section 6 we describe another indexing technique us-
ing bit string operations. Concluding remarks appear
in section 7.

1.2 Notations

A tern, is either a variable or an expression of the form

f(W2, . . . , I,,) where f is a functor of arity n > 0 and
tirtz,..., t, in turn are also terms.
We adopt the standard Prolog convention of using cap-
ital letter for the first symbol in a variable name. Thus
f(a,g(X, b) is a term with X as the variable, f and g

282

begin
f ail:=false;
repeat

If G(%) and R(p,) are both functors
then begin

If G(p,)# R(p,) then foilztrue
else begin pg:=po + 1; p,:=p+ + 1 end

end else
if one of them is a variable, say G(p,), then
begin p,,:=po + 1;

advance pF to node immediately
following the subtree rooted at R(p,)

end
until (faiL=false) or

(G and R are completely scanned)
end.

Fig. 1: Selection Algorithm

as functors of arity 2 and a and ?I as functors of arity 0,
A term tree is the standard tree representation of a term
(see fig.2).
A term is linear if each variable in it occurs only once.

2 Issues in Selecting Clause-
Heads

We first identify issues involved in indexing clause-heads
(called rules from now on) through a simple selection
algorithm.

2.1 Simple Selection Algorithm

Our selection algorithm uses all those nodes in the goal
and rule that do not occur within variable substitutions
when the two are unified. Specifically, it selects a rule
if and only if it unifies with the goal after uniquely re-
naming multiple occurrences of variables in both the
rule and goal. (Note that such renaming makes them
both linear terms.)

The structure of rules selected by our selection al-
gorithm is described by the following intuitive picture.
First superpose the goal and rule trees at their roots.
Next mark all those nodes that fall on variables. The
rule is selected if and only if after deleting all such
marked nodes and their subtrees, the two trees are iso-
morphic.

Fig.1 is an outline of such a selection algorithm. The
rule and goal trees are traversed in preorder and stored
in arrays R and G respectively. Two pointers, p, and
pg, are used to scan R and G respectively. The rule is
selected if upon termination fail is false. The trouble

with this selection algorithm is that its running time
is proportional to the number of napes in the goal and
rule trees (in the worst case). Note that within this
time bound we can in fact unify them using well known
linear-time unification algorithms (such as [8,6]).

We now examine issues related to improving consid-
erably the running time of our simple selection algo-
rithm.

2.2 Improving Running Time

Observe that our simple selection algorithm cycles be-
tween two phases - match and akip. In each step the
phase is first determined and then ihe computation ap
propriate to that phase is performed. Transition be-
tween phases occurs as follows. If the algorithm is in
match phase and the nodes currently being compared
are both functors then it continues to remain in the
same match phase. On the other hand a new match
phase is entered if it is currently in a skip phase and
the nodes being compared are again functors. Finally,
it enters a new skip phase whenever one of the nodes
being compared is a variable. The computations per-
formed in the two phases are as follows. If the pair of
functor symbols compared in a match phase are iden-
tical then pg and p, are both incremented by one. A
mismatch on the other hand, results in the rule being
discarded. For the skip phase, suppose (without loss of
generality) p. points to a node labelled with a variable,
say X, and pr to some node, say v. Then p# is advanced
by one whereas pr skips the entire subtree rooted at v
and advances to the node immediately following the last
node in the skipped subtree in preorder. We say that
the subtree at v is the substitution computed for X.

Note that the total number of distinct phases the
algorithm goes through is proportional to the number
of dubdtitutiond computed which in the worst case is at
most equal to the total number of variables in both the
goal and rule. Also note that each skip phase can be
accomplished in O(1) time by keeping a pointer with ev-
ery node v (in arrays G and R) to the node that appears
last in the preorder traversal of the subttee rooted at
u. Observe that if we can accomplish each match phase
also in O(1) time then the worst case running time of
our selection algorithm is proportional to the number of
substitutions computed. We now examine issues related
to doing the match phase in O(1) time.

2.3 String Matching Operations

The computation performed in a match phase is ba-
sically comparing pairs of functor symbols in succes-
sion. If we can compare this entire sequence of functor
pairs in O(1) time then the match phase requires only

283

O(1) time. Towards this objective we examine below
the kinds of string matching questions that can possi-
bly arise in a match phase. We will denote the string
of functors separating two consecutive variables in the
goal’s (rule’s) preorder as goal (de) strings (see fig.2
below).

