
The 3 R’s of Optimizing Constraint Logic Programs:

Refinement, Removal and Reordering

Kim Marriottl

IBM - T.J. Watson Research Center
Yorktown Heights, NY 10598, U.S.A.

Abstract

Central to constraint logic programming (CLP)
languages is the notion of a global constraint solver
which is queried to direct execution and to which
constraints are monotonically added. We present
a methodology for use in the compilation of CLP
languages which is designed to reduce the over-
head of the global constraint solver. This method-
ology is based on three optimizations. The first,
refinement, involves adding new constraints, which
in effect make information available earlier in the
computation, guiding subsequent execution away
from unprofitable choices. The second, removal,
involves eliminating constraints from the solver
when they are redundant. The last, reordering,
involves moving constraint addition later and con-
straint remowd earlier in the computation. Deter-
mining the applicability of each optimization re-
quires sophisticated global analysis. These analy-
ses are based on abstract interpretation and pro-
vide information about potential and definite in-
teraction between constraints.

1 Introduction

Constraints provide a powerful and declarative pro-
gramming paradigm, in which the objects of compu-
tation are not explicitly constructed but rather they are
implicitly defined using constraints. Though the impor-
tance of constraints has been widely recognized in com-
puter science [19], only recently have general purpose
programming languages in which constraints are primi-
tive elements been developed. These include concurrent
constraint languages [16], constraint query languages
for databases [12], functional constraint languages [4]
and, in particular, the paradigm we shall concentrate

1Affiliation from February 1992: Dept. of Computer Science!
Monaah University, Clayton 3168, Australia.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and th~-_

title of the publication and its date appear, and notice is givafi

that copying is by permission of the Association for Computing

Machinary. To copy otherwisa, or to republish, requires a fee

and/or specific permission.

ACM-20th PoPL-1/93-S.C., USA

@ 1993 ACM 0-89791 -561 -5/93 /0001 /0334 . ..$1 .50

Peter J. Stuckey

Department of Computer Science

University of Melbourne
Parkville 3052, Australia

on in this paper, constraint logic programming (CLP)
languages [8]. Central to all of these languages is the
notion of a global constraint solver which is queried to
direct execution and to which constraints are monoton-
ically added. Because of monotonicit y, these languages
are semantically simple. They are also important prac-
tically and have been used in such diverse fields as finan-
cial analysis [13], circuit design [18] and protocol testing
[7]. In part this is because constraint programming al-
lows simple and concise programs which may be used in
many different ways. However, this flexibility comes at
a price, as general constraint solving is expensive. Thus,
in CLP, as in the other constraint paradigms, the main
overhead is constraint solving and so a main goal of op-
timization in the compilation of constraint languages is
to reduce this overhead. This is made difficult by the
need to determine, at compile time, non-trivial proper-
ties of constraint interaction.

We develop a methodology for use in the compila-
tion of CLP languages. The key idea is to transform a
(monotonic) program into a non-monotonic program in
which constraints are added to the constraint solver only
when they are needed and are subsequently removed
when they are no longer needed. The methodology has
three steps in the optimization: clause refinement, con-
st raint removal and, finally, constraint reordering.

. REFINEMENT adds new constraints to the clauses.
These constraints will eventually become redundant, so
the declarative meaning of the program remains the
same. The advantage is that the new constraints in
effect make information available earlier in the compu-
tation, and so can improve the operational behavior by
guiding subsequent execution away from unprofitable
choices.

● REMOVAL involves adding removal instructions to
each clause indicating that a constraint previously
added to the constraint solver can now be optionally
removed aa the constraint has become redundant in the
sense that its information is duplicated in the solver.
Intuitively, removal is advantageous as it reduces the
number of constraints in the constraint solver without
significantly changing the operational behavior. This
optimization is important if programs written in mono-
tonic languages are to approach the efficiency of pro-
grams written in non-monotonic languages.

334

o REORDERING moves constraint addition later and con-
straint removal earlier in the clause (and hence com-
putation) when the constraint involv~d cannot affect
the control flow in the intervening computation. Like
removal, reordering, is advantageous as it reduces the
number of constraints in the constraint solver without
significantly changing the operational behavior.

Each optimization is useful in its own right, but it
is their complementary behavior which reveals their full
power. In particular, refinement together with reorder-
ing allows constraint information to be moved through-
out the computation, while removal alleviates the po-
tential overhead created by the new constraints added
in refinement as all such constraints will become redun-
dant and so can be removed. Finally, reordering com-
bines with removal to allow constraints to be removed
even before they become redundant.

Correctness of each optimization depends on simple
algebraic properties of the constraints and monotonicity
of the original program. However, determining the ap-
plicability of each optimization requires sophisticated
global analysis. These analyses are based on abstract
interpretation and provide information about potential
and definite interaction between constraints. We give
generic analyses and specific analyses for the case of
constraint solving over linear arithmetic.

The optimizations we introduce have significant
practical importance as preliminary test results show
that in conjunction with low-level optimizations they
can give order of magnitude improvements in execution
speed. Though the specific details of the optimizations
and analyses are for languages based on the CLP frame-
work, we feel that the underlying ideas are applicable to
the compilation of other constraint based programming
languages.

Constraint based programming and database lan-
guages are a relatively new development. Accordingly
there has been little research into global optimization
and compilation techniques for these languages. Low
level optimization for the language CLP(%3) [9], where
constraint solving is partially compiled into imperative
statements is discussed in Jorgensen et al. [11], Jaffar
et al. [10], and Marriott and !S@ndergaard [15]. While
application of these techniques requires global informa-
tion, the optimizations are essentially local. The op-
timization discussed here, however, are global in na-
ture and hence offer potentially greater performance im-
provements. In fact, as we shall demonstrate, the two
types of optimization are complementary. The refine-
ment optimization generalizes the optimization sug-
gested by Sato and Tamaki [17] and Marriott et al. [14]
in the context of logic programming, and is related to
constraint propagation transformations by Kemp et al.
[6] for deductive databases. The removal and reordering
optimizations are novel, although the future redundancy
optimization of Jorgensen et al. [11] can be seen as a
particular special combination of the two in the case
information about calls is ignored.

