
Abstract

This expository paper simplifies and clarifies Steifen’s
depiction of data flow analysis (d.Ja.) as model
checking: By employing abstract interpretation (a-i.)
to generate program traces and by utilizing Kozen’s
modal mu-calculus to express trace properties, we ex-
press in simplest possible terms that a d&a. is a model
check of a program’s a.i. trace. In particular, the clas-
sic %ow equations for bit-vector-based d-Jo. s reformat
trivially into modal mu-Cal&us formulas., A surprising
consequence is that two of the classical d&a. s are ex-
posed as unsound; this problem is analyzed and simply
repaired. In the process of making the above discover-
ies, we cIarify the relationship between a. i. and d-&a. in
terms of the often-misunderstood notion of collecting
semantics and we highlight how the research areas of
%ow analysis, abstract interpretation, and mode1 check-
ing have grown together.

1 Introduction

Folkiore telts us that abstract interpretation (a.i.) is
the “theory” of static analysis and data flow analysis
(d.$a.) is the upractice.” This isn’t quite so, and
this paper clarifies the relation between a-i. and d=f.a. in
terms of a third concept, model checking.

Utilizing SteRen’s crucial observation that one can
define a flow analysis by a modal logic formula [59,
601, we demonstrate in simplest possible terms that an
iterative d.Ja. is a model check of a modal logic formula
on a program’s a.i. Here is one famous example: The
bit-vector %ow equation that defines the set of very-

O234 Nichols Hall, Manhattan, KS 66506 USA.
schmidtQcis .ksu .edu. Supported by NSF GCR-9633388.

Permission to n&e digitathrd copies of all or part ofthis material for
personal or cl.?ssroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage. the copy-
right notice, the title of&e publication and its date appear. and notice is
given that copyright is by permjssion of the ACM, Inc. To copy otherwise, to qnMish, to post on serves or to redistribute to lisl.s, requires specific
pemtission nndlor fee-

POPL 98 San Diego CA USA
Copyright 1998 ACM O-89793-979-3/98/ OL.33.50

38

busy expressions at a program point, p,

wqp) =

is mechanically reformatted into a proposition in the
modal mu-calculus [37] that states the very-business of
an expression, e, at a program point:

isVL?E(e) = ~2. isUsed{e) V (+sMxfi’ed(e) A 02)

When the latter is model checked on a program’s
control-%ow graph (which ‘is the simplest possible safe
a.i.of the program), one obtains exactIy the informa-
tion calculated by the iterative d.Ja. The other classic
d.f.a.s decode similarly, and two of them (live variables
analysis and reaching definitions) are found to be un-
sound. This surprising development is explained and
repaired in a simple way.

In the process of developini the above resuIts, we
observe that (i) model checking can be applied to any
a-i., not just a control-flow graph; and (ii) an iterative
d.f.a. can be defined by any modal-mu calculus formula,
not just a bit-vector-based one. These facts become
obvious because we use trace-based abstract interpre-
tation [55, 531, an operational-semantics-based version
of abstract intepretation that represents a program’s
a.i.as a computation tree of traces [44]. (As noted
above, a program’s simplest a.i.-based computation
tree is its control flow graph; of course, there are many
more interesting abstract computation trees.) Using
trace-based a.i.s, we can explain simply the crucial
and often-misunderstood concept of collecting seman-
tics; we note’that there exist multiple versions of col-
lecting semantics for a given a.i. , and we employ modal
mu-calculus formulas to extract particular instances of
collecting semantics. From here, it is easy to see how
iterative d.f.a.s compute representations of collecting
semantics defined by modal mu-calculus formulas.

The developments in this paper should make clear
that the classic d.f.a. s merely scratch the surface as to
the forms of iterative static analysis one can perform-
the combination of the abstract interpretation design
space and the modal mu-calculus defines the design

space for iterative static analyses. Also apparent is
the growing intersection of terminology and techniques
from d.f.a., a.i., and model checking.

2 Related Research

The bodies of research literature on data flow analysis
[3, 4, 30, 461, abstract interpretation [l, 16, 19, 21, 29,
321, and model checking [7, 10, 12, 26, 421 are huge.
Appearing less frequently are papers that demonstrate
the interaction of these areas: The groundbreaking pa-
pers of Cousot and Cousot [15, 16, 17,181 provided an
explanation of how one computes a d.f.a. with a least-
fixed point calculation on a flowchart interpreted over
sets of abstract values [16].

Donzeau-Gouge [25] and Nielson [47,48,49,50] build
upon Cousot and Cousot’s work by using denotational-
semantics-style definitions as the calculational engine
for flow analysis. Nielson [47, 481 states proofs why
such definitions calculate correct flow analyses, but
such proofs are less frequent in the-subsequent liter-
ature than one would hope.

Because of the state-space explosion problem in
model checking, several researchers have explored ab-
stract interpretations of large finite-state transition
systems: Clark, Grumberg, and Long utilize abstrac-
tions based on mod&-n arithmetic to model check
hardware problems [ll], and Bensalem, et al. [S] state
safety conditions under which such abstractions can be
employed. Dams applies these results in a more gen-
eral theory of abstract interpretation of reactive sys-
tems [22, 23, 241, and Bruns employs an a.i.-like ab-
straction on the labels of a labelled transition system
[S]. Levi gives a formalization of this and more gen-
eral abstractions [41]. Cleaveland, Iyer, and Yankele
vich abstract upon a “democratic,, transition system
(cf. Larsen [40]). The latter is also an example of a
reduction of a state transition system, where states (or
transitions) are collapsed without loss of the system’s
properties [38].

