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1. Introduction 
Structured programming emphasizes 

programming language constructs such as 
while loops, until loops, and if then else 
statements. Properly used, these constructs 
make occurrences of  loops and branching of  
control obvious. They  are preferable to goto 
statements, which tend to obscure the flow 
of  control [DDH,DIJ]. This paper describes 
an algorithm which transforms a flowgraph 
into a program written using repeat (do for- 
ever) and if then else statements. The goal 
of  the algorithm is to produce readable pro- 
grams, rather than to avoid the use of  goto 
statements entirely, goto statements are 
generated w h e n  there is no better way to 
describe the flow of  control. 

A number  of  techniques for eliminat- 
ing goto statements from programs have 
been previously published [AM, B J, BS, 
COO, KF, KOS, PKT]. However,  these 
techniques do not necessarily produce clear 
flow of  control [KN]. MisOse of  control 
constructs may mislead the reader into ex- 
pecting patterns of  control flow which do 
not exist in the algorithm. For example, 
these techniques may use ~/ repeat state- 
ment  when the contained code cannot  be 
executed more than once or add numerous 
control variables to avoid goto statements. 
They also may avoid goto statements by 
copying segments of  code or creating sub- 
routines. The  former method results in 
longer programs and bugs may be intro- 
duced when all the identical segments must 
be modified. The latter method may result 
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in subroutines which appear unnatural. 

Therefore,  this paper formalizes some 
common programming practices as a set of 
principles for the use of basic control con- 
structs: if then else, repeat, multilevel break 
(a branch to the statement following an en- 
closing repeat statement) ,  multilevel next (a 
branch to the next  iteration of  an enclosing 
repeat statement), stop, and goto. The prin- 
ciples fall into two classes: those which con- 
cern the nesting of statements and those 
which concern the use of  branching state- 
ments (goto, next, break, and stop). A pro- 
gram which obeys the structuring principles 
is called properly structured. An algorithm is 
presented which transforms a flowgraph 
into a properly structured program, in which 
the predicates and straight line code state- 
ments are the same as those of the flow- 
graph in both number  and execution order. 
In general, the properly structured program 
may contain goto statements. However,  
the goto statements occur only where no 
other available control construct describes 
the flow of  control. If  a flowgraph can be 
written as a properly structured program 
with no goto statements, the algorithm does 
it. 

Section 2 defines flowgraphs and intro- 
duces a simple structured language SL. The 
principles concerning nesting and ordering 
of  statements are described in Section 3. 
Section 4 presents the first part of  the algo- 
rithm. The  principles for the use of  branch- 
ing statements and the second part of  the 
algorithm appear in Section 5. 



Section 6 studies how the structuring 
principles limit the possible forms of  pro- 
grams representing the same flowgraph. If a 
flowgraph can be represented by a properly 
structured program with no goto state- 
ments, this program is unique. More gen- 
erally, if a flowgraph contains no jumps into 
the middle of  loops, all properly structured 
programs representing it have the same 
nesting (but not necessarily order) of  state- 
ments other  than goto, next, break, and 
stop. 

Section 7 discusses briefly the applica- 
tion of the algorithm to structuring real pro- 
grams. The algorithm has been implement-  
ed in a program called struct, which 
translates fortran programs into ratfor 
[KER], a fortran preprocessor language. 
The structured programs generated by struct 
are much more readable than their fortran 
counterparts. It is not usually obvious that 
they are mechanically generated, since the 
structuring principles cause them to imitate 
common programming practice. An exam- 
ple of  a program structured by struct is in- 
cluded at the end of the paper. 

The structuring algorithm presented in 
this paper is proposed as a tool for the 
maintenance of  fortran programs. One of  
the problems in dealing with fortran pro- 
grams is that the lack of  convenient  control 
structures makes programs hard to under-  
stand, fortran preprocessor languages such 
as ratfor have been developed so that new 
programs may be written using convenient  
control structures. But many existing pro- 
grams were written in fortran without the 
benefit of  preprocessors. Mechanically 
structuring these programs improves ihe 
readability dramatically, facilitating 
modification and debugging. 