80
/\

0 x 9 10 9 Q
6

a

11

rule T1

rule strings: f,ga

god 9

goal strings: f f agag

15

rule ~2

rule strings: ffa

Fig. 2

Observe that the two variables, for which substitutions
are computed in the skip phases immediately preced-
ing and succeeding a match pahse, are either both rule
variables (such Xi, Xi+, in fig.j(a)) or are both goal
variables (such as Yj, Yj+r in fig.3(c)) or one is a goal
variable and the other a rule variable (such as Xi, Y*
in flg.s(b) and Yj,Xi+i in fig 3(d)) I fig 3 a and 02: . . n .
note rule and goal strings respectively and the preorder
traversals of the rule and goal are stored in arrays R
and G respectively. The pair of arrows leaving a vari-
able mark the two ends (in R or G as appropriate) of
the subtree computed as its substitution (such as a and
b for Xi in fig.3(a)).

Fig. 3a

Fig. 3b

Fig. 3c

... v;fi . . .
- . . .

Fig. 3d

Each of these four situations gives rise to a different
string matching question in the match phase as follows.

1. Does a (rule string) occur in p (goal string)?
(Fig.3(a)).

2. Does a prefix of (Y match a sufFtx of p? (Fig.3(b)).

3. Does p (goal string) occur in Q (rule string)?
(Fig.3(c)).

4. Does a prefix of /3 match a s&x of a? (Fig.3(d)).

Observe that these four questions are a special case of
the generic question - Does the prefix of a rule (goal)
string occur in a goal (rule) string? We now show how
to compile the rule strings into a finite-state automaton
that at run time will enable us to answer these questions
in O(1) time.

3 Compiling Automata

Central to our technique is a finite-state automaton con-
structed from the rule strings. Such an automaton was
first conceived by Knuth, Morris and Pratt [5] for rec-
ognizing instances of a single keyword string in a text
string. Aho and Corasick [l] extended it to handle mul-
tiple keyword strings. This automaton is a trie in which
each node denotes a state. F’rom each state the automa-
ton either makes a goto transition or a failure transi-
tion depending on whether the next symbol in the input
extends the keyword prefix matched so far. Fig.rl(a) is
such an automaton for the three rule strings generated
from the rules in fig.2

284

a

i \
!. -. __ ._. - .._. .-.. .-- _._ 0 5

- got0 transition

_ * failure transition

Fig. 4a: Automaton Fig. 4b: Fail Tree

:- -. - -- -_ _~
f a a 3

..’ / / ~f~~~-~
/ / /

4
L. - i.- -. _- -. I_ “i a ;

I .-. -- --. -- _- -I - -1
I \’
I”.. *.... .“” - ..- _... I._

-0

- got0 transition

--..-t failure transition

Fig. 4~: Automaton

Time required to construct this automaton is linear
in the site of the keywords and if the alphabet set is
fixed then the space required by it is also linear in the
sise of the keywords [l]. The following two properties
of the automaton form the basis of our compilation,

1. Every prefix of a keyword string is represented by
a state in the automaton.

2. If the failstate of i is j (i.e., the failure transition
from i goes to j) then j represents the longest
proper sufiix of the string represented by i. (We
say state i represents string u if the path in the
automaton from its start node to i spells u. Thus
state 2 in fig.4(a) represents ff.)

The main problem with this automaton is that (as is)
it is only able to tell whether an entire keyword string
occurred in the input text. This is all that is needed
for rule selection when the goal is ground as in func-
tional/equational programming. However recall that in
the presence of variables in the goal we need to know
whether a prefix of a rule (goal) string occurs in a goal
(rule) string.

We first extend the automaton to handle such ques-
tions. The rule strings generated from the clause-heads

of the Prolog program form the keywords of this au-
tomaton. At run time the automaton scans the symbols
of the goal tree in preorder. Suppose we want to know
whether the prefix a of a rule string, say tic matches
the substring p of goal (see fig.5(a)).

Let 8~ denote the state of the automaton after read-
ing the last symbol in 0. Let I, be the state represent-
ing a. (Recall property (l).) Then,

Theorem 1 Q matches p iff aa is- reachable from us
through zety) or more failure tmnsitiona only.

The proof of the theorem follows from property (1).
Details are omitted.