The crucial connection between model checking and
data-flow analysis was made by Stefien [60, Sl], who
encoded flow analyses in recursive Hennessy-Milner
logic [7, 39, 631 (which is usually called “modal mu-
calculus” as well) and model checked propositions on
DFA-models of programs. For example, the statement,
while x=0 do x:= y+l, is depicted as a graph where
program phrases label the arcs:

c
+ x.-y~l x=0/ v= = O .-

exit

Next, the phrases on the arcs are “abstracted” into gen-

and kill-style sets, producing a DFA-modeI:

Finally, this model is checked with a formula in
Hennessy-Milner logic. A proposition that states that
variable x is live at a node in the DFA-model goes as
follows [Sl]:

id&e(z) = pi?. ({used(x)})tt V (-{mod(x)})2

(Read {oL)~ as “there exists a transition labelled by a
member of cr to a next state such that 4 holds.,’ As
we see later, ,uZ creates recursive propositions; read tt
as “true” and -S as the complement of set S.) The
model checker validates or refutes the proposition at all
the nodes of the DFA-model; in doing so, it calculates
live-variables analysis.

The current paper should be viewed as an exposition,
a simplification, and a clarification of Steffen’s original
proposal: We use trace-based abstract interpretations,
rather than DFA-models, and we use Kozen’s mu-
calculus, rather than recursive Hennessy-Milner logic.
This gives a simple starting point from which intuitive
formulations of the classic d-&a. s arise simply. Exten-
sions, such as labelling the transitions in a program’s
computation tree (as seen in the DFA-models) and then
labelling the mu-calculus modalities, can be added to
the framework, extending the range of application.

3 Trace-Based Abstract Interpretation

For brevity, we focus upon flowchart programs; more
complex programs are discussed in the paper’s conclu-
sion. Figure 1 shows a flowchart program, its concrete
semantics (concrete interpretation-c-i. for short), ex-
pressed as a set of state transition rules, and a sample
concrete computation tree (concrete tree) of the pro-
gram with the input of 4. The concrete computation
tree is an execution trace, where program states ap
pear as nodes. In the example, a program state is au
element, of Val x PmgramPoint and is written as n I- p.
(For simplicity, we let the statements in the example
program be exactly the program points.) Of course, R
is the value of variable x.

The fundamental concept of trace-based abstract in-
terpretation is that an abstract interpretation (a.i.) is
an execution of the program by transition rules that
use property “tokens” instead of run-time values. The.
result is an abstract computation tree (abstmct tree),
where multiple possible execution traces are presented
by nondeterministic branching in the abstract tree.

39

entry

r+ Concrete semantics transitions:
veu x 8 vu1 = Ivat

2ntevenx+2nl-x::=xdiv2
t exit 2n+ll-evenx+2n+lEeait

2nl-x:=xdiv:!+nl-x:=succx
2n+ll-x :=xdiv:!+n.l-x:=succx
nEx:=succx+n+li-evenx

Concrete computation tree:

+
4l- evenx

4!-x
i
:= x diva

c
2 I- x := succ x

4
3 I- evenx

+
3l-exit

Figure I: Flowchart and concrete interpretation

For the example in Figure 1,&e defines an even-odd
analysis by by repiacing the domain definition Val =
Nat by Abs Val = {e, o> (e for “even”, o for “odd”)2
and rewriting the state transition rules accordingly, by
applying the obvious homomorphism criterion [ll, 16,
53,581. (To be more specific, one can define a function,
/3 : Val + AbsVal, which maps concrete values to their
most precise abstractions. Here, ,8(2n) = e and P(Zn+
1) = o. The homomorphism property is: if (V I- p) -+
(21’ I- p’) is a concrete transition, then there must exist
an abstract transition, (/3(v) k p) -+ (a’ I- p’), such
that /3(~‘) 5 a’. Note: /3(v’) = a’ is preferred, but the
former is safe, nonetheless.2)

Figure 2 shows the abstract semantics and an ab-
stract tree for the program in Figure 1. Since the even-
odd properties lose precision, nondeterminism appears
as branching in the abstract computation tree. Also,
the tree is infinite, but in this particular case, the tree
is regular tree [14], because a node repeats in every
infinite path. Widening [16f or memoizution [53] can
force an abstract computation tree to be reguIar; we
ignore this topic here because a trace-based a.i.with
a finite-cardinality AbsVaZ set must generate regular
trees. Note that a regular tree is of course a finite-
state transition system.

The abstract computation trees generated by our
traced-based abstract interpretation are ‘cmaximally
polyvariant” [5] or “maximally relational” [33] anal-
yses in the sense that distinct states are ‘never

‘It is traditional to partially order the elements of AbsVaJ,
typically because a join operation is needed to force termina-
tion of the analysis. In the example, we can use a discrete par-
tial ordering upon AbsVoZ, because it has finite cardinality-
termination is assured. As a general rule, finer partial orderings
on dbs Vol Iend themselves to more precise analyses.

*If AbsVuJ is nondiscretely partially ordered, a monotonicity
property must be enforced: if (01 I- p) + (a2 l- p’) is an abstract
transition, and al L ai, then there must exist a transition (ai I-
p) + (a; l- p’), such that a2 E ai.

joined. An implemention of such an o.i. is often
more monovariant-e.g., states with the same program
points are combined-nonetheIess, the trace-based a.i.
gives the cdrrect starting point for refinements, imple-
mentations, and correctness proofs.

To be useful, a program’s abstract computation tree
must safely simulate the concrete computation tree
that it represents. Of the many ways of stating this,
we use the criterion from concurrency theory 1441, Let
t be a computation tree, let foot be its root node,
and let ti, for i E O..n, be t’s immediate subtrees. We
write t + ti to denote that there exists a state transi-
tion, root(t) -+ rod(ti). Read ‘Y + ti” as saying, “t
makes a transition and becomes ti.” A program’s con-
crete computation tree, bc, is simulated by an abstract
tree, tA, iff the binary relation, tc safqVse tA, holds
true:

t eTree t’ iff r&(t) sajeslate root(Y),
and, for every transition, t --+ i;,
there exists a transition, 2’ + ti,
such that t; saf%ree ti

For the example in the Figures, we define (n I-
p) safeStote (a I- p) iR n sufevdl a, and we define
2n sufey,t e and 2n + 1 sufeVoI os3 The intent of
safeTree is that every computation path in tc: is mir-
rored by-one in tA-the abstract tree contains transi-
tions that may happen.