2. Goals of structuring 

This section defines flowgraphs, a sim- 
ple structured language SL, and what it 
means for an SL program to be a structuring 
of  a flowgraph. 

A flowgraph is a directed graph with 
labelled nodes representing computational 
steps and arcs representing flow of  control 
between nodes. Each node is either a 
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straight line code (sic) node with one 
outarc, a stop node with no outarcs, or a 
predicate (pred) node, with a "true" outarc 
and a "false" outarc. A flowgraph has exact- 
ly one stop node, and there is a path to it 
from every node in the flowgraph. One 
node of  the flowgraph is designated as the 
start node. 

The structuring algorithm presented in 
this paper translates a flowgraph into a sim- 
ple structured language SL. SL contains op- 
tionally labelled statements of  the following 
forms: 

(1) straight line code (sic) s tatements (i.e. 
assignment, read, write, etc.), 

(2) stop 

(3) goto L, where L is a label, 

(4) if (p) then {S1} else {$2}, where S1 and 
$2 are (possibly null) sequences of  op- 
tionally labelled SL statements,  and p 
is a predicate, 

(5) repeat {S}, where S is a (possibly null) 
sequence of  optionally labelled SL 
statements,  

(6) break(i), where i is a positive integer, 

(7) next(i), where i is a positive integer. 

Statements of  types 1-4 are interpreted in 
the standard way. repeat {S} causes the se- 
quence S to be iterated until a stop is exe- 
cuted, or until a goto, break(i), or next(i) (i 
greater than 1) causes a jump out of  the re- 
peat statement,  break(i) causes a jump to 
the s tatement  following the ith enclosing 
repeat statement,  next(i) causes a jump to 
the next iteration of  the ith enclosing repeat 
statement. 

For simplicity, no elseless if then 
statement is provided, but its equivalent is 
obtained by a null else clause. Also, more 
complex constructs such as while and until  
are not provided since they can be ex- 
pressed in terms of  repeat, if then else, and 
break. For simplicity, return is not includ- 
ed; it may be treated like stop during struc- 
turing. 

goto, next(i), stop, and break(i) state- 
ments are referred to as branching state- 
ments~ other  s tatements are nonbranching 
statements. 



An SL program is well-formed if the 
following conditions are satisfied: 

(1) Every statement is accessible from the 
start of  the program, 

(2) the program contains at least one stop 
statement,  and a stop s tatement  is ac- 
cessible from every sic s tatement and 
from both the "true" and "false" 
evaluations of  every if predicate. 

As a result of  condition (2), every loop in a 
well-formed program has an exit. 

A flowgraph FLOW(P) may be ob- 
tained from a well-formed SL program P to 
describe the flow of  control between sic 
statements, if predicates, and stop state- 
ments. Each sic s tatement in P is 
represented by a distinct sic node, each if 
predicate in P is represented by a distinct 
pred node, and all stop statements are 
represented by a single stop node in 
FLOW(P). There  is an arc from an sic node 
p to a node q in FLOW(P) if after executing 
the corresponding sic s tatement  in P, con- 
trol can pass directly to the statement 
represented by q, i.e. without first executing 
any other  sle s tatement  or if predicate. 
There  is a "true" ("false") arc from a pred 
node p to a node q if control passes directly 
to the s tatement  represented by q when the 
if predicate represented by p is evaluated to 
"true" ("false"). The start node of  FLOW(P) 
is the node representing the first sic state- 
ment, if predicate, or stop statement execut- 
ed in P. 

Two well-formed SL programs P1 and 
P2 are equivalent if FLOW(P 1 ) = FLOW(P 2 ). 
Note that this is a stronger statement than 
merely requiring that the se~t of  execution 
paths be the same. If one program has two 
copies of  an sic s tatement  while the other  
has only one, the programs may have ident- 
ical sets of  execution paths but are not 
equivalent by this definition. This 
definition of  equivalence was chosen be- 
cause the algorithm of  this paper does not 
copy code. 

