
MATHEMATICAL SEMANTICS and DATA FLOW PROGRAMMING

Paul R. Kosinski

Project MAC
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

and

IBM
Thomas J. Watson Research Center
Yorktown Heights, New York 10598

Abstract

A Data Flow program [1,2] is a flow-

chart like network of operators which

compute concurrently, dependent only on

the availability of the data which flow

along the paths. Each operator has only a

local effect, transforming input data to

output data. Although operators may ex-

hibit memory and thus not be functional

from an input to an output, all operators

are functions from input sequences to

output sequences. This plus the strong

locality of effect allows mathematization

of semantics more readily than traditional

programmzng languages which are burdened

with omnipresent storage and occasional

GQTO's. This paper proves the semantic

behavior of some elementary Data Flow pro-

grams and proves that certain optimization

transformations preserve other behaviors.

Background

In the past several years, the math-

ematical specification of programming

language semantics has been much investi-

gated. There have been two main lines of

attack on this problem, the axiomatic ap-

proach taken by Hoare [3], and the func-

tional approach taken by Scott [4] and

Strachey.

In the axiomatic approach, each

primitive operation in the programming

language has assigned to ~t one or more
1

axioms which formally specify the effect

that the operation has upon the state of

the abstract machine when that operation

is executed. That is, the axioms describe

the mathematical relationship between the

"before" state and the "after" state. A

sequence of operations have an effect

which is the composition of the individual

relations for the component operations.

Thus, given a program together with a

putative set of axioms, one can determine

by theorem proving (manual or automatic)

whether the program does indeed satisfy

its axiomatization. Alternatively, one

can derive a theorem which describes

the program's behavior.

In the functional approach, each

primitive operation is assumed to compute

a particular function. Thus, a sequence

of operations computes the function which

is the composition of the component op-

erations' functions. If the operations

are performed repeatedly, as in a WHILE

loop, the composite function is not so

easily determined (in the axiomatic ap-

proach, an inductive proof is needed).

175

Setting up the functional equation corres-

ponding to the loop, one gets

F(X) = IF Test(X) THEN F(Body(X)) ELSE X

where Test is the predicate of the WHILE,

Body is the function computed by the body

of the loop, and F is the function com-

puted by the loop as a whole. This is a

recursive definition, but it is hard to

solve because the unknown is the function

F. Such equations can be solved in certain

circumstances by means of the Y or fixed

point operator. Scott's contribution has

been to show that there exist lattices

called reflexive domains in which the Y

operator can always apply to give the

unique minimal fixedpoint solution of such

equations, and that such domains adequately

characterize programming languages.

This approach can be applied to ap-

plicative languages with relative ease

since such languages are based on the idea

of functions and function composition.

Unfortunately, applicative languages are

seldom used for programming, even LISP

has nonapplicative operators such as the

GO, SETQ and RPLACD. The effect of such

operators is to make the functional char-

acterization of the program depart consid-

erably from the syntactic structure of the

program. This occurs for two reasons.

First, since some operators, such as

assignment (eg. SETQ or worse, RPLACD) ,

change the state of the whole abstract

machine, the function corresponding to

such an operator must transform states

into states. Then, in order to be com-

posable, all operators must transform

states whereas the program is written as

if most operators transform variables.

Second, control flow operators (of which

LISP's GO is a mild example) can cause

both the conditional and the loop structure

of the program to become arbitrarily com-

plicated. Structured Programming, with

insistence on .a limited disciplined set

of control operators (IF-THEN-ELSE and

DO-WHILE) prevents the second problem

from occurring, that is, one recursive

equation corresponds to one loop. The first

problem remains however, since most existing

languages have state transforming assignment

operators.