Observe that each state has a unique fail state. So
by deleting all the goto transitions and reversing the
directions on failure transitions we obtain the fail tree
of the automaton. (Fig.rl(b) is the fail tree for the au-
tomaton in fig.4(a).) To each node in this fail tree we
assign its preorder number (pm) and the number of de-
scendants (na) in its subtree. Note that all this prepre
cessing is done at compile time. For a to match fl, s,
must be an ancestor of 8~ in the fail tree (i.e., verify
pre(8,) 5 pre(8p) 5 pre(sa) + nd(8,)). Since this can
be verified in 0(1) time we can therefore answer in 0(1)
time whether a prefix of a rule string occurs in a goal
string.

a

IS,
rule fi

j-P-j” god

Fig. 5a

a

Fig. 5b

god

Now we extend the automaton to answer whether a
prefix CY of goal string matches a substring p of a rule
string (see fig.S(b)). a, is the state of the automaton on
scanning a and 8~ is the state corresponding to prefix 7
of rule string. Note that the goal strings are not avail-
able at compile time. As the automaton is constructed
without these strings we can no longer guarantee that
every prefix of a goal string will be represented by a
state in the automaton. Hence theorem 1 is no longer
useful to answer questions related to prefixes of goal
strings. Specifically, even if a does not match /3, 8, can
still be an ancestor of sp in the fail tree. For instance,

285

the automaton in fig.4(a) ends up in state 1 upon scan-

ning the prefix gf of a goal string. Now observe that
even though 1 is an ancestor of 2 in the fail tree, gf does
not occur in the rule string ffa, The problem is that
8, iS an aIICeStOr Of 8p even if a SUti of a OCCWS in p

(such as f in the above example). To overcome this we
must ensure that if a prefix of a goal string matches a
substring of a rule string then that substring is a prefix
of some keyword in the automaton. (Obviously if the
automaton was constructed using the goal strings also
then this is easily ensured.) However note that we do
not need to represent every prefix of a goal string in the
automaton. We need only those that match substrings
of rule strings. Based on this important observation
we now show how this can be accomplished using rule
strings only!

In fig.[i(b) suppose a matches p. Now observe that p
is a prefix of w which in turn is a suffix of a rule string.
Thus all we need to do now is to make every suffix of a
rule string into a keyword of the automaton. (Thus, in
addition to the rule strings in fig.2 we now insert their
suffixes a, fa also into the automaton, in fig.4(a), as its
keywords. Fig.li(c) is the resulting automaton.) Finally,
note that even after doing so ua will be an ancestor of
up if any suffix of a occurs in p, We can eliminate such
possibilities by

Theorem 2 a matches p iff da ia an ancestor of 8~

and depth(u,) in the goto twe’ = 1 Q [.

The theorem’s condition is again verifiable in O(1) time.
Thus aU string matching questions can be answered in
O(1) time.

Finally note that the size of the all the keywords in-
serted into the automaton (rule strings and all their
suffixes) can now become quadratic in the size of the
rule strings (in the worst case).

4 Scanning Goal

To begin our selection we have to first scan the goal
tree in preorder with the automaton and store its state
transitions in an array. Clearly, for efficiency reasons
we should not inspect regions of goal that occur within
a variable substitution of every rule. For example, in
fig. 2 the goal’s subtree g(a) occurs inside substitutions
for X (in rule 1) as well as Yl(in rule 2).

We now outline the essential ingredients involved in
avoiding inspection of such subtrees during selection.
The main idea is to inspect the goal on demand only
to the extent needed to perform a string match. Rules
are in two states - active and suspended. Initially all

‘The goto tree of the automaton is obtained by removing all
its failure transitions.

location 1
node labels f
state 1

I I ,

Fig. 6a Fig. 6b

location 111213141
node labels 1 f f 1 a 1 ?

,

state 11 2131?
I I I I I ,

Fig. 6c

111
Fig. 6d

of them are active. To begin with we pick any active
rule and inspect the first few functors of the goal (in
preorder) that are necessary to perform the first string
match involving the selected rule. Suppose the skip
phase immediately following the match phase is trig
gewd by a rule variable2. We then suspend this rule on
that node in the goal tree that immediately follows the
skipped subtree in preorder. In general a rule, say t;,
is suspended only when the skip phase is triggered by
ti’s variable and there are nodes in the skipped subtree
that have not been inspected. A suspended rule is reac-
tivated whenever the node, on which it is suspended, is
either inspected in order to perform a string match step
on behalf of an active rule or it becomes the root of a
substitution. In case all rules become suspended then
we reactivate the rule that is suspended on the node
farthest from the root of the goal tree. The algorithmic
details are a bit involved and are omitted. We illustrate
this scanning process on the goal and rules in fig.2 using
the automaton in fig.rl(c).