A well-formed SL program P is a struc- 
turing of  a flowgraph G if G =FLOW(P). 

The structuring algorithm presented in 
this paper identifies the basic structure in- 
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herent  in a flowgraph and writes it as an SL 
program. It has two parts. The first part 
determines the organization of  the final pro- 
gram, that is, it decides how many repeat 
statements to use, how nonbranching state- 
ments should be nested, and the ordering of  
nonbranching statements. The result is a 
program form. i.e. an incomplete program 
consisting only of  sic, if then else, and re- 
peat statements together with a specification 
of  the correspondence between these state- 
ments and nodes in the flowgraph. The 
second part of  the algorithm determines 
where branching statements should be ad- 
ded to produce the proper flow of  control. 
For example, if the final structured program 
generated by the algorithm is 

repeat { 
if (p) then {x = x + l  } 
else { 

y = y-I-1 
if (q) then { goto 10 } 
else {} 
} 

y = f(y) 
10 x = g(x) 

if (r) then {break(I) } 
else {} 
} 

z = h(x,y) 
stop 

then the first part of  the algorithm generates 
the following: 

repeat { 
if (p) then {x = x + l  } 
else { 

y = y + l  
if  (q) then {} 
else {} 
) 

y = f(y) 
x = g(x)  
if  (r) then {} 
else {} 
} 

z = h(x,y) 

The second part of  the algorithm adds the 
goto 10, the label 10, the break(l),  and the 
stop. 



The program form obtained by delet- 
ing all branching statements from an SL 
program P is denoted by FORM(P). Thus, if 
the algorithm generates an SL program P, 
the first part of the algorithm generates only 
FORM(P). 

3. Deciding on principles for organizing 
programs 

The  goal of  the algorithm presented in 
this paper is not to eliminate goto state- 
ments, since the methods of  eliminating all 
goto statements have not been found to 
produce readable programs [KN]. Instead, 
the algorithm follows a set of  principles for 
the use of  control constructs to ensure that 
the mechanically structured programs ap- 
pear natural to the reader. These principles 
describe some reasonable practices for pro- 
gramming in SL. They  also appear to be 
followed (albeit flexibly) by many program- 
mers. Since a number  of  principles are 
needed to ensure production of  natural SL 
programs, some examples are presented to 
motivate how this set of  principles evolved 
for use in the structuring algorithm. The  
principles describe how repeat statements, if 
then else statements,  and branching state- 
ments  should be used in SL programs. 

First, some examples of  uses of repeat 
statements are presented. In the following 
program, the repeat is inappropriate because 
it contains code which does not iterate. 

repeat { 
s = l  
stop 
} 

The following are some equivalent programs 
with room for improvement  in how repeat 
statements are used. 

(a) y = l  
goto 10 
repeat { 

if (p) then {break(l) } 
else {} 

10 y = f(y) 
} 

x = g(y) 
stop 

(b) goto 10 
repeat { 

y = fly) 
if (p) then { break(l) } 
else { next(l)  } 

10 y =  1 
} 

x = g(y) 
stop 

In (a), the repeat s tatement  can be entered 
only by jumping into it. In (b), this prob- 
lem is compounded  because the s tatement  
y = l  is written inside the repeat even 
though it is executed only once. In particu- 
lar, this s tatement  cannot  be reached after 
executing the s ta tement  y = f(y) which is 
the first s tatement  in the repeat. A much 
clearer way of  writing the same computation 
is the following. 

y = l  
repeat { 

y : f(y) 
if (p) then {break(l) } 
else {} 
} 

x : g(y) 
stop 

The objectionable program segments 
presented above can be avoided by obeying 
the following principle. 
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(1) Every repeat s ta tement  can be entered 
through its "head", i.e. not just via a 
goto to a s ta tement  nested within it. 
Every repeat  s ta tement  contains at 
least one sic or if then else statement.  
Every s ta tement  within a repeat  is ac- 
cessible f rom the first s ta tement  
within the repeat without exiting from 
the repeat. Every nonbranching  state- 
ment  within the repeat can lead to an 
iteration of  the repeat without first ex- 
iting f rom the repeat.* 

Equivalent SL programs need not have 
the same n u m b e r  of  repeat s tatements.  
Consider the following examples.  