The remainder of this paper is organized aa follows.
In the next section we informally introduce the opti-
mization using a simple example. In Section 3 we give

preliminary notation and an operational semantics for
CLP programs with removal instructions. In Section 4
we detail each optimization, and in Section 5 we give a
generic analysis to support each optimization. Section 6
contains a more realistic example of the optimizations
use and Section 7 concludes.

2 An Example

In this section we informally introduce the optimiza-
tion through a worked example. Consider the follow-
ing CLP(’R) program defining the relation sum where
Sum(n, s)es= l+... + n. It can be viewed as a
straightforward translation of the recursive mathemati-
cal definition.

SUIZ(N,S)+N=OAS=O. (SUM)
sum(N, S)+- N>=l AS=N +SIA

NI = N - 1 A sum(Nl, S1).

CLP(7?) programs may be thought of as Prolog pro-
grams extended to allow linear arithmetic constraints
as well as syntactic equality constraints. Upper case
symbols in the clause denote variables.

The first step in optimizing the program is to deter-
mine which constraints are implied by the program for
the calls that we are interested in, In this example we
consider all possible calls. For any call to SUZI(N, S)
every answer satisfies the constraints N >= O A S >=
N. We refine the program by adding the redundant con-
straints to every clause body where the calls are made.
Hence the refined program is

sum(N, S)+- N= OAS=O. (REF)
sum(N, S)- N>=l AS=N +SIA

N1=N-l AN1>=OA
S1 >= N1 A sum(Nl, S1) .

The chief advantage of the refined program is that it will
work with a wider class of calls than the original. For
instance, it terminates (with answer no) for the query
?- sum (N, 5) whereas the original will run forever. As
refinement may change the operational behavior of the
program, albeit for the better, it is different in nature
to the other steps in the optimization. Thus refine-
ment might be performed in an optional pre-compilation
stage, in which the programmer can intervene.

The next step in the optimization is to determine
which constraints are made redundant in further exe-
cution and hence where they can be removed. Clearly
in the refined program, for any call, each of the con-
straints N1 z= O and S1 >= N1 is redundant after the
call sum (N1, S1), this being why they were added, and
sot hey can be removed. Thus, in general, all constraints
added by refinement will be subsequently removed. In
this case we can do better, N1 z= O is redundant be-
fore it is reached because of the constraints N >= 1 A
NI =N- 1, hence we can remove it from the program
altogether. The constraint N z= 1 is redundant after
the call sum(Nl, S1) just because N1 z= O was. The
removal optimized program therefore is

335

Query SUM REF REO SPE DET LOW Speed Up
N <= 100 86.48 143.88 53.95 — — — 1.60
s <= 1000 34.00 14.55 — — —
N = 100 2.; 19.50 5.63 1.85 0.16 0.80 5:0

Table 1: Timings for the Optimized Sum Program

sum(N, S)- N= OAS=O. (REM)
sum(N, S)+- N>=l AS= N+SIA

Nl=N - lAS1>=NIA
sum(Nl, S1) A rem(N >= 1) A

rem(Sl >= Nl) .

Finally we reorder the constraints and their re-
movals. First consider the case of reordering in the con-
text of all possible calls. Consider the constraint N >=
1. It is not always satisfiable when reached for every
call and hence cannot be moved later in the clause. But
during the recursive call to sum (N1, S1) the constraint
does not affect the computation before it is made re-
dundant, (by N = O or N >= 1) and hence its removal
can be moved before the call to sum (N1, S1). Similar
reasoning applies to S1 >= N1. The resulting reordering
optimized program is

sum(N, S)+ N= OAS=O. (REo)
sum(N, S)+- N>= iAS= N+SIA

NI=N-IASI>=NIA
rem(N >= 1) A rem(Sl >= Nl) A
sum(Nl, S1) .

Note that the resulting program, REO, not only adds one
less inequality per level of recursion than the original
program, SUM, but also terminates for a wider class of
calls.

Given more information about the intended calls to
a program even better code is produced. Consider calls
where N is given a fixed value and S is unconstrained.
In this case the constraint S1 >= NI is always satisfi-
able when reached. Hence it can be moved past its
removal, and thus removed entirely from the program.
similarly the constraint S = N + S1 does not affect ex-
ecution during the recursive call and can be moved af-
terwards. The resulting program is

sum(N, S)+ N= OAS=O. (SPE)
sum(N, S) +- N >= 1 A rem(N >= 1) A

NI = N - 1 A sum(Nl, S1) A
S= N+SI.

If we combine this with low level optimizations that re-
place constraints with tests and assignments whenever
possible, we arrive at a deterministic program which
does not make use of the constraint solver!

sum(N) if N == O then S := O (DET)
else if N >= 1 then

NI := N-l
sum(Nl, S)
S:= S-EN.

This example illustrates the synergy between the
transformations given here and previous low level opti-
mization suggested for CLP languages. In particular,
refinement can make non-deterministic programs deter-
ministic, and reordering can allow replacement of calls

to the constraint solver by simple Boolean tests and as-
signments.

Even with this simple program the optimizations
offer significant speedup. In Section 6 we give another
example, in which the results are even more encourag-
ing. The effect of the optimizations on three different
types of call are shown in Table 1. The bottom line is
given by the speed up column which is the ratio between
the time for the original program and the optimized pro-
gram, with low level optimizations applied to both wher-
ever possible. Actual times shown are CPU seconds for
100 executions of the given queries on a SparcStation 2
using CLP(7?) v1. 1. The program LOWnot shown is the
result of applying low level optimizations to the original
program SUM.

3 Operational Semantics of CLP

In this section we give some preliminary notation and
an operational semantics for constraint logic programs
in which constraints can be removed.

