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Abstract 

A Data Flow program [1,2] is a flow- 

chart like network of operators which 

compute concurrently, dependent only on 

the availability of the data which flow 

along the paths. Each operator has only a 

local effect, transforming input data to 

output data. Although operators may ex- 

hibit memory and thus not be functional 

from an input to an output, all operators 

are functions from input sequences to 

output sequences. This plus the strong 

locality of effect allows mathematization 

of semantics more readily than traditional 

programmzng languages which are burdened 

with omnipresent storage and occasional 

GQTO's. This paper proves the semantic 

behavior of some elementary Data Flow pro- 

grams and proves that certain optimization 

transformations preserve other behaviors. 

Background 

In the past several years, the math- 

ematical specification of programming 

language semantics has been much investi- 

gated. There have been two main lines of 

attack on this problem, the axiomatic ap- 

proach taken by Hoare [3], and the func- 

tional approach taken by Scott [4] and 

Strachey. 

In the axiomatic approach, each 

primitive operation in the programming 

language has assigned to ~t one or more 
1 

axioms which formally specify the effect 

that the operation has upon the state of 

the abstract machine when that operation 

is executed. That is, the axioms describe 

the mathematical relationship between the 

"before" state and the "after" state. A 

sequence of operations have an effect 

which is the composition of the individual 

relations for the component operations. 

Thus, given a program together with a 

putative set of axioms, one can determine 

by theorem proving (manual or automatic) 

whether the program does indeed satisfy 

its axiomatization. Alternatively, one 

can derive a theorem which describes 

the program's behavior. 

In the functional approach, each 

primitive operation is assumed to compute 

a particular function. Thus, a sequence 

of operations computes the function which 

is the composition of the component op- 

erations' functions. If the operations 

are performed repeatedly, as in a WHILE 

loop, the composite function is not so 

easily determined (in the axiomatic ap- 

proach, an inductive proof is needed). 
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Setting up the functional equation corres- 

ponding to the loop, one gets 

F(X) = IF Test(X) THEN F(Body(X)) ELSE X 

where Test is the predicate of the WHILE, 

Body is the function computed by the body 

of the loop, and F is the function com- 

puted by the loop as a whole. This is a 

recursive definition, but it is hard to 

solve because the unknown is the function 

F. Such equations can be solved in certain 

circumstances by means of the Y or fixed 

point operator. Scott's contribution has 

been to show that there exist lattices 

called reflexive domains in which the Y 

operator can always apply to give the 

unique minimal fixedpoint solution of such 

equations, and that such domains adequately 

characterize programming languages. 

This approach can be applied to ap- 

plicative languages with relative ease 

since such languages are based on the idea 

of functions and function composition. 

Unfortunately, applicative languages are 

seldom used for programming, even LISP 

has nonapplicative operators such as the 

GO, SETQ and RPLACD. The effect of such 

operators is to make the functional char- 

acterization of the program depart consid- 

erably from the syntactic structure of the 

program. This occurs for two reasons. 

First, since some operators, such as 

assignment (eg. SETQ or worse, RPLACD) , 

change the state of the whole abstract 

machine, the function corresponding to 

such an operator must transform states 

into states. Then, in order to be com- 

posable, all operators must transform 

states whereas the program is written as 

if most operators transform variables. 

Second, control flow operators (of which 

LISP's GO is a mild example) can cause 

both the conditional and the loop structure 

of the program to become arbitrarily com- 

plicated. Structured Programming, with 

insistence on .a limited disciplined set 

of control operators (IF-THEN-ELSE and 

DO-WHILE) prevents the second problem 

from occurring, that is, one recursive 

equation corresponds to one loop. The first 

problem remains however, since most existing 

languages have state transforming assignment 

operators. 

Data Flow Semantics 

DFPL, a Data Flow Programming Language 

[2], has the basic mathematical simplicity 

of applicative languages without most of 

their drawbacks. Operators in DFPL func- 

tionally transform their inputs to their 

outputs without ever affecting the state of 

the rest of the program. Since there is no 

control flow, there is no GOTO; in spite of 

this, loops may be programmed as well as 

recursion. Most significant though, is the 

fact that unlike ordinary applicative 

languages, programs may exhibit memory 

behavior, that is, the current output may 

depend on past inputs as well as the current 

input. Memory in DFPL is not primitive but 

is programmed like other nonprimitive 

operators. Thus its effects are local like 

those of other operators and it does not 

permeate the semantics of programs. 

