
Translating Flowcharts to Non-Deterministic Languages

Surinder Kumar Jain
School of Information Technologies,

University of Sydney, NSW, Australia
sjai8466@uni.sydney.edu.au

Chenyi Zhang
School of ITEE, University of

Queensland, Brisbane, QLD, Australia
chenyi@uq.edu.au

Bernhard Scholz
School of Information Technologies,

University of Sydney, NSW, Australia
scholz@it.usyd.edu.au

Abstract
Modeling languages are used to verify software and can be clas-
sified into deterministic modeling languages and non-deterministic
modeling languages. Deterministic modeling languages have a sin-
gle thread of control whereas non-deterministic ones have a multi-
tude of threads of control and are more amenable for program trans-
formations and analyses. However, deterministic languages such as
control-flow graphs are pre-dominantly used in programming lan-
guage tools.

In this work, we translate programs in a deterministic flowchart
language to a non-deterministic algebraic modelling language. For
the translation, we employ the technique of converting a finite state
automata to a regular expression. The states of the finite state au-
tomata represent states in the control-flow graph, and the edges rep-
resent the edges in the control-flowgraph. We construct a homomor-
phism to show that the translation is sound, i.e., we prove that the
semantics of the program in the deterministic flowchart language
is preserved in the translation. Experiments on our implemented
algorithm are conducted on the SPEC benchmark suite.

Categories and Subject Descriptors F3.2 [Logic and Meanings
of Programs]: Program Analysis

General Terms Languages, Theory, Verification

Keywords Non-deterministic language, Program transformations,
Modelling

1. Introduction
Tools to assist the software development process are crucial to re-
duce the amount of time needed to design, implement and debug
software. A lot of attention has been given to techniques such as
model checking [2] to check properties of software [3]. Gulwani et
al. [10] introduced a non-deterministic language that enables loop-
refinement transformations for improving the detection of runtime
complexity classes automatically. The introduced loop-refinement
technique in [10] employs techniques such as lookahead widen-
ing [9], and improves the precision on estimating the termination
and bounds of multi-path loops, achieving better results than many
other existing techniques. The technique for detecting complexity
classes by Gulwani et al. [10] may be extended to other program
analysis problems such as invariant detection and safety checking.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’12, January 23–24, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1118-2/12/01. . . $10.00

1: y := 1; 9: . . .
2: if x <= φ; 10: if x > φ;
3: . . . 11: . . .
4: y := −y; 12: else
5: . . . 13: . . .
6: else 14: y := −y;
7: . . . 15: . . .
8: /* cf. next column */ 16:

Figure 1. A sketching example, where φ is an expression

Consider the example in Figure 1. For this example, we assume
there are no other side effects on the value of y than the three ex-
isting assignments given in the figure. Under this assumption, vari-
able y can only have value 1. However, classical data flow analysis
(i.e., MOP) will conservatively assert that y’s value is in {−1, 1}.
A better precision can be achieved by defining a more expressive
abstract domain (eg. trace partitionings which interpret a system
as a set of traces guarded by a sequence of branching conditions
that are chosen in history [11, 19]). Such approaches elaborate on
the level of abstractions of deterministic programs. The technique
of [10] flattens the above code into a nondeterministic program of
the following form.

y := 1; choose(
assume(x <= φ). . .y := −y. . . assume(x > φ). . . ,
assume(x <= φ). . .y := −y. . . assume(x <= φ). . .

. . .y := −y. . . ,
assume(x > φ). . . assume(x > φ). . . ,
assume(x > φ). . . assume(x <= φ). . .y := −y. . . ,

)

In the resulting program, after the first assignment y := 1, the exe-
cution nondeterministically proceeds on four distinct paths, and the
control dependency is made explicit inside each path. A straight-
forward analysis is able to identify that the first path and the last
path are infeasible in the above representation, revealing y as a
constant. In general, this solution first translates a deterministic
program into a semantically equivalent nondeterministic program,
which proceeds on several branches at the same time and may have
a multitude of program states at a program point, and if a point is
not reachable, the set of program states at this point will be empty.
Such an approach derives modelling templates from programs,
from which various program analyses such as exploring feasible
paths, computing loop complexity and invariant detection may be
applied, via symbolic execution, constraints solving, model check-
ing or other related techniques. Over all, this technique presents a
straightforward structure for program analysis, and moreover, al-
lows the algebraic reasoning of translated arbitrary (i.e., even irre-
ducible) flow graphs.

155

Deterministic flowchart languages are commonly found in pro-
gramming language tools and compilers as intermediate representa-
tions [1, 6, 14]. Flowchart programs have an execution control-flow
and a unique program state that changes as control-flow traverses
from one program node to the next. Deterministic semantics of a
flowchart language either produces a single program state as a final
result of the computation or does not terminate.

The translation of a flowchart language to a structured imper-
ative program may be performed by a naı̈ve translation template
that encodes the current state in a program variable. A simple loop
transits from one state in the flowchart to the next until the end
state is reached and the loop terminates. This translation template
may be converted to a non-deterministic program using translation
rules as outlined in [10]. However, this translation template and
the subsequent translation to a non-deterministic language converts
control dependencies to data dependencies, which will hamper the
loop-refinement techniques [10] and other non-deterministic trans-
formations that rely on control-flow.

