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Abstract

Stream Fusion, a popular deforestation technique in the Haskell
community, cannot fuse the concatMap combinator. This is a se-
rious limitation, as concatMap represents computations on nested
streams. The original implementation of Stream Fusion used the
Glasgow Haskell Compiler’s user-directed rewriting system. A
transformation which allows the compiler to fuse many uses of
concatMap has previously been proposed, but never implemented,
because the host rewrite system was not expressive enough to im-
plement the proposed transformation. In this paper, we develop
a custom optimization plugin which implements the proposed
concatMap transformation, and study the effectiveness of the trans-
formation in practice. We also provide a new translation scheme for
list comprehensions which enables them to be optimized. Within
this framework, we extend the transformation to monadic streams.
Code featuring uses of concatMap experiences significant speedup
when compiled with this optimization. This allows Stream Fusion
to outperform its rival, foldr/build, on many list computations, and
enables performance-sensitive code to be expressed at a higher
level of abstraction.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, Compilers, Optimization

General Terms Languages, Performance

Keywords Deforestation; Functional Programming; GHC; Haskell;
Optimization; Program Fusion; Program Transformation; Stream
Fusion

1. Introduction

In functional languages, it is often natural to implement sequence-
processing pipelines by gluing together reusable combinators, such
as foldr and zip. These combinators communicate their results
to the next function in the pipeline by means of intermediate
data structures, such as lists. If these pipelines are compiled in
a straightforward way, the intermediate structures adversely affect
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performance as they must be allocated, traversed, and subsequently
garbage collected.

Many techniques, collectively known as deforestation [11, 30]
or fusion, exist to transform such programs to eliminate these inter-
mediate structures. Intuitively, rather than allow each combinator to
transform the entire sequence in turn, the resulting code processes
sequence elements in an assembly-line fashion. In many cases, after
fusion, no sequence structures need to be allocated at all.

Shortcut (or algebraic) fusion works by expressing sequence
computations using a set of primitive producer and consumer com-
binators, along with rewrite rules that combine, or fuse, consumers
and producers. The three most well-known shortcut fusion systems,
foldr/build [7], its dual unfoldr/destroy [27], and Stream Fusion [3],
each choose a different set of primitive combinators and fusion
rules. This choice determines which sequence combinators can be
fused by each system1. We briefly summarize the tradeoffs here,
though an excellent and thorough overview of the three systems
can be found in Coutts [2].

The foldr/build system cannot fuse zip-like combinators which
consume more than one sequence. It also cannot fuse consumers
which make use of accumulating parameters, such as foldl, without
a subsequent non-trivial arity-raising transformation [5]. Despite
these shortcomings, GHC has used foldr/build to fuse list compu-
tations for 20 years in part because it performs well on nested se-
quence computations, such as concatMap, which are common in
list-heavy code.

The unfoldr/destroy system fuses zip and foldl, but cannot fuse
filter or concatMap. Stream Fusion improves on unfoldr/destroy
by fusing filter, but it still cannot fuse concatMap. Stream Fusion
is currently the system of choice for array computations, which tend
to heavily use zip, foldl, and filter.

This paper enhances Stream Fusion such that it handles
concatMap. This enhancement removes a significant limitation
which prevents Stream Fusion from replacing foldr/build as the fu-
sion system of choice for GHC. We accomplish this by adding an
additional rewrite rule which transforms calls to concatMap into
calls to a similar combinator, flatten, which is more amenable
to fusion. GHC’s current user-directed rewriting system, GHC
RULES, cannot express this transformation, so we provide an im-
plementation using HERMIT [4, 24], a GHC plugin for transform-
ing GHC’s intermediate language.

1 There is a distinction between “fusion” and “fusion that results in an
optimization”. Fusion is only an optimization if it reduces allocation. Fusion
may occur, but result in a function which allocates an internal structure
equivalent to the eliminated sequence. In this paper, we only care about
fusion that results in an optimization, and this is the meaning we intend
when we say a particular system “can fuse” a given combinator.
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While the transformation at the heart of this paper has been pro-
posed previously, it has never been implemented in practice. The
major contribution of this paper is to explore the practicality and
payoff of implementing such a transformation and applying it to
real Haskell programs. There are many details, especially regard-
ing simplification and desugaring, that were not obvious when we
set out. Specifically, this paper makes the following contributions.

• We describe a transformation from concatMap to flatten

which enables fusion (Section 4). We extend this transforma-
tion to monadic streams (Section 4.2) so that it may be applied
to vector fusion.

• We provide an implementation of the transformation as a cus-
tom GHC optimization, using HERMIT, and detail the simplifi-
cations necessary to enable the transformation in practice (Sec-
tion 5).

• We give a novel translation scheme for list comprehensions
which results in combinators which are amenable to fusion by
our extended Stream Fusion system (Section 5.3).

• We apply our system to the nofib[19] suite of benchmark pro-
grams, demonstrating its advantage over foldr/build in list-
heavy code (Section 6.2).

• We apply our system to the ADPfusion [12] library, which is
used to write CYK-style parsers [10, Chapter 4.2] for single-
and multi-tape grammars. The library makes heavy use of
nested vector computations that need to be fused to achieve
high performance. ADPfusion previously made extensive use
of flatten. We demonstrate that our transformation simplifies
the implementation of ADPfusion with no loss of performance
(Section 7).

2. Stream Fusion

In this section, we summarize the Stream Fusion technique. Read-
ers familiar with the topic may safely skip ahead, as none of this
material is new. More detail can be found in [3] and [2].

The key idea of Stream Fusion is to transform a pipeline of
recursive sequence processing functions into a pipeline of non-
recursive stream processing functions, terminated by a single recur-
sive function which “runs” the pipeline. The non-recursive func-
tions are known as producers, if they produce a stream, or trans-
formers, if they transform one stream into another. The recursive
function at the end of the pipeline is known as the consumer.

The benefit of this transformation is that it enables subsequent
local transformations such as inlining and constructor specializa-
tion, which are generally useful and thus implemented by the com-
piler, to fuse the producers and transformers into the body of the
consumer, yielding a single recursive function which produces no
intermediate data structures. Stream Fusion relies on a data type
which makes explicit the computation required to generate each el-
ement of a given sequence:

data Stream a where

Stream :: (s → Step a s)→ s → Stream a

data Step a s = Yield a s | Skip s | Done

A Stream is a pair of a generator function (s → Step a s)
and an existentially-quantified state (s). When applied to the state,
the generator may give one of three possible responses, embodied
in the Step type. Yield returns a single element of the sequence,
along with a new state. Skip provides a new state without yielding
an element. Done indicates that there are no more elements in
the sequence. Generator functions are non-recursive, which allows
them to be easily combined by GHC’s optimizer.

We convert to and from this Stream representation using a
pair of representation-changing functions. In this section, we use
Haskell lists as the sequence type, but the same technique works
for other sequence types, such as arrays. The stream function is a
producer that converts a list to a Stream:

stream :: [a ]→ Stream a

stream xs = Stream uncons xs

where uncons :: [a ]→ Step a [a ]

uncons [ ] = Done

uncons (x : xs) = Yield x xs

The state of stream is the list of values to which it is applied.
The generator function yields the head of the list, returning the tail
of the list as the new state.