(a) repeat { 
repeat { 

if (p) then { break(l) } 
else {} 
} 

if  (q) then {break(l) } 
else { x = x + l  } 
} 

(b) repeat { 
if (p) then { 

if (q) then { break(l) } 
else { x : x + l  } 
} 

else {} 

The first example  uses two repeat  state- 
ments  where one suffices. The  algorithm 
generates only one repeat since a single re- 
peat appears simpler. 

(2) A. repeat s ta tement  may not be the 
first nonbranching  stat~ement reached 
upon enter ing anothe/" repeat  state- 
ment.  

Next,  two examples  of  peculiar uses of  
if then else s ta tements  are presented. 

*Programmers often violate this principle in order 
to avoid goto statements when a loop has several 
pieces of exit code. As implemented in struet, this 
principle has an associated size limit so that small 
segments of code (but not large segments) may 
appear in a repeat without iterating. 

(a) if  (p) then { 
j = l  
goto I0 
} 

else { 
j = 2  

I0  y = f(j) 
} 

stop 

(b) if  (p) then {} 
else { 

j = 2  
goto 10 
} 

j : l  
10 y = f(j) 

stop 

In (a), the s ta tement  y : ffi) is placed inside 
the else clause, forcing a j ump  into the else 
clause f rom the then clause. In (b), the 
s ta tement  j : 1 is placed after the if state- 
ment ,  forcing the else clause to contain a 
goto jumping  around the s ta tement  follow- 
ing the if clause. Example  (a) could be 
prevented by forbidding jumps  into then or 
else clauses. Example  (b) could be prevent-  
ed by requiring that a then or else clause 
contain as much as possible without causing 
a j u m p  into it or violating the conditions on 
repeat statements.  

But problems are caused by programs 
in which a loop may be entered in more 
than one place. A flowgraph G is reducible 
[HU72] if each cycle has exactly one entry 
point, that is, if every cycle in G contains a 
node q such that every path from the start 
node to a node in the cycle must  pass 
through q. Otherwise, a flowgraph is irredu- 
cible. A well-formed SL program P is reduci- 
ble (irreducible) if FLOW(P) is reducible (ir- 
reducible). Since reducibility is a property 
of  flowgraphs, an irreducible program does 
not have an equivalent reducible program. 
(However,  an irreducible flowgraph may be 
t ransformed into a reducible flowgraph by 
duplicating part of  the graph.) Consider the 
following equivalent irreducible programs. 
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(a) if (p) then { goto 10 } 
else {} 
repeat { 

if  (q) then { j = I } 
eLse { 
lo j =  2 

} 
if (r) then {stop } 
eLse {} 
} 

(b) if (p) then {goto I0 } 
else {} 
repeat { 

if (q) then { 
j = l  
goto 20 
} 

else {} 
I0 j = 2  
20 if  (r) then {stop } 

else {} 
} 

The first example  allows a goto into the 
else clause f rom outside the smallest repeat 
enclosing the else clause. The  second ex- 
ample avoids the goto into the else clause 
but forces an additional goto to be generat-  
ed in the then clause. Locally, i.e. within 
the r epea t  s ta tement ,  the first example  is 
structured better. In particular, it does not 
look as if the s ta tement  j = 2 can be execut-  
ed after both the then and else clauses. 
Therefore,  the following principles are used 
by the algorithm. 

(3a) A goto may jump  into a then or else 
clause only f rom outside the inner- 
most repeat enclosing the clause. 

(3b) A s ta tement  in the innermost  repeat 
enclosing an if  then else s ta tement  p 
must  be placed within the then clause 
of  p if this does not force a violation of 
Principle (3a). The  same principle ap- 
plies to else clauses. 

The  following principle guarantees 
that loops are created 0nly by repeat state- 
ments  and that each goto s ta tement  jumps  
to a s ta tement  which occurs after it in the 
program. 

