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ABsTRAcr: This paper discusses the desirability
of procedure linkage optimization and sketches a
general theory of interpretive semantics which is
motivated by technical problems in specifying and
validating program transfonnations that optimize
procedure linkages. One particular transformation
is treated in detail.

Recursive ALGOL 60 procedures sometimes pass
parameters by name in such away that the general
thunk mxhanism is unnecessary and inefficient.
We present an optimization which detects this
kind of call-by-name and implements it thanklessly.
We prove that the transformation preserves
semantics and we discuss the effect on running
time and menm-y management.

1. M.YTIVATION AND OVERVIEW.

Programs written in procedural languages
can devote a substantial portion of their
running time to procedure entry and exit,
In a language with recursion and block structure
the linkages producedby a straightforward
compilation may be unnecessarily costly,
For example, a variable local to a procedure
may be conscientiously stacked during a recursive
call but then not be used anywhere after
the call, An optimizing compiler should
detect and remove many instances of unnecessary
stacking and similar inefficiencies.

Procedure linkage optimization is especially
important for large progrming tasks where
mdularization is critical. Parnas [9]
has shown that the goals of modularization
are often best served when the modules do
not correspond to the boxes in a flowchart
~the process being progr.snnned, He points
out that the “information hiding” criterion
he proposes has one major drawback: without
intensive optimization of procedure linkages,
a system modularized according to this criterion
is “much less efficient” than one modularized
according to major stages in processing [9,
page 1057]. To this we add that the procedures
in a system modularized according to “information
hiding” are likely to be recursive. Recursive
procedures cannot be eliminated by simple
macroexpansion of calls, so other means of
optimization mustbe explored.

A theory of optimization requires

some mathematical representation of programs
both before and after application of optimizing
transfonnations. The mathematical framework
should be helpful in proving that “optimized”
programs really do compute what the progranuner
intended. None of the available semantic
theories are suite right for Drocedure linkage
optimization, sowe have assembled yet another
interpretive semantics from ideas present
in various places in the literature, particularly
[2, 8, 13]. This theory of semantics is
sketched in Section 3, after a condensed discussion
of an unusual representation of programs
in Section 2.

Section 4 deals with one particular
optimization: thunkless call-by-name, Section

5 sketches further work in progress. Section

6 conpares the semantic theory used here with
other work.

2. TREE STFUCIVREI)WPJ3S.

The nesting o-f statements and expressions
within each other and the roles of each part
in the whole are naturally expressed by a tree
structure with labelled nodes and an ordering
on the children of each node, as in

text: X :=A+ B tree: :=

d%
x +

/

These operator-operand trees are somewhat
more convenient for our purposes than VDL
trees [13, Section 1],

Trees are not enough for our pu~oses
because control flow is not exolicit. We
also need a representation like a flowchart:
a directed graph with symbols on the nodes
and arcs, We call such graphs webs because
a similar but less general conc~as that
name in the literature on graph grammars.
The web representing a program should have
at least one node for each statement in the
program, and the arcs should express possible
control flow.
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h appropriate web can be obtained by adding
arcs between the nodes in an operator-operand
tree. For operators representing complex
combinations of simpler statements (such
as BLOCK for blocks or COND for the conditional
construction) we add an extra operand called
a shadow, Shadows have the niladic operator
CD- and act like the dot in

consequences of postulates that are satisfied by
fairly natural interpretive definitions of
procedural languages. To define any particular
language in such a way as to anplv the theory, one
would have to specify a vocabulary of symbols, a
set of programs, domains for parameters in rule
schemata, and so on, HOW this is done is of no
concern to us at the moment.

> A

>

as an explanation of “if P then A else B.”—— —

In Figure 1 we simultaneously represent
an ALGOL 60 block as a tree and as a web.
Most of the symbols used are specific to
ALGOL 60 or its close relatives; only DCL,
NEXT, and CDI’THNDE are part of the general
theory, The arcs labelled DCL are not control
flow arcs; they point from uses of names
to their declarations. The spellings y,k,x
and other information in lower case are not
part of the web, which spells every name
ANON and uses explicit DCL arcs rather than
repetitions of character strings to connect
name uses to name declarations.

