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Abstract 

We present a new approach to dynamic typing in a static 

framework. Our main innovation is the use of structural 

subtyping for dynamic types based on the idea that pos- 

sible dynamic typing as a property should be inherited 

by objects of all types. Two properties of our system set 

it apart from existing systems which combine static and 

dynamic typing: all tagging and checking takes place via 

implicit coercions, and the semantics of dynamic typ- 

ing is representation independent. The latter property 

leads to a significant increase in expressive power-for 

instance it allows us to define a general call-by-value 

fixpoint operator. 

The resulting system-which we call quasi-static 

typing-is a seamless merger of static and dynamic 

typing. The system divides programs into three cate- 

gories: well-typed, ill-typed and ambivalent programs. 

Ill-typed programs contain expressions that are guar- 

anteed to go wrong. Run-time checking is limited to 

doubtful function applications in ambivalent programs. 

Conceptually, quasi-static typing takes place in an un- 

usual two-phase process-a first phase infers types and 

*This work was started while the author was at the University 
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In programming language design, the choice between 

static and dynamic typing is often seen as a fundamen- 

tal choice between two opposing ideologies. In real- 

ity, there are many situations where it is desirable to 

combine the two approaches. For instance, it has been 

shown convincingly [ABC+83, ACPP89] that efficient 

and type secure use of persistent data-such 85 database 

files or just data exchanged beween different programs- 

requires type information for such objects to be saved 

and checked at run-time. Languages which subscribe 

to this idea (PS-Algol [ABC’83], Amber [CarSS]) often 

allow any data object to be persistent, including those 

which involve complex pointer structures such as shar- 

ing and circularities. If such a language is otherwise 

statically typed (like Amber), it needs to provide dy- 

namic typing as an option in an orthogonal way. An or- 

thogonal combination of static and dynamic typing has 

other interesting applications. For instance, during pro- 

gram development, it is sometimes more convenient to 

use LISP-like heterogeneous data structures-which re- 

quire dynamic typing-instead of “homogeneous” struc- 
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coercions and a second plausibility checking phase iden- 

tifies ill-typed programs. The typing rules allow min- 

imal typing judgements and plausibility checking can 

be characterized as simplification via a canonical set of 

rewrite rules. The two phase process can therefore be 

implemented with a one pass algorithm. 
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variant types may not be clear at the early stages of 

design. 

Several practical statically typed languages (CLU, 

Mesa, Amber, Modula-3) address this issue by mak- 

ing special provisions for dynamic typing. In a recent 

paper, Abadi, Cardelli, Pierce and Plotkin [ACPP89] 

survey the history of these ideas and describe an el- 

egant general combination of static and dynamic typ- 

ing based on existing features in Amber and Modula- 

3 [CDJ+89]. The system they describe disguises dy- 

namically typed objects with a special “static” type 

Dynamic, and provides special operations to the user 

for explicit attachment and checking of run-time type- 

tags. The main shortcoming of this system is that the 

semantics of dynamic typing is closely tied to the under- 

lying representation-an object in effect “remembers” 

the history of tagging steps through which it has passed 

and a successful run-time check must look for the exact 

tagging pattern reflecting this history. This can have 

counterintuitive semantic consequences, as we argue in 

Section 2. Moreover, when programmers must explic- 

itly manage the static-dynamic interface, the need to 

keep track of tagging patterns represents a considerable 

burden if dynamic typing is used extensively. 

We describe a new approach to dynamic typing in 

static languages that gives representation-independent 

semantics to dynamically typed objects while at the 

same time eliminating the need for explicit manage- 

ment of the static-dynamic interface. We use the general 

framework of [ACPP89] as our starting point. The key 

new idea in our approach is to treat dynamic typing as 

a property that is inherited by all types from the type 

Dynamic through a natural subtype structure. The sub- 

type structure is given a coercive interpretation. Posi- 

tive coercions (from static to dynamic types) are tagging 

operations. We also need negative coercions (from su- 

pertypes to subtypes, i.e., from dynamic to static types) 

to account for run-time checks. The idea of automatic 

negative coercions is new, as far as we know. Much 

of the theory developed here is in fact independent of 

the specific subtype structure induced by Dynamic and 

could be presented much more abstractly as a theory of 

type inference involving positive and negative coercions 

for a class of injective subtype structures. 

Using the ideas outlined above, we achieve (for the 

user) a seamless merger of static and dynamic typing 

which we call quasi-static typing. Its practical charac- 

teristics are qualitatively different from those of purely 

static and purely dynamic systems. Static systems tra 

ditionally attempt to prove that a program is (or can 

be) well-typed, rejecting those for which no such proof 

is possible within the system. In most static systems 

there is no way to prove that a program is ill-typed 

in the sense that it contains an expression that neces- 

sarily goes wrong at run-time. Given the undecidabil- 

ity of “semantically complete” typechecking for most 

languages, a system that permits ill-typing proofs has 

to make a three way division of programs into well- 

typed, ill-typed, and ambivalent ones. Such a system 

can combine some of the advantages of static and dy- 

namic typing by using run-time checking only in am- 

bivalent programs, or better yet, only at the ambiva 

lent applications in ambivalent programs. Quasi-static 

typing is a system of this kind. The version in this ps 

per is limited to simply typed dialects of the X-calculus, 

but it should be possible to construct more general sys- 

tems based on the same principles along the lines of 

other systems which combine subtyping with parametric 

polymorphism [CW85, BTCGS89]. We have elsewhere 

[Tha88] described constraint resolution algorithms that 

may be useful for improving the degree of type inference 

in such a generalized system. 