(4) Control may flow to a lexically preced- 
ing point in the program only to an 
iteration of  a repeat, i.e. by executing a 
next(i) or by reaching the bot tom of  a 
repeat statement.  

A well-formed SL program which 
satisfies principles (1)-(4) has proper nesting. 

4. The first part of the structuring algo- 
rithm 

The  first step in structuring a flow- 
graph G is to locate the loops in G. A loop is 
a path of  G which begins and ends at the 
same node. A cycle is a loop in which only 
the first node (which is the same as the last 
node) occurs twice. Loops can be located 
by construct ing a spanning tree by means of  
a depth first search [HU74], which.proceeds  
as follows. 

Begin by visiting the start node of  G 
and sett ing NUM to the number  of  
nodes in the flowgraph. When  visiting 
a node m, do the following: 

I f  node m has an arc t o  a node p not 
already visited, make  p a child of  m in 
the spanning tree, and visit p next. 
Otherwise,  n u m b e r  m with NUM, de- 
c remen t  NUM by l, and return to visit 
the parent  o f  m (if it exists) again. 

A back arc is an arc f rom a descendant  to an 
ancestor in the spanning tree; other arcs are 
forward arcs. Each node entered by one or 
more back arcs will become the first state- 
ment  within a repeat  in the final program. 
I f  a cycle has more  than one entry point, 
exactly one entry  point is entered by a back 
arc. 

Let L be a list of  the nodes of  the 
graph ordered by the number ing  assigned 
during the depth first search. This list will 
be used to ensure  that all gotos in the final 
program flow downward on the page. Note  
that an arc (p,q) is a back arc if and only if 
q appears before p in L. Also, if (p,q) is a 
back arc, there is a path f rom q to p which 
includes only nodes between q and p in L. 

At this point, the nodes which will be- 
come the first s ta tements  within repeats 
have been determined.  For each node n en- 
tered by a back arc, add a single repeat node 
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p. Replace each arc (q,n) by an arc (q,p), 
and add an arc (p,n). Insert  the repeat node 
p immediately before n in L. Call the new 
graph the extension of  G, EXT(G).  

Note that the addition of  the new 
nodes does not change the ordering of  the 
nodes already in L. Therefore ,  an arc (p,q) 
is a back arc if and only if q precedes p in L.. 

A repeat node p is the head of  all loops 
and cycles which include p but no nodes 
preceding p in L. In the final program, the 
corresponding repeat  s ta tement  will contain 
the s ta tements  corresponding to nodes in 
loops headed by p. For each node q, the al- 
gori thm determines  HEAD(q) ,  which is the 
repeat node which will correspond to the 
smallest repeat enclosing q in the final pro- 
gram. In particular, of  the repeat nodes 
which are heads of  loops containing q, 
HEAD(q)  is the closest one preceding q in L. 
I f  no such node exists, HEAD(q)  is 
undefined. Note that for a repeat node p, 
HEAD(p)  is ei ther a different repeat node or 
is undefined. The  repeat corresponding to p 
will be nested within the repeat correspond- 
ing to HEAD(p)  in the final program. 

To produce the following segment  of  
code 

i f (p)  then { x = l  } 
else { x = 2 } 
y = f(x) 

the algorithm needs to know that the state- 
ments  x = 1 and x ---- 2 can be reached only 
through the true and false branches of  the 
if s ta tement ,  but that y =  fix) can be 
reached through both branches. 

Such branching and merging of  con- 
trol can be described by dominators in the 
flowgraph [AU]. Node p dominates node q if 
every path f rom the start node to node q 
must  pass through node p. Node p is the 
immediate dominator of  node q if no other  
dominator  of  q lies "closer" to q (that is, if 
every dominator  of  q other  than p also dom- 
inates p). Every node in the flowgraph ex- 
cept the start  node is dominated by at least 
one node, the start node. Moreover,  every 

node except  the start node has an immedi-  
ate dominator.  