The combination of tree structure
and web structure is crucial to our treatment
of macroexpansion [1, Section 3] [8, Section
4.7] independent of syntactic details. In
addition to the macrodefinitions indicated
by procedure declarations, high level languages
have other macrodefinitions, with wide variety
of syntax, fixed in their defining interpreters.
For example, stepped iteration statenmts
are macrodefined in ALGOL [8, Section 4.6.4,2],
and this macrodefinition would be applied
when control reaches the node marked ITER
in Figure 1.

Macrodefinitions are essentially
rule schemata [10, Section 6]: pairs R-+ S
~r~that some leaves of Rand Shold

biiheter X has a domain ~ of trees;
arameter symbols rather than operators.

occurrences of X are pl~ere an arbitrary
tree from

3
mi.tit appear in a program Rule

schemata ma be applied at nodes in trees,
replacing subtrees that match the R by subtrees
that match the S. In addition to the considerations
fi [1O, Section 6] we specify a fairly simple
convention for carrying along the web arcs.

Here we will not fix on any particular
set of tree structured webs as the set of
programs, for we do not wish to define any one
language here. We only wish to explore the

The kind of language considered here is
exemplified byALGOL 60, FORTP.AN, ALGOL W [14],
BLISS [16], andPL/I minus multitasking and ON
conditions, There is one feature of some of
these languages that we cannot deal with:
declarations which call for nontrivial computa-
tions. In array bounds, for example, we reauire
that there be only constants, variables, and
arithmetic operators. Conditionals, procedure
calls, and other expressions involving a flow
of control must be kept out of most declarations.
The one exception is, of course, the
procedure declaration, which may specis%
arbitrarily elaborate computations in the procedure
body .

The symbols carried by nodes in trees for
any given language form its set of o erator
symbols . -veWe assume that all operators
adicities, AK-adic apwears only on nodes with K
children, for K a nonnegative integer. Apolyadic
operator appears only on nodes with two or more
children. Table I lists the special operators

assumed by the theory; any given language uses

most of these plus many operators peculiar to

itself.

The symbols carried by web arcs for sw
given language fom its set of cursor symbols.
Table II lists the special cursors assumed by the
theory. Some other operators and cursors used by
ALGOL 60 appear in Figure 1. In Figure 1 we used
the special cursor START for starting the process-
ing in blocks as well as in GROUPS. This
additional use is not part of the general theory.

We assume that operators have been
classified in three ways: declarative/imperative,
flowsirple/flowcomplex, andmacro/nommacro. The
classification for special operators is postulated
in Table III; other operators must be classified
in such a way that declarative and macrooperators
are flowsimple. Declarative must also be
nonmacro. We also assume that the set of tree
structured webs counted as programs has various
reasonable properties, For exsmple, a node has
at most one DCL outarc.

The only macn30perators in the general
theory are the CALL(K) operators, but anv given
language may other macrooperators whose
macrodefinitions are part of the definition of
the lan~age, In ALCf)L 60, the node carrying
ITER in Figure 1 shouldbe macroexpanded according
to Figure 2, The dyadic MLINTIL is another
macrooperator of ALGOL 60, because the test h an
until or while loop may itself be a long
computati~In our example the test is straight-
forward, so the MUN1’IL statement becomes an UNTIL
statement according to the macrodefinition in
Figure 3. When the left o~eran.d of an MUNI’IL

184



Operator Adicity Use

STOP o

cmTINuE o

GROUP poly

PROC(K) K+l

cALL (K) K+l

ANoN o

m o

FORMAL o

Terminate computations.

Ihmmy statements.

Treat a series of statements
as one statement.

Declare a procedure with K
arguments.

Call a procedure with K
arguments.

Refer to procedures or variables.

Transfer control.

Fomnal parameters.

Table I. Special Operator Symbols.

Cursor Use

START Pass control from a GROUP to
its first constituent.

Pass control sequentially.

IxL Point from uses of names to their
declarations.

JuMP Point from (XYTOnodes to their targets.

Table 11, Special Cursor Symbols.

Operator Imperative? Flows imple? Macro?