Initially, rl and r2 are active. States 1 and 7 represent
the first and second strings of ~1 respectively (f and
g(2) and state 3 represents the only string (ffu) of t2.
To begin with we can choose any rule, say tl. Before
we can match its first string we have to scan the goal.
As the length of this string is 1, we inspect only one
goal symbol which in this case is its first symbol. (The
inspected symbols of the goal are stored in an array.)

The first string match step of rl succeeds as the state
representing its first string and the state of the au-
tomaton on reading the first goal symbol are the same
(fig.g(a) shows the contents of the goal array on inspect-
ing its first symbol). The next phase is a skip (triggered
by X). The subtree rooted at 2 in the goal is skipped

a A rkip phase is raid to be triggered by a rule (goal) variable
if in this phase a substitution ir computed for the rule (goal)
variable.

286

and +i is suspended on node 6 in the goal tree. Follow-
ing this we choose the next active rule (rz) and perform
its first string matching step. To do this we need to scan
the goal further as the symbols inspected so far (which
is 1) is shorter than that required to perform this step.
We scan two more symbols (see fig.b(b)).

The first string match of ts succeeds as the state rep-
resenting its first string ffo is the same as that in the
3rd entry of the goal array. In the following skip phase,
triggered by Yl, the subtrte at 4 is skipped. Follow-
ing this ~2 is also suspended at node 6. Now note that
both rules are suspended. This means that the subtrte
at 4 occurs inside variable substitutions of both rules.
Therefore we need not inspect any symbols within this
subtrtt. In the array thii is represented by a dummy
variable (set fig.s(c)).

At this point both are suspended on the same node.
So we can activate any one, say rs. (In general we
choose the rule suspended on a node farthest from root.)
For ts the step to be performed now is compute Yx’s
substitution. In this skip phase the subtree at 6 is
skipped. ri now is reactivated as the node on which
it was suspended (node 6) has become the root of a
substitution. Following this skip phase ~2 is selected as
there is no node in the goal tree that folIows the subtrte
at 6 in preorder.

Since ~1 is the only active rule left we begin its second
string match. To do this we have to inspect the symbols
in nodes 6 and 7 (set fig.b(d)). Since 7 is labelltd with
the variable Y we therefore stop the scan and perform
the match. Notice that for inspecting these two nodes
state 0 was used as initial state of the automaton. This
is because the symbols inspected in this scan consti-
tute a different goal string. The preceding goal string
terminated before the dummy variable. Observe that
the second string matching step of rl involves match-
ing the prefix g of rule string ga with the goal string
g. This also is successful as the state of the automaton
on inspecting node 6 of the goal (state 6) also repre-
sents the prefix g of the rule string ga. In the following
skip phase, triggered by 2 (goal variable), the subtree
rooted at node 11 in ~1 is skipped. As this is the last
node in tl’s preorder it also is selected.

4.1 Coarse Filtering

The selection algorithm (described so far) regards every
rule as a likely candidate for inclusion in the filtered set
and so processes each of them separately. Thus it will
unnecessarily examine a rule even if the functor symbol
at its root differs from that of the goal’s root. In con-
trast note that an indexing technique that is based on
hashing the root functor symbol, will not even examine
such rules.

We now modify the selection algorithm to avoid such
needless computations. Specifically, we first construct a
coarsely filtered set of rules such that the first string of
every rule in this set is either a prtiix of the goal’s first
string or vice versa. (Note that the first string in ev-
ery rule always begins with the root’s functor symbol.)
More importantly, rules that do not belong to this set
are not looked at during its construction.

Let g1 denote the goal’s first string. Let S1 = {r (
the first string of t is a prefix of gr} and SZ = {r 1 g1
is a prefix of the first string of T}. The following is
a description of the ideas underlying the construction
of the coarsely filtered set Si U Sr. But first we need
the following concept. We say that A is the primary
accepting state of a keyword string a if it is both an
accepting state for a and represents a. For instance in
fig. 4(a), both 1 and 2 art the accepting states of the
rule string f. But only state 1 is its primary accepting
state.