Data Flow Semantics

DFPL, a Data Flow Programming Language

[2], has the basic mathematical simplicity

of applicative languages without most of

their drawbacks. Operators in DFPL func-

tionally transform their inputs to their

outputs without ever affecting the state of

the rest of the program. Since there is no

control flow, there is no GOTO; in spite of

this, loops may be programmed as well as

recursion. Most significant though, is the

fact that unlike ordinary applicative

languages, programs may exhibit memory

behavior, that is, the current output may

depend on past inputs as well as the current

input. Memory in DFPL is not primitive but

is programmed like other nonprimitive

operators. Thus its effects are local like

those of other operators and it does not

permeate the semantics of programs.

A DFPL program is a directed graph

whose nodes are operators and whose arcs

are data paths. Data in DFPL are pure

values, either simple like numbers or com-

pound like arrays or records. There are no

addresses in DFPL, although certain opera-

tors may be programmed to interpret input

values in a manner reminiscent of addresses.

An operator "fires" when its required inputs

are available on its incoming paths. After

a variable amount of time, it sends its

outputs on its outgoing paths. It is not

necessary that all inputs be present before

an operator fires~ it depends on the partic-

ular operator. Similarly, not all outputs

may be produced by a given firing. Synchro-

nous operators fire only when all their

inputs are present, and produce their

outputs all at once, they are analagous to

subroutines. Some operators produce a time

sequence of output values from one input

176

value or conversely, they are analogous to

coroutines. The operators in a DFPL pro-

gram thus operate in parallel with one

another subject only to the availability

of data on the paths.

An operator may either be primitive

or defined. An operator is defined as a

network of other operators which are

connected by data paths such that certain

paths are connected on one end only. These

paths are the parameters of the defined

operator. A defined operator operates as

if its node were replaced by the network

which defines it and the parameter paths

spliced to the paths which were connected

to that node. Thus, recursive operators

may be defined.

Sufficient synchronization signals

are passed with the data on the paths so

that operators do not fire prematurely,

and so that the operation of the program

as a whole is independent of the timings

of the component operators (at least in

basic DFPL, full DFPL allows timing

dependent programs in order to cope with

the real world, but it is not yet possible

to mathematize the semantics). Fortunately ,

the synchronization mechanism is implicit

in the mathematization presented here.

There are six primitive operators

in DFPL shown in Figure i. Of these,

three are simple in their behavior: the

Constant, the Fork and the Primitive

computational function (Pcf). This latter

is really a whole class of opegators in-

cluding the usual arithmetic, logical and

aggregate operators (eg. construct and

select). These three operators all have

the property that they demand all their

inputs to fire, whereupon they produce all

their outputs (the constant is a degenerate

case having no inputs). Furthermore, each

firing is independent of any past history,

that is, the operator is a function from

current input to current output.

The functional equations for the operators

in Figure 1 are thus:

X = C for the Primitive constant,

X = Fx(u,V,W) & Y = Fy(U,V,W)

for the Pcf F,

X = U & Y = U & Z = U for the Fork.

The next most complicated operators

are the Switch operators, also shown in

Figure i. These two operators also have

the property that each firing is indepen-

dent of previous firings, but not all

inputs/outputs are demanded/produced upon

each firing. The Outbound Switch, for

example, demands C and U as inputs for each

firing, but only one of X, Y and Z receives

output. Which one is determined by the

value received on input C. The output

value is just the value of U. The Inbound

Switch operates conversely, only one of the

inputs X, Y and Z is accepted upon firing

(C is demanded), and its value is always

sent out on U.

Since these operators sometimes do not

accept/produce inputs/outputs, we can not

describe their functional behavior by such

simple equations as before (not producing

an output is not the same as producing a

null output). But we can describe their

behavior if we view them as functions from

sequences of inputs to sequences of outputs.

