
Abstract 

This expository paper simplifies and clarifies Steifen’s 
depiction of data flow analysis (d.Ja. ) as model 
checking: By employing abstract interpretation (a-i. ) 
to generate program traces and by utilizing Kozen’s 
modal mu-calculus to express trace properties, we ex- 
press in simplest possible terms that a d&a. is a model 
check of a program’s a.i. trace. In particular, the clas- 
sic %ow equations for bit-vector-based d-Jo. s reformat 
trivially into modal mu-Cal&us formulas., A surprising 
consequence is that two of the classical d&a. s are ex- 
posed as unsound; this problem is analyzed and simply 
repaired. In the process of making the above discover- 
ies, we cIarify the relationship between a. i. and d-&a. in 
terms of the often-misunderstood notion of collecting 
semantics and we highlight how the research areas of 
%ow analysis, abstract interpretation, and mode1 check- 
ing have grown together. 

1 Introduction 

Folkiore telts us that abstract interpretation (a.i.) is 
the “theory” of static analysis and data flow analysis 
(d.$a. ) is the upractice.” This isn’t quite so, and 
this paper clarifies the relation between a-i. and d=f.a. in 
terms of a third concept, model checking. 

Utilizing SteRen’s crucial observation that one can 
define a flow analysis by a modal logic formula [59, 
601, we demonstrate in simplest possible terms that an 
iterative d.Ja. is a model check of a modal logic formula 
on a program’s a.i. Here is one famous example: The 
bit-vector %ow equation that defines the set of very- 
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busy expressions at a program point, p, 

wqp) = 

is mechanically reformatted into a proposition in the 
modal mu-calculus [37] that states the very-business of 
an expression, e, at a program point: 

isVL?E(e) = ~2. isUsed{e) V (+sMxfi’ed(e) A 02) 

When the latter is model checked on a program’s 
control-%ow graph (which ‘is the simplest possible safe 
a.i.of the program), one obtains exactIy the informa- 
tion calculated by the iterative d.Ja. The other classic 
d.f.a.s decode similarly, and two of them (live variables 
analysis and reaching definitions) are found to be un- 
sound. This surprising development is explained and 
repaired in a simple way. 

In the process of developini the above resuIts, we 
observe that (i) model checking can be applied to any 
a-i., not just a control-flow graph; and (ii) an iterative 
d.f.a. can be defined by any modal-mu calculus formula, 
not just a bit-vector-based one. These facts become 
obvious because we use trace-based abstract interpre- 
tation [55, 531, an operational-semantics-based version 
of abstract intepretation that represents a program’s 
a.i.as a computation tree of traces [44]. (As noted 
above, a program’s simplest a.i.-based computation 
tree is its control flow graph; of course, there are many 
more interesting abstract computation trees.) Using 
trace-based a.i.s, we can explain simply the crucial 
and often-misunderstood concept of collecting seman- 
tics; we note’that there exist multiple versions of col- 
lecting semantics for a given a.i. , and we employ modal 
mu-calculus formulas to extract particular instances of 
collecting semantics. From here, it is easy to see how 
iterative d.f.a.s compute representations of collecting 
semantics defined by modal mu-calculus formulas. 

The developments in this paper should make clear 
that the classic d.f.a. s merely scratch the surface as to 
the forms of iterative static analysis one can perform- 
the combination of the abstract interpretation design 
space and the modal mu-calculus defines the design 



space for iterative static analyses. Also apparent is 
the growing intersection of terminology and techniques 
from d.f.a., a.i., and model checking. 

2 Related Research 

The bodies of research literature on data flow analysis 
[3, 4, 30, 461, abstract interpretation [l, 16, 19, 21, 29, 
321, and model checking [7, 10, 12, 26, 421 are huge. 
Appearing less frequently are papers that demonstrate 
the interaction of these areas: The groundbreaking pa- 
pers of Cousot and Cousot [15, 16, 17,181 provided an 
explanation of how one computes a d.f.a. with a least- 
fixed point calculation on a flowchart interpreted over 
sets of abstract values [16]. 

Donzeau-Gouge [25] and Nielson [47,48,49,50] build 
upon Cousot and Cousot’s work by using denotational- 
semantics-style definitions as the calculational engine 
for flow analysis. Nielson [47, 481 states proofs why 
such definitions calculate correct flow analyses, but 
such proofs are less frequent in the-subsequent liter- 
ature than one would hope. 