Conceptually, quasi-static typing is a two phase pro- 

cess. The first phase makes typing (and coercion) judge- 

ments. A program that would normally be considered 

statically well-typed is accepted by this phase without 

any negative coercions and all other programs are ac- 

cepted with some negative coercions. One way to un- 

derstand the reason for this excessive lenience is to think 

of quasi-static typing as a system which matches the lib- 

erality of dynamic typing while restricting tagging and 

checking operations to those that are actually found 
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to be required based on compile-time analysis. The 

typing/coercion judgements express the results of this 

analysis. The information gained through the analysis 

makes it possible to identify many ill-typed programs 

at compile-time. This is accomplished by a novel plau- 

sibility checking phase that preevaluates the coercions 

introduced by typing. Strictly speaking, the programs 

rejected during plausibility checking are not statically 

ill-typed-they contain dynamic type errors that can 

be statically detected. It is easy to modify quasi-static 

typing to reintroduce the possibility of static type errors 

in the formal sense. This is actually highly desirable for 

methodological reasons. Some ideas for such modifica 

tions are discussed in Section 8. 

Our typing rules allow the derivation of minimal typ- 

ing/coercion judgements (see below) and plausibility 

checking can be characterized as a simplification pro- 

cess specified by a canonical (confluent terminating) set 

of rewrite rules. This permits a complete one pass im- 

plementation of the two phases described above. 

An interesting theoretical point to note in connection 

with the notion of minimal judgements is that certain 

design decisions (discussed in Section 3) lead us to aban- 

don coherence of typing judgements-the property that 

the meaning of an expression depends only on its typing 

judgement, not on the specific proof for that judgement 

(see [BTCGSM] for a discussion). The possibility of 

dependence on the proof is created by the fact that the 

coercions introduced during typing depend on the proof 

rather than on the typing judgement. Such a depen- 

dence on proof is clearly unacceptable. Among other 

things, it calls into question the notion of a minimal 

typing/coercion judgement, since the coercion part may 

not be “minimal” in any reasonable sense if it is nonde- 

terministically related to the typing part. Fortunately, 

our type system does possess a weaker property-which 

we call convergence-which ensures that there is a “min- 

imal” proof for each typing judgement which gives the 

“least error-prone” (and therefore canonical) semantics. 

The notion of a minimal typing/coercion judgement in 

our system is therefore defined in two steps. A minimal 

judgement has a minimal typing part, and a coercion 

part corresponding to a minimal proof for the typing 

part. These ideas are made precise in Sections 3 and 7. 

In expressive power, our system is not directly com- 

parable to that of [ACPPN]. Besides automation of 

tagging and checking, the semantics of dynamic typ- 

ing in our system is significantly more abstract. For 

instance, a general call-by-vdue fixpoint operator can 

be expressed in our framework. The analogous con- 

struction (with explicit tagging and checking) in the 

language of [ACPP89] fails due to their representation 

oriented interpretation of dynamic typing. Our system 

is less general in one respect. The typccasc construct of 

[ACPP89] ( w IC can coexist with quasi-static typing) h’ h 

uses multiple patterns and has conditional branching on 

both success and failure of dynamic checks. It is hard 

to see how an implicit check can produce anything other 

than a run-time error on failure. Examples like the gen- 

eral purpose print function of [ACPP89] are therefore 

beyond our system. 

The next section motivates and describes our inter- 

pretation of dynamic typing. Typing and plausibility 

checking rules are described in Sections 3 and 4. A 

complete type inference algorithm is given in Section 5. 

Operational and denotational semantics is described in 

Sections 6 and 7. We conclude with a discussion of some 

pragmatic issues and concluding remarks in Sections 8 

and 9. 

2 Partial Types and Cumulative 
Coercions 

In this section we motivate and explain our interpreta- 

tion of dynamic typing and the corresponding coercion 

scheme. General familiarity with existing work in the 

area is assumed (see [ACPP89] for a brief survey and 

formal treatment). For convenience of explanation, we 

use simple objects such its integers and booleans in ex- 

amples, but it should be clear that we could have used 

complex objects like bitmaps and relations instead. 

The type structure used in this section includes ba- 
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sic types Nat and Bool, and the usual type construc- 

tors for product (x), list([ ]), and function(+) types. 

The formal part of the paper leaves out list types for 

brevity. The static type of dynamically typed objects 

is denoted by R instead of Dynamic for reasons to be 

explained shortly. The subtype order is based on the 

scheme T 5 s1 for all types f, which expresses the basic 

inheritance relationship we wish to capture. This ex- 

tends monotonically over the type constructors except 

for the usual antimonotonic behavior of the first argu- 

ment of “+“. For instance we have [Nat] 5 [Q] and 

[St] ---t Nat 5 [Nat] -+ R. “More” in this order is 

just “more dynamic”. The order relates all (and only) 

pairs rr 5 rz such that an object x of type ri can be 

converted to one of type 72 by applying or composing 

tagging operations with either the whole or parts of x. 

Programs are written in a “user language” which is 

just Church’s typed X-calculus. There are no tagging 

or checking constructs such as, for instance, Amber’s 

dynamic and coerce. Analogous but somewhat different 

constructs are used by the type system as implicit coer- 

cions. One reason why Amber-like constructs cannot be 

used is that their semantics is too closely tied to the un- 

derlying representation-different tagging patterns lead 

t.o semantically different objects even when the under- 

lying untagged objects and the types of their tagged 

versions are identical. Using these constructs as co- 

ercions (with their current semantics) would result in 

loss of coherence for subsumption judgements. Given 

ri 5 T-J 5 ~3, an object x of type 71 would be converted 

to semantically distinct objects of type 73 depending 

on whether or not an intermediate conversion to type 

72 occurs. It would be impossible to construct unique 

coercions for every subtype relationship as one usually 

expects. A very simple example illustrates the problems 

and suggests a solution. Suppose 1 is a list of type [Nat]; 

embNat = Ax. dynamic z : Nat 

lo = map embNat 1 

11 = dynamic 10 : [R] 

12 = dynamic 1 : [Nat] 

Recall that the result of the expression “dynamic x : T” 

is an object of type R which is just the dynamically 

typed version of z (assuming that z has type T). Clearly, 

lo converts 1 to an object of type [Q], and 11, A2 both de- 

fine tagged versions of I of type $2. The only difference 

between 11 and 12 is that the conversion in 11 takes place 

in two steps rather than one. Nonetheless, 11 and 12 are 

observably different objects in the system of [ACPP89]. 

