
Composing Tree Attributions*

John Boylandt Susan IL. Grahami

Computer Science Division - EECS, 571 Evans Hall

University of California, Berkeley, California 94720

Abstract

Using the simple tree attributions described in this pa-

per, attribute values cmthemselves be trees, enabling

attribution to be used for tree transformations. Un-

like higher-order attribute grammars, simple tree at-

tributions have the property of descriptional composi-

tion, which allows a complex transformation to be built

up from simpler ones, yet be executed efficiently. In

contrast to other forma,lkms that admit descriptional

composition, notably composable attribute grammars,

simple tree attributions have the expressive power to

handle remote references and recursive syntactic (tree-

generating) functions, providing significantly more gen-

eral forms of attribution and transformation.

1 introduction

Many programming language tools operate on trees that

represent a program fragment in some way. For exam-

ple, early stages of a compiler may represent a program

as an abstract syntax tree. Trees might also be used as

a lower level intermediate representation, UsuaJly the

nodes of a tree axe annotated with attributes or attn”bute

values. For example, type or binding information might

be associated with a node designating a variable. A

sequence of target machine instructions might be as-

sociated with a subtree representing an expression or

“This research was supported in part by a fellowship from the
National Science Foundation to John Boyland, by the Advanced
Research Projects Agency (DoD) under Contract NOO039-88-Cl-

0292 monitored by Space and Naval Warfare Systems Command,

and under Grant MDA972-92-J-1028, and by the National Sci-

ence Foundation under Infrastructure Grant CDA-8722788. The

content of the information doee not necessarily reflect the position

or the policy of the Government.

7email address: {boylend, grabam}Ocs, berkeley. edu

Permission to copy without fee all or part of this material is

granted provided that the oopiea are not made or distributed for
direct commercial advantaga, tha ACM copyright notica and tha

titla of the publication and its data appear, and notice ia givan
that copying iE by perm”saion of the Association for Computing
Machinary. To copy otharwiaa, or to rapublieh, raquiras a faa
and/or apacific permieaion,

POPL 94- 1K?4,Portland Oragon,USA

statement. Typically, attributes are both named and

typed. Attribute values may be drawn from a wide va-

riety of types, such as integers, strings, tuples, trees, or

graphs.

An attribution is an association of the nodes of a

tree with appropriately typed attribute values. Attri-

butions can be determined programmatically, by code

associated with tree construction algorithms such as

parsers, or by more formal systems of attribution rules

such as attribute grammars [12]. In attribute grammar

formalisms, the rules for calculating attribute vahes are

functionally specified and are associated with the pro-

ductions of a context-free grammar. Other formal attri-

bution methods vary the attribute gmtnmar approach

in two ways. The first is to associate attribution rules

directly with the structure of the tree. For example,

Farnum’s attribute pattern sets [5] associate attribution

rules with tree patterns. The second kind of variation

is in the language in which the attribution rules are

expressed. An example is Ballance’s logical constraint

grammars [1, 2]. Kahn’s naturai semantics [10] vzu-ies

attribute grammars in both these ways.

Although attributions are often used simply to “dec-

orate” the nodes of a tree, they can also be used to

construct new trees, computing either a transformation

within the same tree language or a translation to an-

other tree language. In this case, the attribution rules

are operations on trees that build new trees. A com-

piler may, for example, use attribution rules to generate

intermediate code in tree form. It is possible to build

up a sequence of transformation or translation steps

by defining a set of attribution rules for each family of

trees generated by an earlier attribution. For example,

a compiler might use attribution rules to translate the

intermediate code into machine code.

The contribution of this paper is to define a new

tree attribution formalism for trtmslations, called sim-

ple tree attributions, that admits desctiptional compo-

sition namely, the ability to take two attribution spec-

ifications, the second of which attributes the trees that

@ 1994 ACM O-89791 -63GOr94/001..$3.5O

375

are outputs of the first attribution, and to compose the

specifications into one new specification that translates

from the inputs for the first attribution to the outputs of

the second attribution. Descriptional composition en-

ables a translation to be structured both for modularity

and for efficiency. By specifying a tree transformation

or a translation as a sequence of smaller “phases”, each

phase is doing a smaller job. As a result, the specifica-

tion will be clearer and thus less likely to have major

errors. In addition, it is often possible to re-use phases

in different combinations. For example, compilers can

share intermediate “optimizing” transformation phases,

but still have separate target-specific code-generation

phases. An important advantage of composition is the

elimination of an explicit generation and traversal of

the inter-phase representations. Once two translations

are composed, the intermediate form that links them

together has been eliminated.

There have been several earlier approaches to de-

scribing formally such a sequence of translations; among

them are attribute coupled grammars [8, 9], higher-

order attribute grammars [13, 14], and composable at-

tribute grammars [6]. To achieve descriptional composi-

tion, both attribute coupled grammars and composable

attribute grammars impose restrictions that limit the

power of attributions. In the published reports on these

approaches, a compiler written with these restrictions

can not use an attribute value to determine a reorder-

ing of subtrees of a node, say for instruction scheduling.

Neither can it generate multiple copies of a code seg-

ment, as in loop unrolling. Neither can it generate an

intermediate code tree in which a use of a variable has

a remote reference to the definition site in that tree.

Our method, an extension of composable attribute

grammars, achieves descriptional composition while pro-

viding significantly enhanced expressive power. The

added power comes from a combination of the use of

conditionals to determine the structure of the tree, the

use of computed values to determine the size of the tree,

and the ability to access attributes of remote nodes.

With this power, the examples mentioned previously

can be handled.

The organization of the remaining sections is aa fol-

lows. We first define simple tree attributions and the

tree languages that go along with them, using an ex-

ample drawn from compilation. We then present our

composition algorithm, applying it to the example. Fi-

nally, we discuss the properties of our approach and

relate it to other methods.

2 Simple Tree Attributions for Tree Languages

In attribute grammars, attribution rules are associated

with productions of a context-free grammar. Corre-

spondingly, in a simple tree attribution the attribu-

tion rules are associated with the Kinds of nodes used

in the tree. We use tree-based attribution rather than

grammar-baaed attribution in order to get the full power

of Farnum’s attribute pattern sets[5]. However, in this

paper we limit the discussion to specifications in which

each kind of node is associated with rules for computing

the attributes of that node and its immediate subtrees.