Because of the state-space explosion problem in 
model checking, several researchers have explored ab- 
stract interpretations of large finite-state transition 
systems: Clark, Grumberg, and Long utilize abstrac- 
tions based on mod&-n arithmetic to model check 
hardware problems [ll], and Bensalem, et al. [S] state 
safety conditions under which such abstractions can be 
employed. Dams applies these results in a more gen- 
eral theory of abstract interpretation of reactive sys- 
tems [22, 23, 241, and Bruns employs an a.i.-like ab- 
straction on the labels of a labelled transition system 
[S]. Levi gives a formalization of this and more gen- 
eral abstractions [41]. Cleaveland, Iyer, and Yankele 
vich abstract upon a “democratic,, transition system 
(cf. Larsen [40]). The latter is also an example of a 
reduction of a state transition system, where states (or 
transitions) are collapsed without loss of the system’s 
properties [38]. 

The crucial connection between model checking and 
data-flow analysis was made by Stefien [60, Sl], who 
encoded flow analyses in recursive Hennessy-Milner 
logic [7, 39, 631 (which is usually called “modal mu- 
calculus” as well) and model checked propositions on 
DFA-models of programs. For example, the statement, 
while x=0 do x:= y+l, is depicted as a graph where 
program phrases label the arcs: 

c 
+ x.-y~l x=0/ v= = O .- 

exit 

Next, the phrases on the arcs are “abstracted” into gen- 

and kill-style sets, producing a DFA-modeI: 

Finally, this model is checked with a formula in 
Hennessy-Milner logic. A proposition that states that 
variable x is live at a node in the DFA-model goes as 
follows [Sl]: 

id&e(z) = pi?. ({used(x)})tt V (-{mod(x)})2 

(Read {oL)~ as “there exists a transition labelled by a 
member of cr to a next state such that 4 holds.,’ As 
we see later, ,uZ creates recursive propositions; read tt 
as “true” and -S as the complement of set S.) The 
model checker validates or refutes the proposition at all 
the nodes of the DFA-model; in doing so, it calculates 
live-variables analysis. 

The current paper should be viewed as an exposition, 
a simplification, and a clarification of Steffen’s original 
proposal: We use trace-based abstract interpretations, 
rather than DFA-models, and we use Kozen’s mu- 
calculus, rather than recursive Hennessy-Milner logic. 
This gives a simple starting point from which intuitive 
formulations of the classic d-&a. s arise simply. Exten- 
sions, such as labelling the transitions in a program’s 
computation tree (as seen in the DFA-models) and then 
labelling the mu-calculus modalities, can be added to 
the framework, extending the range of application. 

3 Trace-Based Abstract Interpretation 

For brevity, we focus upon flowchart programs; more 
complex programs are discussed in the paper’s conclu- 
sion. Figure 1 shows a flowchart program, its concrete 
semantics (concrete interpretation-c-i. for short), ex- 
pressed as a set of state transition rules, and a sample 
concrete computation tree (concrete tree) of the pro- 
gram with the input of 4. The concrete computation 
tree is an execution trace, where program states ap 
pear as nodes. In the example, a program state is au 
element, of Val x PmgramPoint and is written as n I- p. 
(For simplicity, we let the statements in the example 
program be exactly the program points.) Of course, R 
is the value of variable x. 

The fundamental concept of trace-based abstract in- 
terpretation is that an abstract interpretation (a.i. ) is 
an execution of the program by transition rules that 
use property “tokens” instead of run-time values. The. 
result is an abstract computation tree (abstmct tree), 
where multiple possible execution traces are presented 
by nondeterministic branching in the abstract tree. 
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entry 

r+ Concrete semantics transitions: 
veu x 8 vu1 = Ivat 

2ntevenx+2nl-x::=xdiv2 
t exit 2n+ll-evenx+2n+lEeait 

2nl-x:=xdiv:!+nl-x:=succx 
2n+ll-x :=xdiv:!+n.l-x:=succx 
nEx:=succx+n+li-evenx 

Concrete computation tree: 