A DFPL program is a directed graph 

whose nodes are operators and whose arcs 

are data paths. Data in DFPL are pure 

values, either simple like numbers or com- 

pound like arrays or records. There are no 

addresses in DFPL, although certain opera- 

tors may be programmed to interpret input 

values in a manner reminiscent of addresses. 

An operator "fires" when its required inputs 

are available on its incoming paths. After 

a variable amount of time, it sends its 

outputs on its outgoing paths. It is not 

necessary that all inputs be present before 

an operator fires~ it depends on the partic- 

ular operator. Similarly, not all outputs 

may be produced by a given firing. Synchro- 

nous operators fire only when all their 

inputs are present, and produce their 

outputs all at once, they are analagous to 

subroutines. Some operators produce a time 

sequence of output values from one input 

176 



value or conversely, they are analogous to 

coroutines. The operators in a DFPL pro- 

gram thus operate in parallel with one 

another subject only to the availability 

of data on the paths. 

An operator may either be primitive 

or defined. An operator is defined as a 

network of other operators which are 

connected by data paths such that certain 

paths are connected on one end only. These 

paths are the parameters of the defined 

operator. A defined operator operates as 

if its node were replaced by the network 

which defines it and the parameter paths 

spliced to the paths which were connected 

to that node. Thus, recursive operators 

may be defined. 

Sufficient synchronization signals 

are passed with the data on the paths so 

that operators do not fire prematurely, 

and so that the operation of the program 

as a whole is independent of the timings 

of the component operators (at least in 

basic DFPL, full DFPL allows timing 

dependent programs in order to cope with 

the real world, but it is not yet possible 

to mathematize the semantics). Fortunately , 

the synchronization mechanism is implicit 

in the mathematization presented here. 

There are six primitive operators 

in DFPL shown in Figure i. Of these, 

three are simple in their behavior: the 

Constant, the Fork and the Primitive 

computational function (Pcf). This latter 

is really a whole class of opegators in- 

cluding the usual arithmetic, logical and 

aggregate operators (eg. construct and 

select). These three operators all have 

the property that they demand all their 

inputs to fire, whereupon they produce all 

their outputs (the constant is a degenerate 

case having no inputs). Furthermore, each 

firing is independent of any past history, 

that is, the operator is a function from 

current input to current output. 

The functional equations for the operators 

in Figure 1 are thus: 

X = C for the Primitive constant, 

X = Fx(u,V,W) & Y = Fy(U,V,W) 

for the Pcf F, 

X = U & Y = U & Z = U for the Fork. 

The next most complicated operators 

are the Switch operators, also shown in 

Figure i. These two operators also have 

the property that each firing is indepen- 

dent of previous firings, but not all 

inputs/outputs are demanded/produced upon 

each firing. The Outbound Switch, for 

example, demands C and U as inputs for each 

firing, but only one of X, Y and Z receives 

output. Which one is determined by the 

value received on input C. The output 

value is just the value of U. The Inbound 

Switch operates conversely, only one of the 

inputs X, Y and Z is accepted upon firing 

(C is demanded), and its value is always 

sent out on U. 

Since these operators sometimes do not 

accept/produce inputs/outputs, we can not 

describe their functional behavior by such 

simple equations as before (not producing 

an output is not the same as producing a 

null output). But we can describe their 

behavior if we view them as functions from 

sequences of inputs to sequences of outputs. 

Now the functional equations for both kinds 

of Switches are (one origin indexing is 

assumed): 

U* = Inswitch(C*,X*,Y*,Z*) and 

X* = Outswitchx(C*,U*) & 

Y* = Outswitchy(C*,U*) & 

Z* = Outswitchz(C*,U*) where 

X k = U 3. if C 3.=1 & k=#{i~jlCi=l} 

YM = Uj if Cj=2 & k=#{i~jlCi=2} 

Z k = Uj if Cj=3 & k=#{i~j I Ci=3} 

The notation #{i~jICi= q} means the number 

of times the length j prefix of C* takes 

on the value q. 
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Thus, roughly speaking, the Inbound 

Switch merges two or more sequences into 

one sequence the same length as the control 

sequence. Conversely, the Outbound Switch 

splits a data sequence into two or more 

sequences dependent on the values in the 

control sequence. In all cases, the order 

of the input sequence(s) is preserved in 

the output sequence(s). 

The most complicated primitive opera- 

tor is the Loop, shown in Figure 1 also. 