STOP YEs ES NO

CONTINUE ES YEs NO

GROUP YES NO NO

PROC (K) NO YEs NO

CALL(K) Y-ES Y-ES YEs

ES YEs NO

FORMAL YEs YEs NO

m YES NO NO

Table III. Classification of Special Operators.

x ARRAY
NEXT

y]

Ihl
UST

EA I NoN

DCL
1

START

Y

,TER NEXT

Irdt Ioov

,&’+&
k

==@&Q&?D=k

begin integer y,k;.- —

y:= lo~

begin real array x [Iiy]~—.. —

fork:=l step luntil ydo— — —.

x[k]=O

endl.

y:=o

end—
—

FIG. 1. Tree structured web
for anALGOL 60 block.
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FIG, 4. Partial macrodefinj.tion of

MUNTIL. The domain of F consists of
trees whose operators imply control
flow .
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node involves control flow, then Figure 4 is used.

The definition ofALGOL 60 includes
macrodefinitions such as Figures 2-4. These
definitions use niladic macroparameter symbols as
placeholders for which actual trees may be
substituted. Each macroparameter Z has a domain
Dz of trees that may replace it. For exar@~
D for Figure 2 contains just ANONbut ~ contains
a.ll arithmetic expressions. Thetheory postulates
certain closure properties for the domains and
establishes scnne technical lemnas to support the
results stated in Section 3. Space does not
permit details here,

We close this section with some terminology
to be used later. As in [10, Section 4], nodes in
trees are strings of nonnegative integers. The set
of all such strings is NN*. The children of a node
n in a program P are all nodes n“l-~ appear
in P, for k a nonnegative integer. Ifpisa
child ofnthen PARp=n. Pnarc is a
triple a = (m,c,p) where m,p a~in NN* and c is
a cursor. The tail of a is Ta = m; the head of a
isHa=p. —

Anode m in a program P may be a macronode
because it carries a macrooperator or because some
proper descendant n ofm calls for some computations
before the operation indicatedby Pm can take place.
For example, := is not a macrooperator in ALGOL 60,
but

arrayidentifer [functioncall] := expression

nust still be macroexpanded. Here the call leads
to a proper descendant n of the node with :=, and
the operator Pn is macro. If Pn were FORMAL or
if n had control outarcs in P (i.e. outarcs with
cursors other than DCL), then n would also
presuppose computations. When a node n in a
program P has no presuppositions, it is said to
be H, Thus, a macronode is one that carries
a macrooperator or has unready proper descendants,
If n is a macronode in P and P’ is the result
of performing the appropriate macroexpansion at
n in P, then we write P =>n Pt.

A rocedure declaration is simply a nodep
inaprog%i_T%i& that Ppis PRW(K). Thesubtree

~; k%~~($~~~~s-~e~dyLT~~Sec.
5.4,3] for the moment.) Nodes descended from p*(0)
which carry FORMAL and have DCL outarcs to children
p“(k) with 1 < k~K represent uses of formal
parameters in-the procedure’s computations.

3. ABSTRJW IIWEIWTWTIVE SEMANTICS.

A state E of the abstract interpreter
for a lan@i@i is an assignment of values
to all the “variables” in a possibly infinite
CO1lect ion. lle general theory reserves
a few variables for special purposes and
puts a few restrictions on the transition
relation ~ among states.

The variables include a set CELLS
of “cells” which may hold scalars> arrays,
stacks, or what-have-you: whatever is appropriate

for a specific language. A few variables

not in CELLS have special functions: IN and
0~ hold the input and output files; PROC
holds a tree structured web; ENV holds a partial
function mapping declarations in PIUIG to cells
(this is the “environment”); COIWROL holds
a node in PROG.

The notion of control flow is as
much like ordinary flowchart control flow
as possible, Inan initial state E, E~~oL
is the root of C.PROG. In a final state
n, ~CONTROLcarries STOP. What happens in
between is determinedly inspecting the locus
of control in the current state of the program,
“nearby” nodes, and the values of expressions
built up from cell contents and primitive
operations.

The source programs of a language
are those a-as values of PROG in initial
states. For BLISS and other languages which
have no distinction between imperative statements
and value generating expressions, all prOWams

are source programs. For ALGOL 60, the source

programs (Which arethe’’progrms”of [8])
form a proper subset of the programs. Straight -

forward macroexpansion of the procedure call
in A := B + FIDDLE (C) leads to an assignment
statement of the formA := B + (be in.. .end).

%esi~leThis is thoroughly intelligible an
[16, Sees. 1.2.1, 1.2.2], although it violates
the rules ofALGOL 60. The simplest way

to inclwile both ALGOL 60 and BLISS in our
theory (without making either smear undulv
pathological) is to allow the set of source
programs to be properly contained in the
set of

iff

programs.