There is a simple mapping between such a tree-based

specification and a grammar-based specification.

2.1 Tree Languages

A tree language, namely, a set of trees, is defined by a

set of phyla, and a set of constructors. The names of

the constructors label the tree nodes. The constructors

(and the node labels) are partitioned into subsets asso-

ciated with the phyla defining the tree language (i.e.,

each constructor belongs to exactly one phylum).

A constructor for a node label is a function that

creates a subtree rooted at a node with that label. Its

parameter list specifies the ordered sequence of subtrees

that constitute the children of the node and the values

associated with the root node. Following Ganzinger and

Giegerich [8], we call the subtree parameters syntactic

parameters and the other parameters (including remote

references to subtrees) semantic parameters. The set of

trees in a tree language are those that can be built by

repeated use of the constructors. In order that there be

a base case for starting tree construction, there must

always be at least one constructor that has no syntactic

parameters. Such a constructor creates a leaf node.

Constructors are invoked aa ordinary functions.

Phyla play the role of nonterminals in a context-free

grammar in the sense that phyla denote sets of subtrees,

while nonterminals denote sets of substrings. Construc-

tors play the role of grammar productions. Each phy-

Ium represents the set of all possible subtrees whose

roots are labeled by a constructor associated with that

phylum. By analogy with the “start symbol” or “root

symbol” of a context-free grammar, one phylum of each

tree language may be designated the root phylum. A

tree in the language (as opposed to a subtree) is one in

which the node label of its root node belongs to the root

phylum. Some tree languages allow all defined subtrees

in all contexts; in this case, there is one phylum and all

node labels and constructors belong to it. More com-
monly in the case of abstract syntax trees, there is one

phylum for each nonterminal in the abstract syntax.

Examples of tree languages

Figure 1 defines two tree languages, a simple arithmetic

programming language and a simple low-level virtual

machine language.

376

language SIMPLE.PROGRAM

root phylum Program;

phylum Expression;

phylum Declaration;

constructor program(e

begin

Expression) : Progrm;

constructor let(d : Declaration; val, body : Expression) : Expression;

constructor def(name : String) : Declaration;

constructor plus(el,e2 : Expression) : Expression;

constructor mi.nus(el,e2 : Expression) : Expression;

constructor constant(i : Integer) : Expression;

constructor use(d : remote Declaration) : Expression;
end;

language VMACHINE begin

root phylum Instruction;

phylum Register;

constructor

constructor

constructor

constructor

constructor

constructor

constructor

constructor

constructor

end;

register(i. : Integer) : Register;
fpo : Regi,ster; -- frame pointer

loadi.(reg : Register; i : Integer) : Instruction;
load(dest : Register; address : Register): Instruction;
add(dest : Register; s1,s2 : Register): Instruction;
addi(dest : Register; s : Register; i : Integer) : Instruction;
mov(dest : Register; source : Register): Instruction;
seq(il,i2 : Instruction) : Instruction; -- sequencing
nop () : Instruction;

Figure 1: Example Tkee Languages

Thefirst treelanguage, named SIMPLE_PROGRAM, has

three phyla, Program, Expression and Decl~ation,

and seven constructors. The important illustrative char-

acteristics ofthekmguage arethat the let constructor

creates nested scopes and the use constructor creates

a remote reference. The second tree language, named

VMACHINE, hastwophylaand nine constructors. The

frame pointerfp will beused in the generated codeto

access nonlocal scopes.

Figure 2showsa SIMPLE.PROGWM tree. The arrows

from the use’s are remote references; semantic pararn-

etersto constructors appear below the node labels.

2,2 Simple Tree Attributions

A simple tree attribution is defined over a source tree

language. For each phylum of the tree language, the
tree attribution declares zero or more named and typed

attribute descriptions. Each attribute is either synthe-

sized or inherited. With each constructor of the tree

language, the simple tree attribution associates a clause

that defines its attributes.

We use pattern matching to sssociate constructors
with attribute definition clauses. Each clause is gov-

pro ram‘7

let

/“’’-7\
def conetant let

IY3
*I 11

A
use use

Figure2: ASIMPLEYROGRAM tree

377

attribution realize.as.bytecode[VMACHINE] begin

synthesized attribute bytecode(i : Instruction) : byte.string;

synthesized attribute reg.bytecode(reg : Register) : byte-string;

match ?r=register(?i) begin

r.reg-bytecode := regnum-to.byte.string(i.) ;

end;

match ?r=fpo begin

r.reg_bytecode := FP;

end;

match ?l=loadi(?reg,?i) begin

l.bytecode := LOADI II reg.reg-bytecode II integer_to-byte_string(i);

end;

. . . Analogou.dyfor load, add, addi, and mov

match ?s=seq(?il,?i2) begin

s.bytecode := il.bytecode I I i2.bytecode;

end;

match ?n=nopo begin

n.bytecode := ““; -- no bytes generated for NOP.

end;

end;

Figure3: Simple Code Generation

erned by a pattern for the constructor with a pattern

variable for the result and one for each parameter. The

clause consists of an unordered collection of attribute

definitions. Synthesized attributes are defined for the

root of the constructed subtree; inherited attributes are

defined for the syntactic parameters of the constructor.

We give two examples to explain simple tree attribu-

tions, beginning with the simpler bytecode generation

phase. Thetwoexamples canbeviewed as ’’phases’’ ofa

compiler. We will use these examples later to illustrate

descriptionad composition. & we explain the examples,

we describe a number of features of simple tree attribu-

tions: local attributes, conditional attribution, syntac-

tic attributes, remote references and functions. Simple

tree attributions have other features that will not be dis-

cussed here. These include variable-wit y constructors,

default attribute values, private attributes, attributes

defined for every phylum ofatree language, and Far-

num’s attribute pattern sets [5].