The contributions of our work is in providing a translation
technique that translates a flowchart program to Gulwani et al.’s
non-deterministic language by preserving control-flow dependen-
cies. The technique adopts the notion of Tarjan’s path homomor-
phism [21], i.e., the flowchart is interpreted as a deterministic fi-
nite state automaton with the edges as an alphabet. The regular ex-
pression of the finite state automaton is constructed and mapped
to Gulwani et al.’s non-deterministic language. In this paper we
illustrate the technique by a motivating example and provide the
correctness proofs for the translation. There is a notably rich litera-
ture on graph transformation techniques on flowcharts, as discussed
in [5, 16]. Some earlier literature also discusses ways of removing
goto statements to tidy up legacy programs [4, 17]. Our work aims
to provide a generic approach, which first assigns an irreducible
flowchart with a well-organised structure, and then further reduce
it into a nondeterministic program. The translated nondeterminis-
tic program can be proved to preserve the semantics of the original
flowchart.

Due to the inherent complexity bound in the translation from
finite automata to regular expressions, the generated nondetermin-
istic programs may have the size exponential to the input flowchart
programs, if we are to put them down explicitly. However, a com-
pact representation can be used to circumvent this problem, so that
in practice, storing the resulting nondeterministic program only re-
quires comparable space usage to the input flowchart. Moreover,
such a representation handles function calls in an inter-procedure
analysis well. We refer to Section 5 for more details.

The paper is structured as follows. In Section 2 we intro-
duce a deterministic flowchart language called DFL and a non-
deterministic language called NDL. In Section 3 we motivate why
a more complex translation from DFL to NDL is necessary rather
than using a naı̈ve translation. In Section 4 we introduce the formal
framework of the translation and justify its correctness. Experi-
mental results are presented in Section 5, and in Section 6 we draw
our conclusion.

2. Background
This section introduces basic notions that are used in the tech-
nical part. We present syntax and semantics of the Determinis-
tic Flow Language (DFL), and the (simplified) Non-Deterministic
Language (NDL).

Let Var be a domain of variables of a program in either DFL or
NDL, and Z a set of integer values that a variable x ∈ Var may
have. To manipulate values of variables, we assume a set BINOP
of binary operators of type Z × Z → Z, and a set UNOP of unary
operators of type Z→ Z. For both languages, we define two types
of building blocks to construct the languages, i.e., expressions and

SStmt −→ skip
SStmt −→ x:=Expr

Expr −→ Expr1 ⊕ Expr2
Expr −→ 	Expr1
Expr −→ x
Expr −→ a

where 	 ∈ UNOP, ⊕ ∈ BINOP, x ∈ Var and a ∈ Z.

Figure 2. Building Blocks of DFL and NDL

E : EXPR→ Σ→ Z

E [[Expr1 ⊕ Expr2]](σ) = E [[Expr1]](σ)⊕ E [[Expr2]](σ)
E [[Expr]](σ) = 	E [[Expr]](σ)
E [[x]](σ) = σ(x)
E [[a]](σ) = a

where 	 ∈ UNOP, ⊕ ∈ BINOP, x ∈ Var and a ∈ Z.

Figure 3. Semantics of Expressions

statements. Let EXPR and SSTMT be the smallest sets that are
defined in Figure 2 as the set of expressions and the set of sim-
ple statements. An expression is a composition of unary operators,
binary operators, integer numbers, and variables. A simple state-
ment is either “skip” denoting that no variable changes its value or
“x:=Expr” denoting that variable x ∈ Var changes its values to an
element of Z computed by Expr.

Deterministic Flow Language: We define a flowchart language,
which we call deterministic flow language (DFL), and its opera-
tional semantics. DFL is a dynamic discrete system [8, 18] that
consists of states and a transition relation on states. The states
and the transition relation is represented as a flowgraph G =
(Nodes,Edges, n0, nx) where Nodes is a set of nodes, Edges ⊆
Nodes × Nodes a set of edges, n0 ∈ Nodes a distinguished
start node, and nx ∈ Nodes a distinguished exit node. For an
edge e = (n, n′) ∈ Edges we say n is the source of e, writ-
ten as src(e), and n′ is the destination of e, written as dst(e).
A DFL program P is a tuple P = (G,Var, bp, eff), where G is
the flowgraph of program P , Var is the set of variables of pro-
gram P , bp : Edges → EXPR the branch predicates of Edges ,
and eff : Edges → SSTMT the side effects of Edges .

An edge (n, n′) ∈ Edges indicates a possible transfer of con-
trol from n to n′. Associated to an edge is a branch predicate
bp(n, n′) that governs the traversal of the edge, i.e., (n, n′) is en-
abled only if bp(n, n′) is evaluated true. After a transition, an edge
may change the values of variables by the side effect eff (n, n′).
The function eff either maps an edge to a skip statement denoting
that there are no effects or an assignment x:=Expr which changes
the value of variable x. Note that a control flowgraph (CFG) [1] has
the side effects defined on nodes rather than edges. A straightfor-
ward flowgraph translation converts a CFG to a DFL program by
pushing statements in nodes onto their incoming edges as side ef-
fects and controlling structure onto their outgoing edges as branch
predicates.