This is not just a theoretical difficulty. The semantic 

distinction may cause spurious run-time errors. For in- 

stance, coerce 11 to [Nat] (to use the Amber notation 

for run-time checks) fails. The more direct tagging in 12 

causes coerce 12 to [R] to fail. In each case, substitut- 

ing the “other” version leads to success. This is not a 

fatal problem when tagging is explicit because the pro 

grammer is then responsible for knowing the tagging 

pattern and checking it appropriately, although it does 

represent a greater burden than is generally recognized. 

When both tagging and checking are implicit, this kind 

of uncertainty would make the system unusable. 

We conclude that the recasting of dynamic typing as 

an inherited property forces a change in its interprets 

tion. In place of a representation oriented semantics we 

need a more abstract “information” oriented semantics 

in which types involving Dynamic are viewed as pnr- 

lid static types, in analogy with Wadsworth’s partial 

terms [Wad76]. Tagging and checking clearly obey a 

“law of conservation of type information” which decrees 

that a loss of static type information is accompanied by 

an identical gain in dynamic type information and vice 

uersa. The transitivity of our subtype order for dynamic 

types implies that gains and losses in type information 

are cumulative. The increments in which they occur 

should not affect the end result. Hence the expectation 

that 11 and 12 should behave in an identical way. To em- 

phasize this shift in perspective, we use Wadsworth’s R 

symbol-which represents lack of information-in place 

of Dynamic. To make tagging and checking free from 

representation bias, we take it as a principle that a run- 

time check should succeed whenever it is possible to con- 

vert the object of the check (by untagging) to a value 
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that belongs to a subtype of the required type. This may 

require the check to be propagated to components of a 

structure. Under this regime, coerce 11 to [Nat] succeeds, 

and 11 and 12 are observably equivalent at run-time. 

It is possible to achieve these semantic changes by 

simply changing the interpretation of coerce appropri- 

ately. Although this would eliminate the semantic prob- 

lem in using dynamic and coerce as implicit coercions, 

static detection of type errors in the resulting system 

would be all but impossible. As we describe in Section 

4, statically detected errors in our system correspond to 

cases where tagging and checking operations are com- 

bined in an implausible way, i.e., in a way that ensures a 

dynamic type error. For instance, the expression l+true 

is coerced by the typing phase to (the equivalent of) 

l+coerct (dynamic true:Bool) to Nat, which is rejected 

as implausible at compile-time. The effectiveness of this 

technique depends on statically manifest tagging at the 

outermost level possible. For instance, coerce 10 to [Bool) 

is not statically implausible, even though the type of the 

underlying value 1 is incompatible with [Bool]. There is 

no way to coerce 1 to the type (Q] with direct (outer- 

most) tagging using dynamic. The difficulty is caused 

by the fact that dynamic and coerce can only do lim- 

ited conversions-those for subsumptions of the form 

r 5 R. The obvious solution is to generalize these op- 

erations to arbitrary subsumptions. We use a family 

t:, 1: of postfix operators (one for each pair r 5 u) 

for generalized tagging and checking; e 1: means e be- 

longs to type T and is being coerced to a more dynamic 

type u by tagging, and e 1: means e belongs to type 

u and is being coerced to a less dynamic type T by 

checking. Thus cmbNat is redefined as XI : Nat. 2 I&, 

and 13 = 1 t[& is equivalent to 14 = map cmbNat 1 at 

run-time, but not at compile-time. For instance, given 

a function f : [Bool] -+ Bool, the application f 13 is 

coerced by the typing phase to f(1 t~$‘a,ll~~~o,.l) but 

1 tie, gNl] is rejected as ill-typed by the plausibility 

checking phase at compile-time. The application f 14 

is coerced to f (14 $& ) which is considered plausible 

and leads to a type error at run-time. 

Heterogeneous data structures can be typed using 

partial types. If 121,. . . , zn] denotes the list contain- 

ingitemszi,...,t,, then [l, 2, 3, true] may be coerced 

to the list z = [ll&,, 2tiat, 3fiat, truef&,,j of type [a]. 

Given a function sum : [Nat] + Nat, the application 

sum z is coerced to the plausible form sum (z lK$). 

The dynamic check implied by the coercion is carried 

out when sum is called and the error is caught at that 

time, rather than being delayed until true is actually 

encountered during the execution of sum. In general, 

dynamic type errors in this scheme are caught much 

earlier and at more “logical” points than in LISP-like 

pure dynamic typing under which only illegal applica- 

tions of primitive functions are caught and it is often 

hard to find the programming error that led to the type 

error. A technique for improving the eficiency of gen- 

eralized checks-such as z lEif, in the sum application 

above-is discussed in Section 8. 

In the next section, we give additional examples in- 

cluding a general call-by-value fixpoint operator. 

3 Typing Rules 

Throughout the formal part of the paper, our notation 

largely follows [ACPP89]. The set of all type expressions 

(described in Section 2) will be denoted by Typecode. 