A technical issue is that the definition of safeTree E
ConcreteTree x AbstmctTree is recursive, and the
largest such relation satisfying the recursion is desired
[2, 20, 45, 541.

Of course, the proof of safe simulation can be per-
formed directly upon the concrete and abstract seman-
tics r&s rather than upon specific pairs of computa-
tion trees: Indeed, the homormorphismproperty stated

31f one begins with the function, /3 : VaJ + AbsVuJ, then tho
proper definition for sofev,,i is c soiev,,l a ifT p(c) 5 a.

40

Abstract computation tree:
Abstract semantics transitions:
AbsVal= {e,o} 1

etevenx
ei-evenx+el-x:=xdiv2 1
ol-evenx+okexit el-x:=xdiv2

ul-x :=xdiv:!+ekx:=succx
A VI-X :=xdiv2+oFx:=succx, otx:=snccx >x *= succ x

for aU u E AbstraI 1
et-x:=succx+otevenx etevenx

’
oi-evenx

ot-x:=succx+el-evenx +
ol-exit

Figure 2: Abstract interpretation of flowchart

earlier implies the safety result [53] for pairs of corre-
sponding trees generated by the concrete and abstract
semantics.

The above relates to the traditiona& Galois connec-
tion framework 118, 19, 43, 47, 5414 in the following
way: If AbsVal is a complete lattice and safeval
is both U-closed (c sa.feval al ,and ai C a2 imply
c safevol us) and G-closed (c’ safeval t-l A, where
A = (u’] c’ safevat a’}), then one obtains the
GaIois connection, (a: P(Val) + Abs Val, y: Abs VaZ +
P(Val)) by defining -y(a) = (c 1 c safeval Q] and
a(S) = uedn{a I c safeVal ~113

There is a dual to safe simulation, called live sim-
ulation, where a program’s abstract tree is simulated
by its concrete tree, that is, the abstract tree contains
only those transitions that must happen in the con-
crete tree. (Such transitions are sometimes called con-
servative tmnsitions [13].) Live simulations are useful
when liveness properties must be proved from an a-i.
Since classical data-flow analysis concerns itself with
safe simulations, we study only safe simulations in this
paper.

4 Collecting Semantics

An a.i.is not a d.f.a., but the a.i-‘s collecting se-
mantics turns out to be the information calculated
by a d.f a. A collecting semantics is information ex-
tracted from the nodes and paths of a computation
tree. The classic, “first-order” [48] collecting seman-
tics extracts the states from a computation tree: For

4 Recall that a Galois connection is a pair of monotone func-
tions, (f:P + Q,g: Q -+ P), for complete lattices P and Q, such
that jog C Ida and idp C g oj. The intuition is that j(p) iden-
tifies p’s most precise representative within Q (and similarly for

de))-
51f one begins with p : Vaf + AbsW, then /3(c) = fl{u 1

c safeVat u} and a(S) = U{@(C) 1 c E S).

41

tree, t, its first-order collecting semantics has form
~011~ : ProgramPoint + P(Val) and is defined

collt (p) = (v 1 v I- p is a state in f)

In Figure 1, co&, (even x) = (3,4}, and in Figure 2,
coZlt,(even x) = {e, o}-one can extract a collecting
semantics from concrete as well as abstract trees.

Constant-propagation and type-inference analyses
calcuIate answers that are first-order collecting seman-
tics.

A more interesting collecting semantics is “second
order” or path based: It extracts paths from the com-
putation tree. The set of paths that go into a program
point, p, is defined

fcowJ) =
{r] r is a path in t from roooot(t) to some v t- p)

.
aud the set of paths that emanate from p is

bmWp) = {r I r is a maximal path in t
such that root(r) = v I- p}

We will see that several classic d$a.s compute rep
resentations of path-based collecting semantics. The
two collecting semantics are named fcoZ2 and bcoll be+
cause they underlie the information one obtains from
forwards and backwards iterative flow analyses, respec-
tively.

The above forms of collecting semantics are (prim-
itive” in the sense that no judgement about the ex-
tracted information is made. In practice, the informa-
tion one desires from a data flow analysis is a judgement
whether some property holds true of the input values
to a program point or of the paths flowing into/out of
a program point.

To include such judgements, Cousot and Cousot [19]
suggest that a computation tree’s collecting semantics

can be a set of properties expressed in a logic, E. Given
tree, t, and proposition, 4 E .C, we write t + 4 if 4
holds true of t. Next, we define the coIIecting Seman-
tics of the entire tree, t, to be co& = (4 1 t + 41. As
before, collecting semantics exist for both concrete and
abstract computation trees, and we assume for simplic-
ity that the same ,C can be used with both concrete and
abstract trees. (But it need not b-ee [8, 411.)

For an a.i. to be of use, we require a weak consistency
property of the safety reIation, safeTree , and E .

That is, any property possesed by an abstract tree, tA,
must also hold for a corresponding concrete tree, tc.
By tightening the two implicationsin the above formula
into logical equivalences, we obtain weak completeness
and strong completeness, respectively. The former is
studied in [19]; the latter is employed to justify cor-
rectness of reductions of state spaces in concurrency
theory 113, 22,331.