+ 
4l- evenx 

4!-x 
i 
:= x diva 

c 
2 I- x := succ x 

4 
3 I- evenx 

+ 
3l-exit 

Figure I: Flowchart and concrete interpretation 

For the example in Figure 1,&e defines an even-odd 
analysis by by repiacing the domain definition Val = 
Nat by Abs Val = {e, o> (e for “even”, o for “odd”)2 
and rewriting the state transition rules accordingly, by 
applying the obvious homomorphism criterion [ll, 16, 
53,581. (To be more specific, one can define a function, 
/3 : Val + AbsVal, which maps concrete values to their 
most precise abstractions. Here, ,8(2n) = e and P(Zn+ 
1) = o. The homomorphism property is: if (V I- p) -+ 
(21’ I- p’) is a concrete transition, then there must exist 
an abstract transition, (/3(v) k p) -+ (a’ I- p’), such 
that /3(~‘) 5 a’. Note: /3(v’) = a’ is preferred, but the 
former is safe, nonetheless.2) 

Figure 2 shows the abstract semantics and an ab- 
stract tree for the program in Figure 1. Since the even- 
odd properties lose precision, nondeterminism appears 
as branching in the abstract computation tree. Also, 
the tree is infinite, but in this particular case, the tree 
is regular tree [14], because a node repeats in every 
infinite path. Widening [16f or memoizution [53] can 
force an abstract computation tree to be reguIar; we 
ignore this topic here because a trace-based a.i.with 
a finite-cardinality AbsVaZ set must generate regular 
trees. Note that a regular tree is of course a finite- 
state transition system. 

The abstract computation trees generated by our 
traced-based abstract interpretation are ‘cmaximally 
polyvariant” [5] or “maximally relational” [33] anal- 
yses in the sense that distinct states are ‘never 

‘It is traditional to partially order the elements of AbsVaJ, 
typically because a join operation is needed to force termina- 
tion of the analysis. In the example, we can use a discrete par- 
tial ordering upon AbsVoZ, because it has finite cardinality- 
termination is assured. As a general rule, finer partial orderings 
on dbs Vol Iend themselves to more precise analyses. 

*If AbsVuJ is nondiscretely partially ordered, a monotonicity 
property must be enforced: if (01 I- p) + (a2 l- p’) is an abstract 
transition, and al L ai, then there must exist a transition (ai I- 
p) + (a; l- p’), such that a2 E ai. 

joined. An implemention of such an o.i. is often 
more monovariant-e.g., states with the same program 
points are combined-nonetheIess, the trace-based a.i. 
gives the cdrrect starting point for refinements, imple- 
mentations, and correctness proofs. 

To be useful, a program’s abstract computation tree 
must safely simulate the concrete computation tree 
that it represents. Of the many ways of stating this, 
we use the criterion from concurrency theory 1441, Let 
t be a computation tree, let foot be its root node, 
and let ti, for i E O..n, be t’s immediate subtrees. We 
write t + ti to denote that there exists a state transi- 
tion, root(t) -+ rod(ti). Read ‘Y + ti” as saying, “t 
makes a transition and becomes ti.” A program’s con- 
crete computation tree, bc, is simulated by an abstract 
tree, tA, iff the binary relation, tc safqVse tA, holds 
true: 

t eTree t’ iff r&(t) sajeslate root(Y), 
and, for every transition, t --+ i;, 
there exists a transition, 2’ + ti, 
such that t; saf%ree ti 

For the example in the Figures, we define (n I- 
p) safeStote (a I- p) iR n sufevdl a, and we define 
2n sufey,t e and 2n + 1 sufeVoI os3 The intent of 
safeTree is that every computation path in tc: is mir- 
rored by-one in tA-the abstract tree contains transi- 
tions that may happen. 

A technical issue is that the definition of safeTree E 
ConcreteTree x AbstmctTree is recursive, and the 
largest such relation satisfying the recursion is desired 
[2, 20, 45, 541. 

Of course, the proof of safe simulation can be per- 
formed directly upon the concrete and abstract seman- 
tics r&s rather than upon specific pairs of computa- 
tion trees: Indeed, the homormorphismproperty stated 

31f one begins with the function, /3 : VaJ + AbsVuJ, then tho 
proper definition for sofev,,i is c soiev,,l a ifT p(c) 5 a. 
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Abstract computation tree: 
Abstract semantics transitions: 
AbsVal= {e,o} 1 

etevenx 
ei-evenx+el-x:=xdiv2 1 
ol-evenx+okexit el-x:=xdiv2 

ul-x :=xdiv:!+ekx:=succx 
A VI-X :=xdiv2+oFx:=succx, otx:=snccx >x *= succ x 

for aU u E AbstraI 1 
et-x:=succx+otevenx etevenx 

# ’ 
oi-evenx 

ot-x:=succx+el-evenx + 
ol-exit 

Figure 2: Abstract interpretation of flowchart 

earlier implies the safety result [53] for pairs of corre- 
sponding trees generated by the concrete and abstract 
semantics. 