We define an operational semantics for DFL by assigning each
edge a transition rule. Let Σ be the set of configurations of type
Var → Z, and we use symbols such as σ, σ′ for configurations
in Σ. Informally, a configuration is a snapshot during an execution
of a program P that maps each variable to a unique value in Z.

156

The transition rules rely on an interpretation [[.]] : SSTMT →
Σ → Σ for simple statements, such that [[skip]](σ) = σ and
[[x:=Expr]](σ) = σx←E[[Expr]](σ) where σx←v is a configuration
identical to σ except that the valuation on x is now v. We interpret
Expr by means of denotational semantics as shown in Figure 3 so
that E [[Expr]] can be evaluated as a unique value by configuration σ.

A branch predicate acts as a guard for a transition to be taken at
an edge e ∈ Edges , i.e.,

σ(bp(e)) 6= 0

σ
e→ [[eff (e)]](σ)

. (1)

where boolean values of predicates are 0 if false and not equal to
zero otherwise. We use σ e→ σ′ to represent that configuration σ is
transformed into σ′ when the flow goes from src(e) to dst(e).

A program P in DFL has to be well-formed such that for a
given node n ∈ Nodes \ {nx} and a configuration σ ∈ Σ,
exactly one transition in the set of possible transitions for n can
be taken. This condition naturally corresponds to the if-then-else
(or if-goto) structure which is commonly used in the programming
languages, i.e., given an arbitrary program state, either the if branch
or the else branch is to be taken. Without loss of generality, we
assume that nx is the only node without outgoing edges, since
if there exists another n ∈ Nodes that has no outgoing edges,
we add an additional edge e = (n, nx) ∈ Edges with bp(e)
evaluated to constant 1 and eff (e) = skip. A program terminates
with configuration σ if it reaches nx with σ. Programs do not
necessarily terminate, in which case it passes through infinitely
many edges (possibly by repeating cycles) after starting with an
initial configuration.

A path π is a sequence of consecutive edges e1e2 . . . satisfying
dst(ei) = src(ei+1) for all i, and the set of all paths in G is
denoted by Π. If π is a finite sequence of edges with the last
edge ek, we say it is a path from src(e1) to dst(ek). The set of
all paths from node n to node n′ is denoted by Path(n, n′) =
{e1e2 . . . ek ∈ Π | src(e1) = n, dst(ek) = n′}. W.l.o.g, we
assume every node in a flowgraph is reachable from n0, i.e., there
exists a path e0e1 . . . ek such that src(e0) = n0 and dst(ek) = n
for all n ∈ Nodes . An execution of P with an initial configuration
σ0 is a sequence of transitions σ0

e1→ σ1
e2→ σ2 . . . where e1e2 . . .

is a path in G, and σi
ei+1→ σi+1 is semantically derivable (i.e., by

rule (1)) for all i ≥ 0. Note that an execution can have either an
infinite or a finite sequence of edges. If a execution σ0

e1→ σ1
e2→

σ2 . . .
ek→ σk is finite, then naturally we have dst(ek) = nx, and

σk can be seen as the output of program P . In this case we also
write σ0

e1...ek−→ σk.

Non-Deterministic Language: In this work, we use a variation of
NDL introduced in [10] as shown in Figure 4. Programs in NDL use
simple statements and more complex program constructs including
choose, repeat, assume, and an sequential composition operator
“;”.

Non-determinism in NDL is modelled as a set of configura-
tions C ∈ P(Σ), which we refer to as a context. The denota-
tional semantic function S[[Stmt]](C) translates context C ∈ P(Σ)
to a new context. In abuse of notation we write S[[Stmt]](σ) for

Stmt −→ choose(Stmt,Stmt)
Stmt −→ repeat(Stmt)
Stmt −→ assume(Expr)
Stmt −→ Stmt;Stmt
Stmt −→ SStmt

Figure 4. NDL Syntax

S : STMT ∪ SSTMT→ P(Σ)→ P(Σ)

S[[choose(Stmt1,Stmt2)]](C)= S[[Stmt1]](C) ∪ S[[Stmt2]](C)
S[[repeat(Stmt)]](C) =

⋃
i≥0 S[[Stmti]](C)

S[[assume(Expr)]](C) = {σ ∈ C | E [[Expr]](σ) 6= 0}
S[[Stmt1;Stmt2]](C) = S[[Stmt2]](S[[Stmt1]](C))
S[[skip]](C) = C
S[[x:=Expr]](C) =

⋃
σ∈C{σx←E[[Expr]](σ)}

where x ∈ Var and Stmti ≡ Stmt; . . . ;Stmt︸ ︷︷ ︸
i times

for i > 0;
Stmt0 ≡ skip.