The unstream function is a consumer that repeatedly applies
the generator function to obtain the elements of the list:

unstream :: Stream a → [a ]

unstream (Stream g s) = go s

where go s = case g s of

Done → [ ]

Skip s′ → go s′

Yield x s′ → x : go s′

Using stream and unstream, list combinators can now be re-
defined in terms of their Stream counterparts. Consider map:

map :: (a → b)→ [a ]→ [b ]

map f = unstream ◦mapS f ◦ stream

mapS :: (a → b)→ Stream a → Stream b

mapS f (Stream g s0 ) = Stream mapStep s0

where mapStep s = case g s of

Done → Done

Skip s′ → Skip s′

Yield x s′ → Yield (f x) s′

Note that stream and mapS, as producer and transformer, re-
spectively, are both non-recursive. Rather than traverse a sequence,
mapS simply modifies the generator function. Wherever the origi-
nal stream would have produced an element x , the new stream pro-
duces the value f x instead. Subsequent inlining and case reduction
will fuse the two generators into a single non-recursive function.

The final, crucial, ingredient is the following rewrite rule, the
proof of which can be found in Coutts [2]:

stream ◦ unstream ≡ id

As an example of Stream Fusion in action, consider a simple
pipeline consisting of two calls to map.

map f ◦map g

Unfolding map yields the underlying stream combinators.

unstream ◦mapS f ◦ stream ◦ unstream ◦mapS g ◦ stream

Applying the rewrite rule eliminates the intermediate conversion.

unstream ◦mapS f ◦mapS g ◦ stream

Inlining the remaining functions, along with their generators,
and performing standard local transformations such as case reduc-
tion and the case-of-case transformation [23] results in the follow-
ing recursive function, which produces no intermediate lists.

let go [ ] = [ ]

go (x : xs) = f (g x) : go xs

in go

In this case, Stream Fusion has effectively implemented the
map f ◦map g ≡ map (f ◦ g) transformation.
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3. Fusing Nested Streams

The concatMap combinator is a means of expressing nested list
computations. It accepts a higher-order argument f and a list, which
we call the outer list. It maps f over each element of the outer
list, inducing a list of inner lists. It returns the concatenation of
the inner lists as its result. Similiar to map in the previous section,
concatMap can be implemented in terms of its stream counterpart,
concatMapS.

concatMap :: (a → [b ])→ [a ]→ [b ]

concatMap f = unstream ◦ concatMapS (stream ◦ f ) ◦ stream

The concatMapS function is a non-recursive transformer with
a somewhat complicated generator function.

concatMapS :: (a → Stream b)→ Stream a → Stream b

concatMapS f (Stream g s) = Stream g ′ (s,Nothing)

where

g ′ (s,Nothing) =

case g s of

Done → Done

Skip s′ → Skip (s′,Nothing)

Yield x s′ → Skip (s′, Just (f x))

g ′ (s, Just (Stream g ′′ s′′)) =

case g ′′ s′′ of

Done → Skip (s,Nothing)

Skip s′ → Skip (s, Just (Stream g ′′ s′))

Yield x s′ → Yield x (s, Just (Stream g ′′ s′))

The state of the resulting stream is a tuple, containing as its first
component the state of the outer stream (the second argument to
concatMap). Its second component is optionally an inner stream.

The generator function g ′ operates in two modes, determined
by whether the inner stream is present in the state (Just) or absent
(Nothing). When the inner stream is absent, g ′ applies the generator
for the outer stream to the first component of the state. When this
results in a value x , it constructs a new state by applying f to x to
get the inner stream.

Subsequent applications of g ′ will see the Just constructor and
operate in the second mode, which applies the generator for the
inner stream to its state. When the inner stream is exhausted, it
switches back to the first mode by discarding the inner stream state.

Optimizing concatMapS, GHC will use call-pattern special-
ization [21] to eliminate the Maybe type, yielding two mutually re-
cursive functions, one for each mode. Unfortunately optimization
stops before all Step constructors are fused away.

go1 acc s = . . . go2 acc s′ g ′′ s′′ . . .

go2 acc s g ′′ s′′ = case g ′′ s′′ of

Done → go1 acc s

Skip s′ → go2 acc s g ′′ s′

Yield x s′ → go2 (acc + x) s g ′′ s′

The problem is that the generator for the inner stream g ′′ is
an argument to go2 , and therefore not statically known in the
body of go2 . Indeed, we can see this in the original definition of
concatMapS above, where g ′′ is bound by pattern matching on
the tuple of states. The fact that g ′′ is not statically known in go2

means it cannot be inlined, thwarting case reduction, which would
have eliminated the Step constructors.

The code for g ′′ is statically known in go1 . Additionally, we
can see that go2 always repasses g ′′ unmodified on recursive calls.
We could apply the static-argument transformation (SAT) [23] to
go2 and inline the resulting wrapper into go1 . This would make the
code for g ′′ statically known at its call site, enabling full fusion.

This approach was suggested in the original Stream Fusion pa-
per [3], but it involves a delicate interaction between call-pattern

specialization and the SAT that is difficult to control. Aggressively
applying the SAT can have detrimental effects on performance, so
GHC is quite conservative in its use. In this case, GHC will not
apply the SAT to go2 automatically. Even if GHC had a means of
targeting the SAT via source annotation, the fact that go2 is gener-
ated by call-pattern specialization, at compile time, with an auto-
generated name, means there is nothing in the source to annotate.
Despite considerable effort by GHC developers, successfully ap-
plying this solution in the general case has remained elusive.

Stepping back, we can see that this is a consequence of the
power of concatMapS itself. The inner stream, including its gen-
erator function, is created by applying a function to a value of the
outer stream at runtime. That function could potentially pick from
arbitrarily many different inner streams based on the value it is ap-
plied to. Each of these streams may have an entirely different gen-
erator function. In fact, since the type of the state in a Stream is
existentially quantified, the returned streams may not even have the
same state type.

An alternative to concatMapS is flatten. The type of flatten
makes explicit that the generator, and the type of the state, of the
inner stream are always the same, regardless of the value present in
the outer stream. This means that flatten is readily fused by GHC.

flatten :: (a → s) -- initial state constructor
→ (s → Step b s) -- generator
→ Stream a → Stream b

The disadvantage is that flatten is more difficult to use, as
it breaks the abstraction of Stream by exposing the user to Step.
Whereas the rest of the Stream Fusion system hides the complexity
of state and generator functions from the programmer, providing
familiar sequence combinators, flatten requires one to think in
terms of generator functions and state. A call to concatMap with a
complicated inner stream pipeline can make use of existing stream
combinators, while flatten requires the programmer to write a
hand-fused, potentially complex generator function.

4. Transforming concatMap to flatten

In his dissertation, Coutts [2] proposes the following transforma-
tion for optimizing common uses of concatMap by transforming
them into calls to flatten. The advantage of such a transformation
is its specificity. Rather than manage a brittle interaction between
two general program transformations with potential negative per-
formance consequences, we perform one specific transformation
which we know to be advantageous. This is exactly the motivation
for GHC RULES.

∀ g s . concatMapS (λx → Stream g s) =⇒ flatten (λx → s) g

This transformation is only valid if the state type and generator
function of the inner streams are independent of the runtime values
of the outer stream. That is, the state type and generator function
are the same for each inner stream, and statically known. This
restriction is exactly what allows the stream to be expressed in
terms of flatten, and doing so makes this independence explicit.