A constraint logic program, or program, is a finite
set of clauses. A clause is of the form H i-- B, where H,

the head is an atom, and B the body is a sequence of the
form BI A... A Bn where each Bi is a literal. A literal is
an atom, a primitive constraint, or a removal instruction
of the form rem(Bj) where the primitive constraint Bj
occurs earlier in the clause. We let Bl,j represent the
sequence B~ A . . . A Bj when i < j and nil otherwise.
We associate a program point i E {O, 1,2,..., n} with the
point immediately after B1. Note that program point
O is the point just before BI. An atom has the form
P(xI, zn) where p is a predicate symbol and the x,
are distinct variables.

A primitive constraint is essentially a pre-defined
predicate over some computation domain. For example
the primitive constraints in CLP(%?) are linear arith-
metic equalities and inequalities over the real numbers
and synt act ic equalities over terms. A constraint is a
multiset of primitive constraints. We let true denote
the empty multiset of constraints. The reason we in-
troduce the multiset representation is to enable correct
removal of constraints, but often we will treat a con-
st raint simply as the conjunction of its primitive con-
straints. Thus constraints are pre-ordered by logical
implication, that is O < 0’ iff O # 0’. We let 3 ~ 0
be a non-deterministic function which returns a con-
straint logically equivalent to 3 VI 3 Vz . . . Vn8 where

variable set W = { V1, ..., V.}. We let ~~d be con-

straint 0 restricted to the variables in S. That is ~50 is

3(7WS o)\(uar8 s) O where function wars takes a syntactic

object and returns the set of (free) variables occurring

336

in it. Finally, we let % denote the existential closure of

O and frequently write % in place of “where O is satis-
fiable.”

Var is the set of variables, Atom the set of atoms,
Prim the set of primitive constraints, Rem the set of
removal instructions, Cons the set of constraints, Clause
the set of clauses, and Prog the set of CLP programs.
Programs without removal instructions are said to be
monotonic.

A renaming is a bijective mapping from Var to Var.

We let Ren be the set of renamings, and naturally ex-
tend renamings to mappings between atoms, clauses,
and constraints. Syntactic objects s and s’ are said to
be variants if there is a p E Ren such that p s = s’.

The definition of an atom A in program P with respect

to variables W, (defnp A W), is the set of variants of
clauses in P such that each variant has A as a head and
has variables disjoint from (W – vars A).

The operational semantics of a program is in terms
of its ‘(derivations” which are reduction sequences of
“states” where a state consists of the current literal se-
quence, or “goal”, and the current constraint. More
formally,

Goal = (Atom+ Prim+ Rem)*

State = Goal x Cons.

A derivation of state s for program P is a sequence
of states so ~ . . . --i Sn where s = so and there is a
reduction from s%to si+l where state (L : G, O) can be
reduced as follows:

1. If L 6 Prim and >(L A 0), it can be reduced to
(G, {L}wO);

2. If L E Rem and L = Tern(L’), it can be reduced to
(G, O - {L’}) or to (G,19);

3. If L c Atom, it can be reduced to (1? :: G,(3) where
3(L+ 1?) E (defip L (vars G U vars 0)).

Note that M denotes multiset union and :: concatenation
of sequences.

The length of a derivation is the number of atom
reductions occurring in the derivation, that is the num-
ber of reductions using reduction rule (3). A derivation
is successful if the last state in the derivation has the
empty goal. Such a state is called a success state. The

constraint ~$e is a partial answer to state s if there
is a derivation from s to some state with constraint 0.
An answer to state s is a partial answer correspond-
ing to a successful derivation. We denote the set of an-
swers to s for P by (answersp s), the partial answers by
(panswersp s) and the derivations by (derivp s). When
restricted to monotonic programs the above definition
is equivalent to the usual operational semantics [8].

A derivation is quasi-monotonic iff in every appli-

cation of reduction rule (2), ZG O is logically equivalent

to ZG (8 – {L’}). A program P is quasi-monotonic for
states S if every derivation from a state s ~ S for P is
quasi-monotonic.

Information about the intended use of the program,
such as which predicates are exportable from a module

and which are local, allows stronger optimization as the
optimization need only preserve behavior for those uses.
Thus we will optimize the program for a given set of ini-
tial states and optimize the definitions of an atom only
for the particular “calls” made to it in the derivations
from those states. More precisely, given a program P
and a set of states S’, a call to atom A is a constraint

~ (p-l 0) such that for some renaming p there is state

(~ A) : G, 0) in a derivation from some state in S. We
let (call P A S) denote the set of such calls.

4 Optimizations

4.1 Refinement

In refinement, constraints which will become redundant
in the future are added to the start of the clause. As
the constraints are redundant they do not affect the
answers and so the declarative semantics is preserved.
The advantage is that constraint information is moved
earlier in the execution and so unsuccessful derivations
will be pruned earlier. In particular this may transform
a non-deterministic atom definition into a deterministic
definition and allow the program to be used for wider
variety of calls as these calls will now finitely fail rather
than lead to an infinite derivation.

Definition. Constraint 13 is redundant for set of con-
straints @ iff V@’ 6 @ .0’ s- 0. ❑

Definition. Let S be a set of initial states and P a
monotonic program. We obtain a refinement of P for S
by taking each clause H t B in P and rewriting it to:

~+d A(B-d)

where 0 is redundant for (answerp (B, O’)) for all d’ C3
~;~~~dH #. In the case 0 is false the clause is simply

Theorem 4.1 (Correctness of refinement)
Let P’ be a refinement of monotonic program P for
states S. For all s E S, answerp s = answerpf s.
Furthermore, for each D’ c (derivp, s) there is a corre-
sponding D c (derivp s) of the same length. Z

4.2 Removal

In the removal optimization clause bodies are aug-

mented with declarations of the form rem(6) indicating
that at this point constraint 6, previously introduced in
the clause, may be optionally removed without affect-
ing the computation aa it has become redundant with
regard to the current constraint. This is a very impor-
tant optimization as it alleviates the overhead associ-
ated with languages in which constraints can only be
monotonically added. A strength of this optimization is
that it can always be used to remove the new constraints
added by refinement. In fact we can weaken the con-
ditions for this optimization as we are not concerned
about local variables appearing in the constraints, but
really only require that the constraint is redundant with
respect to the variables appearing in the original goal
and the subsequent computation.