5 Defining Collecting Semantics with
the Modal Mu-&lculus

The logic we use in this paper to define a collecting
semantics is the modal mu-catcuIus [37] extended with
reverse modalities [59, SO]. (The latter, promoted by
SteRen, lets us express properties about paths that flow
into a state.) Figure 3 gives the syntax and semantics
we use. A judgement takes the form s +=t 4, where t is a
tree, s is a state in t, and 4 is a proposition about state
s. (Note the slight difference in notation from t # C#
in the previous section.“) Primitive properties, q, are
“first-order” properties about state, e.g., “variable x’s
value at state s is positive” (written s /==t (x > 0)). We
assume that i contains states that are detailed enough
that s bt q can be decided. The modalities are the
usuaI ones and are used to define “second-order” prop-
erties, e.g., “there exists a path starting from s such
that variable x has a positive value in two transitions”
(8 l=t wx > 011, and “all immediate predecessors

to s have x with a positive value” (s gtE (x > 0)).
FinaiIy, the least tied-boint operator, p, defines prop-
erties that hoId true at some point finitely far into the

“The modification of the judgeme&, t + 4, into s +t 4,

is due to the awkwardness in defining precisely t +E 4, which
requires knowledge of all trees, t’, that contain t as a child sub-
tree so that one can verify t’ b 4. Thii implies that the first
argument, t, of t b 4 must be restricted to range over exactly
all subtrees of some initia1 computation tree, fo. But it is tra-
ditional to use the states, s, within to instead of the subtrees,
thus giving us the notation, s +t 4. Indeed, propositions (b are
commonly called “state formulas,” anyway!

future (or past), e.g., “at some state now or in the
past, t was positive” (s bt #?.(x > 0)V 5 Z), and
the greatest fixed-point operator, Y, defines properties
that hold true indefinitely, even infinitely, e.g., “from
now on, t is always positive” (5 +t YZ.{x > 0) A OZ),

The semantics of ~1 and Y in Figure 3 are simpler
than usual because we work with trees that have a fi-
nite number of distinct states. For an infinite-state
tree with finite branching, we must employ the usual
definitions: Let i[$J E Env + P(State1n%e,t) and
p E Env = Identifier+ P(StutelnZ+ee-t):

When the computation tree is finite-state, the above
simplifies to the definitions in the Figure.

The usual application of the modal mu-calculus is to
model checking, that is, the mechanical verification of
a judgement, s f=~ 4. Here, we use model checking to
compute a collecting semantics for an abstract tree.

Here are two small examples based on Figure 2. Say
that improved code can be generated for a statement
when its input is an even number. Therefore, we de-
sire a collecting semantics that tells us which state-
ments receive only even-valued inputs. The property
to’be model checked is first order and trivial, namely,
isEven(If a model check upon the tree, tn, in Fig-
ure 2 decides that (a I- PO) b=t, &Even(x) holds true
for every occurrence of a appearing with program point
po in tA, then ~0% code cm be improved. (Note: the
story gets even simpler if we reformat the tree in Figure
2 with its program points merged, that is, we draw

I
(e] I- 4 := x div2

4

I
{e, 0) lj x := succ x

before we perform the mode1 check. This graph defines
the “meet over all paths” solution 134,481.) The model
check computes that the statement x:= x div2 has the
desired property.

s E State1nTree-t q5 E Proposition q E PrimitiveProposition 2 E Identifier

s bt q is given
spt,qiffnots+tq
s~t~lA~2iffs~t~litnds~t~z
sI=t~1v#2iffs~=t~10rs~:t~2

s bt 04 iff for all s’ such that s + s’, s’ kt q5

s bto 4 iff for all s’ such that s’ + s, s’ kt 4
s bt 04 iff there exists s’ such that s + s’ and s’ bt q5

s bt5 q5 iff there exists s’ such that $ + s and s’ bt 4

s kt ,&.t# itf there exists i 2 0 such that s bt #i, where
q50 = fake
4 i+1= wzl#

s l=t vZ.c$ iff for all i > 0, s bt &, where z:+T Lyg ,23+ .
i

Figure 3: Mu-calculus syntax and semantics

For a second example, say that we wish to deallocate
variable cells from the storage vector when they are
no longer referenced in the future. The property that
variable x is no longer referenced in future states is
encoded ~2. -rU..ed(x) A OZ. This is a second-order
property and requires a nontrivial model check. For
the tree in Figure 2, the analysis discovers that the
property holds only at the state, o l- exit.

Recall that we require weak consistency of the modal
mu-calculus: A property that holds true for a state
of the abstract tree must also hold true for the corre-
sponding state of the corresponding concrete tree. IJn-

fortunately, the 0 and 3 modalities are problematic for
safe simulations: Consider again the abstract tree in
Figure 2; it is a safe simulation of every concrete inter-
pretation that executes with an even-numbered input.
In particular, it is a safe simulation of the program’s
concrete tree with input 2:

true of the root state of the tree in Figure 2 because
there does indeed exist a path that leads to an exit
statement. But the same property fails to hold for the
corresponding root state of the concrete tree just seen
above. The upshot is that the diamond modalities vio-
late the weak consistency property. Fortunately, weak
consistency-indeed, weak completeness-holds for the
box mu-cahhs, that is, the modal mu-calculus with
only box-modalities [s]. If we negate the above propo-
sition: y(pZ. isExit V 02) = ~2. -isExit A 02, we
obtain the ‘must loop” property, which is appropriate
to model check on the abstract tree. Of course, this
property cannot be validated on (the root of) the tree,
hence we cannot conclude that all corresponding con-
crete trees must loop. (Indeed, almost all of them do
not.)

c
2l-evenx

$
2l-x::=xdiv2

because every transition in the above concrete tree is
mirrored by a transition in the abstract tree. Now, con-
sider a model check of the property that the program
“may terminate”: ~2. isEtitVO2. This property holds

43

For the record, a dual result holds: The diamond
mu-calculus is weakly complete for live simulations [S].