While this transformation enforces the essential restriction that
the value of x does not determine which generator and state is
selected, it has the undesirable side condition that x cannot be free
in g . This side condition severely limits the applicability of the
transformation in practice. To see why this is a problem, consider
this simple nested enumeration.

concatMapS (λx → enumFromToS 1 x) (enumFromToS 1 n)

As traditionally written, the generator for the inner
enumFromToS will necessarily depend on x in order to
know when to stop generating additional values. The proposed
transformation would fail to apply in this situation.
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We could work around this by carefully defining
enumFromToS such that it stores its arguments in the stream
state. That is, we could place an additional invariant on generator
functions that they have no free variables that are not also free
in their enclosing stream combinator definition. From a practical
perspective, this complicates all stream combinator definitions
for the benefit of concatMap. More complicated state types are
required, which results in higher arity functions after call-pattern
specialization, even when concatMap is not present.

In this section, we define a more sophisticated transformation
which separates these concerns, permitting g to use x to compute
its result, without allowing x to determine which g is selected, and
without requiring all stream combinators to be redefined with the
additional invariant on their generators. Unfortunately, the GHC
RULES system is incapable of expressing such a transformation.

4.1 Non-Constant Inner Streams

The principal limitation to the proposed transformation is the free
variable check on the generator function. For any interesting use
of concatMapS, this will fail. To lift this restriction, we alter the
transformation such that it extends the state with the value of the
outer stream. The generator function then has access to the value
of the outer stream by way of the state. Note this transformation
makes intentional use of variable capture (when x is free in g).

∀ g s . concatMapS (λx → Stream g s)

⇓

flatten (λx → (x , s)) (λ(x , s)→ fixStep x (g s))

Notice we have changed the type of the inner stream state. We
can project the original state out of the extended state and apply the
original generator, getting a Step result which contains a possible
value and new state. This new state is of the original state type. We
must return a state of the extended type. To do this, we employ
fixStep to place x back into the state held by the Step result,
thereby lifting it to the extended state type.

fixStep :: a → Step b s → Step b (a, s)

fixStep Done = Done

fixStep a (Skip s) = Skip (a, s)

fixStep a (Yield b s) = Yield b (a, s)

This improved transformation cannot be implemented as a GHC
RULE because it requires manipulating syntactic language con-
structs such as case expressions. More practically, it is rare that
the body of the function argument is in Head-Normal Form (i.e.
starting with an explicit Stream constructor). Often the body will
involve a call to another stream combinator instead. We use a cus-
tom simplification algorithm (described in Section 5) to expose the
constructor. Expressing this transformation and applying it auto-
matically during compilation is the main contribution of this paper.

4.2 Monadic Streams

The transformation we have described works on pure streams. The
vector streams we target in Section 7 are parameterized on a monad,
permitting generator and state construction functions to perform
monadic effects. This leads to the following definition of the stream
datatypes.

data Stream :: (∗ → ∗)→ ∗ → ∗where

Stream :: (s → m (Step s a))→ s → Stream m a

concatMapM ::Monad m

⇒ (a → m (Stream m b))

→ Stream m a → Stream m b

flattenM ::Monad m

⇒ (a → m s)

→ (s → m (Step s b))

→ Stream m a → Stream m b

The Stream constructor of the inner stream is now wrapped in a
monadic context. The simplest such context is return.

concatMapM (λx → return (Stream g s))

However, the monadic context may also have an arbitrary num-
ber of binds which scope over the inner stream. The transformation
must collect the bound values and store them in the state, like it
does for the outer stream binder x . Here we denote the monadic
context asM≪. . .≫. Since the context is executed once per ele-
ment of the outer stream, it can safely be moved to the state con-
struction function of flattenM .

∀ g s . concatMapM (λx →M≪Stream g s≫)

⇓

flattenM (λx →M≪((x , b1 . . bn), s)≫)

(λ((x , b1 . . bn), s)→

liftM (fixStep (x , b1 . . bn)) (g s))

Instead of storing x in the state, we now store an n-ary tuple of
x and the other binders. The projection is modified to project out of
this tuple. As a minor optimization, we only store those binders
which appear free in the generator function. Finally, fixStep is
lifted over the monadic result of the generator in the normal way.

5. Implementation

To implement the transformation, we use HERMIT [4, 24], a GHC
plugin that allows the programmer to interact with GHC’s interme-
diate representation of their program during compilation. GHC’s
intermediate language is called Core. Core is an implementation

of System F↑
C

[26, 32], which is System F [8, 22] extended with
let-bindings, constructors, type coercions and algebraic and poly-
morphic kinds. GHC’s optimizer is written as a pipeline of Core-
to-Core passes which manipulate this Core program.

HERMIT is a Core-to-Core pass that runs between GHC’s ex-
isting passes, applying custom transformations which can be spec-
ified at a high level of abstraction using KURE, a strongly typed
strategic rewriting domain-specific language [6, 25]. We took ad-
vantage of HERMIT’s interactive capability to assist in developing
and refining our transformation. We do not present code from the
implementation here directly, but the interested reader can find it at:
https://github.com/ku-fpg/hermit-streamfusion. While
the HERMIT implementation necessarily operates on Core, for
clarity we present the code in this section using Haskell syntax.

5.1 Simplifying

In practice, the body of the function passed to concatMapS is not
an explicit Stream constructor. In order to expose the constructor,
we simplify the body with Algorithm 1. This simplification is done
by HERMIT when it tries to apply our transformation. We explain
each step in detail below.

1. Gentle simplification Perform dead-let elimination, case re-
duction, β-reduction, limited (non-work-duplicating) let substitu-
tion, and unfolds Haskell’s operators for function composition (◦)
and application ($), as well as the identity function (id).

2a. Apply the stream/unstream rule. Recall the definition of
concatMap in terms of concatMapS from Section 2.

concatMap :: (a → [b ])→ [a ]→ [b ]

concatMap f = unstream ◦ concatMapS (stream ◦ f ) ◦ stream
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Algorithm 1 Simplification Algorithm SIMPLIFY

In order, repeatedly apply the first transformation that succeeds.

1. Gentle simplification

2. Once, in a top-down manner:

(a) Apply the stream/unstream rule.

(b) Float a let inwards.

(c) Eliminate a case.

(d) Reduce a case on an inner stream.

(e) Float a case inwards.

3. Unfold an application.

After transformation, f will be composed of stream combinators
wrapped in an unstream which turns the stream back into a list.
When f is inlined, this unstream will unite with stream, enabling
us to eliminate both. If we were to instead unfold the stream

application in search of an explicit Stream constructor, we would
commit to having an intermediate list. (Recall that the state type of
a Stream produced by stream is a list.)

2b. Float a let inwards. The inner stream will often be wrapped
in let bindings, especially if we have unfolded a stream combinator.
These bindings will scope over the entire Stream constructor, and
may or may not depend on the value of the outer stream, so we
cannot reliably float them outwards. We can observe, however, that
they will never capture the Stream constructor itself, so we can
reliably float them inwards past the constructor.

let b = e in Stream g s =⇒ Stream (let b = e in g)

(let b = e in s)

Floating inwards necessarily duplicates let bindings. This loss
of sharing could result in duplicated allocation and computation. In
practice, it appears rare that a let binding is used in both the gener-
ator and the state (the two arguments to the Stream constructor), so
at least one will usually be eliminated by the next gentle simplifica-
tion step, which, according to Algorithm 1, will occur directly after
this transformation. In addition to applications, lets are floated into
case expressions and lambdas.