337

Definition. Primitive constraint 0 is W-redundant for
set of constraints @ iff

V@’ ~ @ .~w(8’ A 6) a~w#.

Let H + B be a clause with n body literals. Primitive
constraint BJ is redundant at program point k, k ~ j, for
constraints @ and program P iff Bj is W-redundant for

(answer~ ((Bl,j-1 A Bj+l,~), O)) for each 6 c @ where
W = (vars H U vars Bk+l,n). ❑

The only difficulty in the optimization is ensuring
that the removals do not “interfere” as removing one
constraint mav invalidate the removal of another. For
example, cons;der optimizing the following program P

for the iniial state s = (p(X~, true).

p(x) -X=l Aq(X).
q(x) + x = 1.

Now

call P p(X) {s} .= {true}

call P q(X) {s} = {x= 1}.

However, if p is optimized with respect
and q is optimized with respect to the
obtain

to the call true
call X = 1 we

p(X) e X = 1 A q(X) A rem(X = 1).
q(x) .

which is not equivalent to the original program. The
point is that we must guarantee that the removals are
correct for the calls which will be encountered when
executing the program P’ which results from the opti-
mization.

A sufficient condition for this to hold is that the
removals are correct with respect to the the calls en-
countered when executing the “skeleton” of the original
program, where the skeleton of a program P is the pro-
gram obtained by removing all constraints from P. We
note that this definition of skeleton can be relaxed so
as to leave all constraints which are not affected by the
removal or reordering optimization.

Definition. Let S be a set of states and P a program
with skeleton Pske. We obtain a removal optimization
of P for S by taking each clause H + B in P and re-
peatedly rewriting it as follows. Assume that B has n
literals. Let B7 be some primitive constraint in B. If
BJ is redundant at program point j for (call Pk. H S)

and P there is no need to add B], and so we rewrite the
clause to:

H * Bl,l-l A Bj+~,n.

Otherwise if Bj is redundant at program point k > j for
(call Pske H S) and P we rewrite to:

H + Bl,~ A rem(BY) A Bk+l,n.n

Execution of the optimized program mimics that
of the original program, except that constraints which
have become redundant with respect to the other cur-
rent constraints may be removed, and so:

Theorem 4.2

(Correctness of removal optimization).

Let P’ be a removal optimization of monotonic pro-
gram P for S. Then for all s & S, answerp s =
answerp! s. Furthermore, there is an isomorphism be-
tween (derivp, s) and (derivp s) in which length is pre-
served. ❑

The intuitive advantage of the removal optimiza-
tion is clear: at each point in the corresponding deriva-
tion there are fewer constraints in the solver, leading
to faster tests for satisfiability. However we note that
the actual benefits obtained depend on the particular
constraint domain and solver, and must take into ac-
count the cost of the removal itself. For example, in
the case of term equations there is little gain as unifica-
tion automatically removes redundant equalities, while
in the case of more complex constraint domains such as
linear inequalities, the benefits are large as redundant
constraints are a major source of overhead in the solver.
For this reason, removal instructions are optional advice
to the compiler and run-time system.

4.3 Reordering

For different calls the order in which constraints are
added during execution should be different so as to re-
flect their actual use in the computation. This moti-
vates the final optimization, called reordering, in which
a primitive constraint is moved later in the clause body
until it will be actually used to prune a derivation, and a
removal instruction rem(@) is moved earlier in the body
to where % is last used to prune a derivation. The ad-
vantage of reordering is clear: adding constraints later
and removing constraints earlier leads to smaller cur-
rent constraints and consequent reduced cost of testing
satisfiability. Correctness of the reordering optimization
is baaed on the observation that a constraint does not
prune a derivation from a state iff it is “consistent” with
all oft he state’s partial answers.

Definition. A primitive constraint 0 is consistent with

set of constraints @ iff V@’ c @ . %’ =$=~(# A 0). Let
H ~ B be a clause with n body Iiterals. Primitive con-
straint Bj is consistent between program points ~ and
k, where j ~ i < k, for constraints @ and program P
iff Bj is consistent with panswersp (Ba+l,k, 0’) for each
0’ E answersp (B1,j_I A Bj+l,ild) and 0 E ~. We say
Bj is weakly consistent between program points i and
k, where y’ < i < k, for constraints Cl and program P
if Bj is consistent with panswersp (Bi+l,k, 0’) for each
$ c @ and 9’ ~ answersp (Bl,j_l A Bj+l,i, 0) such that

~(0’ A Bj). ❑

Analogously to the optimization for removal, we
must be careful to ensure that the reordering do not
interfere. Again we make use of the skeleton. However
this time we require that the reordering is correct for
the “convex closure” of the calls encountered using the
original program and its skeleton. We define the convex
closure, (convex G), of a set of constraints El to be

{ol~e’, e’’ce. e’’<e <}’}.

338

Definition. Let S be a set of states and P a program
with skeleton p~h~. We obtain a reordering optimization
of P for S by taking each clause H + B from P and
repeatedly rewriting it as follows.

If primitive constraint Bj is consistent between pro-
gram points j and k for

convex (call P.k, H S) U (call P H S)

and P then we rewrite the clause to:

H + Bl,j–l A Bj+l,k A Bj A B~+-~,n.