Suppose r E Si and its first string /3 matches a prefix
a of 91. Since /3 is a keyword string of the automaton,
one of its accepting states is a primary accepting state.
Now note that the path from the start state to this pri-
mary accepting state spells out 0. This implies that
a can be entirely scanned by the automaton without
making any failure transitions. Based on this obstrva-
tion Si can be constructed as follows. The automaton
scans the symbols in gt (from left to right) and makes
transitions. It continues scanning these symbols as long
as it makes only goto transitions. During such a scan if
the automaton makes a goto transition to the primary
accepting state of /3 then rule t is included in 271.

For constructing Sr, suppose T E S2 and gi is a prefix
of its first string /3. Once again the automaton can
scan gi entirely without making any failure transitions.
Let A denote the state of the automaton on completely
scanning gr without making any failure transitions. If
gr is a prefix of p then the primary accepting state of p
must be a descendant of A in the goto tree. Therefore
Sr will consist of only those rules such that the primary
accepting states of their first strings are descendants of
A in the goto tree.

During compilation we maintain the following infor-
mation. With each state A, we keep a set CA of all
those rules for which A is the primary accepting state
of their first strings. (Note that all rules in CA should
have identical first strings.) We also maintain another
set DA of rules such that the primary accepting states
of their first strings are descendants of A in the goto
tree.

At run time the automaton starts off by reading the
symbols in gi. It continues scanning them as long as
it makes only goto transitions. During this scan if it
enters an accepting state A then the rules in CA are

287

added to Sr. The scanning process is suspended when
either gr is completely scanned without making any fail-
ure transitions or a failure transition occurs before all
the symbols in gr have been read. In the former case, if
B is the state of the automaton on completely scanning
g1 then Sz = DB whereas in the latter case Sz = 8.
In either case construction of the coarsely filtered set is
now complete. We resume the scan of the goal strings
from where it was suspended and proceed with the se-
lection algorithm as described earlier. However we now
need to examine the rules in the coarse set only. Note
that we have already completed the first match phase
for all these rules. So this step can be now be skipped
by the selection algorithm.

Finally some remarks about efficiency. Suppose there
are n rules in a Prolog program. If only m of these rules
are included in the coarsely filtered set then computing
this set at run time requires at most O(m) time over
and above the time required to scan gl. We have thus
managed to exclude the remaining n - m rules without
even examining them.

5 Selection using Linear Space

Recall that the space needed for the automaton can be-
come quadratic in the size of the rules. We now briefly
outline modifications to our selection algorithm that
will reduce quadratic space to linear at the expense of
increasing the constant in its running time.

Notice that the same automaton was used to handle
the two generic string matching questions, namely, oc-
currences of prefixes of rule strings in goal strings and
vice versa. Recall that to answer the former question
we only need the rule strings in the automaton (and not
their sufllxes) and therefore in such a case the automa-
ton requires only linear space. The idea now is not to
use the automaton for dealing with the latter question,
viz., prefixes of goal strings in rule strings but to use a
dufjiz tree instead.

Fig 7: Sufiix tree for abcdabc

A suf3l.x tree of a string u is a tde in which each root-
to-leaf path spells out a distinct suflix of 6. Fig.7 iz the
suffix tree for string 6 = abcdubc. We preprocess all the

rule strings and build a suflix tree. Such a tree requires
space linear in the size of the rules[‘i’]. In addition to
scanning the goal strings with the automaton we now
scan them with the suflix tree also. While scanning with
the suffix tree its nodes serve as states and the edges as
goto transitions. A boolean flag (initialized to false) is
maintained with each goal symbol. This flag is set to
true if a successful transition is made upon inspecting
the goal symbol with the s&ix tree. In such a case the
node number (from which a transition is made) is also
stored with the inspected symbol. To verify whether a
prefix a of the goal string matches the substring p of a
rule string (see fig.5(b)) we proceed as follows. Suppose
p = a. Then let Us denote the node reached in the
suffix tree upon scanning cc. Observe that ,0 is a prefix
of a sullix U. Therefore the root-to-leaf path in the
s&lx tree that spells out (3 must psss through aa. All
we need to do now is verify whether the leaf node of
this root-to-leaf path occurs in the subtree rooted at
l o. This again can be done in 0(1) time.

Finally, note that each rule string appears twice -
once in the automaton and once in s&lx tree. How-
ever observe that every rule corresponding to a ground
fact gives rise to only one rule string. Selecting a fact
only involves verifying whether goal strings occur in the
fact’s rule string. This can be easily answered using
the suf3.x tree alone. So rule strings corresponding to
ground facts need not be a part of the automaton. This
can result in considerable savings in both space required
and running time of applications that deal with volumi-
nous amount of ground facts such as Prolog databases.