Now the functional equations for both kinds

of Switches are (one origin indexing is

assumed):

U* = Inswitch(C*,X*,Y*,Z*) and

X* = Outswitchx(C*,U*) &

Y* = Outswitchy(C*,U*) &

Z* = Outswitchz(C*,U*) where

X k = U 3. if C 3.=1 & k=#{i~jlCi=l}

YM = Uj if Cj=2 & k=#{i~jlCi=2}

Z k = Uj if Cj=3 & k=#{i~j I Ci=3}

The notation #{i~jICi= q} means the number

of times the length j prefix of C* takes

on the value q.

177

Thus, roughly speaking, the Inbound

Switch merges two or more sequences into

one sequence the same length as the control

sequence. Conversely, the Outbound Switch

splits a data sequence into two or more

sequences dependent on the values in the

control sequence. In all cases, the order

of the input sequence(s) is preserved in

the output sequence(s).

The most complicated primitive opera-

tor is the Loop, shown in Figure 1 also.

The Loop provides the DFPL analog of the

standard, leading test, WHILE loop of

ordinary programming languages. The Loop

operator also has the property that it

does not accept~produce all of its inputs/

outputs each time it fires. Its firing,

however, is a two stage process that

introduces a "phase shift" of one unit

in mapping input sequences to output

sequences, thus allowing construction of

iterative loops and even an analog to

memory or storage in conventional

languages.

The four paths connecting to the Loop

in Figure 1 can be characterized as fol-

lows. X is the initialization value, Y is

the current iteration value, Z is the

feedback value Which becomes current on

the next iteration, and C is the control

value which tells the Loop whether to

stop or take another iteration. Although

other Loops can be imagined, such as one

having a final output value, they can all

be programmed from this minimal Loop plus

the primitives above. The precise func-

tional equation for this Loop is:

Y* = Loop(X*,C*,Z*) where

Y1 = Xl

Yk = Zk-i if Ck_l=l & k>l

Yk = Xj+l if Ck_l=0 & k>l &

j=# {i<k I Ci=0}

Viewed over "time" (the columns), the Loop

operates as follows (the value carried on a

path appears under its name if appropriate).

X 1 X 2

"" Y1 Y2 Y3 "" Y4 Y6

.. =X 1 =Z 1 =Z 2 .. =X 2 =Z 4

• . Z 1 Z 2 Z 3 .. Z 4 Z 5

• . C 1 C 2 C 3 .. C 4 C 5

.. =i =i =0 .. =I =i

Now the first three operators can be

recast as functions from sequences of inputs

to sequences of outputs:

X 1 = C for the Primitive constant

X i = F x (U i , V i , W i) &

Yi = Fy(Ui'Vi'Wi) ¥i for the Pcf F,

X. = U. & Y. = U. & Z. = U. ¥i
1 1 1 1 1 1

for the Fork.

A synchronous operator S is defined as

one whose function is such that Y. = S(X~)
3 3

where X~ = first j elements of X*, ie.
3

there is one output for each input but that

output may depend on past inputs also.

This property of synchronous operators

allows us to avoid the tedium of using a

separate index for the sequence of values on

each data path. All paths in a subnetwork

of synchronous operators may share the same

sequence index since that subnetwork behaves

like a single synchronous operator. In

general, any operator constructed entirely

out of synchronous operators is itself

synchronous and the Fork and all Pcf oper-

ators are synchronous.

All primitive operators are causal in

the sense that an output cannot be affected

by future inputs, that is, once an output

is produced, it cannot be changed. More

precisely, if Y* = F(X*) & X~ = F(X~) &

* = F(X~) & j~i then £~k. YZ

Optimization

One can prove that natural adaptations

of optimization transformations [5] preserve

the functionality of certain DFPL programs.

178

For example, in Figure 2 we see the appli-

cation of common subexpression elimination.

The Before and After program compute the

same function for any operator F.

Referring to the "Before" operator

definition in Figure 2, we see that

X i ' = X'2 & Yi = Y! = Y'' & ¥i: = Xi l i i

Z I. = Z!1 = Z?l by the definition of

the Fork operator. Hence, X* = X'* = X"*,

Y* = Y'* = Y"* and Z* = Z'* = Z"*, so

V* = Fv(X*,Y*,Z*), W* = FW(X*,Y*,Z*) ,

V'* = Fv(X*,Y*,Z*) and W'* = Fw(X*,Y*,Z*).