6 Why a Data-Flow Analysis is a Model
Check .

An iterative data-flow analysis (d$a.) operates on
a program’s control-flow graph. But a control-flow
graph is a program’s simplest possible safe simula-
tion: In the case of Figure 1, define AbsVul to be just
(03, and translate each concrete state-transition rule,
v l- p + v’ l- p’, into the abstract state-transition
rule, l l- p + l l- p’. With this abstract semantics,
the program’s abstract computation tree is exactly its

control-flow graph, e.g.: t
l I- even⌧

l l-x txdiv>l-e& :- L t *I-x:=succx

Of course, more interesting u.i.s can be used to per-
form a d.f.u.-even-odd analysis is but one simple
example-but the classical d-f-a. s use control flow
graphs.

A usual iterative d.f.a.is defined by a set of ffow
equations, one equation per program point (that is,
one equation per state in the controMow graph). A
bit-vector-based d.f.a.uses flow equations with set-
theoretic operations; a standard example is very busy
expressions analysis, which calculates for each program
point the set of expressions that must be referenced
sometime in the future. The flow. equation for program
point, p, reads as follows [35J:

That is, the set of very-busy expressions at the entry to
program point p consists of the expressions used (refer-
enced) within statement p unioned with those expres-
sions that are not modified within p by reassignment
and are very busy at all of p’s successor program points.

The set of simultaneous flow equations for the states
of the control-flow graph are solved with a greatest
fixed-point calculation (that is, the initial approxima-
tion to I/BE(p) is defined as the set of all expressions,
and subsequent iterations cut the set down to size).
But the obvious relationship between the set-theoretic
operations in the above equation and the propositional
connectives gives us this modal-mu calculus formula:

isV.E(e) = vZ. islised(e) V (-GsModifed{Ic) A 02)

That is, an expression, e, is very busy at a state if it is
used at the state or it is not modified at the state and
for all successor states it is very busy. A model check
of isVBE(e) for all the states of the control-flow graph
yields the same information about e as does the itera-
tive d.f.a. {This is proved by induction on the greatest-
fixed point definition of the flow equations and the def-
inition of the mu-calculus proposition.)

44

7 Why Some Flow Analyses are Un-
sound

Figure 4 shows four canonical iterative d.f.a. s and their
encodings as modal mu-calculus formulas [3, 35, 201.

The encodings are straightforward: Simple union
and intersection translate into disjunction and conjunc-
tion, respectively; “big” unions and intersections on the
predecessor and successor states translate into diamond
and box modalities, respectively; a forwards analysis
uses overlined modalities (because it calculates infor-
mation about histories) and a backwards analysis uses
unlined modalities (because it calculates information
about futures); and the least and greatest fixed-point
solutions of the equations are stated explicitly by the
p and v-operators.

Since the definitions calculate information as it ap
pears upon entry to a program point, an encoding of a
forwards analysis uses its modality operator as its out-
ermost operator, whereas a backwards analysis embeds
the modality operator within its formula.

The four examples in the Figure are perhaps the
most famous examples of flow analyses and are meant,
to portray the four combinations one achieves by vary-
ing overlined and unlined modalities (that is, forwards
and backward flow) with least and greatest fixed points.
(For example, available-expressions analysis uses over-
lined modality and greatest-fixed point.) Yet an-
other variation is with diamond and box ‘modalities
(union- and intersection-based flow). (E.g., available-
expressions analysis uses box modality.) The result-
ing ,eight combinations give the flow analysis “cube”
of Cousot and Cousot [XJ, but in practice, diamond
modalities appear only with least-fixed point opera-
tors and box modalities appear only with greatest-fixed
point operators, because the initial approximations for
least-fixed point equations are “false” (empty sets) and
the initial approximations for greatest-fixed point equa-
tions are “true” (universe sets) (cf Figure 3). But
additional variations of the primitive propositions and
propositional operators in the equations are obvious-
examples appeared in the previous sections.

In Figure 4 lies a problem: Recall that only the
box-mu-calculus is consistent with safe simulations (of
which a control-flow graph is one), and the analyses
for live variables and reaching definitions use diamond
modalities, which are consistent with live simulations
(of which the control-flow graph is not). This implies
that the two analyses are unsound. The problem is not
deep but it is nonetheless significant: Figure 5 displays
a flowchart program that computes upon variables x
and y. A concrete computation tree for the program
with inputs of (4,4) also appears, and finally there is
an abstract tree that results from an even-add a.i. that

Available Expressions:
AE(P) = &Epred p ((AE(p’) n notModified(U Gen(p’))

isAvail = ~2. 0 ((2 A +sModified(e)) V isGen(e))

Live Variables:
. WP) = Us&(p) u (not~oWe4p) f-l (Up’Esucc p JWP’)))

islive = pZ. isUsed V (-&Modi~ed(z) A (OZ))

Very Busy Expressions:
F/BE(p) = Us&(p) u (nofMoWe4p) n (f$,8ESUcc pt V-E(P’))
is I/BE(e) = vZ. isUsed(e) V (-hA!fodijkcf(e) A 02)

Reaching Definitions:
WP) = Up’Q.red p {(ID@‘) fl noti’kfodijedjp’)) U Defined(p’))

isReaching = pZ. 0 ((2 A -&Modifed(d)) V isDefined(d))

Figure 4: Four classic flow analyses

Concrete tree: ilbstract tree:

(0,o) I- exit

Figure 5: Live Variables Analysis is Unsound

is a safe simulation of the c-i. It is easy to verify of
the abstract tree, at the test statement x=2, that y is
live. But this property is not true at the test statement
of the corresponding concrete tree. Therefore, any ver-
ification or code improvement based on the positive
liveness of y at the test in the abstract tree is incor-
rect.