If literal B1 = rem(Bj) and Bj is weakly consistent be-
tween program points i and 1 – 1 for

convex (call P.ke H S) U (call P H S)

and P then we rewrite the clause to

H + Bl,i A ~em(Bj) A Bi+l,l_l A Bt+l,n.o

Theorem 4.3

(Correctness of reordering optimization).
Let P’ be a reordering optimization of program P for
states S. For all s c S, answerp s = answerpt s. Fur-
thermore, there is an isomorphism between (derivp~ s)
and (derivp s) in which Iengt h is preserved. ■

5 Analyses

In this section we present analyses to support the opti-
mization given in Section 4. These analyses are formal-
ized in terms of abstract interpretation and are generic
in the descriptions used for the constraints. The exact
descriptions chosen depend on the underlying constraint
domain. Here we give descriptions and analyses for the
case that the underlying constraint domain is, Lin, the
linear arithmetic equalities and inequalities. This do-
main is simple, yet still non-trivial to analyze as the
programs over it (CLP(Lin) programs) are Turing com-
plete. Furthermore Lin is a significant subset of the
constraints used in all general-purpose CLP languages
and so any analysis of programs in these languages must
handle such constraints.

5.1 Abstract Interpretation

In abstract interpretation [1] an analysis is formal-
ized as a non-standard interpretation of the data types
and functions over those types. Correctness of the
analysis with respect to the standard interpretation is
argued by providing an “approximation relation” which
holds whenever an element in a non-standard domain
describes an element in the corresponding standard do-
main. We define the approximation relation in terms
of an “abstraction function” which maps elements in in
the standard domain to their “best” description.

Definition. ~ description (D, Q, E) consists of a de-
scription domain (a complete lattice) D, a data domain

(a complete lattice)
straction function a

E, and a strict ind continuous ab-

:E *D.

We say that d a-approximates e, written d cxa e, iff
a e < d, The approximation relation is lifted to func-
tions as follows. Let (Dl, q, El) and (Dz, a2, ~) be
descriptions, and F : D1 + D2 and F’ : El + & be
functions. Then F cc F’ iff

VdED1. Vec E1. dual ea(Fd)cca2(F’ e).

We lift to predicates by taking the convention that Bool
is ordered by true < false and that the description as-
sociated with Bool ~s (Bool, Id, Bool) where Id = A b.b.

This means that approximation on predicates is conser-
vative in the sense that it gives information about things
which are definitely true. When clear from the context
we say that d approximates e and write d N e and we
will sometimes let D denote both the description and
the description domain.

In our analyses we will be concerned with describ-
ing sets of constraints. Such a description is called a
constraint description. We now give three example con-
straint descriptions for the powerset of Lin constraints,
p Lin. These can be used with the generic analyses
developed in the next section to analyze CLP(Lin) pro-
grams.

The first description is the “convex hull” descrip-
tion, which is based on descriptions used by Cousot and
Halbwachs [3] for bounds analysis in conventional pro-
gramming languages.

Definition. The convex hull description

(CHU1l, QC~ull, pLin)

is defined as follows. The description domain CHUU C
Lin consists of all sets of linear constraints of the form
s<s’ands= s’, It is ordered by logical implication.
The abstraction function ~CHUll : p Lin + CHull is
defined by

CYCHuUH = convex-hull {loosen 6 / 66 e}

where (convex-hull G) is a set of constraints represent-
ing the convex hull of the polytopes 6 c El and (loosen d)
returns a set of constraints in which strict inequalities
are relaxed to non-strict inequalities. ❑

Sign descriptions are a novel constraint description
in which the actual coefficients in the linear constraints
are abstracted by their “sign”,

Definition. The sign description

(LSign, CYLSign, p Lin)

is defined as follows. The description domain LSign
consists of sets of “linear” equality and inequality con-
straints in which the coefficients and constants are ele-
ments of Sign = {@, O, e, T}. The domain is finite for
a fixed finite set of variables. The abstraction function
&LS:~n : p Lin + LSign is defined by

@Ls@ @ = {(6%fJTZ 8) I 8 ~ ~}

where, if (sign c) returns the sign of the coefficient c
and O is

339

Let P be a program and A Cons a constraint description. The answer semantics for P and AC’ons has semantic
functions

ans.lit P : (Atom+ Prim+ Rem) + ACons -+ AC’ons
ans.clap : Clause ~ A Cons -+ A Cons

ans.goalp : Goal + A Cons -+ A Cons.

The semantic equations are

ans_litp A II = U{ans.clap C H) \ C , (~efw A {})}when A c Atom

ans_lit p 6 II = (Aadd %II) when 8 E Prim
ans_litP rem(f3) II = (Aremove 6 II) when rem(0) E Rem
ans_clap (A +-- B) II ~ ~meet II (Arestrict (wars A) (ans_goalp B (Arestrict (w.ms A) II))))
ans_goalP nil II
ans_goalP A : B II = ans.goalp B (ans_litp A II).

where the functions Aadd, Ameet, Arestrict and Arernove are required to approximate add, meet, restn”ct and
remove respectively.

Figure 1: The answer semantics for P and A Cons

{}

<

f-%= C1. zl+... +cxnxn
<

then (Csign 8) is

{}

<
(sign c-o) = (sign cl). q + ... + (sign cn) . zn.O

<

Elements of LSign can be used to determine when
sets of constraints are definitely satisfiable. Thus LSign
acts as a kind of “definite degrees of freedom” anal-
ysis. Manipulation of LSign is performed with an
abstract Fourier algorithm which mimics the manip-
ulation of Fourier’s algorithm on concrete linear con-
st raints. Fourier’s algorithm works by repeatedly elim-
inat ing variables, much like Gaussian elimination, until
no variables are left. The original system is satisfiable
iff the final system is.

As an example of the abstract Fourier algorithm’s
execution we show how it can be used to prove that the
constraints {z ~ O, y + z = 32, –z > –4, y ~ –3} are
sat isfiable. The algorithm starts with the description

It first eliminates z to obtain

{@220, 0y+@z>0,

Then z is eliminated, giving

{eY 2 e, e3Y 2 e}.