2c. Eliminate a case. This step eliminates a case with a single
alternative when none of the binders of the case are free in the right-
hand side of the alternative.

∀v ∈ vs. v /∈ freeVars rhs

case e of =⇒ rhs

C vs→ rhs

One might question the necessity of this rule. This situation
most often arises from simplification step 2e (float a case inwards),
which itself is primarily caused by strictness annotations. Strictness
annotations, and use of the Haskell seq function, are desugared to
case expressions. (Operationally, case expressions in Core perform
computation.) When we float a case inwards in 2e, we necessarily
duplicate it (just as when we float lets inwards). Some of the
duplicates may bind values that are never used.

2d. Reduce a case on an inner stream. Nested streams will result
in a case expression on the inner stream. Consider:

concatMapS (λx → concatMapS (λy → enumFromToS 1 y)

(enumFromToS 1 x))

(enumFromToS 1 n)

When transforming the outermost concatMapS, the body of the
function argument will eventually be:

λx → case flatten mkS g ′′ (enumFromTo 1 x) of

Stream g s → . . . Stream g ′ s′ . . .

GHC would have unfolded flatten eventually. However, in
order to transform the outer concatMapS to flatten, we need to
do it now so as to expose the Stream constructor in the right-hand
side of the alternative.

A wrinkle arises if the head of the scrutinee is not a stream com-
binator. It may be a case expression, let expression, or application;
or, more subtly, the stream combinator itself.

λx → case stream (unstream (flatten...)) of

Stream g s → . . . Stream g ′ s′ . . .

If we were to unfold stream, the case would reduce, but we
would fall prey to the same problem mentioned in step 2a. That is,
we would be commited to a state type that included a list, missing
a fusion opportunity.

These issues are all ones Algorithm 1 is designed to handle, so
we recursively apply the entire algorithm to the scrutinee. When
finished, it will yield an explicit Stream constructor, which will be
reduced by the next gentle simplification step.

e =⇒ e′

case e of =⇒ case e′ of

Stream g s → rhs Stream g s → rhs

2e. Float a case inwards. Strictness annotations result in case
expressions with a single, always matching default alternative. The
right-hand side of the alternative may refer to the bound result of
the evaluated scrutinee. For the same reasons we cannot always
float lets outward, our only option is to eliminate the case or float it
inwards.

We know that we cannot eliminate it wholesale, or step 2c
would have done so. Eliminating it involves either changing the
case to a let, which would make the program more lazy, or substi-
tuting the scrutinee into the right-hand side of the alternative, which
could duplicate work. We instead choose to float it inwards.

case e of =⇒ Stream (case e of v → g)

v → Stream g s (case e of v → s)

In most situations, one of these cases is eliminated, avoiding du-
plicated work, though we have not explicitly quantified how often
this happens in practice. Within the context of the overall trans-
formation, strictness remains unaltered. Nominally, if e is ⊥, it is
now possible to force the entire expression to the Stream construc-
tor, where before it would have diverged. However, forcing just the
Stream constructor without forcing one of its arguments provides
no useful information, so only a pathological stream combinator
would do so.

The other situation which requires this rule is the desugaring of
pattern binders for list comprehensions (Section 5.3). The desugar-
ing results in a case with a single alternative to bind the components
of the pattern. Again, we float the case inwards, possibly duplicat-
ing computation.

3. Unfold an application. The last resort is to unfold a function
application. It is crucial that this step be tried last, for the reasons
mentioned in steps 2a and 2d. That is, we want to avoid unfolding
the stream combinator when possible, because it commits the
program to a list state type, resulting in an intermediate list.
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Entry T L≪comp≫ =⇒ T S≪T I≪comp≫≫

Invariant T I≪[e | g, qs ]≫ =⇒ [e | ()← [()], g, qs ]

T I≪other≫ =⇒ other

Guard y /∈ freeVars g

T S≪[e | p ← xs, g, qs ]≫ =⇒ T S≪[e | p ← filter (λy → case y of p → g) xs, qs ]≫

Bind− Irrefutable T S≪[e | p ← xs, qs ]≫ =⇒ concatMap (λx → case x of p → T S≪[e | T I≪qs≫ ]≫) xs

Bind− Fail T S≪[e | C y z ← xs, qs ]≫ =⇒ concatMap (λx → let y = case x of

C y → y

→ error "impossible"

z = case x of

C z → z

→ error "impossible"

in T L≪[e | qs ]≫)

(filter (λx → case x of

C → True

→ False) xs)

Let T S≪[e | let B , qs ]≫ =⇒ let B in T L≪[e | qs ]≫

Parallel (x1 . . xn) is an n-ary tuple of values bound by qs′ — (y1 . . yn) is an n-ary tuple of values bound by qs′′

T S≪[e | qs′ | qs′′, qs ]≫ =⇒ concatMap (λ((x1 . . xn), (y1 . . yn))→ T S≪[e | T I≪qs≫ ]≫)

(zip (T L≪[(x1 . . xn) | qs′ ]≫) (T L≪[(y1 . . yn) | qs′′ ]≫))

Body T S≪[e |]≫ =⇒ [e ]

Figure 1: Desugaring rules for list comprehensions. We denote the body as e, generators as xs and ys, guards as g , and remaining clauses as
qs. The entry point is T L, and multiple equations within a single named rule are matched top-down.

5.2 Multiple Inner Streams

We actually implement a slightly more general version of the trans-
formation in step 2e. We float a case with multiple alternatives in-
wards if all alternatives share the same constructor and type.

case e of =⇒ Stream (case e of

P → Stream g1 s1 P → g1
Q → Stream g2 s2 Q → g2)

(case e of

P → s1
Q → s2)

This has the effect of merging two streams whose state type
is the same. The strictness argument is the same as for step 2e,
though the resulting cases are less likely to be eliminated, so work
duplication is an issue. It is easy to construct a small example which
would benefit from this rule:

concatMapS (λx → case even x of

True → enumFromToS 1 x

False→ enumFromToS 1 (x + 1))

It remains unclear how often this happens in a real program, as
we have not quantitatively measured how often the transformation
has this effect. It does, however, suggest possible future work on a
more involved means of merging streams.

5.3 List Comprehensions

Haskell offers convenient syntax for nested list computations in the
form of list comprehensions. GHC desugars list comprehensions in
two different ways. Standard Haskell 98 desugaring [20] is used
when optimization is disabled or parallel list comprehensions are
present. With standard optimizations enabled, comprehensions are
desugared to compositions of foldr and build [5].

Neither scheme will result in good fusion for our extended
Stream Fusion system, so we provide a third means of desugar-
ing comprehensions (Figure 1). Haskell 98 desugaring, specifically
of guards and pattern-match failures, will result in branching case
expressions inside the function argument to concatMap. These
case expressions cannot be merged because their state type differs,
blocking our transformation. Our desugaring translation is a novel
extension of Haskell 98 desugaring, and is required to get good fu-
sion from our system. We have implemented it in GHC, selectively
enabled by a flag. All tests in Section 6.2 enable it when running
our optimization.