Our first example, given in Figure 3, is a simple tree

attribution named realize.as-bytecode that creates
astringofbytes fortheVMACHINE languageinFigure l.l

A synthesized attribute oftypebyte_str ingis defined

for each VMACHINE phylum. The patterns provide acase

1Pattern variables are prefixed by ‘?’ in match expressions;

‘ I 1‘ denotes string concatenation. We use the syntax var-
name. name to refer to an attritmte name of a node bound
by the pattern match to a pattern variable varname. The
integer-t o.byt e_string and regmm-t o-byt estring functions do
type conversion.

analysis for the constructors, defining the bytecode at-

tribute ofeach subtree ofthe Instruct ionphylum and

the reg_bytecode attribute of the Register phylum.

The cases that are elided in the figure can be inferred

from the corresponding constructors.

Thesecondexample, compile-simple showninFig-

ures 4 and 5, defines a simple tree attribution for the

language SIMPLE_PROGRAM. The attribution translates

its source tree into a tree of VMACHINE instructions.

In Figure 4, semantic attribute decl-depthis de-

fined for the Declaration phylum, and semantic at-

tributes scope-depth, reg_num, and reg-use are de-

fined for the Expression phylum. Two syntactic at-

tributes (attributes whose values are used to construct

trees) are defined, the attribute code for the Expression

phylum and the attribute progcode for the Program

phylum. Values for syntactic attributes are created by

constructors and may freely use the values of semantic

attributes.

The simple tree attribution compile_ simple defines

a group named compilation. Agroupis adevice teas-

sociate attributes and functions that collaborate to pro-
duce a tree. Theattributes and functions in the group

compilation produce VMACHINE trees. A simple tree

attribution may define more than one group, including

mu~tiple groups over the same output tree language.

Each syntactic attribute in a simple tree attribution

must be included in a group. The syntactic attributes

in the example each produce VMACHINE subtrees of the

Instruction phylum.

378

attribution compile_simple[SIMPLE-PROGRAM] begin

-- scope.depth and decl_depth count surrounding blocks:

inherited attribute scope-depth(e : Expression) : Integer;

inherited attribute decl.depth(d : Declaration) : Integer;

-- reg-num is the register number into which to compute the result

inherited attribute reg-num(e : Expression) : Integer;

-- reg-use is the number of registers needed to compute the result

synthesized attribute reg.use(e : Expression) : Integer;

group compilation[VMACHINE];

synthesized attribute code(e : Expression) : Instruction in compilation;

synthesized attribute progcode(p : Program) : Instruction in compilation

. . . clause section

end;

Figure4: Generation of VhtualM achineC ode(declarations ection)

In the SIMPLE.PROGRAM tree language, ause node

contains a remote reference to a def node, providing

access to the attributes of the variable declaration. In

simple tree attributions, attributes of a remote reference

may be read but not remotely defined. The syntactic

attributes of a remote node may not be passed as syn-

tactic parameters to constructors.

Syntactic attributes can be used for at least two

conceptually different purposes: to provide a simpli-

fied view of the tree for another attribution purpose

(such as name resolution) or to compute a transform

tion (such aafor code generation, asin this example).

Syntactic attributes are used for the second purpose

in attribute coupled grammars. Composable attribute

grammars use syntactic attributes for both purposes.

Eachsimpletree attributionmay declare helperfunc-

tions used inthe attribute definitions. Like attributes,

functions are either semantic or syntactic. Syntactic

functions also must be part of agroup. The bodyof

the functionis simply an expression of the same form

as those used in attribute definitions. Functions derive

their expressiveness from recursion.

In the SIMPLE-PROGRAM language, abound variable

may be used in scopes nested within its declaration

scope. Every let is implemented asa full stack frame,

using a frame pointer and static links. Therefore the

code for a variable use may need to traverse multiple

static links.2 The link traversal code is generated using

the syntacticfunction followJinkdefined in Figure5.

Function follow.1 ink takes two semantic parameters

(times and reg) and generates a tree of VMACHINE in-

2This situation arises in programming languages with nested
functions that can be passed as arguments to other functions.

structions. The valueoftimes is the difference in scope

depths; registhe register into whichto place there-

suit. The size of the generated tree is determined by

the semantic parameter times.

Figure 5 gives the clauses defining the attributes for

the constructors of SIMPLE.PROGRAM. Again the pat-

terns provide acase analysis for the constructors of the

tree language. Theclauses matching subtrees rooted by

plus nodes, and those rooted by use nodes illustrate

several features of the attribution language.

A simple tree attribution clause may define an at-

tribute local to that clause. Local attributes allow the

programmer to factor out common parts ofanexpres-

sion, and are often initialized at the definition site. In

the clause for plus, a local attribute addition is used

to factor out acommon part ofthe subtree being gener-

ated. A local attribute can be considered a synthesized

attribute that cannot be defined or used outside of the

context of a simple tree attribution clause.

A simple tree attribution clause may have attribute

definitions inside if statements, Such conditionaJattri-

butionsarewell-defined ifeveryattribute definedwithin

one branch ofan if statement is defined in the other

branch(es), and is not defined outside theif.3 In the

plus clause, the definitions ofe. reg.use, ei.reg-nmn,

e2.reg-num ande.code are allin if statements. Note

that if’s may be nested arbitrarily. Attribute values

also can be defined by if expressions, as illustrated by

the second definition of e.reg-use. It is possible to

transform a simple tree attribution with conditional at-

tributions into one without it by transforming all if

swe make the Safeassumption that each (non-identical) Con-
ditional expression is independent.