Finally v is eliminated to give {O z e} which is always
satisfiable, indicating that-any system described by the
original description is satisfiable.

The final example is a description which combines
CHUU and LSign.

Definition. The combination description is

(LComb, ~~~.~b, pLin)

where LComb = CHull x LSign and the abstraction
function ~Lc!Omb : p Lin -+ LComb is defined by

~LComb @ = ((QCHU1l ~), (~LSign @)).a

5.2 Refinement

Refinement requires us to find primitive constraints
which are redundant with respect to the answers of a
state. This may be done by choosing a suitable subset
DCons of the constraints Cons as the description do-
main with an approximation relation ~DCo~# defined by
n UDc.W @ iff m is redundant for ~. For instance CHU1l
is such a description in the case of linear constraints.
These descriptions are then used in an analysis which
finds an approximation to the answers of the state. By
construction of the description and correctness of the
analysis, any primitive constraint in the approximation
must be redundant with respect to the state’s answers.

The generic problem of finding a description for the
answers of a state has been addressed by Marriott and
S@ndergaard [15] in the case of monotonic programs.
The semantic equations given in Figure 1 area straight-
forward modification of those given in [15] and can be
used as the basis for such analyses. The semantic equa-
tions make use of the functions add which adds a prim-
itive constraint to a set of const raints, meet which adds
a set of eauat ions, restrict which restricts a set of con-
straints to a variable set and remove which removes a
primitive constraint from a set of constraints. They are
defined by:

The answer semantics is best understood by consid-
ering the equations obtained by replacing the abstract

340

Let P be a monotonic program and A Cons a constraint description. The definitely redundant semantics for P
and A Cons has semantic functions

red-lit p : Prim + p Var ~ (Atom + Prim + Rem) ~ ACons 4 Bool

red.clap : Prim -+ p Var ~ Clause -+ ACons ~ Bool
red-goalp : Prim * p Var ~ Goal 4 A Cons * Bool.

The semantic equations are

red-lit p 9 W A II = A{(red-clap 8 W CII) I C 6 (defip A (vars 6U W))},A E Atom

red_litp 6 W 19’II = (Ared O W(Aadd0’II))when0’6 Prim
con.litp e W rem(#) II = false when rem(d’) c Rem
red_claP O W (A t B) II = (red.goalp O W B (Arestrict (vars A U vars O U W) II))
red-goalp 6’ W nil II = false
red.goalP 8 W A : B II = (red-litP O W A II) V (red_goalP 13W B (ans.litp A II)).

where A add, A restrict and A red are required to approximate add, restrict and red respectively.

Figure 2: The definitely redundant semantics for P and A Cons

functions Aadd, Ameet, Arestrict and Aremove by add, !5.3 Removal
meet, restrict and remove respectively and A Cons by
p Cons. In this case we can show that To perform the removal optimization we must find

V9 c @ . (ans-goalP G@) ~ answersP(G, 6).
when a primitive constraint is definitely W-redundant
for a set of goals. The analysis given here is only for

Using results from abstract interpretation theory we
therefore have that:

Theorem 5.1 If II m Cl,

V19 c (3. (ans_goalP G II) u answersp(G, 0). ■

Note that in the semantic equations when finding
the answers to an atom, the current set of abstract con-
st raints is restricted to the variables in the atom. On
return the lost information is regained by “meeting”
the answer constraints with the call constraints. This is
important, as it means that if these equations are inter-
preted using a memorization approach [5], then they give
a terminating analysis whenever the constraint descrip-
tion domain has finite height. This is because for any
goal G and description II, (ans_goalP G H) depends
on only a finite number of calls to ans_goal, modulo
variable renaming. If the description domain does not
have finite height, then widening fnarrowing techniques
[2] may be used to ensure termination. Similar com-
ments will apply to the other analyses we introduce.

Consider P the program for sum, given in Section
2. Using CHU1l as the description domain, we can show
that

ans_goalp sum(lVl, S1) true = AU z 0 A S1 ~ IV1.

This information allows the refinement optimization
given in the example.

It is straightforward to modify the answer seman-
tics so that it returns descriptions of the calls made to
each atom for a particular set of goals. Intuitively we
need only to change the first semantic equation in Figure
1 so it “collects” the abstract call (Arestrict (vars A) II)
for A.

monotonic p;ograms. In our-cont;xt this is not a ‘limi-
tation as it will only be used to analyze programs which
are monotonic. This reason for our restriction is that
it allows us to make the analysis more efficient, be-
cause monotonicity ensures that once the constraint is
W-redundant on a derivation it will remain so. Thus
when the analysis finds a constraint is definitely W-
redundant, it terminates with true. The semantic

equations for the analysis are shown in Figure 2. They
make use of the function

red 0 W 0 + 0 is W-redundant for ~.

Theorem 5.2 Let P be a monotonic program. If II u
Cl and (red-goalP O W G II) holds, then 6’ is W-
redundant for answerp (G, 0’) for any 0’6 @. _

Consider the program for sum, given in Section 2.
Using CHUU as the description domain, we can use this
analysis to show that the removal optimizations in the
example are allowed.

5.4 Reordering

To reorder addition and removal of constraints we must
determine if a primitive constraint is definitely consis-
tent for a goal and set of calls. The analysis is only
for quasi-monotonic programs, as similarly to the re-
dundancy analysis, the analysis use redundancy infor-
mation to terminate the analysis with success because
redundancy implies definite consistency. The new se-
mantic function of importance is the consistency test

cons 8 @ # O is consistent with ~.

341

Let P be a program and A Cons a constraint description. The definitely consistent semantics for P and A Cons
haa semantic functions:

con_litp : Prim ~ (Atom+ Prim + Rem) ~ ACons ~ Bool
con.cla~ : Prim ~ Clause b A Cons d Bool
con–goalp : Prim ~ Goal ~ A Cons d Bool.