Letting the metavariable e range over expressions in the 

user language, z over identifiers and r over type expres- 

sions, we have: 

e ::= X identifiers 
1 /\x : 7. ebo&, typed abstractions 

I efun ear9 applications 

I %-ftt eright pairs 

The internal language of the system also has the co- 

ercion operators t; and 1: as described in Section 2. 

For brevity, we assume that the environment contains a 

family of primitives for elimination of tupling. In prac- 

tice, one would need additional constructs for this, for 

conditional expressions, and so forth. 

One rather unusual aspect of our inference rules for 

typing judgements is that we need to insert run-time 
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checks which are negafive coercions (from a supertype 

to a subtype). The insertion of positive coercions is 

often left implicit as a side-effect of a subtyping rule. 

A similar implicit rule for the insertion of negative co- 

ercions would be equivalent to adding the relationship 

R < r which would collapse the subtype order and de- 

stroy both semantic consistency and minimal typing. 

We therefore make the insertion of coercions explicit in 

typing judgements. The general form of a judgement is 

“TE I- e 3 enew : 9 which may be read as: “given 

the set TE of typing assumptions for free variables, the 

(user language) expression e can be coerced to the (in- 

ternal language) expression enew which has the type 9’. 

The first four rules are standard: 

x E Dona 

TE I- 2 d az : TE(z) 

TE t- e +- enew : T 
TSU 

TE t- e + (enew Tf) : (T 

TE t AX : 7. ebo,jy a XX : 7. enewbody : 7 + U 

TE I- elejt * enewlejt : 0 
TE t er;ght * enewsight : 7 

TE t (elejt l eright ) 3 (enewlejt 1 %eweght) : 0 X 7 

The insertion of run-time checks takes place under two 

circumstances, both in the context of an application. 

The first case is the more common one where the type 

of the argument demanded by a function is a subtype 

of the type of the actual argument. 

TE t- ejun earg * enewjun (enewarg 1:) : P 

The second case for applications occurs when the 

function part is of type CI. This roughly resembles the 

situation in ML-style typechecking where the type of the 

function part is a type variable. The solution is roughly 

similar, except that a check instead of a unification is 

invoked: 

TE I- ejun * enewjun : Q 
TE t- earg 3 enewarg : r 

TE I- ejun earg * (enewfun 1L-J enewarg : fl 

The form of the rules for application together with the 

semantics of run-time checks for function values is the 

central design issue in quasi-static typing. The engineer- 

ing problem is a tradeoff between expressive power and 

static detection of errors, while attempting to maintain 

certain desirable “invariants” such as coherence. Ex- 

pressive power is enhanced by defering checks to run- 

time. For instance, the semantics of checking for func- 

tion values defined in Sections 6 and 7 is quite lenient: 

an implied check on the argument of a function is def- 

ered to run-time. Tightening the semantics of checking 

for functions by treating implied checks on arguments 

as errors would improve static detection of errors at the 

cost of causing the apply and fiz operators defined later 

in this section to fail. The other choice is in the typ- 

ing rules: when the actual type of an argument in an 

application is a supertype of the required type, the re- 

quired check could be applied to either the function or 

the argument part. With a strict semantics of check- 

ing for functions, this choice would be immaterial, but 

given our lenient semantics it is significant. Applying 

the check to the function part yields the rule 

TE I- ejun * enewjun : ~7 + P 
TE t earg * enewarg : 7 

Using this rule would make the system “semantically 

complete” in the sense that no program would be re- 

jected unless its untyped version is guaranteed to lead to 

type error at run-time. However, this seriously damages 

the ability of the system to detect type errors statically 

because the lenient semantics of checking for function 

values makes all checks on them plausible. For this rea- 

son, the first rule above applies the check to the argu- 

ment part. But this is not consistent with coherence- 

the property that the same typing judgement for an 

expression, arrived at by different proofs, should cor- 
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respond semantically to the same coerced value. The 

problem can be seen with a simple example. The func- 

tion part of the application (AZ : a. z) 3 can be coerced 

using the subtyping rule to (AZ : Sl. z) IFok*. The ar- 

gument 3 must then be coerced to 3 ~~at~~ool to satisfy 

the rule above. The coerced expression is implausible; it 

is guaranteed to lead to error at run-time. However, the 

original application (XX : R. z) 3 can also be coerced by 

subtyping to (Xz : Q. z) (3 Tie,) which evaluates with- 

out error. 

To summarize the design issue, there are three alter- 

natives with increasing expressive power and decreasing 

detection of static errors: 

1. A strict semantics for checking of function values. 

2. A lenient semantics with checks caused by applicac 

tions applied to arguments. 

3. A lenient semantics with checks caused by applica- 

tions applied to functions. 

Alternatives (1) and (3) are coherent while (2) is not. 

However, (2) is not ruled out because the system it 

implies does possess a “minimal judgement” property 

(Theorem 7 below) which not only guarantees minimal 

typing but also a “least error-prone” conversion of the 

original expression. In other words, the lack of coher- 

ence only permits introduction of spurious dynamic er- 

rors. We use alternative (2) in this paper, partly to 

demonstrate its viability and also because it provides 

an attractive balance of expressive power and static er- 

ror detection. For many languages, applications such 

as apply and fiz (see below) would be irrelevant, and 

alternative (1) might be the preferred choice. 

The typing rules possess soundness and completeness 

properties. In the following, the notation [e]p denotes 

the denotation of expression e in environment p, and 

[TE] denotes a set of possible environments correspond- 

ing to the set TE of typing assumptions for free vari- 

ables The denotational semantics of types and expres- 

sions is discussed in Section 7. In stating the semantic 

soundness of the typing rules, Theorem 1 below expli- 

cates the semantic role of typing judgements: the in- 

tended semantics of an expression in the user language 

is the just the ordinary semantics of its coerced version. 