Of course, data-flow practitioners are well aware of
the above problem, and disaster does not arise in prac-
tice, because live variables analysis is used “dually”-it
is used to detect dead variables. That is,

isDeud(s) = -(isliue(t))
- ~2. +sUsed(z) A (isModified V 02) -

which is proper to model check upon a safe simula-
tion. We are fortunate that we can use a live variables
analysis to detect dead variables; this works only be-
cause s kt -4; iff s kt 4 (this is a classical logic), hence
s bt isDead iff s kt 7(&&&e(z)) iff s k islive(
But we might not be so fortunate in general.

A similar story can be told for reaching-definitions

45

analysis and other iterative d.f.a.s that implicitly en-
code diamond modalities. Obviously, errors might arise
when complex iterative d.f.a.s are encoded with dis-
regard to their modalities. For this reason, specify-
ing a d.Ja.as a modal-mu calculus proposition pro-
vides a valuable safety check of the soundness of the
deja-Indeed, Steffen and his collegues at Passau have
built tools that prototype d.jIa. s as formulas in recur-
sive Hennessy-Milner logic [36, 621.

8 Extensions, Connections, and Con-
clusions

With simple machinery, we have exposed that the clas-
sic iterative flow analyses are model checks of a pro-
gram’s trace-based a-i. We also noted that some of the
classic d&a. s are unsound, and we explained how a
d.fa-can be analyzed for soundness and repaired, if
necessary.

Even if a d.f.a-is not automatically synthesized by

I

generating an abstract computation tree and doing a
model check, the methodology proves valuable for spec-
ification and validation of the d.f.a. algorithm that is in
fact implemented.

There are a Variety of extensions to the framework
presented in this paper. First, one might decompose
an execution state, u k p, into its components. If
p is considered to be an “active” statement-a store-
transfer function-rather than an “inactive,’ program
point, then it makes good sense to label the transitions
in a computation tree by the transfer functions, p, that
transform stores, CT, into u’; this results in transitions of
the form, IT 4 d, like those found in labelled transition
systems [44] and suggests that the appropriate logic for
model checking the resulting computation trees is re-
cursive Hennessy-Milner logic [7]. Indeed, this is the
framework SteEen used to present his original results
[59, 60, Sl].

In the present paper, we used unlabelled transition
systems and Kozen’s mu-calculus to provide a sim-
plest possible starting point, to clarify the basic import
of Steffen’s results, to tighten the tie between mode1
checking and the classic data-flow analyses, and to fill
a small gap in the literature on the subject.

Although the present paper focussed solely on
flowchart programs with simplistic transition seman-
tics, one can apply trace-based abstract interpretation
to derivations constructed with a big-step (natural) se-
mantics and also with a Plotkin-style small-step struc-
tural operational semantics [52].

Trace-based abstract interpretation of big-step se-
mantics generates derivation trees that derive abstract
properties rather than run-time values; the novelty is
the necessity for infinite derivations, which are disal-
lowed under the usual inductive interpretation. There-
fore, a coinductive interpretation of the big-step rules
must be undertaken. The concepts of coinductive big-
step semantics were laid down by Cousot and Cousot
[20], applied by Schmidt 1541 and refined in subsequent
work [53]. In a related line of work, Gouranton and
Le Mgtayer extract execution path information from
big-step derivation trees and use it to derive standard
d.f.a.s [ZSJ; general frameworks for doing this are pre-
sented in Gouranton’s thesis [27].

At this time, there is no precedent for analyzing
directly big-step derivation trees by means of model
checking, but Gouranton and Le MCtayer’s efforts’
[27, 281 imply that this should be a matter of routine
formulation.

Trace-based a.;. of small-step semantics is developed
in detail by Schmidt [55], where abstraction on the
source language’s syntax (in this case, a n-calculus vari-
ant) is needed to ensure construction of a finite-state
abstract computation tree. Mode1 checking the result-

46

ing trees proceeds exactly like the examples seen in the
present paper, and indeed, the concurrency theory lit-
erature abounds with similar examples.

Of course, both big-step and smaN-step structural
operational semantics can be used to express the se-
mantics of higher-order languages, and an outstanding
question is whether any of the varieties of control-flow
(closure) analyses [31, 51, 56, 571 can be encoded eltt-
gantly as model checks upon appropriate abstract com-
putation trees.

Finally, it is worthwhile to consider why flow analysis
and model checking are so intimately related: The rea-
son why a dJ.a.can be implemented by a model check
is because the usual “engine” that implements model
checking is just a fixed-point calculation algorithm [26].
Not surprisingly, the dual is achievable: The canonical
mode1 checking algorithm can be encoded as a set of
flow equations [9J. Indeed, even the tableaus gener-
ated from a tableau-based model checker [12] can be
encoded as abstract computatioh trees where the data
part, a, of a state, Q I- p, is abstracted to a mu-calculus
proposition.

These connections suggest that the machinery and
methods of flow analysis, abstract interpretation, and
model checking are growing together. Researchers can
profitably use techniques from one area to improve re-
sults in the others. Recent interest in model checking
abstractions of finite- and infinitastate models is yet
another indication of the growing overlap. These areas
will thrive if they draw from one another to advance
their respective causes.

9 Acknowledgements

Bernhard Steffen, Carolyn Talcott, and Mitchell Wand
studied drafts of this and a related paper and made many
useful suggestions. Also, Stephen Brookes, Edmund Clarke,
OIivier Danvy, Peter Mosses, and Cotin Stirling are thanked
for hosting, me during my sabbatjcal year journeys.

Refereices

[l] S. Abramsky and C. Hankin, editors. Abstract in-
terpmtation of declarative languages. Ellis Horwood,
chichester, 1987.

[2] P. Abd. Non- Well-Founded Sets. Lecture Notes 14,
Cen er for Study of Language and Information, Stan-
ford ‘CA, 1988.

[31 A.
f

“r”

o, R. Sethi, and J. Ullman. Compilers: Princi-
pies Techniques, and Tools. Addison WesIey, 1986.