Astate ~ of the interpreter is initial

EPROG is a source program;
WNI’ROL is the rootof CPROG;
@lVhas empty domain;
~OUT is defaulted;
each EX forx in CELLS is defaulted. (3.1.1)

Here, the default values for OUT and for
cells are part of the definition of any specific
language. Empty files, zero numbers, and
null strings would be natural choices. For
each pair (P, &) such that P is a source
program and in is a possible value for IN,
there is a uiiiique initial state C such that
CPROGis P andCIN is ~.

Like the set of programs, the transition
relation 1- is language dependent. We are
concerned with properties of E in procedural
languages, not with a metalanpage in which
to specify ~. Before imposing restrictions
on l-, we state the obvious definition for
the input/output relation computed by any
source program P. If in and out are values
for IN and OUI’, then — —

(3.1,2)
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where g is the initial state with ~PROG =
Pand<IN=ti, To say that ~ is final is
to say that ~OIWROL carries STOP ~
~PROG.

The partial function [P] is the meaning
of P under consideration when we attempt to
show that “optimized” programs have the same
meaning as their sources, We will find it
convenient to treat infinite, januned, and
successful computations in a uniform way.
We require that the transition relation ~
be a total function on states:’ for each state
c the-exactly one state ~ such that
El-n. If ~ = ~ then ~ is said to be a dead
state. Final states are dead, of course.
Ac computation is any infinite sequence

co l-- Ell--520--..o

of states, with E initial.
9

If some ~.
is dead the compu ation is said to tehinate.
If some C. is final, it terminates success

“+Even successful computations are In nlte
sequences; they just stabilize eventually
with ~i s~i+1=~i+2= ,.. .

If X is a set of variables and
c,rl are states then

C s n mod X iff <y= ny, ally not inX.

(3.2,1)