The semantic equations are

con.litp O A II = ~{(con-cla~ O C H) I C c (defw A (vain 0))} when A ~ Atom

con_litp 0 @ II = (Aeons O (Aadd 0’ II)) when 0’ ~ Prim
con-lit p 0 rem(#) II = true when rem(6’) E Rem
con-clap 6 (A t B) II = (con_goalP O B (~estrict (wars A U vars 0) II))
con-goalp O nil II = true
con_goalP 8 A : 1? II = (Ared O II) V ((con_litp 6 A II) A (con_goalp 0 B (ans-litp A II))).

where A add, A restrict, A red and Aeons are required to approximate add, restrict, red and cons respectively.

Figure 3: The definitely consistent semantics for P and A Cons

The semantic eauations for the analvsis are shown in Consider the followiruz momam MG that relates ~a-
Figure 3. Corre&ness of the analysis” requires that the
program is quasi-monotonic for all derivations encoun-
tered in the analysis. In our context this is not a prob-
lem as the analysis will only be applied to programs
resulting from the removal optimization, and they have
the necessary property.

Theorem 5.3 Let El be a set of constraints and G a

goal. Let P be a program which is quasi-monotonic
for the states S = {(G, O’) I 0’ c ~}. If II a @ and
(cons_goalP 0 G II) holds, then O is consistent with
panswersp s for any state s c S. ■

Now,

cons 0 @ + (satis O @) V (red O ~)

where

This observation leads to an analysis in which the set of
constraint descriptions is LComb and Aeons is defined
by

Aeons 8 (7TCHU11, rLSzgn) *

(Asatis O T.L.Sign) V (Ared 6 TCHW)

where Asatis and Ared approximate satis and red re-
spectively. The definition of Asatis for the domain
LSign is defined in terms of the abstract Fourier al-
gorithm.

6 Another Example

The example program used in Section 2 is deliberately
simple to illustrate the central ideas without difficulty.
Correspondingly the advantages of the analysis are not
enormous in this case because the interaction between
the constraints of the program is limited. In this section
we examine a more complex program that illustrates
the effect of the optimizations where there is significant
interaction between constraints.

“.” .

rameters in a mortgage

mg(P, T, I, R, B) +- (MG)
T=l A
B = P * (1 + 1/1200) - R.

mg(P, T, I, R, B) +
T>=2A

T1=T-l A
Pl=P*(l+I/1200)-RA
P1>=OA
mg(Pl, Tl, I, R, B).

The first clause of the program states that for a loan
of length T = 1 month, the balance owing, B, is given
by the principal, P, plus the addition of the interest
(calculated from the annual interest rate I) minus the
repayment R. The second clause states for loans of length
greater than or equal to 2 months, the new principal is
the old principal plus interest minus repayment, the new
principal must be non-negative, and then what remains
is a loan with new principal and one less month.

We consider the optimization of this program with
respect to calls in which interest, repayment and bal-
ance are non-negative. That is we are interested in calls
described by n, the convex hull description

I> OAR> OAB>O.

Clearly this is the most common use of the program.
Using CHull we can determine that

ans.goalP mg(P, 2’,1, R, B) T =
T21AP20A 120 AR20AB 20.

This allows us to refine the program by adding con-
straints before the recursive call to mg. Each of the new
constraints added is immediately redundant either with
respect to the calling pattern or to the constraints in
the clause. Hence refinement in this case produces no
new constraints. Using the above knowledge about an-
swers it is easy to determine that T >2 and P 1>0 are

342

Query qn MG SQn Speed Up SQ* SQ* Speed Up
ql 0.129 0.129 1.00 0.129 1.00
q2 5.434 0.176 30.88 0.324 16.77
q3 6.279 0.188 33.40 0.362 17.34
q4 !3.166 0.252 36.37 2.882 3.18

Table 2: Timings for the Optimized MG Program

both redundant after the recursive call, and hence can
be removed. After removal optimization the resulting
program is

mg(~, T, I, R, B) ~ (RBM)

: : ; : (1 + 1/1200) - R.
mg(P, T, I, R, B) t

T>=2A
TI=T-l A
PI = P * (1 + 1/1200) - R A
P1>=OA
mg(Pl, Tl, I, R, B) A
rem(Pl >= O) A
rem(T >= 2).

We now consider four different types of calls, each
implyingl ~OAR >OAB ~ O,andreorder the program
separately for each

(ql) ?- B >= O A mg(100000,360,12,1025, B).
(q2) ?- mg(P,360,12,1025,12625.9).
(q3) ?-R> OAB>=O Amg(P,360,12,R,B).
(q4) ?- B >= O A B t= 1030 A

mg(10000O, T, 12, 1030, B).

We shall concentration q4 since it is where the
most reordering is possible. Because in every call to
mg T is either unconstrained or bounded from below,
the analysis determines that the constraint T ~ 2 is
always satisfiable when reached, hence the constraint
can be moved laterin the computation. It doesnot af-
fectsatisfiability ofanyof the constraints Tl= T-1,
PI == P*(l+J/1200) –R, and P1 20 and is consistent
with therecursive call because it is made redundant im-
mediately. Thus it can be moved past the rem(T 22)
literal and both such literals can berernoved. Similarly
the constraint T1 = T- 1 is consistent when reached
for all calls. Again itisconsistent across the goal

P1 = P*(l+l/1200)– R,Pl ~ O,mg(Pl, Tl,l, R,B)

and so it can be moved after the recursive call. The
constraint.pl ~Oisnot always satisfiable when reached
but it is weakly consistent across the recursive call, so
its removal can be moved before the recursive call. The
resulting program is

mg(P, T, I, R, B) - (SQ4)
B= P * (1 + 1/1200) - R A
T=l.

mg(P, T, I, R, B) +
P1 = P * (1 + 1/1200) - R A
PI>=OA
rem(Pl >= O) A

mg(Pl, Tl, I, R, B) A
T1 =T -1.