The above relates to the traditiona& Galois connec- 
tion framework 118, 19, 43, 47, 5414 in the following 
way: If AbsVal is a complete lattice and safeval 
is both U-closed (c sa.feval al ,and ai C a2 imply 
c safevol us) and G-closed (c’ safeval t-l A, where 
A = (u’ ] c’ safevat a’}), then one obtains the 
GaIois connection, (a: P( Val) + Abs Val, y: Abs VaZ + 
P(Val)) by defining -y(a) = (c 1 c safeval Q] and 
a(S) = uedn{a I c safeVal ~113 

There is a dual to safe simulation, called live sim- 
ulation, where a program’s abstract tree is simulated 
by its concrete tree, that is, the abstract tree contains 
only those transitions that must happen in the con- 
crete tree. (Such transitions are sometimes called con- 
servative tmnsitions [13].) Live simulations are useful 
when liveness properties must be proved from an a-i. 
Since classical data-flow analysis concerns itself with 
safe simulations, we study only safe simulations in this 
paper. 

4 Collecting Semantics 

An a.i.is not a d.f.a., but the a.i-‘s collecting se- 
mantics turns out to be the information calculated 
by a d.f a. A collecting semantics is information ex- 
tracted from the nodes and paths of a computation 
tree. The classic, “first-order” [48] collecting seman- 
tics extracts the states from a computation tree: For 

4 Recall that a Galois connection is a pair of monotone func- 
tions, (f:P + Q,g: Q -+ P), for complete lattices P and Q, such 
that jog C Ida and idp C g oj. The intuition is that j(p) iden- 
tifies p’s most precise representative within Q (and similarly for 

de))- 
51f one begins with p : Vaf + AbsW, then /3(c) = fl{u 1 

c safeVat u} and a(S) = U{@(C) 1 c E S). 
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tree, t, its first-order collecting semantics has form 
~011~ : ProgramPoint + P( Val) and is defined 

collt (p) = (v 1 v I- p is a state in f) 

In Figure 1, co&, (even x) = (3,4}, and in Figure 2, 
coZlt,(even x) = {e, o}-one can extract a collecting 
semantics from concrete as well as abstract trees. 

Constant-propagation and type-inference analyses 
calcuIate answers that are first-order collecting seman- 
tics. 

A more interesting collecting semantics is “second 
order” or path based: It extracts paths from the com- 
putation tree. The set of paths that go into a program 
point, p, is defined 

fcowJ) = 
{r ] r is a path in t from roooot(t) to some v t- p) 

. 
aud the set of paths that emanate from p is 

bmWp) = {r I r is a maximal path in t 
such that root(r) = v I- p} 

We will see that several classic d$a.s compute rep 
resentations of path-based collecting semantics. The 
two collecting semantics are named fcoZ2 and bcoll be+ 
cause they underlie the information one obtains from 
forwards and backwards iterative flow analyses, respec- 
tively. 

The above forms of collecting semantics are (prim- 
itive” in the sense that no judgement about the ex- 
tracted information is made. In practice, the informa- 
tion one desires from a data flow analysis is a judgement 
whether some property holds true of the input values 
to a program point or of the paths flowing into/out of 
a program point. 

To include such judgements, Cousot and Cousot [19] 
suggest that a computation tree’s collecting semantics 



can be a set of properties expressed in a logic, E. Given 
tree, t, and proposition, 4 E .C, we write t + 4 if 4 
holds true of t. Next, we define the coIIecting Seman- 
tics of the entire tree, t, to be co& = (4 1 t + 41. As 
before, collecting semantics exist for both concrete and 
abstract computation trees, and we assume for simplic- 
ity that the same ,C can be used with both concrete and 
abstract trees. (But it need not b-ee [8, 411.) 

For an a.i. to be of use, we require a weak consistency 
property of the safety reIation, safeTree , and E . 

That is, any property possesed by an abstract tree, tA, 
must also hold for a corresponding concrete tree, tc. 
By tightening the two implicationsin the above formula 
into logical equivalences, we obtain weak completeness 
and strong completeness, respectively. The former is 
studied in [19]; the latter is employed to justify cor- 
rectness of reductions of state spaces in concurrency 
theory 113, 22,331. 