Figure 5. Semantics of NDL

state:=s1;
while state<>sx do
switch state do

...
case si:
if bp(si, sj1) do

eff (si, sj1);
state:=sj1

elif bp(si, sj2) do
eff (si, sj2);
state:=sj2

...
elif bp(si, sjk) do

eff (si, sjk)
state:=sjk

end

...
end

end

state:=s1;
repeat(
choose(

...
assume(state=si);
choose(
assume(bp(si,sj1));
eff (si, sj1);
state:=sj1,
assume(bp(si,sj2));
eff (si, sj2);
state:=sj2,
...
assume(bp(si,sjk));
eff (si, sjk);
state:=sjk),

...
));
assume(state=sx)

(a) State Automata (b) State Automata in NDL

Figure 6. Naı̈ve Translation Template.

S[[Stmt]]({σ}) in case of a singleton context {σ}. Note that C may
contain possibly infinite system configurations in the presence of
repeat statements.

Semantic function S[[.]] is of type STMT → P(Σ) → P(Σ) as
shown in Figure 5. The semantics of the statements choose, repeat
and assume are typically nondeterministic, which is in contrast
to while and if-then-else statements of imperative languages [15,
Chapter 11]. Intuitively, statements choose and repeat increase
nondeterminism, by potentially adding more configurations into the
result of their translations, whilst statement assume prunes them.

3. Motivation
Most programming language tools such as compilers and parser
frameworks use flowchart languages as intermediate representa-
tions, e.g., LLVM [14], whereas techniques such as Gulwani [10]
employ a non-deterministic language that consists of structural ele-
ments such as repeat, choose, sequence, assume, assignment and
skip. To translate a flowchart program to an NDL program, a naı̈ve
translation could be applied. The translation technique follows the
coding templates that implements finite state automata [22] in an
imperative programming language. In such a code template, a vari-
able keeps track of the current state of the finite state automaton. A
program is constructed in the way that sets the state variable to the

157

s1

s2

s3

s4

s6

s5

i = 0

j = 0

j < 100
j = j + 1

0 ≤ j ≤ 99

¬(0 ≤ j ≤ 99)
i = i+ 1

(a) A DFL Program

state:=1;
repeat(
choose(
assume(state=1);i:=0;state:=2,
assume(state=2);j:=0;state:=3,
assume(state=3);assume(j<100);
j=j+1;state:=4,

assume(state=4);choose(
assume(0≤j≤99);state:=6,
assume(¬(0≤j≤99));i:=i+1;
state:=5),

assume(state=5);state:=6,
assume(state=6);state:=3

)
)

(b) Naı̈ve Translation

i:=0;
j:=0;
repeat(
assume(j < 100);
j:=j+1;
choose(
assume(¬ 0≤ j ≤ 99),
assume(0≤ j ≤ 99);i:=i+1

)
)

(c) Our Translation Technique

Figure 7. A Motivating Example

initial state of the automaton and continues to execute a loop. Inside
the loop, the state variable chooses a code-block that is associated
to the current state. This code-block transits to a new state by as-
signing the state variable a new state. The transition to a new state
involves a sequence of checking on the branch predicates, and in
case that a predicate evaluates true, the program updates the value
of the corresponding program variable as well as the state variable.
The loop is executed until the end state is reached or no predicates
are satisfied in a certain state.

With the naı̈ve translation technique control-flow dependencies
are transformed to data-dependencies and techniques such as loop-
refinement of Gulwani [10] will have limited success. To overcome
the issues of the naı̈ve translation from DFL to NDL, we introduce
a new translation that simulates the techniques of dataflow analy-
sis [13, 21]. However, instead of using dataflow analysis as a frame-
work for gathering information about a flowchart program, we use
it as a technique to translate DFL programs to NDL programs.

The naı̈ve template for translating DFL to NDL is given in Fig-
ure 6(a) and (b). Figure 6(a) gives the implementation of the au-
tomaton in a simple imperative language without goto statements.
This template can be translated to an NDL program following the
transformation rules as outlined in [10]. The translation to NDL is
given in Figure 6(b). The NDL program consists of an assignment
that assigns the start state to the state variable and is followed by
a repeat statement. Inside the repeat statement we have a choose
statement that non-deterministically executes the statements inside.
For each state we have an assume statement that filters all config-
urations whose value of the state variable equals the corresponding
state. The assume statement is followed by a choose statement that
non-deterministically branches to a new state. The configurations
are then filtered by the branch-predicate and the side-effect is per-
formed.

The example in Figure 7 illustrates the translation from DFL to
NDL based on our technique. The example has node s1 that is the
start node and has node s3 as an end node. Instead of using the
code template of Figure 6 (which flattens the input program to a

single loop), we develop a new translation technique which does
not eliminate the control-flow of the DFL program, as shown in
Figure 7(c).

The new translation technique simulates Kildall’s monotone
data-flow analysis framework [13] and Tarjan’s path homomor-
phism [21] in the concrete semantic domain. By interpreting path
expressions [21] as regular expressions over the set of edges in a
flowgraph, we generate path expressions for DFL programs, which
are later translated into NDL programs. Kleene stars ∗ are intro-
duced to simulate loops, and such an operator has a natural corre-
spondence to the repeat structure of the NDL language.