6 Indexing Technique using Bit
Strings

We now describe another indexing technique suitable
for a machine model in which bit string operations of
union and intersection are done in constant time. As
long as the number of rules with the same predicate
name does not exceed the wordsize then this method
is of practical importance. (Thus it is not appropriate
for important applications such as Prolog databases as
they typically involve voluminous number of rules with
the same head symbol.)

Each rule tree is again preprocessed into a trie and
the tries of all the rules are then merged. The trie for
a rule tree is constructed as follows. First we assign a
integer label to every edge in the tree. Specifically, if
a node v is labelled with a functor f of arity k then v
has k subtrees and the edge leading into the ith subtree
is labelled i. Next we remove the variable names from
all those nodes labelled with variables. Finally every
node labelled with a functor symbol is split into two

288

o- 0

Sl = {n,r2}

s2 = ss = s4 = {t2}

s, = 576 = .!&, = 8

S7=S~=SO={fl}

nodes connected by an edge that is labelled with the
original node label. (See trie for rule tl in fig.8(a).)
The tries for all the rules are then merged together by
a process similar to that used in the construction of the
automaton in section 3. (Fig.8(b) is the trie for rl and
TV). The space required for the trie is linear in the size
of the rules.

0

8

f

2
&

Let ti denote the trie for rule ri and T the trie ob-
tained by merging all the ii’s together. With each node
v in T we maintain two sets S, and M,. We include
ri in S, if the path from the root of T to v is a proper
prefix of a root-to-leaf path in tie If they are identical

2 3

i

9

4

1

6

* then pi is included in M, instead of S, (see fig-b(b)).

The goal is scanned in conjunction with T in a recur-

a

6

Fig. 8a: trie for rl

sive fashion. Each recursive calI has three parameters -
the node u in goal currently being inspected, a node v
in T and a set S of rules whose root-to-leaf paths have
been successfully matched so far. For the very first re-
cursive call u is the root of the goal tree, v is the root
of T and S consists of all the rules whose tries have
been merged to form T. The call begins by inspecting
the label of u. Suppose u is labelled with a variable
then this call returns successfully with S as the set of
rules selected 8t thii point. On the other hand if u
is labelled with a functor symbol and there is no edge
leaving u that is labelled with this functor symbol then
it means that prefixes of root-to-leaf paths of rules in
S, that have been matched so far cannot be extended
any further and are to be removed Tom S. Therefore
this call returns with S = S fl x where z is set com-
pliment of S,. Suppose there is an edge from v to w
that has the same functor label then we descend to w in
T as we have now been able to extend prefixes of root-
to-leaf paths of some of the rules in S. Note that these
rules must also be present in S,. However S, may also
have rules that are not in S. Moreover for some rules
in S their root-to-leaf paths might have terminated at
u. Such rules must be present in M,. Therefore we
create two new sets S1 = S n S, and MI = S n M,.

Ml=Ms=Md=0
Note that for any rule in S1 we have matched only a

Ms=Mo=0
prefix of a root-tcAeaf path and in order to complete

M2 = Mlo = (~1)
this match we must scan the goal further. To do this

MS = MS = M7 = (~2)
we initiate a number of recursive calls as follows. Ob-
serve that w has the same number of children 8s u and

Fig. 8b
the edges leaving w are all labelled with integers. Let
wl, w2,. . . , wl and ul, ~2,. . . u1 denote the children of
w and u respectively. We then initiate I recursive calls
with w,w~,S~ as the input to the ith call. On returning
from this call Sl is updated to become Sl n Si. Finally,
on returning from the Zth recursive call S is updated to
become S1 U MI. When the first recursive call initiated
at the root of the goal is complete then S denotes the
set of selected rules. Notice that by associating a bit
per rule set intersection and union can be done in O(1)

289

time. In such a case the running time is bounded by the
number of recursive calls which in turn is proportional
to the size of the goal. However this method does not
compute substitutions for variables.