5 Defining Collecting Semantics with 
the Modal Mu-&lculus 

The logic we use in this paper to define a collecting 
semantics is the modal mu-catcuIus [37] extended with 
reverse modalities [59, SO]. (The latter, promoted by 
SteRen, lets us express properties about paths that flow 
into a state.) Figure 3 gives the syntax and semantics 
we use. A judgement takes the form s +=t 4, where t is a 
tree, s is a state in t, and 4 is a proposition about state 
s. (Note the slight difference in notation from t # C# 
in the previous section.“) Primitive properties, q, are 
“first-order” properties about state, e.g., “variable x’s 
value at state s is positive” (written s /==t (x > 0)). We 
assume that i contains states that are detailed enough 
that s bt q can be decided. The modalities are the 
usuaI ones and are used to define “second-order” prop- 
erties, e.g., “there exists a path starting from s such 
that variable x has a positive value in two transitions” 
(8 l=t wx > 011, and “all immediate predecessors 

to s have x with a positive value” (s gtE (x > 0)). 
FinaiIy, the least tied-boint operator, p, defines prop- 
erties that hoId true at some point finitely far into the 

“The modification of the judgeme&, t + 4, into s +t 4, 

is due to the awkwardness in defining precisely t +E 4, which 
requires knowledge of all trees, t’, that contain t as a child sub- 
tree so that one can verify t’ b 4. Thii implies that the first 
argument, t, of t b 4 must be restricted to range over exactly 
all subtrees of some initia1 computation tree, fo. But it is tra- 
ditional to use the states, s, within to instead of the subtrees, 
thus giving us the notation, s +t 4. Indeed, propositions (b are 
commonly called “state formulas,” anyway! 

future (or past), e.g., “at some state now or in the 
past, t was positive” (s bt #?.(x > 0)V 5 Z), and 
the greatest fixed-point operator, Y, defines properties 
that hold true indefinitely, even infinitely, e.g., “from 
now on, t is always positive” (5 +t YZ.{x > 0) A OZ), 

The semantics of ~1 and Y in Figure 3 are simpler 
than usual because we work with trees that have a fi- 
nite number of distinct states. For an infinite-state 
tree with finite branching, we must employ the usual 
definitions: Let i[$J E Env + P(State1n%e,t) and 
p E Env = Identifier+ P(StutelnZ+ee-t): 

When the computation tree is finite-state, the above 
simplifies to the definitions in the Figure. 

The usual application of the modal mu-calculus is to 
model checking, that is, the mechanical verification of 
a judgement, s f=~ 4. Here, we use model checking to 
compute a collecting semantics for an abstract tree. 

Here are two small examples based on Figure 2. Say 
that improved code can be generated for a statement 
when its input is an even number. Therefore, we de- 
sire a collecting semantics that tells us which state- 
ments receive only even-valued inputs. The property 
to’be model checked is first order and trivial, namely, 
isEven( If a model check upon the tree, tn, in Fig- 
ure 2 decides that (a I- PO) b=t, &Even(x) holds true 
for every occurrence of a appearing with program point 
po in tA, then ~0% code cm be improved. (Note: the 
story gets even simpler if we reformat the tree in Figure 
2 with its program points merged, that is, we draw 

I 
(e] I- 4 := x div2 

4 

I 
{e, 0) lj x := succ x 

before we perform the mode1 check. This graph defines 
the “meet over all paths” solution 134,481.) The model 
check computes that the statement x:= x div2 has the 
desired property. 



s E State1nTree-t q5 E Proposition q E PrimitiveProposition 2 E Identifier 

s bt q is given 
spt,qiffnots+tq 
s~t~lA~2iffs~t~litnds~t~z 
sI=t~1v#2iffs~=t~10rs~:t~2 

s bt 04 iff for all s’ such that s + s’, s’ kt q5 

s bto 4 iff for all s’ such that s’ + s, s’ kt 4 
s bt 04 iff there exists s’ such that s + s’ and s’ bt q5 

s bt5 q5 iff there exists s’ such that $ + s and s’ bt 4 

s kt ,&.t# itf there exists i 2 0 such that s bt #i, where 
q50 = fake 
4 i+1= wzl# 

s l=t vZ.c$ iff for all i > 0, s bt &, where z:+T Lyg ,23+ . 
i 

Figure 3: Mu-calculus syntax and semantics 

For a second example, say that we wish to deallocate 
variable cells from the storage vector when they are 
no longer referenced in the future. The property that 
variable x is no longer referenced in future states is 
encoded ~2. -rU..ed(x) A OZ. This is a second-order 
property and requires a nontrivial model check. For 
the tree in Figure 2, the analysis discovers that the 
property holds only at the state, o l- exit. 