[4] A. Aho and J. UIhnan. Principles of Compiler Design.
Addison Wesley, 1977.

[5] A. Banejee. A modular, poIyvarkmt, type-based clo-
sure andysis. In Proc. 2d International Conference on
Functional Programming: ICFP’97, 1997.

[6] S. Ben&em, A. Bouajjani, C. Loiseaux, and J. Sifakis.
Property preserving simulations. In G. vanBochman
and D. Probst, editors, Computer Aided Verification:
CAV’92, number 663 in Lecture Notes in Computer
Science, pages 266-273. Springer-Verlag, 1992.

[7] J. Brad&Id. Verifying Temporal Properties of Systems.
Birkhauser, 1992.

[s] G. Bruns. A practicaI technique for process abstrac-
tion. In 4th International Conference on Concurrency
Theory (CONCUR’93), Lecture Notes in Computer
Science 715, pages 37-49. Springer-VerIag, 1993.

[9] E. CIarke, E. Emerson, and A. SistIa. Automatic ver-
ification of finite-state con current systems using tem-
poral logic specifications. ACM Tmnsactions on Pro-
gramming Languages and Systems, 8:244-263, 1986.

[lo] E.M. Clarke, 0. Grumberg, and D.E. Long. Verifica-
tion tools for finite-state concurrent systems. In J-W.
deBakker, W.-P. deRoever, and G. Rosenberg, editors,
A Decade of Concurrency: Reflections and Perspec-
tiues, number 803 in Lecture Notes in Computer Sci-
ence, pages 124-175. Springer, 1993.

[11] E.M. Clarke, 0. Grumberg, and D.E. Long. Model
checking and abstraction. ACM Tmnsactions on Pro-
gramming Languages and Systems, 16(5):1512-1542,
1994.

[12] R. Cleaveland. Tableau-based model checking in the
propositional mu-calculus. Acta Informutica, 27:?25-
747, 1990.

[13] R. Cleaveland, P. Iyer, and D. YankeIevich. OptimaIity
in abstractions of modeI checking. In SAS’95r Proc.
2d. Static Analysis Symposium, Lecture Notes in Com-
puter Science 983, pages 51-63. Springer, 1995.

[14] G. Cousineau and M. Nivat. On rational expres-
sions representing infinite rational trees. In 8th Conf.
Math. Foundations of Computer Science: MFCS79,
Lecture Notes in Computer Science 74, pages 567-580.
Springer, 1979.

[15] P. cousot. Mbthodes itimtiues de construction et
d’approximation de points fies d’operateurs mono-
tones sur un treillis, anafyse simantique de pro-
grammes. PhD thesis, University of Grenoble, 1978.

[16] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs. In
Prac. 4th ACM Symp. on Principles of Progmmming
Languages, pages 238-252. ACM Press, 1977.

[17] P. Cousot and R. Cousot. Automatic synthesis of op-
timal invariant assertions: mathematical foundations.
SIGPLAN Notices, 12(8):1-12, 1977.

1181 P. Cousot and R. Cousot. Systematic design of pro-
gram analysis frameworks. In Proc. 6th ACM Symp. on
Principles of Progmmming Languages, pages 269-282.
ACM Press, 1979.

[19] P. Cousot and R Cousot. Abstract interpretation
frameworks. Journal of Logic and Computation,
2(4):511-547, 1992.

[29] P. Cousot and R. Coosot. Inductive definitions, seman-
tics, and abstract interpretation. In Proc. 19th ACM
Symp. on Principles of Progmmming Languages, pages
83-94. ACM Press, 1992.

[21] P. Cousot and R. Cousot. Higher-order abstract in-
terpretation. In Proc. IEEE Int’l. Conf. Progmmming
Languages. IEEE Press, 1994. .

[22] D. Dams. Abstmct interpretation and partition refine-
ment for model checking. PhD thesis, Technische Uni-
versiteit Emdhoven, The Netherlands, 1996.

[23] D. Dams, R Gerth, and 0. Grumberg. Abstract inter-
pretation of reactive systems. A CM TOPLAS, l&253-
291, 1997.

[24] D. Dams, 0. Grumberg, and R. Gerth. Abstract in-
tepretation of reactive systems. In E.-R. Olderog, edi-
tor, Proc. IFIP Working Conference on Progmmming
Concepts, Methods, and Calculi. North-Holland, 1994.

[25] V. Donzeau-Gouge. Denotational definition of proper-
ties of program’s computations. In S. Muchnick and
N.D. Jones, editors, Progmm Flow Analysis: Theory
and Applications. Prentice-Ha& 1981.

[26] E.A. Emerson and C.L. Lei. Efficient model check-
ing in fragments of the propositional mu-cahmhrs. In
First Annual Symposium on Logic in Computer Sci-
ence, pages 267-278. IEEE, 1986.

[27] V. Gouranton. D&iv&ion d’analyseurs dynamiques et
statiques d patir de spkifications opimtionnelles. PhD
thesis, University of Rennes, 1997.

[28] V. Gouranton and D. LeMetayer. Derivation of static
amdysem of functional programs from path properties
of a natural semantics. Technical Report Research Re-
port 2607, INRIA, 1995.

[29] C. Hankin, A. Mycroft, F. Nielson, and H. Rii+
Nielson. Principles of Progmm Analysis. In Prepa-
ration, 1999.

[30] M. He&. Flow Analysis of Computer Programs. El-
sevier, 1977.

[31] S. Jagannathan and S. Weeks. A unified treatment of
flow analysis in higher-order languages. In Proc. 22d.
ACM Symp. Principles of Programming Languages,
pages 393-407, 1995.

[32] N. Jones and F. Nielson. Abstract interpretation:
a semantics-based tool for program analysis. In
S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, Vol. 4, pages
527-636. Oxford Univ. Press, 1995.