To refresh, a list comprehension has a body and a series of
clauses. A clause can be a generator, a guard, or a let expression.
Groups of clauses may be combined with a parallel operator, in-
dicating a parallel list comprehension. Our goal is to desugar the
clauses into a pipeline of list combinators over which we can sub-
sequently guarantee fusion. To this end, we desugar generators to
concatMap, guards to filter, parallel comprehensions to zip, and
the body to a singleton list. Let expressions remain let expressions.

102



5.3.1 Guard Invariant

The rules for zips, lets, and binds are all standard. Traditionally,
guards are desugared to boolean case expressions [20, 29].

T Q≪[e | g, qs ]≫ =⇒ case g of

True → T Q≪[e | qs ]≫

False→ [ ]

The problem with this scheme is that we end up with a
branching case expression in the body of the function we pass to
concatMap. Recall that the stream state is existentially quantified.
The empty stream in the False alternative will have a different state
type than then stream in the True alternative, preventing us from
floating the case inwards and merging the streams.

To get semantically equivalent behavior without a branching
case expression, we desugar guards into calls to filter. In order
to do this, we must have a list to filter. This brings about the
invariant that guards are always preceeded by a generator. In the
case that no generator is present, we insert a unit generator. The unit
generator is a list that generates exactly one unit. Stepping through
the translation:

T L≪[e | g, qs ]≫

⇓

T S≪[e | ()← [()], g, qs ]≫

⇓

T S≪[e | ()← filter (λ()→ g) [()], qs ]≫

⇓

concatMap (λ()→ T L≪[e | qs ]≫)

(filter (λ()→ g) [()])

This may seem convoluted, but the ()’s will eventually be dis-
carded by call-pattern specialization. By avoiding a branching case
expression which cannot be floated inwards, we enable our entire
transformation.

5.3.2 Failing Pattern Matches

The translation for generators involves two rules. When the pattern
is a variable, or only contains constructors of single-constructor
data types, the pattern match cannot fail. In this case, we can
translate directly to concatMap using Bind-Irrefutable.2 How-
ever, many patterns have the ability to fail. As an example, con-
sider:

[i | Just i ← [Nothing, Just 6, Just 7]]

Desugaring this pattern match in the traditional way will result
in a branching case expression with one alternative for the Just

constructor and a second alternative for any other constructor. Once
again, this will prevent fusion, as the two branches cannot be
merged.

concatMap (λx → case x of

Just i → [i ]

Nothing→ [ ])

[Nothing, Just 6, Just 7]

This leads us to the more complicated Bind-Fail translation for
generators. In essence, we use filter to create a list of elements
which can only succeed when subsequently scrutinized by the case
expressions in the let bindings. The let bindings themselves will
be floated inward and/or eliminated by simplification. Again, this
duplicates work (and allocation), but the effect is outweighed by
the advantages of full fusion.

2 Note that Bind-Irrefutable still uses a case expression with a single
alternative to bind components of the pattern.

5.3.3 Modifying SIMPLIFY

Recall again the definition of concatMap in terms of concatMapS.

concatMap :: (a → [b ])→ [a ]→ [b ]

concatMap f = unstream ◦ concatMapS (stream ◦ f ) ◦ stream

The f resulting from desugaring will potentially have a single
non-branching case expression to bind the pattern binders. The
right-hand side of the alternative will consist of a pipeline of stream
combinators ending in a single unstream to turn the result into a
list. The case itself will be wrapped in the stream combinator in
composition after f . For example:

concatMapS (λx → stream (case x of

C vs→ unstream (...)))

(...)

In order to bring stream and unstream together to enable their
elimination by the fusion rule, we augment SIMPLIFY with an
extra step after gentle simplification which floats the case outwards
if and only if it enables the rule to fire. This is the only change to
the transformation specifically required by list comprehensions.

5.4 Call-Pattern Specialization

Stream Fusion depends crucially on call-pattern specialization to
eliminate the constructors in the stream state. GHC allows a data
type to be annotated to indicate that it should try to aggressively
specialize functions with arguments of the annotated type. In the
following example, sPEC is the dummy argument of such an an-
notated type, and should force GHC to specialize go. Unfortunately
GHC tends to bind deeply nested constructors and float them out-
wards, defeating specialization.

let s1 = (, ) (Left (Left (Left (Just (I# 3))))) Nothing

go = . . . go . . .

in go sPEC (I# 0) s1

To counter this, immediately before call-pattern specialization
runs, we collect all the non-recursive bindings in the program
whose heads are non-recursive data constructors and inline them
unconditionally. In practice, this simple heuristic offers a huge im-
provement in the form of decreased allocation, because specializa-
tion completely eliminates the constructors.

5.5 The Plugin

In order to use our transformation on real code, we create a GHC
plugin using HERMIT. The plugin consists of two modules.

The first module provides the definitions of the Stream Fusion
combinators and the fixStep function (Section 4.1), along with
GHC RULES which transform list combinators into their Stream
Fusion counterparts. A user wishing to enable Stream Fusion must
import this module in their program so the definitions are available
during compilation. The need for this module is primarily a HER-
MIT limitation (though the same limitation applies to any GHC
plugin). Future versions of HERMIT may be able to inject such
dependencies directly.

Our plugin follows the standard Stream Fusion approach to in-
lining and forcing call-pattern specialization. Where our plugin dif-
fers from tradition is the rewrite rules it provides for list combina-
tors. Traditional Stream Fusion provides an alternative list prelude,
in which list combinators were defined directly in terms of stream
combinators. We instead provide GHC RULES such as this one:

∀ f . map f ≡ unstream ◦mapS f ◦ stream

Our motivation for the RULES approach is two-fold. First, there
is no need to hide or redefine the list combinators in the Prelude.
This would be less onerous if Stream Fusion were the default list
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implementation, but makes selective use more difficult. With this
approach, a single extra module import in the code targeted for
optimization is all that is required.

Second, and more importantly, the desugaring of list compre-
hensions requires GHC to assign globally unique identifiers to the
combinators it generates, so it can generate proper names even if
the combinators themselves are not visible to the compiler. Desug-
aring directly to stream combinators, or even the alternative prelude
combinators, would require the combinator and module names to
be hard-coded into GHC itself. A change to the Stream Fusion li-
brary would require a corresponding change to GHC. On the other
hand, the standard list combinators are stable and not likely to
change, and are already assigned unique names by GHC. Desug-
aring to these standard combinators, then rewriting with RULES,
allows us to make minimal changes to GHC itself.

The second module provides the actual GHC plugin, defined
using HERMIT. This module is the one specified to GHC using
the -fplugin flag when compiling the target code. The fact that
list combinators already have RULES defined for foldr/build is a
complicating factor. Before the first optimization pass runs, we
apply all our rules to exhaustion in order to transform all the list
combinators before their own RULES get a chance to fire. This is
the primary source of increased compilation time, as HERMIT is
currently not tuned for performance. Then, before and after every
optimization pass, we apply our transformation whenever possible.
Finally, before the call-pattern specialization pass, we aggressively
inline non-recursive constructor bindings, as discussed in Section
5.4.

To summarize, the programmer must do two things to make use
of our transformation. First, she must add a single additional import
to the module targeted for optimization. Second, she must pass two
additional flags to GHC, specifying the plugin name and module to
be targeted.