Recall that we require weak consistency of the modal 
mu-calculus: A property that holds true for a state 
of the abstract tree must also hold true for the corre- 
sponding state of the corresponding concrete tree. IJn- 

fortunately, the 0 and 3 modalities are problematic for 
safe simulations: Consider again the abstract tree in 
Figure 2; it is a safe simulation of every concrete inter- 
pretation that executes with an even-numbered input. 
In particular, it is a safe simulation of the program’s 
concrete tree with input 2: 

true of the root state of the tree in Figure 2 because 
there does indeed exist a path that leads to an exit 
statement. But the same property fails to hold for the 
corresponding root state of the concrete tree just seen 
above. The upshot is that the diamond modalities vio- 
late the weak consistency property. Fortunately, weak 
consistency-indeed, weak completeness-holds for the 
box mu-cahhs, that is, the modal mu-calculus with 
only box-modalities [s]. If we negate the above propo- 
sition: y(pZ. isExit V 02) = ~2. -isExit A 02, we 
obtain the ‘must loop” property, which is appropriate 
to model check on the abstract tree. Of course, this 
property cannot be validated on (the root of) the tree, 
hence we cannot conclude that all corresponding con- 
crete trees must loop. (Indeed, almost all of them do 
not.) 

c 
2l-evenx 

$ 
2l-x::=xdiv2 

because every transition in the above concrete tree is 
mirrored by a transition in the abstract tree. Now, con- 
sider a model check of the property that the program 
“may terminate”: ~2. isEtitVO2. This property holds 
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For the record, a dual result holds: The diamond 
mu-calculus is weakly complete for live simulations [S]. 

6 Why a Data-Flow Analysis is a Model 
Check . 

An iterative data-flow analysis (d$a. ) operates on 
a program’s control-flow graph. But a control-flow 
graph is a program’s simplest possible safe simula- 
tion: In the case of Figure 1, define AbsVul to be just 
(03, and translate each concrete state-transition rule, 
v l- p + v’ l- p’, into the abstract state-transition 
rule, l l- p + l l- p’. With this abstract semantics, 
the program’s abstract computation tree is exactly its 



control-flow graph, e.g.: t 
l I- even⌧ 

l l-x txdiv>l-e& :- L t *I-x:=succx 

Of course, more interesting u.i.s can be used to per- 
form a d.f.u.-even-odd analysis is but one simple 
example-but the classical d-f-a. s use control flow 
graphs. 

A usual iterative d.f.a.is defined by a set of ffow 
equations, one equation per program point (that is, 
one equation per state in the controMow graph). A 
bit-vector-based d.f.a.uses flow equations with set- 
theoretic operations; a standard example is very busy 
expressions analysis, which calculates for each program 
point the set of expressions that must be referenced 
sometime in the future. The flow. equation for program 
point, p, reads as follows [35J: 

That is, the set of very-busy expressions at the entry to 
program point p consists of the expressions used (refer- 
enced) within statement p unioned with those expres- 
sions that are not modified within p by reassignment 
and are very busy at all of p’s successor program points. 

The set of simultaneous flow equations for the states 
of the control-flow graph are solved with a greatest 
fixed-point calculation (that is, the initial approxima- 
tion to I/BE(p) is defined as the set of all expressions, 
and subsequent iterations cut the set down to size). 
But the obvious relationship between the set-theoretic 
operations in the above equation and the propositional 
connectives gives us this modal-mu calculus formula: 

isV.E(e) = vZ. islised(e) V (-GsModifed{Ic) A 02) 

That is, an expression, e, is very busy at a state if it is 
used at the state or it is not modified at the state and 
for all successor states it is very busy. A model check 
of isVBE(e) for all the states of the control-flow graph 
yields the same information about e as does the itera- 
tive d.f.a. {This is proved by induction on the greatest- 
fixed point definition of the flow equations and the def- 
inition of the mu-calculus proposition.) 
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7 Why Some Flow Analyses are Un- 
sound 

Figure 4 shows four canonical iterative d.f.a. s and their 
encodings as modal mu-calculus formulas [3, 35, 201. 

The encodings are straightforward: Simple union 
and intersection translate into disjunction and conjunc- 
tion, respectively; “big” unions and intersections on the 
predecessor and successor states translate into diamond 
and box modalities, respectively; a forwards analysis 
uses overlined modalities (because it calculates infor- 
mation about histories) and a backwards analysis uses 
unlined modalities (because it calculates information 
about futures); and the least and greatest fixed-point 
solutions of the equations are stated explicitly by the 
p and v-operators. 