In order to mirimize the use of curly bracketsa
we also set

for

the

~~~modxiffc~~mod{x}, (3.2.2)

each variable x.

When ~CONTROL is a macronode in ~PROG,
theory sketched in Section 2 specifies what

to do. When it is anonmacronode carrying a
special operator, we have c ~TI for the obvious
choice of rI. (Like CONTINUE, each PROC(K) merely
passes control.) For other nonmacronodes, we
have yet to rule out absurdities like

if (this program now contains 17 array declarations)—
then (---) else (* * *),

which cannot be executed without scanning
the entire program. We must fomualize the
dependence of each nonmacronode on only a small
set of nearby nodes, The next two postulates
will do this. First we must say just what
“neafiy” means here.

The vicinity of a node n in a program
P consists of n together with all proper
descendants p of n in P such that

(PNQ is inVICn); (3$3.1)

(no control arc has tail PARp andhead p), (3.3.2).

PQSTULATE 3,4. Trichot
Let C be a state. LetdG-
gCONI’ROL. Then ~ is dead or “macrolive”
or “nonmacrolive”. If c is macrolive then

(no ancestor ofnis declarative inP); (1)

(no proper descendant ofn i.nP is in
the domain of @Tv); (2)

If ~ is nonmacrolive then

(no proper ancestor of n is declarative in P); (4)

(every nodep # n in VICn is ready in the
sense of Sec. 2); (5)

( Pn is anonmacrooperator and is not FORMAL); (6)

P = ilPROG; (7)

(some contmlarc a has Ta=n 6Ha=~CONTROL) .(8)

nonmacroli~e and < ~~, Suppose’~ ❑ g;
mod PROG, that VIC n is the same subset of
NN*inPandinP’ , and that all p inVIC
n have Pp = P’p, Suppose that all nodes
in VICn have the same outs’rcs in P and in
P’. Then C’ is nonmacrolive and some state
rI’ has ~’ ~rI’ and~’ ~ vmod PROG.

LETNA 3.6, Let P be a program and
let P’ be the result of macroexpanding
a node m in P, Then [P] = [P’].

LE!.M4 3.7. Let P be a program ad
let inbe in the domainof [P], Then there
is a~rogram P’ such that

p=>*pl ~ [P]in= [P’]&, (1)—

and no macroexpansions are performed in tlhe
computation of P’ on in.—

The copy rule semantics of procedure
calls have been included in our theorv,
but we have not yet specified the semantics
of procedure declarations, or any other
declarations. Since we are concerned with
meaning, not implementation, a very simple
postulate is appropriate.

POSTULATE 3,8, .Declarat.ion Principle.
Let ~ be a state such that ECOFHWOLhas a NFXT
outarc a and carries a declarative operator
Then E Pn, where rICONTROL is Ha and

E ❑nmod {CO.NTROL, ENTO.

If the operator is PROC(K) for some K then
~ENV= @NV. Othezwise there is a cell x
such that

(rlENV)(ccomL) ‘ x;

(n~n’ (EENV)n, alln# ECCNTROL.

For ALGOL 60 and other languages

(1)

(2)

(3)
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without a provision for “sharing” of storage
by names, w could add that x is not already
a value of @iV.

We close this section with some remarks
on the scope of our interpretive semantics.
AS was remarked in Section 2, we cannot allow
declarations to involve nontrivial computations,
Array bounds may be large arithmetic expressions,
but they must be flowsimple and nonmacro,
This restriction to a subset of languages
like AL~L 60 is not much inconvenience to
the programmer. The effect of

!29@=QZZstuff [1: fiddle (g-)]; ““’*

can be obtained by

begin integer top;
top := fiddle (gannna);
begin real array stuff [1 : top] ;...end

end
—

—

inst cad. But to -this is so would
require a tworary extension of the theory.
The combinatorics of Section 2 are unpleasant
enough already. We prefer to honor the spirit
of phrases like “the onits of operation.. .are
called statements” [8, Section4] or ’’every
executable form... (that is, every fomn except
the declarations)” [16, Section 1.2.1] by
restricting declarations enough to make these
phrases meaningful. Declarations are in
fact executed, and at run-time too [8, Section 5].

Except for the restrictions on declarations,
we have resisted the temptation to make abuse-
prone programming language features indescribable,
We allow for unrestricted GOTOS. We allow
global references in procedure templates.
These things made the theory more complex
then it would otherwise have been, but the
size and shape of the added burden are what
would be expected on intuitive grounds.

For motivational purposes we considered
“procedure template” synonymous with “procedure
body”. In applications, templates will
consists of bodies (expressed as tree structured
webs) augmented by prologs and epilogs appropriate
to the parameter passing mechanisms used,
For example, suppose an ALGOL 60 procedure
with body B has a real formal VALPARPM which
is passed by value-en the template corresponds
to

beJ+& real VI.LPW;
Vm’mAM := FoRMAL;
B

&,

and the actual for VALPARAJ4 in a call on
the procedure would be substituted ~name
for FORMAL.

This reduction of call-by-value to
call-by-name is part of the definition of
ALGOL 60[8, Section 4,7.3]. Wirth and Hoare
[14, pp. 422-423] state the same reduction

more fomnally, along with a similar reduction
of call-by-result to call-by-name. The only

other parameter passing mechanism we are
familiar with is call-by-reference. This
can be reduced to call-by-name via a reduction