6. Performance

In this section, we evaluate the performance benefits of the trans-
formation by applying it to both Haskell lists and vectors. We
first benchmark the results of the optimization on several micro-
benchmarks that exercise different aspects of the transforma-
tion (Section 6.1). We then apply the transformation to GHC’s
nofib benchmark suite (Section 6.2). Finally, we illustrate how
concatMap can sometimes lead to better performance than flatten

(Section 6.3).
All measurements in this section were performed on a 64-bit

2.3Ghz Intel CoreTM i5-2415M, with 4GB RAM, running OS X
10.7.5 and GHC HEAD (as of October 7, 2013).

6.1 Micro-benchmarks

In order to illustrate the performance gap between flatten and
concatMap, and thus characterize the potential benefit of the trans-
formation, we apply it to the micro-benchmarks listed below. Note
that these particular benchmarks characterize best case improve-
ments, as they are designed to result in tight loops on unboxed in-
tegers.

The graph in Figure 2 summarizes the results. For each bench-
mark we provide the following measurements, where appropriate:

• concatMap Use the vector library’s concatMap combinator.
This represents the current status quo for Stream Fusion.

• flatten Use vector’s flatten combinator and hand-written
generator functions.

• Optimized Apply our transformation to concatMap.

• List Use lists and apply foldr/build.
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Figure 2: Micro-benchmark performance results.

Enum This benchmark characterizes the potential speedup gained
by using flatten instead of concatMap, and demonstrates that our
optimization can fully close the gap.

f n = foldl ′ (+) 0 (concatMap (enumFromTo 1)

(enumFromTo 1 n))

Nested This benchmark demonstrates the advantage foldr/build
normally has on nested list computations. Note that lists outperform
vectors despite being slower in Enum. In this case, superior fusion
for lists is overcoming vector’s normally superior data structure.

f n = foldl ′ (+) 0

(concatMap (λx → concatMap (λy → enumFromTo y x)

(enumFromTo 1 x))

(enumFromTo 1 n))

Monadic This benchmark exercises the monadic stream transfor-
mation. As lists are not parameterized over a monad, they are absent
from this comparison.

f n = runST (do vec ← getVector

foldl ′ (+) 0

(concatMapM (λx → do

z ← readVector vec x

return (enumFromTo 1 z ))

(enumFromTo 1 n)))

Merge This benchmark involves merging two streams with the
same state type, as discussed in Section 5.2.

f n = foldl ′ (+) 0

(concatMap (λx → case (odd x) of

True → enumFromTo 1 x

False→ enumFromTo 2 x)

(enumFromTo 1 n))

6.2 Nofib Suite

In order to evaluate our transformation on real Haskell programs,
we apply it to a subset of GHC’s nofib benchmarking suite [19].
The nofib suite is the standard by which other GHC optimizations
are measured before inclusion in the compiler.
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Program Allocs Runtime Elapsed TotalMem
bernouilli -6.4% +0.0% +0.0% +0.0%

exp3 8 +0.0% -1.3% -1.2% +0.0%
gen regexps -44.7% -45.4% -45.4% -56.7%

integrate -61.3% -48.2% -42.6% +0.0%
kahan +0.0% +1.2% 1.4% +0.0%

paraffins +129.9% -11.6% -12.6% -29.1%
primes +2.2% -15.2% -15.9% -33.3%
queens -17.1% -7.5% -6.9% +0.0%

rfib +0.0% +0.0% +0.0% +0.0%
tak +0.0% -4.7% -4.7% +0.0%

wheel-sieve1 +195.2% +4.6% +4.7% -29.6%
wheel-sieve2 -0.6% -1.2% -2.4% +0.0%

x2n1 -77.4% +0.0% +0.0% +0.0%
Min -77.4% -48.2% -45.4% -56.7%
Max +195.2% +4.6% +4.7% +0.0%

Geom. Mean -9.9% -15.2% -14.5% -13.8%

Figure 3: Nofib performance comparison between foldr/build and
Stream Fusion with our transformation. Negative figures indicate
an improvement over foldr/build.

We target the “imaginary” subset of the suite in this paper. This
limits the number of necessary stream combinator implementations
(aside from concatMapS and flattenS ) to those used by this subset.
HERMIT itself has not had any performance tuning, so compilation
time for the smaller programs is more manageable. These are prac-
tical engineering issues that can be solved in a more mature fusion
system, and are unrelated to the concatMap transformation itself.

Figure 3 summarizes the results for the selected programs. In
summary, programs experience ≈15% speedup over foldr/build on
average, with an ≈10% reduction in allocation.

The gains for bernouilli, integrate, and x2n1 are due to
Stream Fusion itself, and our transformation provides no additional
benefit. The integrate program features no calls to concatMap

at all, but makes heavy use of the zipWith combinator. Similarly,
x2n1 is a true micro-benchmark, consisting of a single mapping op-
eration inside a strict left fold. Though we do not show the results
here for brevity, Stream Fusion (without our concatMap transfor-
mation) performs significantly worse than foldr/build on each of
the other programs. Allocation increases by 45.7% on average, and
836.7% in the worst case. Runtime is equivalent on average, but
increases by 66.1% in the worst case. This is the penalty Stream
Fusion pays on concatMap-heavy code. Our system always out-
performs Stream Fusion alone.

The gen regexps program is an ideal case for our system, as it
makes heavy use of both foldl and concatMap. Previous systems
could fuse one of these combinators, but our system can fuse both.

Programs which make use of explicit recursion on lists tend to
be slowed by our system. Both paraffins and wheel-sieve1
make use of functions which explicitly accept and return lists, and
are also recursive. These recursive functions will not be inlined
by GHC, preventing the stream and unstream combinators from
coming together and being eliminated. This results in many extra
conversions between lists and streams. The resulting allocation
is high, even if gains elsewhere improve runtime. To solve this,
Stream Fusion systems typically include extra RULES to “back
out” unfused stream combinators at the end of the optimization
process, converting them back to their list counterparts. Our system
currently has no such RULES, but they could be added.

These initial results are promising, and demonstrate the viability
of the approach. We plan to apply the optimization to the full nofib
suite in due course. HERMIT performance needs to be improved to
reduce compilation time, currently 5-20× that of ghc -O2.

n flat cmap

sf ratio sf + c→ f ratio
5000 9.7ms 100.3ms 10.3x 8.8ms 0.91x
10000 39.3ms 395.6ms 10.1x 35.0ms 0.89x
20000 155.9ms 1603.8ms 10.3x 139.3ms 0.89x

Figure 4: Optimizing equivalent stream pipelines for the vector
package.

6.3 Performance Advantages of concatMap

Somewhat surprisingly, concatMap can provide performance ad-
vantages over flatten. When using flatten, the programmer must
carefully consider low-level performance issues because they are,
in essence, writing a hand-fused inner-loop. By using concatMap,
we can instead construct our inner loop from existing stream com-
binators, which presumably are already efficiently implemented. In
this case, modularity makes it easier to get good performance.