4. Translating DFL to NDL
We introduce a transformation that maps programs in DFL to NDL.
Starting from the graph-based operational semantics as presented in
Section 2, we further derive a denotational interpretation for each
node in a flowgraph for DFL. We start with its concrete semantics
of DFL, and then on the syntactic level we treat the set of edges in
a flowgraph as a finite alphabet, upon which a regular language is
defined by the flowgraph in the form of finite automata. We then ap-
ply a standard algorithm to produce a path expression from the DFL
program. Such a path expression is then naturally interpreted as an
NDL program. We show that the semantics of the original DFL
programs are preserved throughout the translation. In theory the re-
sulting path expressions can be exponential in size to the DFL pro-
grams, however they can always be stored in space polynomial to
DFL programs by reusing subexpressions, and thus concisely rep-
resented. As the real world programs usually have sparse branching
structures, we are able to justify that our translation does not usu-
ally blow up the space usage in practice, by the experimental results
shown in Section 5.

4.1 A Flow Semantics for DFL
Taking an initial configuration σ0 in a DFL GD , an execution can
be uniquely determined. Recall that such an execution can be either

158

an infinite sequence σ0
e1→ σ1

e2→ σ2 . . ., or a finite sequence
σ0

e1→ σ1
e2→ σ2 . . .

ek→ σk with the final configuration σk stopping
at node dst(ek) = nx. Prefixes of such an execution can be used
to define intermediate values at each node in a flowgraph. We let
[[GD]](n) be an interpretation of GD between n0 and an arbitrary
node n ∈ Nodes as follows, given arbitrary initial configurations.

Definition 1. Given n ∈ Nodes , [[GD]](n) is an interpretation
on node n of type Σ → P(Σ), defined by [[GD]](n)(σ0) = {σ |
there exists σ0

e1→ σ1
e2→ σ2 . . .

ei→ σi and σ = σi and dst(ei) =
n} for all initial configurations σ0 ∈ Σ.

Intuitively, [[GD]](n)(σ0) is the set of configurations that are
encountered at node n when a program GD is on the execution
starting at σ0. Such an execution is deterministic, but it may pass
through node n multiple times, each time with a distinct configura-
tion. Plainly, a node in a cyclic path can appear more than once in
an execution.

4.2 From DFL to Path Expressions
As previously shown, a DFL program defines possible (finite) paths
as a subset of (EXPR× SSTMT)∗, following the regular pattern of
its flow graph. Given a flowgraph GD with a finite set of edges,
we define a set of alphabet for the Path Expressions (PE) associ-
ated with GD as Ω = {(assume(bp(e)), eff (e)) | e ∈ Edges}.
Similar to the classical paradigm on finite automaton and regular
expression, we define path expressions (PE) as an equivalent repre-
sentation to DFL.

Definition 2. The syntax of path expressions are given as

R := ∅ | ε | ω | R1 +R2 | R1 ·R2 | R∗

where ω ∈ Ω.

Let PE(Ω) be the set of path expressions given finite Ω. Plainly,
a path expression is a regular expression that takes the pairs of
branch predicate and side effect over edges as its alphabet.

Given a flowgraph (Nodes,Edges, n0, nx) from a DFL pro-
gram GD , and starting with an initial configuration σ0, a sequence
of edges π = e1e2 . . . ek in Path(n0, nx) describes a possible
path that an execution may go through. If σ0 does take transitions
via π (as inferred by rule 1), then such a path π is unique for σ0,
by the well-formedness of DFL programs, since otherwise there
would exist a node with two outgoing transitions both enabled at
some configuration. However, it is also possible that no path in
Path(n0, nx) derives a concrete execution from σ0, which can be
interpreted as non-termination of the program given input σ0.

On the syntactical level, we define the regular language induced
by GD as generated by treating n0 as the initial state and nx
as the accept state, which gives a regular language L(GD) =
Path(n0, nx). We can choose from various classical algorithms
that translate finite automata to regular expressions (e.g., in the
textbook of Hopcroft et al. [22], and Tarjan [20]), such that a path
expression precisely represents the language L(GD) given by GD .

The semantics of path expressions can be defined as a mapping
from configurations to sets of configurations. Let R be a Path
expression representing language L, then [[R]]PE : Σ → P(Σ) is
defined by [[R]]PE(σ) = {σ′ ∈ Σ | there exists w ∈ L : σ

w→ σ′}.
As the translations from finite automata to regular expressions are
standard, we acquire the following semantic equivalence over the
translations.

Lemma 1. Let R0 represent the language L(GD) of a DFL pro-
gram GD . For all σ0, σ ∈ Σ, σ ∈ [[R0]]PE(σ0) iff there exists a
finite execution in GD that starts at σ0 and terminates at σ.

Proof. The transformation guarantees L(GD) = Path(n0, nx),
and R0 represents Path(n0, nx). Thus, there exists a path π in

Path(n0, nx) that maps σ0 to σ iff σ0
π→ σ, the latter equivalent

to σ ∈ [[R0]]PE(σ0) by definition.