to call-by-value: to pass E by reference
is to pass the address of E by value [15,
page 91]. In short, our theory applies to
languages with various parameter passinp
mechanisms. The necessary reductions to call-
by-name have already been used “in nature”
to explain these mechanisms,

4. THUMLESS CALLBYNAME.

I?ecursive ALGOL 60 procedures sometimes
use call by name in a very simple way. Once
nonrecursive calls have made available some
addresses, the recursive calls merely pass
the addresses down to deeper levels of recursion.
Using a formal criterion which detects this
situation as a special case, an optimizer
can eliminate some of the parameters passed
by name to a recursive procedure.

For us, a procedure in a program
is a procedure declaration node: a node p such
that p carries the operator PROC(K) for some
K. The nodes p.(l) ,..,,p* (K) are the formals
of p, Acall onp within the template -
is, descended from p.(0)) is said to be

%%%z%y:A!%c%%d%:%
other conditions on the other calls on p,
the thunkless call by name transformation
will be applicable. Throughout this section,
we suppose that P is a program, p carries
PROC(K) in P, and Y is a subset of the set

{p” (1) , .,.,p~(K).t of formals.

Let a be any DCL or JUMP arc in P.
Then we say that a is under anv node n such
that n is an ancestor ~. If n is also an
ancestor of Ha, then a is bound under n;
otherwise a is free under -e bound/free
distinction is m-the same as local/global
or internal/external. We choose words from
logic instead so as to avoid possible minor
clashes with the usage in svecific propamming
languages.

Now suppose that n is an actual parameter
node in a procedure call within the temolate
of p: the parent m of n has P.(O) ANCm and
m-(i) =n for some i # O andRn= CALL(.T)
for someJ. AnyDCL orJINP arc a which
is under n is said to be thunkless iff it
is either bound under n or free under p.
Thus the name resolvedby a may be either
strictly local to the actual parameter n or
global with respect the procedure p.

CONDITION 4.1. Let n be an actual
parameter node in a directly recursive call
on p, and let n correspond to a member of
Y: nhas the fonnm~(k) for some kwith p”(k)
inY. Then oneof the following holds:

Pn=FOPMLL&DCLnisinY; (1)

(every arcundern is thankless). (2)
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Informally, this condition says that
the procedure cannot pass just anything to
itself as an actual for a member of Y. It
can pass a member of Y; it can pass something
relatively global; it can pass an expression
which declares the names it uses. Ihe last
possibility does not arise in ALGOL 60. It
does arise in BLISS and other languages which
consider all statements to be expressions.

The second condition for thunkless
call-by-name is simply that recursion cannot
be smuggled in from the outside bypassing
a call on p by name to a call on p:

CONDITION 4.2. Let nbe an actual
parameter in a call on p which is not directly
recursive, and let n correspond to a member
of Y. ‘l’hen no call onp is descended from
n,

If both conditions hold, we say that Y is

a thunkless set of formals. In order to

this situation we must define amonoidof

transformations that act on actual/formal

correspondences.

exploit

Each call m on p determines an actual/formal

correspondence Cm for Y. For each y in

Y, sayy= p”(k), Cmyis the treeP/[m”(k)]

together with all web arcs inherited from

P, including any arcs from descendants of

m-(k) to nondescendants of m”(k). For example,

m might be a directly recursive call and the

actual for y might be a reference to a member

z of Y, Then ~would be:

~=]-+ ‘8

On the other hand, Cmy might be a sumof

quantities declared at nodes n and n’:

+-&n
For each directly recursive call

m, Cm determines a transformation [Cm] which

acts on such actual/formal correspondences.

For any correspondence A and anyy in Y, let

kbechosen with y= p.(k). Letnbe

ret(k), TheI-I

([~lA)Y=&(h= ~RIM GDCLn= Z inY)

~Az ~ Cmy. (4.3.1)

Now consider the set of transformations

G= {[~] ]ma directly recursive call onp}. (4.3.2)

This set generates

M= {googlo ,..

a monoid

.gJ-l I J>06gj in G, all j<J],

(4,3.3)

where . is the usual composition, g . h = (g

after h).

In the example we began with, each

mhas Pn=FOPJiALandDCL n=yforall

Choices ofy=po (k) in Yandn= m”(k). Thus

[~1 is the identity mapping and IMI is one.

In general IMI mav be much larger than )Gl, but

it will always be finite.

What is the significance ofM? Consider

an arbitrary call m’ on p which is not directly

recursive, Let m be a directlv recursive

call. Wcroexpansion at m’ leads to anew

call on p at the node m“ = mf.(m/[p.(0)]). By

Condition 4.1, the new actual/fozmal correspondence

form” is derived. from the old one for m’ in

a very simple way:
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q,! = [y] cm,, (4.3.4) THEOREM 4.4, Let p be a procedure

declaration node in a program P and let Y

Further macroexpansions lead to further calls. bea subset of the setoffonnals ofp, %p~ose

For any such call, say q, derived from the Y is thunkless, Then the newprogrmn P’ has

call m’, we have the same meaning as P.