For ql the analysis determines that the literals
rem(T z 2) and rem(Pl z O) can be moved just after
their respective constraints. Inthis case because Tand
P1 are ground when the constraints are reached there
is no benefit in removing them as they will be executed
as Boolean tests. In the case of q2 and q3 the analysis
determines that P1 Z O is always consistent and so can
be removed altogether. The literal rem(T z 2) can be
moved just after the constraint T z 2 but again there
is no benefit since T is ground.

Table 2 compares the execution time of the original
program MG, with each of the specialized programs SQ1,

SQ2, SQ3, SQ4, and with the program SQ* resulting
from specializing with respect to all four queries simul-
taneously. In fact SQ* is just SQ1. Timings are CPU
seconds for execution using CLP(7?) V1. 1 on a Sparc-
Station 2. In this case we ignore the low-level optimiza-
tion since their effect is swamped by the effects of the
high-level optimization. The table shows order of mag-
nitude improvements in the execution of all but the first
query. However this is the query which would have been
most helped by low-level optimization. It is interesting
to note that the program SQ* resulting from optimiz-
ing with respect to all calls is obviously not aa efficient
as the individual optimized programs but it still shows
order of magnitude improvements on the original. This
indicates that, in this example, most oft he speedup haa
resulted from synergy between removal and reordering
which has allowed the removal of a constraint before an
iterative call.

7 Conclusion

The combined optimization and analyses give a pow-
erful methodology for optimizing constraint logic pro-
grams based on reordering and removal of useless con-
straints. The optimization have significant practical
importance as they are automatizable and test results
show they can give order of magnitude improvements
in execution speed. Furthermore, though the specific
details of the optimization and analyses are for CLP
languages, we feel that the underlying ideas of removing
constraints when they become redundant and reorder-
ing of constraint addition and removal when this does
not effect control flow, are applicable to the compilation
of other constraint based programming languages.

343

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

P. Cousot and R. Cousot. Abstract Interpretation:
a Unified Lattice Model for Static Analysis of Pro-
grams by Construction or Approximation of Fix-
points. In Proc. Fourth Ann. ACM Symp. Prin-
ciples of Programming Languages, pages 238–252.
Los Angeles, California, 1977.

P. Cousot and R. Cousot. Systematic Design of
Program Analysis Frameworks. In Proc. Sixth
Ann. ACM Symp. Principles of Programming Lan-
guages, pages 269-282. San Antonio, Texas, 1979.

P. Cousot and N. Halbwachs. Automatic Discovery
of Linear Restraints among Variables of a Program.
In Fifth ACM Symp. on Principles of Programming
Languages, 84-96, 1978.

J.D. Darlington, Y.G. Guo, and H.P. Pull. A New
Perspective on Integrating Functional and Logic
Languages. In Procs. Fifth Generation Computer
Systems 1992, Tokyo, Vol. 2, 682-693. June 1992.

S. K. Debray and D. S. Warren. Functional Com-
putations in Logic Programs. ACM Transactions
on Programming Languages and Systems 11 (3):
451-481, 1989.

D.B. Kemp, K. Ramamohanarao, I. Balbin, and
K. Meenakshi. Propagating constraints in recursive
deductive databases. In E. Lusk and R. Overbeek,
editors, Proc. First North American Conj. on Logic
Programming, 981-998, Cleveland, October 1989.

M.M. Gorlick, C.F. Kesselman, D.A. Marotta, and
D.S. Parker. Mockingbird: a Logical Methodology
for Testing. Journal of Logic Programming 8:95-
119, 1990.

J. Jaffar and J.-L. Lassez. Constraint Logic
Programming. In Proc. Fourteenth Ann. ACM
Symp. Principles of Programming Languages, 111-
119. San Francisco, California, 1987.

J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap.
The CLP(73) Language and System. ACM Trans-
actions on Programming Languages and Systems,
14(3), 339-395, July 1992.

J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap.
An Abstract Machine for CLP(7?). In Proc ACM

SIGPLAN Conf. on Programming Language De-
sign and Implementation, 128–139, San Francisco,
June 1992.

N. Jorgensen, K. Marriott, and S. Michaylov. Some
Global Compile-Time Optimization for CLP(Z).
In V. Saraswat and K. Ueda, editors, Proc. 1991
Int. Symp on Logic Programming 420–434, San
Diego, October 1991.

P.C. Kanellakis, G.M. Kuper, and P. Revesz. Con-
straint Query Languages. In Proc. ACM Symp.
on Principles of Database Systems, 299–313,
Nashville, April 1990.

C. Lassez, K. McAloon, and R. Yap. Constraint
Logic Programming and Options Trading. IEEE

Expert 2:42-50, 1987.

K. Marriott, L. Naish and J.-L. Lassez. Most Spe-
cific Logic Programs. In R. Kowalski and K. Bowen,

[15]

[16]

[17]

[18]

[19]

editors, Logic Programming: Proc. Fifth Int. Conf.
Symp. MIT Press, 1988.

K. Marriott and H. S@ndergaard. Analysis of Con-
straint Logic Programs. In Proc. of the North
American Conf. on Logic Programming, 521-540,
Austin, October 1990.

V.J, Saraswat. Concurrent Constraint Program-
ming Languages. Ph.D. Thesis, CMU. 1989. Also
in ACM Distinguished Dissertation Series.

T. Sato and H. Tamaki. Enumeration of Success
Patterns in Logic Programs. Theoretical Computer
Science, 34:227-240, 1984.

H. Simonis and M. Dincbas. Using an Extended
Prolog for Digital Circuit Design. In IEEE Interna-
tional Workshop on AI Applications to CAD Sys-
tems for Electronics, 165–188, Munich, October
1987.

G.L. Steele and G.J. Sussman. Constraints. In
Procs APL79, ACM SIG-PLAN STAPL APL
Quote Quad, 9:208-225, June 1979.

344