Since the definitions calculate information as it ap 
pears upon entry to a program point, an encoding of a 
forwards analysis uses its modality operator as its out- 
ermost operator, whereas a backwards analysis embeds 
the modality operator within its formula. 

The four examples in the Figure are perhaps the 
most famous examples of flow analyses and are meant, 
to portray the four combinations one achieves by vary- 
ing overlined and unlined modalities (that is, forwards 
and backward flow) with least and greatest fixed points. 
(For example, available-expressions analysis uses over- 
lined modality and greatest-fixed point.) Yet an- 
other variation is with diamond and box ‘modalities 
(union- and intersection-based flow). (E.g., available- 
expressions analysis uses box modality.) The result- 
ing ,eight combinations give the flow analysis “cube” 
of Cousot and Cousot [XJ, but in practice, diamond 
modalities appear only with least-fixed point opera- 
tors and box modalities appear only with greatest-fixed 
point operators, because the initial approximations for 
least-fixed point equations are “false” (empty sets) and 
the initial approximations for greatest-fixed point equa- 
tions are “true” (universe sets) (cf Figure 3). But 
additional variations of the primitive propositions and 
propositional operators in the equations are obvious- 
examples appeared in the previous sections. 

In Figure 4 lies a problem: Recall that only the 
box-mu-calculus is consistent with safe simulations (of 
which a control-flow graph is one), and the analyses 
for live variables and reaching definitions use diamond 
modalities, which are consistent with live simulations 
(of which the control-flow graph is not). This implies 
that the two analyses are unsound. The problem is not 
deep but it is nonetheless significant: Figure 5 displays 
a flowchart program that computes upon variables x 
and y. A concrete computation tree for the program 
with inputs of (4,4) also appears, and finally there is 
an abstract tree that results from an even-add a.i. that 



Available Expressions: 
AE(P) = &Epred p ((AE(p’) n notModified( U Gen(p’)) 

isAvail = ~2. 0 ((2 A +sModified(e)) V isGen(e)) 

Live Variables: 
. WP) = Us&(p) u (not~oWe4p) f-l (Up’Esucc p JWP’))) 

islive = pZ. isUsed V (-&Modi~ed(z) A (OZ)) 

Very Busy Expressions: 
F/BE(p) = Us&(p) u (nofMoWe4p) n (f$,8ESUcc pt V-E(P’)) 
is I/BE(e) = vZ. isUsed(e) V (-hA!fodijkcf(e) A 02) 

Reaching Definitions: 
WP) = Up’Q.red p {(ID@‘) fl noti’kfodijedjp’)) U Defined(p’)) 

isReaching = pZ. 0 ((2 A -&Modifed( d)) V isDefined( d)) 

Figure 4: Four classic flow analyses 

Concrete tree: ilbstract tree: 

(0,o) I- exit 

Figure 5: Live Variables Analysis is Unsound 

is a safe simulation of the c-i. It is easy to verify of 
the abstract tree, at the test statement x=2, that y is 
live. But this property is not true at the test statement 
of the corresponding concrete tree. Therefore, any ver- 
ification or code improvement based on the positive 
liveness of y at the test in the abstract tree is incor- 
rect. 

Of course, data-flow practitioners are well aware of 
the above problem, and disaster does not arise in prac- 
tice, because live variables analysis is used “dually”-it 
is used to detect dead variables. That is, 

isDeud( s) = -( isliue(t)) 
- ~2. +sUsed(z) A (isModified V 02) - 

which is proper to model check upon a safe simula- 
tion. We are fortunate that we can use a live variables 
analysis to detect dead variables; this works only be- 
cause s kt -4; iff s kt 4 (this is a classical logic), hence 
s bt isDead iff s kt 7(&&&e(z)) iff s k islive( 
But we might not be so fortunate in general. 

A similar story can be told for reaching-definitions 
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analysis and other iterative d.f.a.s that implicitly en- 
code diamond modalities. Obviously, errors might arise 
when complex iterative d.f.a.s are encoded with dis- 
regard to their modalities. For this reason, specify- 
ing a d.Ja.as a modal-mu calculus proposition pro- 
vides a valuable safety check of the soundness of the 
deja-Indeed, Steffen and his collegues at Passau have 
built tools that prototype d.jIa. s as formulas in recur- 
sive Hennessy-Milner logic [36, 621. 