Cq= f cm, (4.3.5)

for sane member fofM.

Now we can exploit thanklessness.

For each choice ofm’ as a call onp which

is not directly recursive and each choice

offinM, we form a new procedure p’ [m’,f],

with only K - IYI formals. The template for

p’[m’,f] differs from that of p in two ways.

First, any descendant ofp*(0) with a DCL

outarc to some y in Y is replaced in p’[m’,f]

by anode whose descendants form (fCm, )y.

Second, each directly recursive callm on

p is replaced bya call onp’[m’, [~]f] in

p’[m’,f]. Formals not in Y are treated

just as inp.

Let therebe H calls onp in Pwhich

are not directly recursive, and letJbe \M1.

‘121us there are HJ procedure declarations

p’ [m’ ,f]. The new program P’ is like P except

at p and at calls on p which are not directly

recursive. In P’, p carries GROUP and has

HJ + 1 children. These are thep’[m’,f]

declarations, listed in an arbitrary order,

plus the shadow. Each call m’ in P becomes

a call on p’[m’, Ij in P’, where I is the

unit element in M.

PRCX3F. Let@be a value for IN;

we must show that [P] in = [P’]&. We may—

assume at least one of these is defined.

Suppose [P]in= out, the ar,gument in the——

other case being similar. We show [P’]in—

= out.—

By Lemna 3.7, there is a seauence

@o$...> PJ) of programs such that P. =

P, Pj macroexpands in one step to Pj+l for

all j < J, and PJ computes from g to ~

with no macmexpansion.

Let P’. be P’. Foreachj c J,

P’j is like Pj except for differences in

procedure declarations and calls: each call

on p in Pj appears as a call on some p’[m’,f]

inP’j. By macroexpanding inP’j to mimic

the expansion that takes Pj to Pj+l, we can

form P’.
J +1

so as to be like P.
J+l

except for

the p vs. p’ [.,.] differences, By the Propram

hcality Principle (Post. 3.5) and the procedural

case of the Declaration Principle (Post,

3.8), the fact that PJ computes froti @to

out without macroe~ansion implies that [P’J]—

in = out also, By J applications of Lenvna——

3.6, we conclude that [P’] in = out, 9——

In order to give a self-contained statement
of Theorem 4.4, we make the weakening assumption
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that Y is the set of formals of p and offer the
following.

INFORMALSUIWIARYOF THEOREM4.4:
Let p be a procedure in a program P (with
all of its parameters passed by name). If,
in any directly recursive call, p passes to
itself only

(a) its formals,

(b) expressions relatively global to it,
and
(c) expressions which declare the names they

use (other than those of type (b) ),

and if no calls on p are passed to p, then there
is a straightforward conversion from P to an
~tivalent program P’ in which p is replaced by
several procedures, each of which has no
parameters.

Thunkless call by name saves time
because fewer parameters are passed whenever
one of the replacements for p is called.
The transformation also decreases the frequency
of page faults in a virtual memory operating
environment. TINUIICScan make the top of the
runtime stack reference items near the bottom
[4]15]; the memory management algorithm may
have moved the lower parts of a deep stack
out of fast storage by the time these references
occur.

The cost of thunkless call by name
is an increase in program size, and a
combinatorial explosion can be arranged.
Whether programs written to solve a problem
will explode is another question. In a virtual
memory system one can increase program size
very cheaply so long as the system’s slow
storage capacity is not reached. Until
then, the important space consideration is
not program size but working set size [3,
pp. 175, 180, 187], Thunkless call by name
can only improve the working set structure
of a program.

5, FuKTHERWRK,

a node ~ *o%e02

p to q whenever the body of p
on a. In order to sueed uv

program has
an arc from
includes a call
the convergence.

of various iterations ‘h an optimizer’s analysis,
it is helpful to transform a program so that
its calling graph will have many and small
(rather than few and large) strongly connected
components. Maggiolo and Strong [7] show
to do this with a sequence of macroexpansions.

Strong [11] and Walker and Strong
[12] have developed ways to avoid unnecessary
stacking in flowcharts that implement recursion
equations, Parts of this work have been
extended to procedural languages with only
call by value and without pointer variables.
It is our aim to extend this work to allow
other calls and pointers as well, We are
attempting to develop transformations which

will replace all parameters and local variables
by global variables, together with a minimal
use of stacking in the sense of [11] and
[12] , Theorem 4,4 is a positive result
in this direction, stating that, under certain
conditions, such transformations exist and avoid
stacking altogether.

Of course, in any sufficiently powerful
language (including all those discussed in this
paper) we can avoid stacking via coding a
simulated stack. Note that this kindof
transformation alters the set of values contained
in cells during computation; whereas, the
transformationof Theorem 4.4 does not.

6. COMPAIUSONSWITH OTHERWOIUKIN SEMANTICS