Therefore, V* = V'* and W* = W'*. By

similar reasoning, in the "After" operator

definition of Figure 2, V* = V'* =

Fv(X*,Y*,Z*) and W* = W'* = Fw(X*,Y*,Z*).

Thus, the two operators are equivalent for

any operator F.

Since Forks have such simple function-

al properties, we will henceforth omit

them as explicit operators in our proofs

and just label all paths connected to a

Fork with the same symbol.

In Figure 3, we see the application

of "hoisting", that is, moving a compu-

tation out of a conditional expression.

The operator F is moved to the front of the

conditional, and the operator G is moved

to the rear. For this optimization to

apply, it is sufficient for F and G to be

simple functions of their inputs (eg.

Pcf's), that is Vi: H i = F(Ai,B i) &

Z!l = G(Li)"

To prove this optimizationi we

shall assume that D and E are synchro-

nous operators and that A, B, C and M

are mutually synchronized input paths

so that we can use the same index for

all of them. If these assumptions were

not valid, the network would hang up.

The proof consists of three parts, first

show that R = R' & S = S', second show

V = V' & W = W' using the obvious result

that U = U' & T = T', and third show

that Z = Z'. We will prove the first part

in fair detail: the second part is obvious

and the third is just like the first.

I. Hj = F(Aj,Bj) by assumption.

2. R~ = Hj if Cj=l & k=#{iSjlCi=l}

by definition of Outswitch.

= .=i & k=#{iSj ICi=l} 3. R~ F(Aj,Bj) if C3

by 1 and 2 above.

4. Pk = Bj if Cj=i & k=#{iSj[Ci=l}

N k = Aj if Cj=i & k=#{i~j l Ci=l}

both by definition of Outswitch.

5. R k = F(Aj,Bj) if Cj=i & k=#{i JICi=l}

by assumption for F and 4 above.

6. R k = R{ QED.
v Similarly, we can prove S k = S k, thus

concluding the first part of the proof

that hoisting preserves the semantics.

The first and third parts of this proof

stand as separate theorems in themselves.

They would not often be used however,

because unbalanced Switch operators (ie.

an Inswitch without an Outswitch or vice-

versa) would rarely be used in programs.

Memor~

The most interesting kind of DFPL

operator is one which behaves like a mem-

ory cell. A trivial kind of memory cell,

which serves as the building block for

fancier ones, is shown in Figure 4. It is

just a holding station, that is, the out-

put is what the input was on the previous

firing. More precisely, it can be shown to

satisfy the following equations:

Y1 = Q & Yi = Xi-i ¥i>i .

The proof is straightforward:

i. W 1 = Q

by definition of the Primitive constant.

2. Y1 = W1 by definition of the Loop.

3. Yk = Xk-i if Zk_l=l

by definition of the Loop operator.

4. Z k = True(X k) = 1 Yk

by definition of the Pcf True.

5. Y1 = Q by 1 and 2 above.

6. Yk = Xk-i Yk>l by 3 and 4 above, QED.

1 79

A fancier memory cell is shown in

Figure 5. When a 0 value is presented on

the control path C, the current contents is

read out on path Y, when a 1 value is pre-

sented on C and a data value is presented

on the input path X, the cell is updated

to contain that new value. The cell has an

initial contents of Q. Viewed over time,

the Mem operator behaves as follows:

C1 C2 C3 C4 c5 c6 c7
=0 =0 =i =0 =i =i =0

Y1 Y2 -- Y3 Y4

=Q =Q .. =R T

.... x 1 . . X 2 x 3 . .

.... =R .. ~S =T ..