The Loop provides the DFPL analog of the 

standard, leading test, WHILE loop of 

ordinary programming languages. The Loop 

operator also has the property that it 

does not accept~produce all of its inputs/ 

outputs each time it fires. Its firing, 

however, is a two stage process that 

introduces a "phase shift" of one unit 

in mapping input sequences to output 

sequences, thus allowing construction of 

iterative loops and even an analog to 

memory or storage in conventional 

languages. 

The four paths connecting to the Loop 

in Figure 1 can be characterized as fol- 

lows. X is the initialization value, Y is 

the current iteration value, Z is the 

feedback value Which becomes current on 

the next iteration, and C is the control 

value which tells the Loop whether to 

stop or take another iteration. Although 

other Loops can be imagined, such as one 

having a final output value, they can all 

be programmed from this minimal Loop plus 

the primitives above. The precise func- 

tional equation for this Loop is: 

Y* = Loop(X*,C*,Z*) where 

Y1 = Xl 

Yk = Zk-i if Ck_l=l & k>l 

Yk = Xj+l if Ck_l=0 & k>l & 

j=# {i<k I Ci=0} 

Viewed over "time" (the columns), the Loop 

operates as follows (the value carried on a 

path appears under its name if appropriate). 

X 1 . . . . . .  X 2 .... 

"" Y1 Y2 Y3 "" Y4 Y6 

.. =X 1 =Z 1 =Z 2 .. =X 2 =Z 4 

• . Z 1 Z 2 Z 3 .. Z 4 Z 5 

• . C 1 C 2 C 3 .. C 4 C 5 

.. =i =i =0 .. =I =i 

Now the first three operators can be 

recast as functions from sequences of inputs 

to sequences of outputs: 

X 1 = C for the Primitive constant 

X i = F x ( U i , V i , W i )  & 

Yi = Fy(Ui'Vi'Wi) ¥i for the Pcf F, 

X. = U. & Y. = U. & Z. = U. ¥i 
1 1 1 1 1 1 

for the Fork. 

A synchronous operator S is defined as 

one whose function is such that Y. = S(X~) 
3 3 

where X~ = first j elements of X*, ie. 
3 

there is one output for each input but that 

output may depend on past inputs also. 

This property of synchronous operators 

allows us to avoid the tedium of using a 

separate index for the sequence of values on 

each data path. All paths in a subnetwork 

of synchronous operators may share the same 

sequence index since that subnetwork behaves 

like a single synchronous operator. In 

general, any operator constructed entirely 

out of synchronous operators is itself 

synchronous and the Fork and all Pcf oper- 

ators are synchronous. 

All primitive operators are causal in 

the sense that an output cannot be affected 

by future inputs, that is, once an output 

is produced, it cannot be changed. More 

precisely, if Y* = F(X*) & X~ = F(X~) & 

* = F(X~) & j~i then £~k. YZ 

Optimization 

One can prove that natural adaptations 

of optimization transformations [5] preserve 

the functionality of certain DFPL programs. 
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For example, in Figure 2 we see the appli- 

cation of common subexpression elimination. 

The Before and After program compute the 

same function for any operator F. 

Referring to the "Before" operator 

definition in Figure 2, we see that 

X i ' = X'2 & Yi = Y! = Y'' & ¥i: = Xi l i i 

Z I. = Z!1 = Z?l by the definition of 

the Fork operator. Hence, X* = X'* = X"*, 

Y* = Y'* = Y"* and Z* = Z'* = Z"*, so 

V* = Fv(X*,Y*,Z*), W* = FW(X*,Y*,Z*) , 

V'* = Fv(X*,Y*,Z*) and W'* = Fw(X*,Y*,Z*). 

Therefore, V* = V'* and W* = W'*. By 

similar reasoning, in the "After" operator 

definition of Figure 2, V* = V'* = 

Fv(X*,Y*,Z*) and W* = W'* = Fw(X*,Y*,Z*). 

Thus, the two operators are equivalent for 

any operator F. 

Since Forks have such simple function- 

al properties, we will henceforth omit 

them as explicit operators in our proofs 

and just label all paths connected to a 

Fork with the same symbol. 

In Figure 3, we see the application 

of "hoisting", that is, moving a compu- 

tation out of a conditional expression. 

The operator F is moved to the front of the 

conditional, and the operator G is moved 

to the rear. For this optimization to 

apply, it is sufficient for F and G to be 

simple functions of their inputs (eg. 

Pcf's), that is Vi: H i = F(Ai,B i) & 

Z!l = G(Li)" 

To prove this optimizationi we 

shall assume that D and E are synchro- 

nous operators and that A, B, C and M 

are mutually synchronized input paths 

so that we can use the same index for 

all of them. If these assumptions were 

not valid, the network would hang up. 