Because principle (3) implies that the 
inside of  a repeat must  be structured as if 
the repeat can be entered only at its head, 
the structuring algorithm uses a modified 
graph for calculating dominators.  Intuit ive- 
ly, it pretends that each arc enter ing a cycle 
at a point other than its head enters the 
head instead. Let REDUCE(EXT(G) )  be a 
flowgraph obtained as follows from 
EXT(G).  I f  (p,q) is an arc and p is not in a 
cycle headed by HEAD(q) ,  the arc (p,q) is 
replaced in REDUCE(EXT(G) )  by an arc 
(p,r), where r is the first repeat  node in L 
which is the head of  a loop containing q but 
not the head of any loop containing p. The  
resulting graph REDUCE(EXT(G) )  is reduci- 
ble. For each node p, DOM(p)  is defined to 
be the immediate  dominator  of  p in the 
graph REDUCE(EXT(G)  ). 

For each node p, HEAD and DOM are 
used to obtain a set FOLLOW(p)  specifying 
nodes which belong "after" p at the same 
level of  nesting as p. For each pred node p, 
define 

FOLLOW(p) ={q[q is entered by 2 or 
more forward arcs in 
REDUCE (EXT(G) ), 
p =DOM(q) ,  and 
HEAD (p ) = HEAD ( q ) } 

For each repeat node p, define 

FOLLO W (p ) = { ql HEAD ( q ) = HEAD (p ) 
and DOM(q)  is in a loop 
headed by p}. 

For each sic node p, define 

FOLLOW(p)  = { q[ HEAD ( q ) =HEAD (p ) 
and p =DOM(q)} .  

Note that the sets FOLLOW(p)  are pairwise 
disjoint, for all nodes p. 

Every node is in a FOLLOW set except 
for the nodes which will correspond to the 
first s ta tements  at each level of  nesting. In- 
tuitively, FOLLOW(p)  is the set of  non- 
branching s ta tements  reachable from p 
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which must follow p at the same level of 
nesting as p. For example, suppose p is a re- 
peat node and q is in FOLLOW(p). Since 
HEAD(q) =HEAD(p), q must be placed 
within the smallest repeat containing p but 
not within p. Since DOM(q) is in a loop 
headed by p, every path to q within this re- 
peat must pass through p. By principle (3), 
q must be at the same level of  nesting as p 
within this repeat. Fur thermore ,  q must be 
below p to avoid an upward goto. 

The  nesting and ordering of non- 
branching statements in the program is 
determined by generating a program form 
from the flowgraph. G, i.e. a sequence 
PF(G) of  nested nonbranching statements 
which will be FORM(P) for the final pro- 
gram P generated by the algorithm. PF(G) 
is generated by calling the following recur- 
sive routine on the start node of  the ex- 
tended flowgraph EXT(G). To be precise, 
the correspondence between statements of  
PF(G) and nodes of EXT(G) should be 
specified; for simplicity, it is merely as- 
sumed to exist. 

getform(n) { 
if (n is an sic node) then { 

print the straight line code 
} 

else if (n is a repeat node with 
arc to node q) then { 

print("repeat{") 
call test(q) 
print("}") 
} 

else if (n is a pred node with 
predicate r and a true arc to 
node p and a false arc to node q) 
then { 

print(':if (r) then {") 
call test(p) 
print("} else {") 
call test(q) 
print("}") 
} 

for each member q of FOLLOW(n) in 
order of  appearance in L { 

call getform(q) 
} 

} 

test(q) { 
if (q is not in any FOLLOW set) then { 

call getform(q) 
} 

} 

Since the FOLLOW sets are pairwise disjoint, 
getform is called exactly once on each node 
in EXT(G). The  resulting program form is 
PF(G). 

5. Branching statements and the second 
part of the algorithm 

Next,  the use of branching statements 
is considered. The  first principle for the use 
of branching statements is the following. 

(5) A goto s ta tement  may not jump to 
another  branching statement. A goto 
may not jump to the first s tatement  
inside a repeat; it must jump to the re- 
peat instead. A branching s tatement  
may not appear unless deleting it 
alters the flow of  control in the pro- 
gram. 