Note that σ0 does not yield a terminating run if we have
[[R0]]PE(σ0) = ∅ and, there exists no path π ∈ Path(n0, nx)

such that σ0
π→ σ for all σ ∈ Σ, or equivalently, we will have

an execution σ0
e1→ σ1

e2→ σ2 . . . with e1e2 . . . an infinite path in
GD which does not pass by nx. Moreover, given GD well-formed,
[[R0]]PE(σ0) is either empty (nonterminating) or a singleton set
(terminating with a unique output). Combining with the semantics
of DFL, we obtain the following.

Lemma 2. If R0 represents the language L(GD) of a DFL pro-
gram GD , then [[GD]](nx) = [[R0]]PE .

4.3 From Path Expressions to NDL
We provide a scheme for converting a path expression into a se-
mantically equivalent NDL program. As in the previous section,
the semantics of path expressions are nondeterministic, as a func-
tion mapping configurations to sets of configurations, or contexts.
This can be further lifted to a function from contexts to contexts, in
the same style as NDL semantics. Here we define [[

−.]] as the lifted
semantics by [[R]]PE(C) =

⋃
σ∈C [[R]]PE(σ).

Definition 3. Fixing a finite set Ω, a PE to NDL translation func-
tion K is a mapping

K : PE(Ω)→ STMT

where STMT is the set of NDL statements.

ε 7→ skip
(bp, eff) 7→ bp; eff
R1 +R2 7→ choose(K(R1),K(R2))
R1 ·R2 7→ K(R1);K(R2)
R∗ 7→ repeat(K(R))

Figure 8. Translation to NDL

The translation rules for function K are given in Figure 8.
Function K maps a path expression of a DFL program to an NDL
statement. In this conversion process, a basic component (bp, eff)
of an expression is mapped to an NDL statement consisting of the
assertion bp and the simple statement eff . Remember the assume
statements are already embedded in the structure of bp in path
expressions. The sum of two regular expressions is mapped to a
choose statement. The dot operator “·” is translated into sequential
composition. The Kleene star “∗” represents a cycle and is mapped
to a repeat statement.

Lemma 3. (PE to NDL equivalence) Let R be a path expression.
Then,

[[R]]PE = S[[K(R)]]

Proof. By induction on the structure of R.
Base Case: The case when R = ε is trivial. If R is of the form
(assume(Expr), SStmt). Let C be a context then

[[(assume(Expr), SStmt)]]PE(C)
= {S[[SStmt]](σ) | σ ∈ C ∧ E [[Expr]](σ) 6= 0}
= S[[assume(Expr); SStmt]](C)
= S[[K(R)]](C).

Induction Step:

• Suppose R is of the form R1 +R2 and let C be a context, then

159

[[R1 +R2]]PE(C)= [[R1]]PE(C) ∪ [[R2]]PE(C)
= S[[K(R1)]](C) ∪ S[[K(R2)]](C)
= S[[choose(K(R1),K(R2))]](C).

• Suppose R is of the form R1 ·R2 and let C be a context, then

[[R1 ·R2]]PE(C)= [[R2]]PE([[R1]]PE(C))
= S[[K(R2)]](S[[K(R1)]](C))
= S[[K(R1);K(R2)]](C).

• Suppose R is of the form R∗ and let C be a context, then

[[R∗]]PE(C)= [[R0 +R1 +R2 + . . .]]PE(C)

=
⋃
i∈N[[Ri]]PE(C)

=
⋃
i∈N S[[K(R)i]](C)

= S[[repeat(K(R))]](C),

where R0 = ε and Ri+1 = Ri ·R for a path expression R, and
K(R)0 = skip, and K(R)i+1 = K(R)i;K(R) for an NDL
statement K(R).

Now the equivalence between DFL and NDL is established,
i.e., if a DFL program evaluates an input σ0 to a configuration
while stopping at a node in the flowgraph, then the translated NDL
contains the same value in its final context given σ0, and vice versa.
We present the straightforward result in the following theorem.

Theorem 1. Let R0 represent the language L(GD), we have

[[GD]](nx) = S[[K(R0)]]

Proof. By combining Lemma 2 and Lemma 3, we have that
for all σ0 ∈ Σ, we have [[GD]](nx)(σ0) = [[R0]]PE(σ0) =
[[R0]]PE({σ0}) = S[[K(R0)]](σ0).

4.4 Compact Representations of PE and NDL
We implement the classical algorithm of Tarjan [20], which ana-
lyzes the connectivity of a graph, and build regular expressions of
the set of edges based on the structure imposed by strongly con-
nected components and the efficient re-use of regular expressions
using union-find data structures.

∅+R = R
R · ∅ = ∅ = ∅ ·R
R · ε = R = ε ·R
ε∗ = ε
∅∗ = ε
R+R = R
R∗ ·R∗ = R∗

R ·R∗ = R∗ ·R
(R∗)∗ = R∗

Figure 9. Identities for Regular Expressions used by Tarjan

In order to reduce the overhead in the generation of regular
expression we apply algebraic rules to remove redundant structures,
e.g. those by Tarjan [21], as shown in Figure 9.