To illustrate, we benchmark a pair of equivalent vector pipelines
(one using concatMap, the other flatten) and examine the result-
ing Core. Using list combinators, the specification of our pipeline
is:

spec :: Int→ Int

spec n = foldl (+) 0 [i | x ← [1 . .n ], i ← [1 . . x ]]

The vector code is morally equivalent, though we have added
strictness and elected to use vector’s enumFromStepN in place
of enumFromTo in order to reflect the sort of code a user of the
vector library would write in practice.

cmap :: Int→ Int

cmap n = foldl ′ (+) 0

(concatMap (λ(!x)→ enumFromStepN 1 1 x)

(enumFromStepN 1 1 n))

flat :: Int→ Int

flat !n = foldl ′ (+) 0

(flatten mkS stp Unknown

(enumFromStepN 1 1 n))

where

mkS !x = (1, x)

stp (!i , !max)

| i 6 max = Yield i (i + 1,max)

| otherwise = Done

We first benchmark these functions with standard Stream Fusion
optimizations (without our transformation) using criterion[18]
to establish a baseline. As we can see in Figure 4, cmap is consis-
tently 10x slower than flat . Examining the Core reveals that flat
results in a single wrapper function to unbox the input and box the
result, along with a tight recursive worker on unboxed integers.

Generally, uses of concatMap result in residual Step construc-
tors, indicating fusion is incomplete. GHC actually manages to fuse
away the Step constructors in cmap, as this code is very simple.
However, the resulting inner loop involves both boxed integers and
a tuple argument.

Applying our concatMap optimization results in nearly equiv-
alent performance. In fact, cmap is now consistently 11% faster
than flat! Examining the Core for the inner loop of each function
reveals why. The bodies of the loops consist only of tail calls on un-
boxed integers, but the bounds test in the inner loop is different. In
cmap, the iterator is compared to zero, whereas in flat , the iterator
is compared to a max bound.

Indeed, this behavior is exactly what we wrote in the generator
function for flat . We can change our generator to implement the
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same algorithm as enumFromStepN , resulting in comparisons to
zero.

step (!i , !max)

| max > 0 = Yield i (i + 1,max− 1)

| otherwise = Done

However, this actually makes flat 18× slower! Examining the
Core again, we can see that the inner loop now involves Integer

arguments, a clue to what is happening. The result type of flat only
constrains the type of i . Since the state of the stream is existentially
quantified, and max is no longer compared to i , the type of max

is defaulted to Integer rather than Int. Ascribing a type fixes the
problem, resulting in flat being as fast as cmap.

step (!i , !max)

| max > (0 :: Int) = Yield i (i + 1,max− 1)

| otherwise = Done

The fact that the programmer must consider such performance
issues each time she writes a generator function is exactly what
makes flatten burdensome to use. Using concatMap (properly op-
timized) allows us to take advantage of the hard work done by the
vector library writers, who have heavily optimized their enumer-
ating stream producer. Thus, in practice, transforming concatMap

to flatten can result in better performance than direct uses of
flatten itself.3

7. ADPfusion

ADPfusion [12] is a library designed to simplify the implementa-
tion of complex dynamic programming algorithms in Haskell. It
targets both single- and multi-tape linear and context-free gram-
mars. ADPfusion can be used to implement complex parsing prob-
lems, such as weakly synchronized grammars for machine transla-
tion [1] in computational linguistics or interacting ribonucleic acid
structure prediction as considered by Huang et al. [14]. As ADP-
fusion employs CYK-style parsing [10] that lends itself well to
a low-level “table-filling” implementation, the resulting programs
will perform close to equivalent C code, while being implemented
at a much higher level of abstraction.

ADPfusion makes index calculations implicit. Production rules
are combined by a small set of combinators, producing a parsing
function from an index to a set of (co-)optimal parses. Lifting index
calculations from explicit manipulations by the user to combinators
makes it less likely that bugs appear, while the type system keeps
evaluation functions and production rules in sync.

Questions of how to develop algorithms like these lead to the
development of an algebraic framework that allows users to “mul-
tiply” dynamic programming algorithms in a meaningful way [13].
The resulting algorithms (grammars) are naturally of the multi-tape
variety and the grammar definitions call for an automated embed-
ding in an efficient framework. ADPfusion is used as the target DSL
in this case to give efficient code.

Using concatMap instead of flatten

The availability of concatMap helps control the complexity of
ADPfusion’s underlying Stream Fusion framework by simplifying
the design of specialized (non-)terminal symbols for formal gram-
mars.

3A more recent build of GHC eliminates the 11% disparity in the original
code. We believe this to be the result of new boolean primitive operations
which were added after this section was written. While this specific example
is no longer strictly true, we keep it because it is illustrative of the general
problem with optimizing flatten by hand. This issue accounts for the
performance gains made by concatMap relative to flatten in Section 7.

To understand howADPfusion uses flatten, consider the parses
for the production rule S → SS, given in set notation:

iSj → {(S
ik, Slj) | k ← {i . . . j }

, Sik ← iSk
, l ← {k }

, Slj ← lSj }

That is, partial parses are generated from left to right for each
production rule. All parses, except the final one, make use of the
flatten combinator to extend the current stream of partial parses
and current index state with the parses for the current symbol. As all
indices are already fixed when considering the right-most symbol
in a production rule, only a single parse is generated in such a case
(denoted l← {k}).

This explanation assumes that, for fixed indices (say iSk), a
non-terminal produces only a single parse. When only a single
optimal result is required, this is actually the desired behaviour. In
cases, where co- or sub-optimal parses are required non-terminals
produce multiple results, thereby requiring an additional flatten
operation for each non-terminal, leading to the full notation above.

Thus, the flatten function is used extensively in ADPfusion.
Each new (non-)terminal requires up to two flatten operations.
Symbols on the right-hand sides of production rules admit multiple
parses. Nesting further, in multi-tape settings, flatten is used to
combine parses from individual tapes.

We want to be able to use ADPfusion for any fixed, but arbitrary
number of input tapes and allow the user to integrate new (non-)
terminal parsers easily with the existing library. The ability to fuse
applications of concatMap, instead of having to rely on flatten,
would allow for the replacement of the complex system of recursive
calls to flatten with simpler calls to concatMap.

As an example, we give the (simplified) code used for multi-
tape indices. A Subword (i : . j ) denotes the substring currently
parsed. The highest subword index is removed from the index stack,
followed by a recursive call to tableIx to calculate inner indices.
Using flatten, the set of indices is expanded and the index stack
extended (with a payload z and a temporary stack a).

class TableIx i where

tableIx :: i → Stream (z , a, i)→ Stream (z , a, i)

instance TableIx is ⇒ TableIx (is : . Subword) where

tableIx (is : . Subword (i : . j ))

= flatten mk step ◦ tableIx is

◦map (λ(z , a, (ns : . n))→ (z , (a : . n),ns))

where

mk (z , a : . Subword (k : . l),ns) = (z , a,ns, l , l)

step (z , a,ns, k , l)

| l > j = Done

| otherwise = Yield (z , a, (ns : . subword k l))

(z , a,ns, k , l + 1)

A fusable version of concatMap simplifies the implementation.

instance TableIx is ⇒ TableIx (is : . Subword) where

tableIx (is : . Subword (i : . j ))

= concatMap f ◦ tableIx

◦map (λ(z , a, (ns : . n))→ (z , (a : . n),ns))

where

f (z , a : . Subword (k : . l),ns) =

map (λm → (z , a,ns : . subword m j ))

(enumFromStepN l 1 (j − l + 1))

This simplicity becomes more pronounced as TableIx instances
statically track additional boundary conditions, maximal yield
sizes, and special table conditions which we have omitted here,
for clarity.
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input length 400 600 800 1 000

ADPfusionhermit 0.03s 0.10s 0.22s 0.41s
ADPfusionflatten 0.03s 0.10s 0.22s 0.44s
ADPfusionconcatMap 0.19s 0.64s 1.56s 3.15s
C 0.01s 0.04s 0.09s 0.20s

Table 1: Runtime in seconds for different versions of the
Nussinov78 algorithm using ADPfusion and C.