379

-- generate code to follow the static link in register “reg” “times” times.

function follow_limk(times : Integer; reg : Integer) : Instruction in compilation is

if times = O then

nop ()
else

seq(follow-link (times-l,reg), seq(addi(register (reg),register (reg),SL.OFFS’llZ’) ,

load(register(reg) ,register(reg))))

endif;

end;

match ?p=progrern(?e) begin

e.scope-depth := 0;

e.reg-num := 1; -- start using registers from register 1

p.progcode := e.code;

end;

match ?l=let(?d,?v,?b) begin

local depth : Integer := l.scope_depth+l;

d.decl_depth := depth; v.scope-depth := depth; b.scope_depth := depth;

l.code := Establish a frame, elaborate declaration, perform b.code, pop frame;

l,reg_use := max(v.reg_use,b.reg-use) ;

v.reg-num := l.reg.num; b.reg-num := l.reg-num;

end;

match ?d=def(?n) begin

-- nothing to do here

end;

match ?e=plus(?el,?e2) begin

local addition : Instruction in compilation

:= add(register(e.reg-num) ,register(el.reg_num),reglster(e2.reg_num));

if e2.reg-use > el.reg.use then -- do e2 first

e.reg.use := e2.reg-use;

el.reg-num := e.reg.num+l;

e2.reg-num := e.reg-num;

e. code := seq(seq(e2.code, el.code), addition);

else -- do el first

e.reg_use := if el.reg-use = e2.reg-use then el.reg-use+l else el.reg_use endif;

el.reg_num := e,reg-num;

e2.reg-num := e.reg-num+l;

e. code := seq(seq(el.code, e2.code), addition);

endif;

el.scope_depth := e.scope-depth; e2.scope-depth := e.scope-depth;

end;

match ?e=minus(?el,?e2) begin . . . (Analogous to plus) end;

match ?e=constant(?i) begin

e.reg-use := 1;

e. code := loadi(register(e.reg_num), i);

end;

match ?u=use(?d) begin

u.reg-use := Q;

local depthdiff : Integer := u.scope-depth - d.decl.depth;

u. code := seq(seq(move(register(u.reg-num) ,fpo),

follow-link(depthdiff ,u.reg-num)),

load(register(u .reg_num),register (u.reg_num)));

end;

Figure5: Generation of Virtual Nlachine Code (clause section)

380

5?-push frame loadi

,--- -----~zg-

7
,,,

L.
load “i,,’
A ‘,, /\,’

/’ reg reg I, move nop
,’ move

,’ ‘, A
i~ nop

1 1

reg fp
‘,,, reg fp

1
addi load ‘$,,2

- SL.OFFSET ~ ,

load

reg reg

22

1 12

Establish a stack frame

LOADI R1 2

Store x

Establish a stack frame

IIOADI RI 3

Store y,----- . \

I MOVE R1 FP

: ADDI R1 RI SL.OFFSET j

\ LOAD RI R1

‘ LOAD RI R1 ,’~..-. . ------- --------
MOVE R2 FP

LOAD R2 R2

ADD R1 RI R2

Pop stack frame

Pop stack frame
‘\ reg reg

‘,
reg reg ‘t

‘.
. . 11.. 1 1 ,;

--- .,,..-------- . ------ ---------

Figure 6: The VMACHINE version of Figure 2, and its byt e.string realization

statements to equivalent uses of if expressions. Alter-

natively, any use of an if expression can be replaced

by conditional attribution. In the example, the if’s

are used so that the definitions of the attributes for

plus minimize register pressure by scheduling the sub-

tree that needs more registers before the other subtree.

Figure 6 shows the result of applying compile. simple

to the example in Figure 2 and the result of applying

realize_as-byt e_code to that result. The regions en-

closed in dotted lines show the various stages for the

use of x in the input.

In the VMACHINE tree, we omit the internal node la-

bels for seq. The byte code is written so that each

sequence of bytes for an instruction is on one line.

3 Descriptionai Composition

Descriptional composition takes a simple tree attribu-

tion Al defined over a source tree language TA1 with a

group G defined on some target tree language TA2 and

composes it with a simple tree attribution A2 defined

over TA2.4 The resulting simple tree attribution has the

same “effect” as the functioned composition of Al and

A2 but the intermediate tree in TA2 is never produced.

Moreover, since the composed simple tree attribution

AA~~hOU@ l-Al and TAZ are different tree languages in our

example, they need not be in general.

exposes all the computation of both Al ad A2, it can

be optimized using partial evaluation.

If we descriptionally compose the simple tree attri-

bution compile_ simple in Figures 4 and 5 with the

simple tree attribution realize_ as_bytecode in Fig-

ure 3, we get a simple tree attribution over the language

SIMPLE_PROGRAM that computes the bytecode directly.

The composition is shown in Figure 7, It will be ex-

plained in the following section.

3.1 Achieving Descriptional Composition

In this section, we describe an zdgorithm for descrip-

tional composition. This algorithm works only for tree

attributions satisfying certain properties, which will be

introduced as the need for them arises.

In the composed simple tree attribution Al_A2, we

include unchanged every semantic attribute of Al, every

semantic function of Al, and every group other than G.

Moreover, every function in A2 (semantic or syntaxtic)

is carried over unchanged. Every syntactic attribute

and function in G is replaced by composed attributes

and functions.

To simplify the composition constructions, we sim-

plify the forms of the attribute definitions being trans-

formed. Nested calls to constructors or functions are
eliminated by introducing local attributes. All if ex-

pressions are transformed to the corresponding if state-

381

attribution compile_simple.realize_as-bytecode[SIMPLE-PROGRAM] begin

. . . Semantic attrihtes ofcompile-simple remain as before.

-- composed attributes:

synthesized attribute code-bytecode(e : Expression) : byte_string;

synthesized attribute progcode_bytecode(p : Program) : byte-string;

-- composed function:

function follow_li.nk_bytecode(times : Integer; reg : Integer) : byte-string 1s

if times = O then
It II

else

followJink_bytecode(times-1 ,reg) 11 ADDI II regnum_to_byte-strlng(reg) Ii

. . . II LOAD II regnum_to_byte-strlng(reg) 1! regnu_to-byte_strlng(reg));
endif

end;

match ?p=progrsm(?e) begin

. . .

p.progcode-bytecode := e.code_bytecode;

end;

match ?l=let(?d,?v,?b) begin

. . .

l.code_bytecode :=

end;

match ?d=def(?n) begin end;

match ?e=plus(?el,?e2) begin

local addition_bytecode : byte-string :=

ADD II regnum_to-byte-string(e.reg-num) II regnum.to-byte-string(el.reg-num)

II regnum-to-byte-stri.ng(e2.reg-num) ;

if e2.reg-use > el.reg-use then

. . .

e.code_bytecode := e2.code-bytecode I I el.code_bytecode

else

. . .

e.code_bytecode := el.code-bytecode I I e2.code-bytecode

endif;

end;

match ?e=mi.nus(?el,?e2) begin

. . . Analogous to plus

end;

match ?e=constant(?i-) begin

. . .