Prog −→ Decl Stmt
Stmt −→ call P
Decl −→ ε | proc P {Stmt}; Decl

Figure 10. The extended syntax for NDL

Benchmark cfgs nds edgs
400.perlbench 1113 50788 83155
401.bzip2 21 1642 2647
403.gcc 2626 133797 247279
429.mcf 2 280 459
445.gobmk 2103 25881 39867
456.hmmer 92 5420 8327
458.sjeng 54 3362 5562
462.libquantum 8 1084 1735
464.h264ref 212 11349 17544
471.omnetpp 1597 34213 52119
473.astar 34 770 1153
483.xalancbmk 8708 105322 151921
all 16570 373908 611768

Table 1. Problem size of Spec2006 benchmark suite

We then extend the syntax of NDL to make the nondeterministic
programs more concise, as shown in Figure 10. An NDL program
is now started with a declaration consisting of zero or more proce-
dures that are to be used in the main program. The translation K
from RE to NDL is also extended, in the way that for each substruc-
ture R, we create a new declaration proc R′ {K(R)} at the begin-
ning of the program, and interpret the site where R is launched by
call R′. Note the call relation between path expressions (or struc-
tures) is acyclic. As we are to show in the following section, such
a representation of a PE can be exponentially more concise than its
actual size, for the redundant usage of a sub-PE is now replaced by
a link to the site of the sub-PE.

5. Experiments
We have conducted preliminary experiments to translate large
benchmarks from a deterministic flow language to non-deterministic
structured languages. As a vehicle for our tests we used the LLVM
compiler framework [14] that resembles a framework for compil-
ing various high-level languages including C/C++, Objective-C,
Ada, Fortran, Haskell, and Java bytecode to an intermediate low-
level representation represented as a control-flow graph. In this
experiment we ask the question whether the translation to non-
deterministic programs is viable for real-world code. In particular,
we ask the following two questions: (1) is the translation time from
DFL to NDL viable, and (2) is the size of the generated NDL pro-
gram in acceptable bounds.

We ran our experiments on a 64bit Linux computer with 16GB
of RAM and two E5345 Intel CPUs with 2.3GHz. Although we
conduct the experiments on a multi-core platform, our translation
program exploits a single thread only. As a benchmark suite for
our experiments, we have used the Spec CPU2006 Benchmark
suite [7]. Using the LLVM 2.9 framework with a GCC front end,
we obtain the problem sizes as given in Table 1, where the column
Benchmark denotes the benchmarks taken from the Benchmark
suite, cfgs the number of control flow graphs, nds the total number
of nodes, and edgs the total number of edges.

We have used Tarjan’s algorithm [20] to convert the CFG of
the functions to an NDL representation in C/C++. Note that for the
translation, sequences in basic blocks were compressed to a single
super-statement that can have potential side-effects to several vari-
ables and may have a single assume statement. For the conversion
from DFL to NDL, we have used one of the fastest known algo-
rithms to transform a finite automata to a regular expression, which
exhibits a worst-case complexity of O(m · α(m,n)) where n is
the number of nodes in the control-flow graph, m is the number
of edges in the graph, and α is a very slow growing function (i.e.,

160

Compact Expanded
Benchmark rept chse seq rept chse seq
400.perlbench 2180 31300 103968 2.1164e+19 5.56314e+19 7.22382e+19
401.bzip2 332 694 4068 137360426033304288 137360699285724336 961524095795415168
403.gcc 7024 109084 299428 1.08564e+20 1.68148e+20 2.15809e+20
429.mcf 58 123 730 278233 1533019 4250010
445.gobmk 1483 14606 49594 4.47128e+19 3.20687e+19 2.09956e+19
456.hmmer 456 2543 12147 124237627150955200 248894473563970816 704639121478513536
458.sjeng 264 1990 7347 4650914279140 26684661306023992 178078270770559712
462.libquantum 155 504 2472 29039508 115573277 347943562
464.h264ref 1595 4812 24836 4.70143e+19 5.35788e+19 5.63575e+19
471.omnetpp 794 18709 77346 664118694274 5270837914187761664 2636500292015777280
473.astar 110 307 1603 2170314 6466341 27204896
483.xalancbmk 6795 48512 185439 3.09579e+19 7.58877e+19 7.04882e+19
all 21246 233184 768978 2.52675e+20 3.90999e+20 4.4037e+20

Table 2. Sizes of NDL

the inverse Ackermann function). Tarjan’s algorithm for convert-
ing a graph to path-expressions relies on the re-use of previously
generated path-expressions. If the path-expressions are written out,
the writing procedure may have exponential size (i.e., O(4n)) as
outlined in [22]).

Since Tarjan’s low worst-case runtime complexity, the first
question of our experiment can be answered positively. The run-
time of constructing NDL for the whole SPEC CPU2006 bench-
mark suite is conducted in less than 1 second on our test machine.
The number of generated repeat, choose, and sequence statements
are shown in the Table 2 under the column Compact. The labels
rept denote the number of repeat statements, chse the number of
choose statements, and seq the number of sequence statements.
The Compact column represents the number of statements using
abstraction, i.e., NDL compositions that are re-occurring are ab-
stracted by a name and re-used. In contrast, no abstraction is used,
the generation of NDL is infeasible as shown in the column Ex-
panded.