The proof consists of three parts, first 

show that R = R' & S = S', second show 

V = V' & W = W' using the obvious result 

that U = U' & T = T', and third show 

that Z = Z'. We will prove the first part 

in fair detail: the second part is obvious 

and the third is just like the first. 

I. Hj = F(Aj,Bj) by assumption. 

2. R~ = Hj if Cj=l & k=#{iSjlCi=l} 

by definition of Outswitch. 

= .=i & k=#{iSj ICi=l} 3. R~ F(Aj,Bj) if C3 

by 1 and 2 above. 

4. Pk = Bj if Cj=i & k=#{iSj[Ci=l} 

N k = Aj if Cj=i & k=#{i~j l Ci=l} 

both by definition of Outswitch. 

5. R k = F(Aj,Bj) if Cj=i & k=#{i JICi=l} 

by assumption for F and 4 above. 

6. R k = R{ QED. 
v Similarly, we can prove S k = S k, thus 

concluding the first part of the proof 

that hoisting preserves the semantics. 

The first and third parts of this proof 

stand as separate theorems in themselves. 

They would not often be used however, 

because unbalanced Switch operators (ie. 

an Inswitch without an Outswitch or vice- 

versa) would rarely be used in programs. 

Memor~ 

The most interesting kind of DFPL 

operator is one which behaves like a mem- 

ory cell. A trivial kind of memory cell, 

which serves as the building block for 

fancier ones, is shown in Figure 4. It is 

just a holding station, that is, the out- 

put is what the input was on the previous 

firing. More precisely, it can be shown to 

satisfy the following equations: 

Y1 = Q & Yi = Xi-i ¥i>i . 

The proof is straightforward: 

i. W 1 = Q 

by definition of the Primitive constant. 

2. Y1 = W1 by definition of the Loop. 

3. Yk = Xk-i if Zk_l=l 

by definition of the Loop operator. 

4. Z k = True(X k) = 1 Yk 

by definition of the Pcf True. 

5. Y1 = Q by 1 and 2 above. 

6. Yk = Xk-i Yk>l by 3 and 4 above, QED. 
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A fancier memory cell is shown in 

Figure 5. When a 0 value is presented on 

the control path C, the current contents is 

read out on path Y, when a 1 value is pre- 

sented on C and a data value is presented 

on the input path X, the cell is updated 

to contain that new value. The cell has an 

initial contents of Q. Viewed over time, 

the Mem operator behaves as follows: 

C1 C2 C3 C4 c5 c6 c7 
=0 =0 =i =0 =i =i =0 

Y1 Y2 -- Y3 .... Y4 

=Q =Q .. =R ..... T 

.... x 1 . .  X 2 x 3 . .  

.... =R .. ~S =T .. 

The precise formulation of this behavior 

may be proved to be: 

Y. = Q if vi~j: C.=0 
] z 

Yj = X k if Cj+k=0 & k=#[i< j+klCi=l} 

The proof of this follows: 

1. A 1 = Q by definition of Hold. 

2. A£ = BZ_ 1 V£>i by definition of Hold. 

3. A~ = Yj if C~=0 & j=#{i~£1Ci=0 } 

by definition of Outswitch. 

4. A£ = Wk if C£=l & k=#{iS£1Ci=l } 

by definition of Outswitch. 

5. B Z = Yj if C~=0 & j=#{i~£1Ci=0 } 

by definition of Inswitch. 

6. B£ = Z k if CZ=i & k=#{i~£1Ci=l } 

by definition of Inswitch. 

7. Z k = X k by definition of ! operator. 

8. B£ = B£_ 1 if C£=0 

by ~,° 3 and 5 above. 

9. A£+ 1 = A£ if C£=0 

by 8 and 2 above. 

i0. Yj = Q if Vi~j: Ci=0 

by induction on i, 3 and 9 above. 

ii. Yj = Bj+ k if Cj+k=0 & j=#{i<j+kICi=0} 

by 5 above. 

12. Bj+ k = Bj+k_ m if ¥0<i_~m: Cj+k_i=0 

by induction on 8 above. 

13. Yj = Bj+k_ m if [~0<iSm: Cj+k_i=0 ] & 

j=#{i~j+klCi=0} by ii and 12 above. 

14. Bj+k_ m = X k if Cj+k~m=l & 

k=#{i~j+klCi=l} by 6 and 7 above. 