II addition-bytecode;

1[addition_bytecode;

e.code_bytecode := LOADI II regnum-to-byte-string(e.reg-num)

II integer-to-byte-string(i);

end;

match ?u=use(?d) begin
. . .

u.code-bytecode := MOV 11 regnum_to_byte_string(u.reg_num) II FP II

follow_link_bytecode(depthdiff, u.reg_num) II

LOAD II regnum_to_byte_string(u.reg_nwn) II regnum_to-byte_string(u.reg_num) ;

end;

end;

Figure7: Generated Byte String Compiler

382

ments. Then the attribute definitions have the form

if condl then

i.f con~ then

“.

definition

endkt;

endif;

where definition has one of the forms attro : = attrl;

or attro : = constructor (attrl, attrz,. . .); or

attro := function (attr~, attr~,...);.

In A1.A2, each attribute in G is composed with each

attribute in A2 for the same phylum. Since syntactic

functions build their subtrees bottom-up, for each func-

tion in G, a composed function is introduced for each

synthesized attribute of the result phylum. In order to

incorporate the inherited attributes of the constructed

subtree, for each syntactic formaJ parameter of a func-

tion in G, a composed function is added for each inher-

ited attribute of its phylum in A2. We consider each

case in turn.

Since the introduction of composed functions also

affects their calls, consider first the two forms of at-

tribute definition that make no calls on syntactic func-

tions. Suppose the definition haa the form

attro : = attrl ;

where attro is defined in G and the value of attribute

attrl belongs to some phylum of TA2. For each at-

tribute name defined in A2 for that phylum, if name

is a synthesized attribute, the corresponding composed

definition is of the form

attro. name : = attrl . name;

If name is an inherited attribute, the corresponding

composed definition is of the form

attrl. name : = attro. name;

For instance, compile. simple has the definition

p .progcode : = e. code;

When we compose this definition with the single syn-
thesized attribute byt ecode for phylum Instruction,

we get the definition

p. progcode. bytecode : = e. code. bytecode;

Suppose the attribute definition in G has the form

attro : = constructor (attrl, attrz,. . .) ;

In A1.A2, we compose this definition with the attribute

definitions for that constructor in A2, replacing each
pattern variable for that simple tree attribution clause

by the corresponding attribute instance in the defini-

tion. For example, the plus clause in compile_ simple

includes the definition

e. code : = seq(seq(e2. code, el. code) , addition) ;

which is replaced by two definitions such as

10C341 := seq(e2. code, el, code) ;

e. code : = seq(loc341 ,addition) ;

when nested constructors are eliminated. (Here 10C341

is the name of the local attribute that is introduced.)

When we compose these definitions with the definition

of attribute bytecode in realize-as. bytecode, we get

the definitions

10 C341. bytecode := e2. code. bytecode I I

el. code .bytecode;

e. code .bytecode := 10 C34I. bytecode I I

addition. bytecode;

Finally, we name all attributes of A1-A2 by applying

the rules:

namel. namez * namel _name2

node. namel. namez + node. namel .namez

For example, the preceding definitions are rewritten aa

p. progcode_bytecode : = e. code_byt ecode;

loc341_bytecode := e2. code_bytecode I I

el. code-bytecode;

e. code_ byte code : = loc341_bytecode I I

addition_ bytecode;

(For simplicity, we assume no name conflicts ensue with

this rule. If necessary, unique names can be created.)

In the composition process, for each (syntactic) func-

tion function of G, a composed function is created for

each synthesized attribute name of A2. The composed

functions compute the values those attributes would

have for the subtree built by the original syntactic func-

tion. We create names function-name for these func-

tions. Since in A2, a synthesized attribute of a node

may depend (directly or indirectly) on the inherited at-

tributes of that node, the composed functions must be

passed some of the inherited attributes of the subtree

generated by function. Furthermore, if function takes

syntactic parameters, the synthesized attributes of each

such parameter may affect the synthesized attributes of

the generated subtree. Therefore, the composed func-

tions must be passed some of the synthesized attributes

of each parameter.

The inherited attributes of each syntactic paramet-

er must be computed in some way, since the structure

built around each parameter would define its inherited
attributes, Therefore, Al _A2 must include functions

for each of the inherited attributes of A2 that would be

383

defined for that syntactic parameter. We name these

functions using the names of the function, the formal

syntactic parameter and the inherited attribute: func-

tion_formal_name. Again these functions must passed

some of the inherited attributes of the generated subtree

and some of the synthesized attributes of each syntac-

tic parameter. The set of attribute values that must

be passed to these functions can be computed statically

from the functions and A2, using analysis similar to

that for computing whether an attribute grammar is

strongly non-circular [4].

Consider an attribute definition of the form

attro := function (attrl, attrz,.. .) ;

The subtree returned by the function will be of some

phylum of TA2. For each synthesized attribute name

defined in A2 for this phylum, we add a composed def-

inition of the form

attro. name := function_name (...);

The needed composed attributes are passed to the com-

posed function.

Each syntactic parameter of the function belongs to

some phylum. For each inherited attribute name de-

fined in A2 for this phylum, we add a composed defki-

tion of the form

Utt’Tj . name := function_ formalj-name (...) ;

Again, we must pass needed composed attributes.

For example, in the clause for the use constructor

in compile.simple, after nesting haa been replaced by

introduction of local attributes, our example would have

a definition such as:

10cI72 := f ollow_link (depthdif f ,U. reg.num) ;

In the composed simple tree attribution, this definition

would be replaced eventually by

loc172-bytecode : =

f ollow.link.byte code (depthdif f, u. reg-num) ;

The composed function needs no additional parameters

because f ollow.link does not take any syntactic pa

rameters, and realize_ as-bytecode does not have any

inherited attributes.

Next we must define the new functions for the com-

posed description. To reuse the composition rules just

described, we treat functions as if they were simple

tree attribution clauses for pseudo constructors of TAZ.