Lastly we briefly mention a modification to the
method when set unions and intersections cannot be
performed using bit strings. For every rule, S, has a
count of the number of path strings in the rule that
passes through v. Similarly M,, has a count of the num-
ber of path strings that terminate on v. We associate
a counter with every rule. While scanning, this counter
gets updated to reflect the number of path strings of the
rule that have been matched so far. Upon completion
of the scan a rule is selected if its counter value equals
the number of path strings in it. An idea similar to this
was used in [4] for doing tree pattern matching. Observe
that selecting a rule will now require time proportional
to the number of leaves in it. In contrast, recall that in
our first indexing method a rule is selected in time pro-
portional to the number of substitutions computed and
this number is always less than or equal to the number
of leaves in the rule.

7 Concluding Remarks

In this paper we described an automata-driven index-
ing technique for Prolog that selects rules quickly at
run time. Although we compile all the rule strings in
this technique, in practice we can choose the appropri-
ate strings to index on a few arguments only. Thus
our technique generalizes known techniques that index
on functors. For instance, most existing Prolog imple-
mentations index on the outermost functor of specified
argument(s), say the ith argument. This involves build-
ing hash tables that groups all the rules with the same
outermost functor in the ith argument into a single set.
To index only on the ith argument using our technique
we proceed as follows. As part of compilation we first
transform every rule so that its ith argument becomes
the first argument. We perform a similar transforma-
tion on the goal (prior to execution). Next we con-

struct the coarse filter based on the transformed rules
and goal. However we now suspend the scan on exam-
ining the second symbol in the goal’s first string. This
corresponds to the outermost symbol in the goal’s ith
argument before transformation. If A is the state of
the automaton upon reading the second symbol then
Sz = DA and Sr U Sz at this point is exactly the set of
rules in the hash table corresponding to the outermost
symbol in the goal’s ith argument.

We also described another efficient indexing tech-
nique that is useful in situations where the number of
rules with the same root symbol does not exceed a word-

size. This can be of practical importance for small Pro-
log programs.

References

PI

PI

PI

PI

151

PI

PI

PI

PI

[lOI

WI

P21

A.V. Aho and M.J. Corasick, Efficient String
Matching: An Aid to Bibliographic Search,
CACM, Vol 18 No. 6, June 1975, pp. 333-349.

K.L. Clark and F.G. McCabe,
&ties in IC-PROLOG, Expert
Electronic Age, Ed. D. Michie,
sity Press, 1979.

The Control Fa-
Systems in Micro
Edinburg Univer-

B. Demoen, A. Marien and A. Callebaut, Index-
ing Prolog Clauses, To appear in North American
Conference in Logic Programming, Cleveland, Ott
1989.

C.M. Hoffmann and M.J. O’Donnell, Pattern
Matching in Trees, JACM 29, 1, 1982 pp. 68-95.

D.E. Knuth, J.R. Morris and V.R. Pratt, Fast Pat-
tern Matching in Strings, SIAM Journal of Com-
puting Vol 6, No 2, 1977, pp. 323-350.

A. Martelli and U. Montanari, An Efficient Uni-
fication Algorithm, ACM TOPLAS, Vol 4, No. 2,
Apr 1982, pp. 258-282.

E. M. McCreight, A Space-Economical Suffix Tree
Construction Algorithm, Journal of ACM, Vol 23,
No. 2, April 1976, pp. 263-272.

M.S. Paterson and M.N. Wegman, Linear Unifica-
tion, Journal of Computer System and Science, Vol
16, No. 2, April 1978, pp. 158-167

Quintus Prolog Users Guide, Quintus Computer
Systems Inc., Mountain View, California.

K. Ramamohanarao and J. Shepherd, A Superim-
posed Codeword Indexing Scheme for Very Large
Prolog Databases, Proceedings of the Third Inter-
national Conference on Logic Programming, Jul
1986, Lecture Notes on Computer Science, Vol.
225, Springer Verlag pp. 569-576.

S.K. Debray, The SB-Prolog System, Version 2.3.2:
A User Manual, Technical Report 87-15, Depart-
ment of Computer Science, University of Arizona,
Toucson, Dee 1987.

D.H.D. Warren, An Abstract Prolog Instruction
Set, Technical Note 309, SRI International.

290

[13] D.H.D. Warren, Implementing Prolog - Compiling
Predicate Logic Programs, D.A.1 Research Reports
39, 40, University of Edinburg, 1977.

[14] M.J. Wise and D.M.W. Powers, Indexing PRO-
LOG Clauses via Superimposed Code Words and
Field Encoded Words, Proceedings of the IEEE
Conference on Logic Programming, Jan 1984, pp,
203-210.

291