The above principle does not specify 
where branching statements should be used. 
Consider the following example. 

if (p) then { 
x = l  

stop 
} 

else { 
x = 2  
stop 
} 

The  form of the following program is 
preferable. 

if (p) then {x = I } 
else { x = 2 } 
stop 

On the other  hand, when the then and else 
clauses jump to different places, it is prob- 
ably preferable to put the branching state- 
ments inside the then and else clauses. The  
following principle is followed by the struc- 
turing algorithm to determine where 
branching statements shoul~ be added. 
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(6) A branching s ta tement  appears after a 
nonbranching  s ta tement  p if and only 
if there is exactly one node q in the 
corresponding flowgraph such that 
both of  the following conditions hold: 

(a) q does not correspond to an sic 
or if s ta tement  nested within p 

(b) q is the only node satisfying (a) 
which is entered, by an arc from 
the node corresponding to p or 
from a node corresponding to an 
sic or if  s ta tement  nested within 
p. 

The next principle assigns a prefer- 
ence order to branching s ta tements  to en- 
sure that branching s ta tements  following re- 
peat s ta tements  can be reached. 

(7) Branching s ta tements  are used in the 
following order of  precedence:  break(i) 
for any i, next(i) for any i, stop, goto. 
That  is, a s ta tement  in the list may not 
be used if a choice earlier in the list 
may be substi tuted without altering 
the flow of  control between non- 
branching statements.  

This principle ensures  that a goto state- 
ment  is not used when another  branching 
s ta tement  suffices. 

A program which follows principles 
(5)-(7) has proper 6ranching. 

The second part of  the algorithm adds 
proper branching to PF(G) by comput ing 
the s ta tements  directly reachable from each 
nonbranching s ta tement  but not nested 
within it. In particular, for a node p in 
EXT(G), REACH(p) is the set consisting of 
all nodes q entered by arcs from p or from 
nodes corresponding to s ta tements  nested 
within p, such that q does not correspond to 
a s ta tement  nested within p. Branching 
s tatements  are added to the program recur- 
sively from outer  levels of  nesting to inner 
levels. A branching s ta tement  is added 
after a nonbranching  s ta tement  p if 
REACH(p) contains exactly one node q, and 
q is not the node corresponding to the state- 
ment  reached automatically in the program 
if no branching s ta tement  follows p. I f  a 
then or else clause (or the entire program) 
contains no nonbranchiqg  statements,  a 

branching s ta tement  is added if it is needed 
to ensure  proper flow of control. The  
choice of  branching s ta tement  is determined 
by principle (7) and EXT(G). A label is ad- 
ded to each s ta tement  entered by a goto. 

When the above procedure is applied 
to the program form PF(G) generated by 
the first part of  the algorithm, the resulting 
program is called ALG(G). 

A well-formed SL program with prop- 
er nesting and proper branching is properly 
structured. I f  P is a structuring of  a flow- 
graph G and P is properly structured, P is a 
proper structuring of G. 

Theorem 1. ALG(G) is a proper structuring 
of G. 

A nice feature of  the algorithm is that 
it does not generate goto statements  need- 
lessly. 

Theorem 2. I f  a flowgraph has a proper 
structuring with no goto statements,  the al- 
gori thm produces one. 

A simple analysis of the algorithm 
yields the following upper  bounds for t ime 
and space. 

Theorem 3. In the worst case, the genera- 
tion of  ALG(G) from G requires at most 
space O(n 2) and time O(n21ogn), where n is 
the n u m b e r  of  nodes in G. 

In practice, the implementat ion of the 
algorithm in struct handles fortran programs 
several hundred lines in length in a reason- 
able amount  of  time on a pdp - l l / 45  with 
60K 8-bit bytes. 

6. Properly structured programs 

In this section, the implications of  the 
structuring principles are investigated. 