Each of the formal parameters to the function becomes

a parameter to the pseudo constructor, and the pattern

variable bound to the result of the constructor is used

as a local attribute. By introducing local attributes, the

clause can be put in the simple form used previously.

The result is not a well-defined simple tree attribution

clause; we use it only for descriptional composition.

For example, if we treat follow-link in Figure 5 in

this way, we have the clause

match ?f ollow_link=pc197 (?times, ?reg) begin

local 10cI98 : Integer;

local 10C199 : Register;

. . .

if times = O then

follow-link := nopo;

else

10C198 : =

10C199 :=

10C2OO : =

10C201 :=

10C202 : =

10C203 : =

10C204 : =

10C205 :=

10C206 : =

times-l;

f ollow-link(loc198 ,reg) ;

register (reg) ;

register (reg) ;

addi (1oc2OO, 10 C201, SL.OFFSET)

register (reg) ;

register (reg) ;

load (loc203, 10 C204) ;

seq(loc202, 10 C205) ;

follow-link := seq(loc199,10c206);

endif;

end;

(Note that thename follow_ link is used both asa

local attribute and as a function.) We then perform

composition on all attributes that compute tree nodes.

In our example, this gives us the composed clause

match ?follow.link=p197 (?times, ?code) begin

local 10C198 : Integer;

local loc199_bytecode : byte-string;

. . .

if times = O then

follow_ link_bytecode := ““;

else

10cI98 := times-1;

loc199_bytecode :=

f ollow-link_bytecode (loc198 ,reg) ;

. . .

follow_link_bytecode :=

loc199-bytecode II loc206_bytecode

endif;

end;

Then we convert the result backto a function. Since

function bodies are expressions, if statements are con-

verted to if expressions, local attributes that name

composed functions are converted into function defini-

tions, and local attribute uses are replaced by their defi-

nitions. Theconverted function follow-link-bytecode

is shown in Figure 7.

Remote node references, in which a designation of a

node may be passed through the attribute system and

then queried for (inherited or synthesized) attributes,

require special attention in the algorithm. Attributes

384

or functions that have node references as wdues and

function parameters that take node references as values

must be declared in the group of the nodes being [re-

ferred to]. The algorithm treats them much the same as

syntactic attributes or functions, except that since at-

tributes of node references can only be read, never writ-

ten, for the purposes of composition all the attributes

of the node reference phylum in A2 can be treated as if

they were synthesized.

3.2 Complications

In this section, we discuss the ways in which the com-

position algorithm may fail, producing a simple tree

attribution that is circular or not well-formed.

Graphs

If Al builds a (directed acyclic) graph, rather than a

tree, and A2 haa inherited attributes, the resulting sim-

ple tree attribution will be ill-formed because there will

be two competing definitions for the composed inher-

ited attributes. Moreover, it is assumed that whenever

a subtree is assigned to a syntactic attribute, or passed

as a syntactic parameter to a constructor or function,

the attribute or parameter is the sole consumer of that

subtree. If a subtree is used syntactically in more than

one place (other than in the two branches of an if), the

algorithm will fail, again by producing two competing

definitions for inherited attributes.

We term the restriction that such a subtree may only

be used once the syntactic at most one dgnamic use re-

quirement echoing the syntactic single use requirement

of Ganzinger and Giegerich [8]. We say syntactic be-

cause the restriction is only on syntactic uses. We say

at most one because we permit a subtree to be unused,

in which case the composed inherited attributes will get

default values. We say dgnamic use because our restric-

tion reflects the fact that only one branch of an if will

be active each time it is used dynamically. We call the

restriction by its acronym (SAMODUR).

Attributes Needed by Composed Functions

The analysis we do to determine what parameters must

be pawed to a composed function cannot distinguish

between values that are used in some circumstances,

and values that are always used. Sometimes, even if

both Al and A2 are well-formed, a composed function

may (directly or indirectly) require its own result aa

a parameter, in which case, the result of descriptional

composition is circular.

If we restrict A2 to belong to an evaluation class cor-

responding to the attribute grammar evaluation class

SNC [4] (also known ~ ANC [11]), the summary graphs

for syntactic functions will not result in cycles in the

composed simple tree attribution. If the functions take

syntactic parameters, then, in general, A2 must belong

to an evaluation class corresponding to the doubly non-

circukar class DNC [7].

Intuitively, a simple tree attribution is SNC if it can

be implemented as a set of mutually recursive strict

functions, each of which computes a single synthesized

attribute of a phylum as a function of a subset of its

inherited attributes. A simple tree attribution is DNC

if inherited attributes can be computed that way aa well.

Remote Node References

Recall that in constructing the composed functions, the

use of a local attribute is replaced by its definition. If

the definition invokes a constructor, then in the pres-

ence of remote references, this transformation may no

longer be correct, since a reference is a designation of a

particular node, and each call to a constructor returns

a new node.

Our expression language permits let bindings, which

can be used instead of loccd attributes, so this problem

does not axise unless A2 haa more than one node-valued

attribute (that is, a syntactic attribute or an attribute

carrying a remote reference) that share a certain node

constructed locally. Even if there are multiple synthe-

sized node-valued attributes, but they could be evalu-

ated in one pass, a modified version of the algorithm

could compute them aJl together in a single composed

function that returns a tuple of values. Similarly if the

node-valued attributes cannot be evaluated in one pass,

but can be ordered in multiple passes, we can construct

tuples of anonymous functions that share local attribute

bindings and take the necessary inherited attributes.

In addition, the use of remote node references can

lead to circularities, or at least make it very difficult

to determine attribute dependencies statically. Strictly

speaking, a simple tree attribution that reads attributes

through remote node references cannot be SNC because

not all data dependencies into a subtree are given by the

inherited attributes. This fact does not cause problems

for the algorithm. If a function of Al creates a tree with

a node reference used by A2, it must have created the

correspondkg node itself, or have the reference passed

to it as a parameter. In either case, the dependency can

be tracked easily.

Nonseparability

In simple tree attributions, as in composable attribute

grammars, attribute definitions may use the values of

attributes of a generated node (attributes that are de-
fined by a later attribution), even if an ‘out-of-order’

attribution evaluation is required. In other words, Al

385

may use the values of attributes of A2 on nodes created

in the group G.