6. Conclusion
We have presented a regular expression based technique for trans-
forming a deterministic flowchart language DFL into a non-
deterministic modelling language NDL. The translation procedure
is purely syntactic, based on which we have shown that the seman-
tics of DFL programs are preserved during the translation to NDL
programs. Moreover our method preserves control-flow structure of
the original programs and uses simple transformation rules which
are independent of the original program size and structure. We con-
ducted experiments on the Spec Benchmark Suite, which confirms
that our approach is viable in practice.

In the future we are going to further explore the advantage of
this translation, e.g., by applying the method as a preprocessor for
verifying interesting properties in programs by model checking.
Such a translation may also be used to study the semantic con-
nections between deterministic and nondeterministic programs. As
NDL has a richer semantics than deterministic flowcharts, the trans-
formation proposed in the paper also works on flowcharts with non-
deterministic semantics, e.g., by relaxing the well-formedness of
DFL to allow nondeterministic transitions. Such a well-structured
nondeterministic language has a natural correspondence to mod-
elling languages of existing tools, such as PROMELA, the input
language of the SPIN model checker [12]. Moreover, the level of
nondeterminism in an NDL program may be increased via abstrac-
tion, provided that the input modelling program may be too large
to be handled by existing automatic program verifiers.

Acknowledgments
This research was supported under Australian Research Council’s
Discovery Projects funding scheme (DP1096445) and Australian
Research Council’s Linkage Projects funding scheme (LP0989643).

References
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Pearson Education, Inc, 2006.

[2] C. Baier, J.-P. Katoen, and K. G. Larsen. Principles of Model Check-
ing. The MIT Press, 2008.

[3] T. Ball, E. Bounimova, R. Kumar, and V. Levin. Slam2: static driver
verification with under 4% false alarms. In Proceedings of the 2010
Conference on Formal Methods in Computer-Aided Design, FMCAD
’10, pages 35–42, Austin, TX, 2010. FMCAD Inc.

[4] C. Böhm and G. Jacopini. Flow diagrams, Turing machines and
languages with only two formation rules, pages 11–25. Yourdon Press,
Upper Saddle River, NJ, USA, 1979.

[5] C. Cifuentes. Reverse Compilation Techniques. PhD thesis, Queens-
land University of Technology, 1994.

[6] K. Cooper and L. Torczon. Engineering a Compiler. Morgan Kauf-
mann Publisher, 2004.

[7] S. P. E. Corporation. Spec cpu 2006. http://www.spec.org, 2006.

[8] P. Cousot. Semantic foundations of program analysis. In S. Muchnick
and N. D. Jones, editors, Program Flow Analysis. Prentice Hall, 1981.

[9] D. Gopan and T. W. Reps. Lookahead widening. In T. Ball and
R. B. Jones, editors, CAV, volume 4144 of Lecture Notes in Computer
Science, pages 452–466. Springer, 2006.

[10] S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and
progress invariants for bound analysis. In Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’09, pages 375–385, New York, NY, USA,
2009. ACM.

[11] M. Handjieva and S. Tzolovski. Refining static analyses by trace-
based partitioning using control flow. In G. Levi, editor, SAS, volume
1503 of Lecture Notes in Computer Science, pages 200–214. Springer,
1998.

[12] G. Holzmann. The Spin Model Checker: primer and reference manual.
Addison-Wesley Professional, 2003.

[13] G. A. Kildall. A unified approach to global program optimization.
In Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, POPL ’73, pages 194–206,
New York, NY, USA, 1973. ACM.

[14] C. Lattner and V. Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In Proceedings of the inter-
national symposium on Code generation and optimization: feedback-

161

directed and runtime optimization, CGO ’04, pages 75–, Washington,
DC, USA, 2004. IEEE Computer Society.

[15] J. v. Leeuwen. Handbook of Theoretical Computer Science Volume
B: Formal Models and Semantics. Elsevier Science Publishers B. V.,
1994.

[16] J. Miecznikowski and L. J. Hendren. Decompiling java bytecode:
Problems, traps and pitfalls. In Compiler Construction, 11th Interna-
tional Conference (CC), volume 2304 of Lecture Notes in Computer
Science, pages 111–127, Grenoble, France, 2002. Springer.

[17] P. H. Morris, R. A. Gray, and R. E. Filman. Goto removal based
on regular expressions. Journal of Software Maintenance, 9:47–66,
February 1997.

[18] A. Pnueli. The temporal logic of programs. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science, pages
46–57, Washington, DC, USA, 1977. IEEE Computer Society.

[19] X. Rival and L. Mauborgne. The trace partitioning abstract domain.
ACM Trans. Program. Lang. Syst., 29, August 2007.

[20] R. E. Tarjan. Fast algorithms for solving path problems. J. ACM, 28:
594–614, July 1981.

[21] R. E. Tarjan. A unified approach to path problems. J. ACM, 28:577–
593, 1981.

[22] J. Ullman, J. Hopcroft, and R. Motwani. Introduction to Automata
Theory, Languages, and Computation. Pearson Addison-Wesley,
2003.

162