8 Extensions, Connections, and Con- 
clusions 

With simple machinery, we have exposed that the clas- 
sic iterative flow analyses are model checks of a pro- 
gram’s trace-based a-i. We also noted that some of the 
classic d&a. s are unsound, and we explained how a 
d.fa-can be analyzed for soundness and repaired, if 
necessary. 

Even if a d.f.a-is not automatically synthesized by 

I 



generating an abstract computation tree and doing a 
model check, the methodology proves valuable for spec- 
ification and validation of the d.f.a. algorithm that is in 
fact implemented. 

There are a Variety of extensions to the framework 
presented in this paper. First, one might decompose 
an execution state, u k p, into its components. If 
p is considered to be an “active” statement-a store- 
transfer function-rather than an “inactive,’ program 
point, then it makes good sense to label the transitions 
in a computation tree by the transfer functions, p, that 
transform stores, CT, into u’; this results in transitions of 
the form, IT 4 d, like those found in labelled transition 
systems [44] and suggests that the appropriate logic for 
model checking the resulting computation trees is re- 
cursive Hennessy-Milner logic [7]. Indeed, this is the 
framework SteEen used to present his original results 
[59, 60, Sl]. 

In the present paper, we used unlabelled transition 
systems and Kozen’s mu-calculus to provide a sim- 
plest possible starting point, to clarify the basic import 
of Steffen’s results, to tighten the tie between mode1 
checking and the classic data-flow analyses, and to fill 
a small gap in the literature on the subject. 

Although the present paper focussed solely on 
flowchart programs with simplistic transition seman- 
tics, one can apply trace-based abstract interpretation 
to derivations constructed with a big-step (natural) se- 
mantics and also with a Plotkin-style small-step struc- 
tural operational semantics [52]. 

Trace-based abstract interpretation of big-step se- 
mantics generates derivation trees that derive abstract 
properties rather than run-time values; the novelty is 
the necessity for infinite derivations, which are disal- 
lowed under the usual inductive interpretation. There- 
fore, a coinductive interpretation of the big-step rules 
must be undertaken. The concepts of coinductive big- 
step semantics were laid down by Cousot and Cousot 
[20], applied by Schmidt 1541 and refined in subsequent 
work [53]. In a related line of work, Gouranton and 
Le Mgtayer extract execution path information from 
big-step derivation trees and use it to derive standard 
d.f.a.s [ZSJ; general frameworks for doing this are pre- 
sented in Gouranton’s thesis [27]. 

At this time, there is no precedent for analyzing 
directly big-step derivation trees by means of model 
checking, but Gouranton and Le MCtayer’s efforts’ 
[27, 281 imply that this should be a matter of routine 
formulation. 

Trace-based a.;. of small-step semantics is developed 
in detail by Schmidt [55], where abstraction on the 
source language’s syntax (in this case, a n-calculus vari- 
ant) is needed to ensure construction of a finite-state 
abstract computation tree. Mode1 checking the result- 
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ing trees proceeds exactly like the examples seen in the 
present paper, and indeed, the concurrency theory lit- 
erature abounds with similar examples. 

Of course, both big-step and smaN-step structural 
operational semantics can be used to express the se- 
mantics of higher-order languages, and an outstanding 
question is whether any of the varieties of control-flow 
(closure) analyses [31, 51, 56, 571 can be encoded eltt- 
gantly as model checks upon appropriate abstract com- 
putation trees. 

Finally, it is worthwhile to consider why flow analysis 
and model checking are so intimately related: The rea- 
son why a dJ.a.can be implemented by a model check 
is because the usual “engine” that implements model 
checking is just a fixed-point calculation algorithm [26]. 
Not surprisingly, the dual is achievable: The canonical 
mode1 checking algorithm can be encoded as a set of 
flow equations [9J. Indeed, even the tableaus gener- 
ated from a tableau-based model checker [12] can be 
encoded as abstract computatioh trees where the data 
part, a, of a state, Q I- p, is abstracted to a mu-calculus 
proposition. 

These connections suggest that the machinery and 
methods of flow analysis, abstract interpretation, and 
model checking are growing together. Researchers can 
profitably use techniques from one area to improve re- 
sults in the others. Recent interest in model checking 
abstractions of finite- and infinitastate models is yet 
another indication of the growing overlap. These areas 
will thrive if they draw from one another to advance 
their respective causes. 
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