However, in this case circularity may result, because

Al mayusethe values read todetermine the structure

to be used for the tree being built. I)escriptional compo-

sition will only introduce circularity if the (functional)

composition is intrinsically circular. Farrow, Marlowe

and Yellin [6] define a property of Al that is sufficient

for preventing circularity in the result. They term this

property separabdity.5 A simple tree attribution is sep-

arable provided no construction of a subtree depends di-

rectly or indirectly on an attribute read from any other

node in the same tree.

Summary

We can give a safe domain for our algorithm: descrip-

tional composition of Al and A2 is possible when the

following conditions are met:

● both Al and A2 are noncircular

● Al is separable.

o Al satisfies SAMODUR or A2 has no inherited

attributes.

o Al has no syntactic functions or the following hold:

– A2 is strongly non-circular (SNC)

. Al has no syntactic parameters or A2 is dou-

bly non-circular (DNC)

— the node-valued attributes of A2 can be or-

dered.

In section 3.4, we put forward some ideas for removing

the last set of conditions.

3.3 Properties of Composed Tree Attributions

To compose a whole series of simple tree attributions

into a single simple tree attribution, one needs to be able

to use the composition algorithm with composed simple

tree attributions. Since the algorithm can fail outside of

the safe domain mentioned above, it is important to see

what properties of the resulting simple tree attribution

can be guaranteed. As it turns out, even when all the

tree attributions individually have very simple depen-
dencies, the composition may be much more complex.

5For Farr~~, Marlowe and Yellin, separability is actuallY de-

fined as a property of a collection of composable attribute gram-
mars, not an individual GAG.

Superficial Circularity

SAMODUR takes into account that the two branches

of an if are mutually exclusive, but the standard defi-

nitions of evaluation clssses for attribute grammars do

not. As a result, the composition may be superficially

circular. For examplee, if Al haa an equation such as

p . out : = if cond then

construct (cl. out, c2. out)

else

construct (c2. out, cl. out)

endif;

and A2 haa a simple dependency thread for construct

with inherited attributes:

match ?a=construct (?b, ?c) begin

b.i := a.i;

c.i := b.s;

a.s := C.s;

end;

(where i is always used to compute s), then A1.A2

would be considered circular under the traditional def-

inition, although it may not actually be circular:

cl. out_i := if cons! then p. out-i

else C2. out_s endif;

c2. out_i : = if cond then cl. outs

else p. out-i endif;

p . out_s : = if cond then C2. out-s

else cl out-s endi.f;

(where out_i is used to compute out_s).

We believe that we can redefine the standard at-

tribute grammar classes (such ae SWEEP, LORD, DNC

and SNC) to take into axcount the nonstrictness of if.

Basically, each constructor can be “split” into several

otherwise identical constructors except that each han-

dles the case for a different value of a conditional used

in an attribute definition.

According to this redefinition, the example composed

attribution above would be in the SWEEP class (one

pass, either left to right or right to left depending on

the constructor; that is, depending on the condition).

Syntactic Parameters

If a syntactic function in Al takes syntactic or remote

node reference parameters, then in the composed sim-

ple tree attribution, we will have a composed function

for each of the appropriate synthesized attributes in

A2. If some of these synthesized attributes are syn-

tactic (i.e., A2 builds trees also), then it is possible

bThis example is a simplified version of the definition for
.s.code in the clause for plus in Figure 5.

386

that SAMODUR will be violated in the composed sim-

ple tree attribution. For example, two composed func-

tions could each take the same syntactic attribute as

a parameter, and each use the parameter under mu-

tually exclusive conditions, Even if both Al and A2

satisfy SAMODUR, even though A1.A2 actually still

builds a tree; the composition algorithm as given cannot

compose it any further because SAMODUR is violated.

SAMODUR assumes that every syntactic parameter is

always used by the function to which it is passed,

The problem can be traced back to the fact that

when we compose the function with A2, we pull apart

the composed attribution clause for the pseudo-constructt

into separate composed functions. When we determine

what parameters are used by the body of each function,

we must of necessity include every parameter that might

be used by the composed function.

This analysis suggests two lines of attack for avoid-

ing this problem. First, it seems that the condition

that determines whether the parameter is used could

be computed in advance of a call, and used to condi-

tion the actuaJ parameter. Second, the algorithm could

be modified so that the composed attribution clause for

the pseudo-constructor does not need to be separated

into functions with parameters, and instead aJl the com-

posed functions would be defined together. This second

idea is explored briefly in Section 3.4.

Inherited Syntactic Attributes

Giegerich gives a thorough examination of the closure

properties of descriptional composition for attribute cou-

pled grammars [9]. Among other results, he gives an

example in which descriptionally composing three serial

L-attributed attribute coupled grammars gives a com-

posed grammar that is not only not L-attributed, but

is not even strongly non-circular (SNC). However, if in-

herited syntactic attributes me not permitted, closure

does result for SNC attribute coupled grammaxs.

In order to know that repeated composition is pos-

sible in the presence of syntactic functions, we need the

result to be SNC. Therefore, if we want guaranteed clo-

sure, the simple tree attributions cannot have inherited

syntactic or remote node reference attributes.

Closure

In summary, descriptional composition is closed over

the set of simple tree attributions A where

● A is separable zmd satisfies SAMODUR

● A is SNC

● A has no node-valued function parameters

● A has no inherited node-valued attributes

where SNC is defined by “splitting” constructors and

by ignoring attributes read from remote references built

into the tree being attributed. Giegerich’s proof for at-

tribute coupled grammars [9] should carry over to sim-

ple tree attributions, with changes to account for the

if ‘s, functions, and remote node references.

3.4 Further Work

The restrictions given in Section 3.2 on the use of syn-

tactic functions (and syntactic function parameters) are

somewhat unsatisfying. In this section, we suggest some

]r ways to modify the algorithm so that it operates cor-

rectly without these restrictions.

In the composition algorithm shown previously, we

convert a function body into am attribution clause, com-

pose it with A2 and then convert it back into a set of

composed functions. The body of a function in our sys-

tem is simply an expression and thus there is no way to

express a function that needs multiple passes to com-

pletely define its return value.