[33] N.D. Jones and S. Mu&nick. Flow analysis and opti-
mization of LISP-like structures. In Proc. 6th. ACM
Symp. Principles of Programming Language-s, pages
244-256, 1979.

[34] J. Kam and J. UIIman. Global data flow analysis and
iterative algorithms. J. ACM, 23158-171, 1976.

47

[351

[36]

1371

[381

PI

1401

1411

r421

r431

1441

[451

K. Kennedy. A survey of data flow analysis tech-
niques. In S. Mu&nick and N.D. Jones, editors, Pro-
gmm Flow Analysis: Theory and Applications, pages
5-54. Prentice-&U, 1981.

M. Klein, D. Koschuetzki, J. Knoop, and B. Stef-
fen. DFA&OPT-MetaFrame: a tool kit for program
analysis and optimization. In Proc. TACAS’96, pages
422-426. Lecture Notes in Computer Science 1055,
Springer, Berlin, 1996.

D. Kozen. Results on the propositional mu-calculus.
Theoretical Computer Science, 27:333-354, 1983.

Y.S. Kwong. On reduction of asynchronous systems.
Theoretical Computer Science, 5:25-50, 1977.

K. Larsen. Proof systems for hermessy-milner logic
with recursion. In M. Duachet and M. Nivat, editors,
CAAP88, number 299 in Lecture Notes ti Computer
Science. Springer-Verlag, 1988.

K. Larsen. Modal specifications. In J. %&is, editor,
CAV’89, number 407 in Lecture Notes in Computer
Science, pages 232-246. Springer-Verlag, 1989.

F. Levi. Abstract model checking of value-passing
processes. In Ann&a ‘Bossi, editor, International
Workshop on Verification, Model Checking and Abstra
ct Innterpretation, Port Jeflerson, Long Island, N-Y.,
http://uuv.dsi.tmive.it/‘bossi/VMCAI.html,
1997.

K. McMilian. Symbolic Model Checking. KIuwer Aca-
demic Publishers, 1993.

A. Melton, G. Strecker, and D. Schmidt. Galois con-
nections and computer science applications. In Cate-
gory Theory and Computer Progmmming, pages 299-
312. Lecture Notes in Computer Science 240, Springer-
h-lag, 1985.

R. Milner. Communication and Concurrency.
Prentice-Hall, 1989.

R. Milner and M. Tofte. Co-induction in relational
semantics. Theoretical Computer Science, 17~209-220,
1992.

[46] S. Muchnick and N.D. Jones, editors. Program Flow
Analysis: Theory and Applications. Prentice-Hall,
1981.

1471 F. Nielson. Semantic foundations of data flow analy-
sis. Technical Report Report DAIMI PB-131, Aarhus
University, Denmark, 1981.

[48] F. Nielson. A denotational framework for data flow
analysis. Acto Informutica, 18:265-287, 1982.

[49] F. Nielson. Program transformations in a denotational
setting. ACM Trans. Prog. Languages and Systems,
7:359-379, 1985.

[50] F. Nielson. Two-level semantics and abstract interpre-
tation. Theoretical Computer Science, 69(2):117-242,
1989.

48

1511

1521

[53J

I541

[55l

1561

1571

[581

P4

[601

[64

1621

1631

F. Nielson and H. R. Nielson. Infinitary control flow
analysis: a collecting semantics for closure analysis. In
Proc. ACM POPL’97, 1997.

H. R. NieIson and F, Nielson. Semantics with Applica-
tions, u formaf introduction. Wiley Professional Com-
puting. John Wiley and Sons, 1992.

D.A. Schmidt. Trace-based abstract interpreta-
tion of operational semantics. 3. Lisp and Sym-
bolic Computation. In press. Available from
ww.cis.ksu.edu/‘schmidt/papers/aiosh.ps.Z

D.A. Schmidt. Natural-semantics-based abstract in-
terpretation. In A. Mycroft, editor, Static AnalgBia
Symposium, number 983 in Lecture Notes in Computer
Science, pages 1-18. Springer-Verlag, 1995.

D.A. Schmidt. Abstract interpretation of small-step
semantics. In M. Dam and F. Orava, editors, PFOC. 5th
LOMAPS Workshop on Analysis and Verification of
Multiple-Agent Languages, Lecture Notes in Computer
Science. Springer-Verlag, 1996.

P. Sestoft. Analysis and Eficient Implementation of
Functional Programs. PhD thesis, Copenhagen Uni-
versity, 1991.

0. Shivers. Control Flow Analysis of Higher-Order
Languages. PhD thesis, Carnegie Mellon University,
1991.

J. Sifakis. Property preserving homomorphisms of
transition systems. In Logics of Programs, Lecture
Notes in Computer Science 164. Springer, 1983.

3. Steffen. Data flow analysis as model checking.
In A. Meyer, editor, Theoretical Aspects of Compuler
Software: TACS’SI, volume 526 of Lecture Nokes in
Computer Science. Springer-Verlag, 1991.

3. Steffen. Generating data-flow analysis algorithms
for modal specifications. Science of Computer Pro-
gramming, 21:115-139, 1993.

B. Steffen. Property-oriented expansion. In R. Cousot
and D. Schmidt, editors, Stctic Analysis Symposium:
SAS’96, volume 1145 of Ledture Notes in Computer
Science, pages 22-41. Springer-Verlag, 1996.

B. St&en, A+ Classen, M. Klein, J. Knoop, and
T. Margaria. The flxpoint analysis machine. In I. Lee
and S. Smolka, editors, Proc. COlvCUR’95, volume
962 of Lecture Notes in Computer Science, pages 72-
87. Springer-&lag, 1995.

C. Stirling. Modal and temporal logics. In S, Abram-
sky, D. Gabbay, and T.S.E. Maibaum, editors, Hand-
book of Logic in Computer Science, volume 2, pages
477-563. Oxford University Press, 1992,