Performance of ADPfusion

We have re-implemented ADPfusion using concatMap in order
to test the performance of the concatMap transformation on real
code. Since ADPfusion is built upon a finite, fixed set of functions
(mainly the stream-generating MkStream type class), HERMIT
optimizations can be targeted to exactly the offending calls.

Table 1 summarizise these results for various input lengths. All
applications of concatMap are rewritten, the Step data construc-
tors are successfully eliminated, and unboxing (especially of loop
counters) of all variables occurs. The HERMIT-optimized version
(ADPfusionhermit) is on par with the version using flatten. Us-
ing concatMap without HERMIT optimization leads to a slow-
down of ≈6-8× compared to both optimized versions. For com-
parison, we include runtimes for the C reference implementation.
(Options used: ghc -O2 -fllvm, resp. gcc -O3, measurements
performed on an Intel Core i5-3570K).

8. Related Work

Starting with deforestation work by Wadler [30] a number of ap-
proaches to deforestation in Haskell have been developed, includ-
ing foldr/build [7], unfoldr/destroy [27], and Stream Fusion [3].
Each approach is limited both theoretically and practically. The in-
ability of foldr/build to fuse zip is a theoretical limitation due to the
nature of the primitive consumer (foldr), which can only traverse a
single list at a time. On the other hand, fusing foldl is only a prac-
tical limitation to foldr/build, and Gill [5] proposes an arity-raising
transformation to lift this limitation. As the dual to foldr/build, the
unfoldr/destroy approach cannot fuse unzip, because the primitive
producer (unfoldr) cannot produce more than a single list at a time.
Stream Fusion extends unfoldr/destroy, overcoming a practical lim-
itation when fusing filter. The work in this paper addresses another
practical limitation common to unfoldr/destroy and Stream Fusion,
fusing concatMap.

The development of systems with fine-grained instruction-level
parallelism (SIMD extensions) poses new challenges for fusion
systems. Normally, streams are defined to yield a single element at
a time. This is not conducive to instruction-level parallelism, where
multiple elements are fetched and operated on atomically. This has
been addressed recently by Generalized Stream Fusion [17], which
uses a more complicated Stream type that features many pairs of
state and generator function. Each pair produces a stream with a
different granularity of operation, from traditional scalar streams
to wide vectors of stream elements. Producers and transformers
modify all of the pairs accordingly, but consumers select a single
generator and state based on their needs, discarding the rest. Given
a hypothetical flatten combinator which accepted all of the pairs,
our transformation could be extended to handle Generalized Stream
Fusion.

Our extended Stream Fusion system suffers from duplicate loop
counters. Extending the state as we do in Section 4.1 necessar-
ily results in extra arguments to the functions resulting from call-
pattern specialization. On many occassions, these extra arguments
are passed around unmodified, or mutated in lockstep with another
argument (hence ‘duplicate’). The resulting functions of high ar-

ity create register pressure, which has performance implications. A
newly developed Flow Fusion system [16], based on Series Expres-
sions [31], attempts to address this problem. However, Flow Fu-
sion targets static, first-order, non-recursive stream pipelines, which
necessarily excludes concatMap.

Alternatively, the task of eleminating duplicate loop counters as
well as further loop optimizations could be delegated to the LLVM
[15] backend [28] for GHC. New developments in polyhedral loop
optimizations [9] may offer even more opportunities for further
optimization of the resulting code.

List comprehensions offer convenient syntax for nested list
computations and are common in Haskell programs. Comprehen-
sions are desugared by the compiler to list combinators. The origi-
nal desugaring scheme of Haskell 98 [20] is simple, but results in
many intermediate lists. Wadler [29] improves on this by offering a
translation which automatically eliminates some intermediate lists,
at the cost of a more complex desugaring scheme. Gill [5] simpli-
fies by desugaring directly to calls of foldr and build, which are
subsequently fused by the compiler. None of these schemes results
in code which is suitable for fusion with our system, as all gener-
ate branching case expressions for guards and patterns which can
fail. We return to the Haskell 98 translation, modifying it to avoid
branching case expressions, which inhibit our transformation.

9. Conclusions and Future Work

In this paper, we used HERMIT to specify a custom GHC plu-
gin which implements a transformation for fusing Stream Fusion’s
concatMap. A key benefit of HERMIT is that it lowers the barrier
to implementing such transformations. HERMIT allows a user to
rapidly prototype an optimization, interactively exploring the trans-
formation in action during compilation.

Our transformation extends the one originally proposed by
Coutts [2]. We store the value of the outer stream in a modified
inner-stream state so it is available to the inner-stream generator.
We also extended the transformation to monadic streams. These ex-
tensions require us to manipulate syntactic constructs of the Core
representation of the program, something that is currently inex-
pressible by GHC’s RULES rewrite system, and provides evidence
that more expressive RULES may be useful in practice.

Several subtleties were uncovered by implementing the trans-
formation itself. Most notably, branching case statements in the
body of the function argument to concatMapS result in two streams
which cannot be merged, due to their differing (existentially quan-
tified) state types. This motivated a novel translation scheme for
list comprehension guards and pattern match failures by way of the
filter combinator. Additionally, specific simplification heuristics
are required to enable the transformation in practice. Each step in
Algorithm 1 (Section 5.1), and their specific ordering, was discov-
ered by exploring the optimization interactively with HERMIT.

Aggressive call-pattern specialization is crucial for Stream Fu-
sion. Our inlining heuristic in Section 5.4 was key to achieving
good fusion. This suggests that modifying GHC’s implementation
of specialization to look through let bindings may be profitable in
general, and is worth pursuing as future work.

A number of steps in the transformation have the potential to du-
plicate work (or allocation). The impact of this duplication remains
unquantified, though our performance measurements in Section 6
show the transformation is generally an optimization. Speedups of
micro-benchmarks targeted by the transformation are considerable.
This is in no small part due to the fact that existing Stream Fusion
frameworks perform so poorly on concatMap. As Figure 2 illus-
trates, lists often perform better than vectors in concatMap-heavy
code because foldr/build is so good at fusing concatMap.

Results from the nofib benchmark suite are mostly positive with
speedup of ≈15% and a ≈10% reduction in allocation, on average.
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Some programs experience large speedups or slowdowns. We are
confident that the slowdowns are the result of the limited set of
stream combinators we have implemented, along with other practi-
cal implementation issues, rather than the concatMap transforma-
tion itself. Making a production quality system that can be “always
on” remains future work.

This performance is already available to users of flatten, but at
considerable cost in implementation complexity. This complexity
often leads to sub-optimal uses of flatten. Users of a fully fused
concatMap can more readily take advantage of the hard work of
library writers.

The ADPfusion library relies on Stream Fusion on vectors to
achieve good performance. The preliminary results we presented
in Sec. 7 suggest that using HERMIT to optimize concatMap will
reduce the implementation complexity of the library considerably,
without unduly sacrificing performance.
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de l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII,
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