However, for computing attributes in a simple tree

attribution, the programmer is not forced to compute

all the synthesized attributes of a node as a function of

the inherited ones in one pass. Instead, the program-

mer gives the definitions and a simple tree attribution

compiler finds an evaluation mechanism that accommo-

dates the dependencies. The question comes to mind as

to whether functions could have this flexibility aa well.

Instead of parameters and a return value, these more

powerful “functions” would have inherited and synthe-

sized attributes. This expressive power is similar to

that of lazy evaluation. However, as with attribute

grammars, one can define evaluation classes for these

functions that restrict the generality and that can be

checked statically.

We believe all the restrictions for syntactic functions

given in Section 3.2 would go away if the system used

these more powerful functions.

4 Comparison with Related Work

Attribute coupled grammars allow serial phases of a

compiler to be defined separately, and then either ex-

ecuted separately or descriptionally composed into a

monolithic attribute grammar. Our interest in com-

position is for the construction of dynamic compilers,

that is, incremental compilers that patch running pro-

grams [3]. Our method of constructing a dynamic com-

piler requires that the entire task of compilation be de-

scribed in a single simple tree attribution.

One can consider composable attribute grammars
and higher order attribute grammars to be extensions of

attribute coupled grammars. In composable attribute

387

grammars, a “glue” attribute grammar may use “out-

put” attributes of a computed tree. The glue grammar

is aware of the attributes defined by the “component”

grammars, and uses them to compute the results of the

composition.

With higher order attribute grammars, there is no

distinction between syntactic and semantic values, and

subtrees may be passed in arbitrary ways in arbitrary

data structures to arbitrary functions. Resulting trees

may be grafted into the original tree, and the “host”

attribute grammar can then use synthesized attributes

of the root of the grafted tree. The system described

here could be expanded easily to accommodate these

facilities. However, simple tree attributions that use

thk power are likely to run afoul of the SAMODUR re-

striction. Furthermore, since for higher order attribute

grammars, subtrees do not obey object identity, there

is no way to fetch the inherited attribute of a node at

the root of a subtree. In a sense, higher order attribute

grammars provide so much power in the ways in which

tree values are used that any interesting descriptional

composition is impossible.

5 Acknowledgements

We thank Robert Giegerich for sharing hk insights with

us and for his suggested improvements to the paper.

The comments of David Bacon and William Maddox

were also most valuable.

References

[1]

[2]

[3]

[4]

[5]

BALLANCE, R. A. Syntactic and semantic checking

in language-bused editing systems. PhD thesis, Com-
puter Science Division—EECS, University of Califor-
nia, Berkeley, Dec. 1989. Technical report UCB/CSD
89/548.

BALLANCE, R.. A., AND GRAHAM, S. L. Incremental
consistency maintenance for interactive applications.
In Proc. of the Eighth International Conference on

Logic Programming, K. Fnrukawa, Ed. The MIT Press,

Cambridge, Massachusetts and London, England, 1991,

pp. 895-909.

BOYLAND, J., FARNUM, C., AND GRAHAM, S. L. At-

tributed transformational code generation for dynamic

compilers. In Code Generation - Concepts, Tools, Tech-

niques. Workshops in Computer Science, R. Giegerich
and S. L. Graham, Eds. Springer-Verlag, Berlin, Hei-

delberg, New York, 1992, pp. 227-254.

COURCELLE, B., AND FRANCHI-ZANNETTACCI, P. At-

tribute grammars and recursive program schemes. The-

oretical Computer Science 17 (1982), 163-191,235–257.

FARNUM, C. Pattern-based tree attribution. In

Conference Record of the Nineteenth Annual ACM

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

SIGACT/SIGPLAN Symposium on Principles of Pro-

gramming Languages (Jan. 1992), pp. 211-222.

FARROW, R., MARLOWE, T. J., AND YELLIN, D. M.

Composable attribute grammars: Support for mod-

ularity in translator design and implementation. In

Conference Record of the Nineteenth Annual ACM

SIGACT/SIGPLAN Symposium on Principles of Pro-

gramming Languages (Jan. 1992), pp. 223-234.

FILfi, G. Classical and incremental attribute evalua-

tion by means of recursive procedures. In Ilth. Coil.

on Trees in Algebra and Programming (CAAP ‘86),

LNCS vol. 214 (Mar. 1986), P, Franchi-Zannettacci,

Ed., Springer-Verlag, pp. 112-126.

GANZINGER, H., AND GIEGERICH, R. Attribute cou-

pled grammars. In Proceedings of the ACM SIGPLAN

’84 Symposium on Compiler Construction (June 1984),

pp. 157-170.

GIEGERICH, R. Composition and evaluation of at-

tribute coupled grammars. Acts hf. 25 (1988), 355-

423.

KAHN, G. Natural semantics. In STACS ’87: Fourth

Annual Symposium on Theoretical Aspects of Com-

puter Sciences (Berlin, Heidelberg, New York, 1987),

F. Brandenburg, G, Vidal-Nacquet, and W. Wirsig,

Eds., Lecture Notes in Computer Science, Springer-

Verlag, pp. 22-39.

KENNEDY, K., AND WARREN, S. K. Automatic gen-

eration of efficient evaluators for attribute grammars.

In Conference Record of the Third ACM Symposium on

Principles of Programming Languages (1976), pp. 32-

49.

KNUTH, D. E. Semantics of context free languages.

Math Systems Theory 2, 2 (June 1968), 127–145. Errata

Math Systems Theoy 5(1):95-96(1971).

SWIESTRA, D., AND VOGT, H. Higher order attribute

grammars. In Attribute Grammars, Applications and

Systems, H. Albaa and B. Melichw, Eds., no. 545 in

Lecture Notes in Computer Science. Springer-Verlag,

Berlin, Heidelberg, New York, 1991, pp. 256-296.

VOC+T, H. H., SWIESTRA, S. D., AND KUIPER, M. F.

Higher order attribute grammars. In Proceedings of

the ACM SIGPLAN ’89 Conference on Programming

Language Design and Implementation (June 1989),

pp. 131-145.

388