The precise formulation of this behavior

may be proved to be:

Y. = Q if vi~j: C.=0
] z

Yj = X k if Cj+k=0 & k=#[i< j+klCi=l}

The proof of this follows:

1. A 1 = Q by definition of Hold.

2. A£ = BZ_ 1 V£>i by definition of Hold.

3. A~ = Yj if C~=0 & j=#{i~£1Ci=0 }

by definition of Outswitch.

4. A£ = Wk if C£=l & k=#{iS£1Ci=l }

by definition of Outswitch.

5. B Z = Yj if C~=0 & j=#{i~£1Ci=0 }

by definition of Inswitch.

6. B£ = Z k if CZ=i & k=#{i~£1Ci=l }

by definition of Inswitch.

7. Z k = X k by definition of ! operator.

8. B£ = B£_ 1 if C£=0

by ~,° 3 and 5 above.

9. A£+ 1 = A£ if C£=0

by 8 and 2 above.

i0. Yj = Q if Vi~j: Ci=0

by induction on i, 3 and 9 above.

ii. Yj = Bj+ k if Cj+k=0 & j=#{i<j+kICi=0}

by 5 above.

12. Bj+ k = Bj+k_ m if ¥0<i_~m: Cj+k_i=0

by induction on 8 above.

13. Yj = Bj+k_ m if [~0<iSm: Cj+k_i=0] &

j=#{i~j+klCi=0} by ii and 12 above.

14. Bj+k_ m = X k if Cj+k~m=l &

k=#{i~j+klCi=l} by 6 and 7 above.

• = X k if C.. =i & [V0 i m. 15 Yj 3 +K-m . Cj+k_i=0]

& j=#{iSj+klCi=0} & k=#{i~j+k~Ci=l }

by 13 and 14 above.

16. Yj = X k if Cj+k=0 & j=#{i~j+klCi=0} &

k=#{i~j+klCi=l} from 15 above, by

simplifying the if condition, making

use of the fact that m is arbitrary

in the range 1 to j+k-l.

17. Yj = X k if Cj+k=0 & k=#{i<j+klCi=l}

from 16 above, since Cj+k=0 &

k=#{iSj+kICi=l} implies that

k=#{i<j+klCi=l} & j=#{i~j+klCi=0 }.

Steps i0 and 17 above are the desired

results for the behavior of the memory cell.

More complicated memories may be

programmed by substituting other operators

for the Fork and ! operators in Figure 4.

For example, by replacing the Fork by a

Dequeue operator, and the i by an Enqueue,

a queue memory results. To program a

random access memory, another input path,

to carry the "address", must be added, as

well as replacing the operators.

Latticework

To make our domains and codomains

of data value sequences into lattices,

we have to define a partial order on them.

Following G. Kahn [6], we say that a

sequence A* is "bigger" than a sequence B*

if and only if B* is a prefix of A*.

The set of sequences (including countably

infinite ones) form a lattice under this

partial order. The "bottom" of this lattice

is the empty sequence. This lattice does

not encompass the Scott notion of value

approximation, that requires further

investigation.

The operator obtained by connecting

the output of the Hold operator to a two

way Fork, connecting one Fork output back

to the Hold input, and making the second

180

Fork output the output parameter of the

defined operator, is the Repeating con-

stant operator. It is characterized by the

equation: X i = Q ~i. That it satisfies

this equation can be proved inductively as

above. Another way of proving it is to use

the lattice fixed-point approach. To do

this, we note that our earlier notion of

causality exactly corresponds to mono-

tonicity in the lattice. We make the fur-

ther assumption of continuity, which cor-

responds to the reasonable assumption that

an operator will produce output after a

finite sequence of inputs or not at all.

Then, referring to our previous description

of the Hold operator as a function which

transforms any input sequence to an output

sequence which is the initial constant

prefixed to that input sequence, we see

that the minimal fixed-point of this func-

tion is the infinite sequence of that

constant value. A more detailed proof of

an almost identical situation appears in

G. Kahn [6].

tems) are inherently non-terminating, and

cannot be reasonable viewed as simple func-

tions from an input to an output.