Interpretive semantics comes in three
main flavors, which we will call “sDecific”.
‘Inetalinguistic”, and “postulational”. Notable
exatples of specific semantics are the ALGOL
60 report [8] and the definition of the contour
model [6], In the first case, the emphasis
on the syntax of the language tends to overwhelm
the other aspects of the interpreter, which
are left tacit. In the second case, the
emphasis on nested structures, cells whose
values may be pointers to other cells, and
scope rules for names tends to hide the fact
that one specific language is being defined.
The contour model language (let us call it
(ML) is very apt for compilative definitions of
semantics:” a FUNGOLprogram computes whatever
its image under the following compiler from
FUNGOLto CML computes.. .” For our purposes
W is too close to machine language: what
a~pears as a single nacroexpansion in a dynamic
program becomes a series of bookkeeping operations
and jumps controlled by a static ~ program.
On the other hand, results like Theorem 4.4
clearly should not be proved separately for
each procedural high level language.

Metalinguistics semantics specifies
a metalanguage in *i&. to write interpretive
definitions of languages. If the metalanpuage
itself is very precisely defined, then the
ambiguities that arise in informal interpreters
(such as the one in [8]) cam be avoided.
Cne could try to builds semantic theory
based on properties of the metalanguage
or of some readily specifiable family of
interpreters within the metalanguage.

The Vienna Definition Language is
too flexible to constitute an imdicit semantic
theory. There is very little in cormnon
between, saya the Vienna interpreter for
EPL [13, Sec. 4] and the Viema interpreter
forVDL itself [13, Sec. A], If one tries
to specify a family of Vienna interpreters
to correspond to the family of procedural
languages, one finds that the control structures
and data structures in V33Lare inappropriate.

AVienna interpreter does not execute

program statements, even after they have

been expressed as abstract tree structures.
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Instead the interpreter constructs a “control
tree” whose nodes carry VDL instructions.
The acyclic nature of the control tree and
Vienna objects in general makes it impossible
to follow a simple iterative loop without
resorting to macroexpansion [13, Sec. 3.1].
Iterative source programs are ultimately
explained by recursion in the interpreter.
For optimization we wish to go in the opposite
direction, replacing recursionby iteration
as much as possible. We needto clearly
distinguish between recursion and iteration;
no simple constraint on a Vienna interpreter
will do this.

By using an operator-operand tree
together with possibly cyclic web arcs,
we allowed control to flow through the program
itself, just as in a flowchart or an ALGOL
60 program. Without web arcs we would need
repetitions of arbitrary names to serve the
purposes of DCL wdJUMP arcs. Spelling
out names leads to constant worry about capture
of free variables, programs which are the
same except for choices of names, and so
on. AS soon as one tries to prove anything,
such considerations become extremely tedious
and error prone.

Culik [2, Section 6] eliminates names
in favor of “pointers” between tree nodes
that correspond to our DCL and JUJ@arcs.
His success in concisely and readably formalizing
a substantial portion of ALGOL 60’s semantics
[2, Table 2] encouraged us to deal with

web structure directly rather than with
names. We have gone farther in this direction
by adding other control cursors and shadows
that carry COIfI’IIiUE, so that all control
flow coul.dbe expressed direc~ by moving
~~ROL along arcs in PROG. Culik simulates
normal flow by adding symbols like EXECand
EWDto the operators at nodes [2, Section
6] and by manipulating these symbols with
rules based on programmed grammars [2, Section
3].

Sections 2 and 3 here exemplify the
third flavor of semantics: abstract postulates
about interpreters and the mathematical
consequences of the postulates. We illustrated
the postulates with fragments of specific
interpreters. In discussing VDLwe hinted
at the implications of the postulates for
a metalanguage for defining procedural
languages. The three flavors can and should
be blended, but they should not be confused.

In trying say just what procedural
languages have in common, we have been guided
primarily by technical considerations. We
hew that Lemnas 3.6 and 3.7 were true of
languages like AL(X3L 60 long before we could
say why they were true without becoming mired
in the syntax of that particular language.
We lo-mu that these lenmas led to Theorem
4.4 long before we could state the presuppositions
expressed in the Program Locality Principle
(post, 3.5) and Declaration Principle (Post.
3.8), Another important consideration was

that the postulates should actually be true
for the interpreters described informally
by existing successful definitions of specific
languages, The semantic portions of the
AL(X3L 60 report [8] and the standard semantics
for flowcharts were especially pertinent.
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