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ABSTRACT
This lecture will provide an overview of the field of asyn-
chronous VLSI, and show how formal methods have played a
critical role in the design of complex asynchronous systems.
In particular, I will talk about program transformations and
their application to asynchronous VLSI, as well as describe
a simple language that I developed to describe these circuits
and aid in their validation.

Introduction
“It was intended that when Newspeak had been adopted once
and for all and Oldspeak forgotten, a heretical thought . . .
should be literally unthinkable, at least so far as thought is
dependent on words. . . . Newspeak was designed not to ex-
tend but to diminish the range of thought . . .”

– George Orwell, “1984”

The design of any modern VLSI system is a daunting task.
The chip complexity in terms of the number of devices has
been quadrupling every three years for the past three decades.
All the devices on a chip operate concurrently; therefore, the
design of VLSI systems can be thought of as the design of
highly concurrent computations.

Clocked systems use a periodic global clock signal to im-
plement barrier synchronization. These barriers are used to
organize the concurrency on a chip. In traditional clocked
design, actions that modify variables must complete be-
fore a predetermined barrier after which the variable can
be read. There is no advantage obtained if some actions
complete early unless we can reduce the gap between succes-
sive barriers—which requires that all actions must complete
early, since the barriers are global and periodic.

In asynchronous (clockless) systems, synchronization is im-
plemented by using message-passing primitives or local bar-
riers between concurrent components that communicate with
each other. Therefore, if some action finishes early, it is pos-
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sible for the next action to begin without waiting for a global
barrier synchronization.

The number of possible executions of an asynchronous com-
putation can be much larger than the corresponding clocked
system with the same functionality, since the absence of
global barriers increases the number of possible interleavings
of actions. This makes the problem of design verification
more challenging. However, the absence of a global syn-
chronization constraint makes asynchronous circuits more
amenable to a formal top-down design approach, thereby
eliminating the need for logical verification because the cir-
cuits are guaranteed to be correct by construction.

While formal top-down design can be used for clocked sys-
tems, the resulting circuits are less efficient than those pro-
duced by experienced designers. On the other hand, asyn-
chronous circuits produced with this formal approach are
as efficient (and sometimes even more efficient) than those
produced by experienced designers. This is partly because
the absence of the clock makes hand design of such circuits
challenging. Thus, formal synthesis becomes the best way
to explore the design space and manage design complexity.

To date, formal methods have not proven realistic for build-
ing large-scale devices and so practicing engineers shun them.
Thus, our focus has been on a practical, scalable method
that allows us to design extremely complex asynchronous
computations using transformations whose correctness can
be guaranteed by using local information. To achieve this,
we are forced to restrict the class of circuits that we use. I
will discuss some of the constraints we have introduced that
we believe give us a scalable methodology without sacrificing
the efficiency of the final implementation.

Program Transformations
We describe asynchronous computations using CHP (Com-
municating Hardware Processes), a language derived from
Hoare’s CSP written using Dijkstra’s guarded command no-
tation. At the this level of abstraction, we treat circuits as
programs [6].

The introduction of hardware features that improve the final
design (either in terms of energy requirements, performance,
or other metrics) is treated as an exercise in program trans-
formation. The original description is transformed into a
different description in a way that guarantees that the ob-
servable features of the two computations are identical [7].
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Once we are satisfied with the concurrent description, it can
be transformed into an asynchronous circuit implementation
by a mechanical procedure that only uses local information
for each concurrent process.

A convincing demonstration of this design methodology was
provided by the first asynchronous microprocessor ever de-
signed [8]. This project used program transformations to
synthesize asynchronous circuits from a high-level specifi-
cation. While the methodology used for this project was
sound, several parts of the design required an analysis of
the complete processor to guarantee that the transforma-
tions applied were indeed correct. An important realization
after this project was that avoiding shared variables across
concurrent components (except those introduced in an ex-
tremely disciplined way) was important to avoid synchro-
nization issues that would dominate the design.

If a transformation depends on the syntax of the program,
then it is very easy to check whether a particular application
of the transformation is valid, or to automate the applica-
tion of the transformation [1]. Ideally, one should be able to
apply transformations to a concurrent component by exam-
ining the component itself, not the entire program. There-
fore, we preclude the use of shared variables across concur-
rent components except in the rarest of circumstances [5] to
keep the design modular.

The goal of the MiniMIPS project was the design of a high-
performance asynchronous processor with an industry-standard
instruction set [9]. During this project, we realized that
pipelining issues would dominate. In particular, perfor-
mance optimization of asynchronous circuits requires that
the number of buffer stages along various paths is carefully
chosen to optimize throughput. Since the actual through-
put of various components was not known until very late in
the design, we decided to adopt a design style that allowed
us to introduce buffer stages at arbitrary points in the com-
munication graph to optimize throughput. This required a
global design constraint for every process to guarantee that
introducing these buffer stages would not affect the correct-
ness of the design. We call the resulting design slack elastic,
because we can adjust the synchronization slack on commu-
nication links without affecting correctness [4].

Slack elasticity allows us to introduce pipelining in an asyn-
chronous computation without affecting correctness. In fact,
we can obtain even more sophisticated program transforma-
tions where we examine the dataflow graph of a program
and use projection to break up a sequential computation
into concurrent parts [3].

Language Design and Tools
We designed a very simple language (named CAST) to de-
scribe asynchronous circuits. While the language itself is
simple, it was sufficiently expressive for us to be able to de-
scribe a two million transistor asynchronous processor that
was correct on first silicon.

The language has two primitive constructs: creation of an
instance of a type, and connection between two types. In ad-
dition, it has meta language constructs that support compo-
nent definitions, conditional instances, and loop constructs

to permit the creation of regular structures. A connection
between two circuit nodes corresponds to the two nodes be-
ing connected by a wire. Because connections in the lan-
guage correspond to two components being permanently
aliased, CAST is essentially a linking language.

In addition to supporting the description of circuit compo-
nents, the language also contains primitive support for spec-
ifying simple invariants. The presence of these invariants
permits other tools to perform their checks more efficiently.
In some cases the invariants are necessary for a particular
circuit implementation to be correct.

Exploiting the design hierarchy is critical in the implementa-
tion of any tool. One of the recurring themes we encountered
while we were developing design tools is that the designer
has a tremendous amount of information that is not ex-
pressed in the circuit description. Expressing some of this
information in the circuit description not only allows the
tools to check more properties of the system, but allows
them to do so more efficiently [2].

I will conclude by discussing some open problems in the
design of tools and languages for asynchronous systems.
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