Theorem 1 (Soundness of Typing Rules) TE l- 

e =+ e’ : T implies Vp E [TE]. [e’]p E 17). 

In the theorem below, C~OS~~E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;(TE) denotes the set 

of expressions that are closed relative to TE, i.e., those 

whose free variables have typing assumptions in TE. 

Theorem 2 (Completeness of Typing Rules) 

VTE. Ve E ClosedEzp (TE). 3 e’, i. TE I- e + e’ : T. 

Theorem 2 implies that all expressions are statically 

well-typed in the formal sense. The purpose of the typ- 

ing process is to insert enough tagging and checking op- 

erations to make the expression prima facie meaningful. 

A judgement “TE l- e G- e’ : 7” is a well-typing judge- 

ment in the usual sense only if e’ does not contain any 

run-time checks. The detection of ill-typed expressions 

takes place in the plausibility checking process described 

in Section 4. 

As an example of the use of these typing rules, con- 

sider an example from [ACPP89]-a function that ap- 

plies its first argument to its second argument. The 

coerced form is shown following a ‘%” . 

apply = Af :cl.Xx:Q.f x 

* Af : s-2. A?: : $2. (f JG-,) E 
Using the evaluation rules of Section 6, it is easy to 

show that the application apply ((Xy : Nat. y) tGat-,,&, 

for instance, is equivalent to )tz : Q-(x lf;3,rt&,,). The 

details of a related evaluation are described in Section 6. 

A nice demonstration of the expressive power of the 

system is given by the next example, which shows 

that in contrast to the system of [ACPP89]----which can 

only allow specialized fixpoint operators-we can ex- 

press a general call-by-value fixpoint operator in a very 

straightforward way: 

fix = Xf :$‘2-+Q.dd, where 

d = Ax : cl. AZ : n. (f (x x)) 2 

3 Xf : Q -+ R. d (d t”,,,,‘+,,), where 

d = Ax : ft. AZ : s-2. ((f ((x gJJ x)) l&n) 2 
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The type of fi3: is (Q --+ $2) -+ (Q + 52) which seems 

unusual but, with the semantics for coercions given in 

Sections 6 and 7, works properly. The details are left as 

an exercise for the reader. It is interesting to note that 

the coercions in this example are similar to those needed 

to provide a coercion-based semantics for the untyped 

A-calculus [BTCGS89, pages 113-114 (with D&d)]. 

4 Plausibility Checking 

Plausibility checking is a kind of simplification. The 

process is most naturally specified by a canonical- 

confluent terminating-set of conditional rewrite rules 

meant to be used at compile-time. In the rules below, 

we use the unusual arrow “Q” for the rewrite relation to 

avoid confusion with the constructor for function types. 

The notation 7 n d denotes the GLB of the type ex- 

pressions 7 and cr. Algorithms for GLB and LUB are 

self-evident. When a rule is conditional, the condition is 

given above a line like a hypothesis in an inference rule. 

The symbol wrong represents dynamic type-error. It is 

more formally described in the denotational semantics 

given in Section 7. Since the tagging and checking oper- 

ators are only introduced internally by the typing phase 

and are not available to users, we assume that their oc- 

currences are always “well-formed”. An expression such 

as true liz’,, will never be encountered since the typing 

rules-by the soundness property-never produce an 

expression of the form e 1,” unless u > T and [e]p E [u] 

for an appropriate environment p. Similar remarks ap- 

ply to tagging. 

elr ++ e et: - e 

e 12% - eli e tit: - et; 

p = rnv ? p.p = 7nv 
e Cl; - e l:tj: e El; - wrong 

The first four of these rules are simple and require no 

explanation. The last two (conditional) rules embody 

the essence of plausibility checking. The idea is that a 

run-time check is plausible only if the known type of the 

expression being checked and the type required by the 

check have a common sublype. The possibility that this 

is not so arises when the best (least) known type is not a 

supertype of the required type. In this case, the typing 

phase creates a tagging operation followed by a checking 

operation-this is the pattern addressed by the last two 

rules. The rules state that, for instance, the check in 
l7Xi-l 

e f%%hlxBool can only be successful if the untagged 

value of e belongs to Nat x Bool. The first rule therefore 

changes the expression to e l/::~~,,,It~~t~&I. Such 

a simplification is not possible for e t~~O~xnl$~n- 

a type conflict is guaranteed in the first component of 

the product. The situation is very much like a failure in 

unifying the known and required type of an expression in 

ML-like type inference (with a new variable substituted 

for each occurrence of Sz). The only difference occurs for 

function types: the types Nat + Nat and Boo1 -+ Nat 

have the common subtype Cl -+ Nat, but they are not 

unifiable. The semantic justification for these ideas is 

expressed Theorem 3. 

Theorem 3 (Characterization of Implausibility) 

If ?P* P = r n (T then for any well-formed expression 

e t;lz and any environment p, [e fTlE]p = wrong. 

Given Theorem 3, it is easy to show that plausibil- 

ity checking is meaning preserving. In the following, 

ENV(e) is the set of all environments which define the 

free variables of e. 

Theorem 4 (Soundness of Plausibility Checking) 

I- e b e’ implies Vp E ENV(e). [e]p = [e’]p. 

It is easy to see how the six rewrite rules for plau- 

sibility checking can be incorporated in an algorithm. 

However, such an algorithm is forced to make some ar- 

bitrary choices since these rules are nondeterministic in 

the sense that more than one rule may be applicable to a 

given expression. It is therefore reassuring to note that 

the set of rules as a whole has pleasant syntactic proper- 
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ties that ensure the deterministic nature of plausibility 

checking: 

Theorem 5 (Canonicity of Plausibility Check- 

ing) If- is taken lo denote an abstract rewrite relation 

in the sense of [HueSO], then the relation defined by the 

six rules above is conjtuent and terminating, i.e., canon- 

ical, and therefore produces unique normal forms. 