• = X k if C.. =i & [V0 i m. 15 Yj 3 +K-m . Cj+k_i=0] 

& j=#{iSj+klCi=0} & k=#{i~j+k~Ci=l } 

by 13 and 14 above. 

16. Yj = X k if Cj+k=0 & j=#{i~j+klCi=0} & 

k=#{i~j+klCi=l} from 15 above, by 

simplifying the if condition, making 

use of the fact that m is arbitrary 

in the range 1 to j+k-l. 

17. Yj = X k if Cj+k=0 & k=#{i<j+klCi=l} 

from 16 above, since Cj+k=0 & 

k=#{iSj+kICi=l} implies that 

k=#{i<j+klCi=l} & j=#{i~j+klCi=0 }. 

Steps i0 and 17 above are the desired 

results for the behavior of the memory cell. 

More complicated memories may be 

programmed by substituting other operators 

for the Fork and ! operators in Figure 4. 

For example, by replacing the Fork by a 

Dequeue operator, and the i by an Enqueue, 

a queue memory results. To program a 

random access memory, another input path, 

to carry the "address", must be added, as 

well as replacing the operators. 

Latticework 

To make our domains and codomains 

of data value sequences into lattices, 

we have to define a partial order on them. 

Following G. Kahn [6], we say that a 

sequence A* is "bigger" than a sequence B* 

if and only if B* is a prefix of A*. 

The set of sequences (including countably 

infinite ones) form a lattice under this 

partial order. The "bottom" of this lattice 

is the empty sequence. This lattice does 

not encompass the Scott notion of value 

approximation, that requires further 

investigation. 

The operator obtained by connecting 

the output of the Hold operator to a two 

way Fork, connecting one Fork output back 

to the Hold input, and making the second 
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Fork output the output parameter of the 

defined operator, is the Repeating con- 

stant operator. It is characterized by the 

equation: X i = Q ~i. That it satisfies 

this equation can be proved inductively as 

above. Another way of proving it is to use 

the lattice fixed-point approach. To do 

this, we note that our earlier notion of 

causality exactly corresponds to mono- 

tonicity in the lattice. We make the fur- 

ther assumption of continuity, which cor- 

responds to the reasonable assumption that 

an operator will produce output after a 

finite sequence of inputs or not at all. 

Then, referring to our previous description 

of the Hold operator as a function which 

transforms any input sequence to an output 

sequence which is the initial constant 

prefixed to that input sequence, we see 

that the minimal fixed-point of this func- 

tion is the infinite sequence of that 

constant value. A more detailed proof of 

an almost identical situation appears in 

G. Kahn [6]. 

tems) are inherently non-terminating, and 

cannot be reasonable viewed as simple func- 

tions from an input to an output. 

As it currently stands, DFPL has a 

primitive operator which is indeterminate, 

or timing dependent, in its operation. 

It would be extremely desirable if it 

could be characterized as a mathematical 

function also. To do this would probably 

require redefining the functions to take 

datum/time pairs as values, thus compli- 

cating the entire system of axioms, theo- 

rems and proofs. The theorems of particular 

interest in this new system would be those 

which show that certain defined operators, 

although indeterminate in their internal 

operation, are completely determinate when 

considered as atomic operators. Then, those 

parts of a program which have to be in- 

determinate in order to deal with the out- 

side world could be so, whereas other parts 

of the program could be determinate and 

thus simpler to analyze. 

DFPL currently does not allow operator 

valued data and thus does not require the 

existence of Scotts reflexive domains. 

In spite of this, DFPL allows iterative 

and recursive programs, both in the prac- 

tical and mathematical senses. It is hoped 

that DFPL can be extended to allow operator 

valued data in the near future, and that 

this extension can be mathematized with 

Scott's techniques. 

Conclusions 

We have shown that it is possible to 

develop a mathematical semantics of DFPL 

in terms of functions from sequences of 

inputs to sequences of outputs. This 

mathematization is not complicated by the 

omnipresence of memory, because memory is 

local like all other operators, nor by the 

presence of control flow, which leads to 

"continuations". The necessity for dealing 

with input and output sequences is not all 

bad: many programs (such as database sys- 

This duality of determinate operators 

and indeterminate operators suggests the 

need for a convenient transformation be- 

tween them. If DFPL programs are viewed as 

an algebra, then morphisms between such 

algebras might be defined. In fact, the 

process of compiling one DFPL program into 

another (with simpler operators) can be 

analyzed as a particular morphism. 

Hopefully, the approaches set forth 

in this paper will yield a practical 

applicability of mathematical semantics to 

more realistic programs than heretofore 

possible. 
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