As it currently stands, DFPL has a

primitive operator which is indeterminate,

or timing dependent, in its operation.

It would be extremely desirable if it

could be characterized as a mathematical

function also. To do this would probably

require redefining the functions to take

datum/time pairs as values, thus compli-

cating the entire system of axioms, theo-

rems and proofs. The theorems of particular

interest in this new system would be those

which show that certain defined operators,

although indeterminate in their internal

operation, are completely determinate when

considered as atomic operators. Then, those

parts of a program which have to be in-

determinate in order to deal with the out-

side world could be so, whereas other parts

of the program could be determinate and

thus simpler to analyze.

DFPL currently does not allow operator

valued data and thus does not require the

existence of Scotts reflexive domains.

In spite of this, DFPL allows iterative

and recursive programs, both in the prac-

tical and mathematical senses. It is hoped

that DFPL can be extended to allow operator

valued data in the near future, and that

this extension can be mathematized with

Scott's techniques.

Conclusions

We have shown that it is possible to

develop a mathematical semantics of DFPL

in terms of functions from sequences of

inputs to sequences of outputs. This

mathematization is not complicated by the

omnipresence of memory, because memory is

local like all other operators, nor by the

presence of control flow, which leads to

"continuations". The necessity for dealing

with input and output sequences is not all

bad: many programs (such as database sys-

This duality of determinate operators

and indeterminate operators suggests the

need for a convenient transformation be-

tween them. If DFPL programs are viewed as

an algebra, then morphisms between such

algebras might be defined. In fact, the

process of compiling one DFPL program into

another (with simpler operators) can be

analyzed as a particular morphism.

Hopefully, the approaches set forth

in this paper will yield a practical

applicability of mathematical semantics to

more realistic programs than heretofore

possible.

References

i. J.B. Dennis, "First Version of a Data

Flow Procedure Language". MIT Project

MAC, Computation Structures Group,

Memo 93 (1973).

181

2. P.R. Kosinski, "A Data Flow Programming

Language", IBM Research Report RC 4264

(March 1973).

3. C.A.R. Hoare, "An Axiomatic Basis for

Computer Programming", Comm ACM 12,

pp 576-583 (October 1969).

4. D. Scott, "Outline of a Mathematical

Theory of Computation", Proceedings of

the Fourth Annual Princeton Conference

o__n Information Sciences and Systems,

pp 169-176 (1970).

5. F.E. Allen and J. Cocke, "A Catalog of

Optimizing Transformations", IBM Research

Report RC 3548 (September 1971).

6. G. Kahn, "A Preliminary Theory for

Parallel Programs", IRIA Laboratory

Report 6 (January 1973).

PRIMITIVE CONSTANT

U

Y
FORK

U

X Y Z
OUTBOUND SWITCH

U V W

x$ SY
PRIMITIVE COMPUTATIONAL FUNCTION

J

LOOP

X Y Z

INBOUND SWITCH

FIGURE 1

182

ff--
I

o c.

, !
I

i--Jr
ILl

I _ _ _ I

E J

°I

!

I

J L~

I I

L _ _ _ I

LI../

:ZD,
L.9

I...I-

r - -

I N

I

i
I

I
I
L_%
I

F-4----
ILl

L.. _ __I

1

I

' I

I
i

b_

I
I

I
i- - - I - - - - -

i,--

L _ _ I

I
I

I

d

I

~D

I,.I_

183

:: ~ J,, mL ,, J

I

I

I

I

I F-

Z

I ' -

I

w ~ Z
O~

I -
W

I..LI

I..I--

i F
c ~

o

f

j I- >-I

× i

I

z
0

IL l

m

I -

Z

I---
Z:)

I - -
..~
0

184