Any algorithm that implements these rewrite rules 

must therefore compute the same abstract function for 

deriving the normal forms guaranteed by Theorem 5. 

We use the symbol Simplify to denote this function. 

The notation “l- e b e’ ” is used to express the sim- 

plification judgement that “e is reduced by plausibility 

checking to the expression e’ “, Simplification judge- 

ments are derived via the single obvious rule: 

l- e b Simplify(e) 

5 The Algorithm Type 

The type inference algorithm Type is given in Figure 1. 

The algorithm is straightforward and efficient. The only 

opaque spot is the call Simplify(e, ~~~J~,J in the ap- 

plication case. However, since e, is already in normal 

form, the action of this call is very similar-except for 

the argument parts of function types-to a unification 

of r, and rfa. Note that this call on Simplify may fail 

(produce wrong), in which case the application is im- 

plausible and the algorithm Type returns with failure 

as well. Type is faithful to the typing rules in that 

when successful it returns a valid typing (and coercion) 

judgement . 

Theorem 6 (Correctness of Type) If the call 

Type(TE, e) succeeds and returns (r, el), then for some 

e2, TE I- e j ez : r and Simplify(ea) = el. 

It is very desirable that a typing algorithm have a 

completeness property in the sense that any judgement 

in the corresponding logic can be factored uniquely into 

the “minimal” judgement rendered by the algorithm 

and a simple additional inference step. In a pure typing 

logic, this translates to the property that the algorithm 

derives the principle type, which in our case is the min- 

imal type. When the judgement also involves coercion, 

an additional coherence property of the logic-which as- 

serts that the semantics of the coercion part of a judge- 

ment is a function of the typing part-ensures that the 

factoring via the minimal type works for the coercion 

part as well. As we explained in Section 3, we choose to 

abandon coherence in order to find a balance between 

expressive power and static detection of type-errors. In- 

stead of coherence, we use a weaker but practically suf- 

ficient convergence property which preserves the notion 

of a canonical judgement discovered by Type. The ba 

sis of this property is a partial order relation “I” on 

semantic values: vi 1 212 means that either v1 is wrong 

or vi is “more error-prone” than 212. This is defined 

extensionally in roughly the same way as the approxi- 

mation relation in Scott-domains. A precise definition 

is given in Section 7. Convergence asserts that corre- 

sponding to each typing judgement, there is a minimal 

proof which derives the least error-prone coerced ver- 

sion of the given expression. For lack of space, we leave 

the formal statement of convergence as simply one of 

the corollaries of the following theorem. 

Theorem 7 (Completeness of Type) If TE I- e j 

el : r and Simplify(el) # wrong, then Type(TE,e) 

succeeds and returns (u,ez) such that r 2 u and Vp E 

I[TEP. Beds 2 le2 KJP. 

Corollary 8 For any TE, any e EClosedExp (TE) and 

any type r, if there are derirations of the form TE t- 

e 3 el : r, then there is an expression ea such fhat 

TE I- e =k ec : r, and for all p E [TE]. lel]p 7 [ec]p 

for all such el. 

Proof (sketch) The only cases not covered by Theo- 

rem 7 are those in which all ei are semantically equiv- 

alent to wrong. The corollary in that case is trivial. -I 
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6 Operational Semantics 

Type(TE,e) = case e of 

z : TE(z),x 

cleft 3 %ght : let T,, el = Type(TE, er,f$) and TV, e, = Type(TE, e,ight) 

in 7 x rr, @l I 4 

XX : T. e&,&, : let 7-b) eb = Type(TE[z + r], ebodu) 

in T+Q,, XX :T.eb 

e fun earg : let 7f,ef = Type(TE, efun) and r,, e, = Type(TE, eaTg) 

in if 7-f = 7fa + rfr then 

let e - Simplify(e, t:lp,.) in qt, (ej ena) no - 

else if ‘f = s2 ihen St, (et l”,+n e,) 

else fail 

Figure 1: Algorithm Type 

The operational semantics is given in the “natural se- 

mantics” style following [ACPP89]. The idea of evalua- 

tion is to reduce an expression to a unique normal form. 

The evaluation judgement U l- e + v ” is read “ the ex- 

pression e reduces to the normal form ZI “. Evaluation is 

only defined for closed expressions. The call-by-value in- 

terpretation is used for evaluation of applications. Non- 

terminating computations do not have a normal form, 

and therefore do not have an operational meaning. It is 

worth noting that the normal forms derived in the oper- 

ational semantics do nol always correspond directly to 

the semantic values used in the denotational semantics, 

although the two are related by the soundness property 

stated in Theorem 9. This point and its implications 

are discussed in Section 8. 

Evaluation preserves wrong. The role of wrong is a 

bit tricky. This constant represents run-time error, and 

belongs to all types rather than none. As such, it can 

be derived as the result of a statically well-typed and 

plausible expression It in effect plays two roles in the 

rules below-it may be the result of evaluating an ab- 

surd expression such as (3 true) which would never be 

produced by the typing phase, or it may be the result of 

a failed run-time check. It would be more appropriate 

to use two different constants for these purposes. One 

could then show that the former case never occurs in 

“well-typed” expressions. This separation is absent in 

the rules below. 

The semantics of constants, X-expressions, applica- 

tions and pairs is similar to [ACPP89]: 

i- wrong * wrong 

I- Ax:r. e * Xx:7. e 

I- efun + Xx:7. ebo&, 

I- t&g * W (W # wrong) 

t- ebodyk - WI * 2, 

I- efun eat-g * v 

k efun * W tw # xx : r. ebody) 

I- efun earg * wrong 

I- earg =S wrong 

I- efun earg * wrong 

I- %ft * 1 (1 # wwd 

t- eright * f- (r # wrong) 

i- cleft, etight * 1, r 

I- ele ft =k wrong 

l-e left7 erioht * wrong 
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t e&ht =$ wrong 

The simplifications performed in plausibility checking 

are operationally sound: 

t e b e’ 
t e’ * v 
I-e*v 

There are three cases for evaluating tagging opers 

tions. If the value being tagged in not wrong, and the 

result type in the tagging operation is not a function 

type, then the tagged version is in normal form. Note 

that tagging is not propagated to the components of 

pairs, although checking (see below) is. Cases where 

a check is applied to a tagged pair are handled by the 

simplification judgement used in the rule above. 

I- e b e’ 1: (u # Ql -+ 02) 
I-e’*w (wfwrong) 

I-e*wt$ 

Tagging of function values is resolved by applying the 

implied tagging operations to the argument and result. 

The notation e[x c e’] denotes the expression ob- 

tained by replacing the variable z in e by e’ avoiding 

capture of free variables in the usual sense. Finally, 

tagging preserves wrong. 

t e * wrong 

t et; * wrong 

An expression with a check is obviously never in nor- 

mal form. When the checked value is a pair, for in- 

stance, the check must be propagated to the compo- 

nents. 

Checks on function values are resolved by applying 

the implied checking operations to the argument and 

result. The object of a (nontrivial) check on a function 

value often does not belong to a subtype of the required 

type. This is the only case in which a check nonetheless 

succeeds under such circumstances. 

All checks which remain after simplification but do 

not match the two rules above fail. There is no need to 

specify the behavior of checks on atomic values such as 

1 or true because successful checks on such values are 

always resolved by simplification. 

I- e b e’ 1: 

I- e’ =S w (w # Xx :T. e, w # 1, r) 

I- e * wrong 

As an application of these evaluation rules, consider 

the evaluation of the expression z defined as 

z = bwb WY: Nat. y) tfiat4Nat)) (3 fiat) 

The function part of the application in z is not in normal 

form. By first rule for applications, the function part 

reduces to the normal form 

h:Q. (CAY: Nat. Y) tEateNat) l$+,) x 

Note that the bodies of &expressions do not have to 

be in normal form. By the definition of apply and the 

first rule for applications, the normal form of z therefore 

reduces to the normal form of 

WY: Nat* Y) Gat-&tl~-n) (3 G,,, 

The simplified version of the function part of this appli- 

cation (using the simplification judgement rule) is 

Applying the rules for checking and tagging for function 

values, this reduces to the normal form 

which is equivalent to (but does not need to be reduced 

to) the form Ay : $2. y Jiattfiat mentioned in Section 3. 

The normal form of I therefore reduces to the normal 

form of 



(Xy:Q. Y t,“siL,lk:tiL> (3 tk,> 

which by the first application rule, and simplification, 

reduces to just 3 Ii,, as expected. 

7 Denotational Semantics 

The vaIue domain used for semantics is defined by the 

following domain equation, in which 8 is the flat domain 

of booleans, N is the flat domain of natural numbers, 

and W is the type-error domain {w}L. 

V Y B+N+(V--++(VxV) 

+ (Vx Typecode) + w 

The semantics of type expressions-given in Fig- 

ure 2-is almost identical to that of [ACPP89]. The 

only difference is that wrong (=w inV) in our seman- 

tics represents run-time type error-the only kind there 

is. It belongs to every type rather than none. This is 

left implicit in the equations below. The ideal Dynamic 

used as the meaning of R is defined as the solution of 

a recursive domain equation. The details including the 

argument for the existence of the solution are given in 

[ACPP89]. 

91 

Figure 2: Semantics of Type Expressions 

The most important constructions in the notation 

used for the semantics of object expressions are: 

l d in V (where d E D and D is a summand of V) is 

the injection of d into V. Therefore we always have 

(d in V) E V. 

0 wrong is just w in V. 

l ZI E D (where 2, 6 Vand D is a summand of V) yields 

1s if u =IV, true if ‘u = d in V for some d E D, 

and false otherwise. 

!ag (x > 7, a) 

= if7 = u then x 

else ifa = 5-2 then (2,~) in V 

else if x E V- V then 

let 7-1 -+ 7i = ~andu~+a~=a 

in (Ay. tag(xIv+v (tag(y, 61, n))), n, 0) in V 

else if x E Vx V then 

let (xl,4 = zlvxv, 71 x 72 = 7 

and 61 x u2 = u 

in (tag(xl,n, ud, tag(xz,T2, u2)) in V 

else wrong 

Figure 3: Semantics of Tagging 

l “1~ (where u E V and D is a summand of V) yields 

d if v = d in Vfor some d E D, and 10 otherwise. 

Using this notation, the “more error-prone” ordering 

(J) used in Theorem 7 is defined as: 

0 VvE V. wrong 2 21. 

l Iff,gE V-* V,then f zg e vu E v. 

flv+vw 2 SlV*vt~>. 

l If x,y E Vx V, xIvxv = (x1,4 and YIV~V = 

(~1, YZ), then x I Y e+ XI 2 ~1 and 22 1 YZ. 

The semantic equations for object expressions use two 

auxiliary functions which describe the semantics of tag- 

ging and checking. Of these, the tagging function is 

given in Figure 3 and the function for checking is given 

in Figure 4. The clause for function values in the latter 

is the only situation in which a check succeeds even if 

the type of the underlying value does not belong to a 

subtype of the required type. The semantic equations 

for object expressions are given in Figure 5. All cases 

except those for tagging and checking operations are 

standard. The latter assume as before that the expres- 

sions involved are well-formed. 
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check (x,7-, u) 

= if~=u then x 

else if T 5 u then tag (z, r, a) 

else if x E V x Typecode then 

let (Y, 14 = 4vx~wecode in check ty, cc, 4 

else ifxE V-+ Vthen 

let rl t r2 = 7 and 61 --t cr2 = u 

in (bcheck(4v,v (check(y,al,~l))),r2,u2) 

else ifx E Vx V then 

let(xl,t2)=2/vXv, 71 xr2=7 

and ul x u2 = Q 

in (check(q,q,ul), check(z2,s2,u2)) 

else wrong 

Figure 4: Semantics of Checking 

The connection between the operational and denota- 

tional semantics is expressed in the following theorem, 

which simply asserts that operational evaluation pre- 

serves denotational meaning. 

Theorem 9 (Soundness of Evaluation) Given an 

arbitrary ezpcpression e and a normal form expression v, 

I- e + v implies that [ej0 = [v]S. 

It is important to note that the operational semantics 

is less abstract than the denotational semantics (other- 

wise the implication in Theorem 9 would be an equiva- 

lence) and the denotational semantics itself is not fully 

abstract. For instance, the values ((2, true), Nat x Bool) 

and (((2, Nat), true}, fi x Bool) are derived for the ex- 

pressions (2,true) t&,txBool and (2 trj,,, true) t~xBOO1 
respectively, but these values cannot be observably dis- 

tinguished. It does not seem worth while to complicate 

the semantics to avoid this quirk but the necessary mod- 

ification is easily made if needed. 

L 

Figure 5: Semantics of Object Expressions 

8 Pragmatic Issues 

The implementation of our system does not present any 

fundamentally new problems (see [ACPP89] for a dis- 

cussion of relevant techniques). Type matching in our 

system clearly requires Amber-like structural represen- 

tation of types at run-time since the subtyping scheme 

is based on structural matching. 

From a pragmatic viewpoint, the differences between 

the operational and denotational semantics raise inter- 

esting questions about the details of an implementation. 

For instance, tagging of pair values is propagated to 

components in the latter but not in the former. Prop- 

agation in the denotational semantics is forced because 

the ideal representing tagged values makes no provision 

for the “result type” tag Q x R in a normal form such 

= (2, true) t~~t~Bool. Similar remarks apply to other 

data structures. For instance, the tagging in the exam- 

ple 13 = 1 tti$ used in Section 2 must be propagated 

to components in the denotational semantics. There is 

essentially a tradeoff between time and space here. An 

implementation according to the operational semantics 

must often provide space for two tags per tagged value 

instead of one, but both tagging and checking would on 

average be faster than in an implementation according 

to the denotational semantics. 

A related issue is raised by applications such as 
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sum ([l ti,,, 2 t&,,, 3 tf3,,, 4 t$,,l I[$,,). A straight- 

forward implementation of such checks would involve 

two passes over the list: one to carry out the check and 

another to carry out the sum (since the check is suc- 

cessful). A possible method to avoid this is to make 

checks on data structures “lazy”--propagated when the 

structure is eliminated. This would seem to erase our 

advantage-over LISP-like languages-of early detec- 

tion of type errors. However, information about the 

origin of the check c&n be propagated along with the 

check, and used to pinpoint the actual source of the er- 

ror if a propagated check fails. Although the detection 

of the error would be delayed, the reported error would 

be the same as in the straightforward implementation, 

at the cost of some overhead in carrying the information 

about the source of a check. 

A system with automatic transitions from static to 

dynamic typing raises some serious methodological is- 

sues. Cardelli [Car891 points out that automatic gener- 

ation of run-time checks could be dangerous since users 

might not be aware of the points where they are being 

used. A slight change to a statically well-typed pro- 

gram may unwittingly cause a whole set of automatic 

dynamic checks to be inserted. This could reduce the 

robustness of the program below the programmer’s in- 

tentions. One solution would be to modify our system to 

require the user’s “written permission” (through a dia 

log box, for instance) for insertion of checks. The denial 

of such permission is equivalent to a static type error. 

Such interaction may become tedious if intended checks 

are numerous. A better solution is to provide two dif- 

ferent constructs for function application-a strict one 

which prohibits checks and a permissive one which al- 

lows them. The programmer would then retain respon- 

sibility for insertion of checks without the burden of 

writing the corresponding code. The language we con- 

sider in this paper does not have these safeguards, but 

their introduction does not seem to pose any technical 

problems. 

9 Concluding Remarks 

We have described a system that merges static and dy- 

namic typing with very little added complexity at the 

user level. The interpretation of dynamic typing we use 

is more abstract than existing static systems which al- 

low some dynamic typing and is closer in spirit to that 

in LISP-like pure dynamic systems. 

Two underlying themes in the paper are worth recall- 

ing. One is the use of coercive structural subtyping as 

a way of specifying simple kinds of program synthesis. 

This technique is very promising as a way of adding ex- 

pressive power to a language at relatively little cost in 

semantic complexity. An application of the technique to 

APL-like implicit scaling is described in [Tha89]. Robin- 

son and Tennent [RT88] have suggested an application 

to the record update problem. 

A related theme is the idea of negative coercions and 

plausibility checking. This is clearly applicable in many 

subtyping situations, both inclusive and coercive. A 

simple example is automatic generation (and plausibil- 

ity) of bounds checks for subranges. More complex ex- 

amples might involve labeled records or explicitly de- 

clared inheritance relationships among abstract types. 

As we mentioned in the introduction, much of the the- 

ory presented above can be generalized to account for a 

large class of such examples. 

The coercion based interpretation of inheritance used 

in this paper is similar in spirit to the framework of 

[BTCGS89]. We hope to explore this connection to gen- 

eralize the present system to polymorphic and recursive 

types. 
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