One question one might ask about the 
conditions for proper nesting and proper 
branching is how much flexibility they per- 
mit in writing programs. In particular, sup- 
pose one is given a computat ion specified by 
a flowgraph. In writing an SL program to 
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perform this computation,  how much flexi- 
bility is there in the number  and type of  
control statements,  in the nesting of state- 
ments, and in the ordering of  statements at 
each level of nesting? In other  words, 
where may differences occur between 
equivalent properly nested programs? Con- 
sider the following example. 

if (p) then {} 
else { goto 10 } 

repeat { 
X ---- f(y) 

10 y ffi f(x) 
if (q) then { break(l) } 
else {} 
} 

This code segment could be rewritten as 

if (p) then {goto 10 } 
else {} 

repeat { 
y =  fix) 
if (q) then {break(l) } 
else {} 

10 x---- fly) } 

There  is a choice because the loop is en- 
tered in two places, that is, the underlying 
flowgraph is irreducible. However,  when 
the underlying flowgraph is reducible, there 
is no flexibility in the number  or nesting of  
nonbranching statements. 

Theorem 4. If e I and P2 are equivalent 
properly nested reducible SL programs, then 
FORM(P 1 ) and FORM(P 2) are identical in 
the number  of  occurrences of each non- 
branching s tatement  and in how the non- 
branching statements are nested within 
each other. 

Note that Theorem 4 does not state 
that P1 and P2 are identical in the order of  
nonbranching statements at each level of  
nesting. In fact, the order of  statements is 
not uniquely determined.  For example, 
consider the following code. 

10 
20 

if (p) then { 
if (q) then { goto 10 } 
else {} 
} 

else { 
if (r) then { goto 10 } 
else {} 
} 

x - ~ l  
goto 20 
x = 2  
y = f(x) 

This segment could be rewritten by ex- 
changing x = 2 with x = 1 and moving the 
goto statements to the else clauses. 

However,  there is no flexibility in ord- 
er when n o  goto statements occur. 

Theorem 5. If Pl and P2 are equivalent 
properly nested SL programs with no goto 
statements,  then FOR M(P  1 ) -- F ORM(P  2 ). 

Proper branching does not restrict the 
form of  the program. 

Lemma 1. For every properly nested SL 
program P1, there exists an equivalent SL 
program P2 with proper branching such that 
FORM(P 2) = F O R M ( P  1 ). Moreover,  P2 is 
unique (except for labels on statements).  

From the above theorems and lemma, 
it follows that equivalent properly structured 
SL programs with no goto statements are 
identical. In terms of  the algorithm, this 
result may be stated as follows. 

Corollary 1. If  P is a properly structured SL 
program with no goto statements,  then 
e = A L G ( F L O W ( P ) ) .  

Intuitively, this corollary states that 
flexibility in writing a go toless program oc- 
curs only in choosing the flowgraph or in 
choosing to violate the principles of proper 
structuring. In other  words, when a pro- 
grammer wishes to write a p roper ly  struc- 
tured program'without  goto statements, flex- 
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ibility lies only in modifying the computa- 
tion to be performed, i.e. the flowgraph for 
the program, and not in the way the pro- 
gram itself describes the computation. 

It must be noted that an SL program 
without goto statements may not have an 
equivalent properly structured SL program 
because of  the restriction that a repeat may 
not be the first s tatement inside another  re- 
peat. The following code segment is an ex- 
ample. 

repeat { 
repeat { 

if (s) then {break(2) } 
else { 

if (p) then { 
if (q) then {} 
else { break(l) } 
} 

else { 
if (r) then {} 
else {break(l) } 

x = x + l  
} 

} 
x = x + 2  
} 

If x ---- x+2 and x ---- x + l  were within a sin- 
gle repeat, they would be at the same level 
of nesting as the if (p) statement. But at 
most one of them could be reached without 
a goto from within the if (p) statement. 
Therefore,  there is no equivalent properly 
nested program without goto statements. 

7. Applying the algorithm 

The algorithm has been implemented 
in a program called struct, which rewrites 
fortran programs in ratfor[KER]. The basic 
algorithm is extended in struct to generate 
(optional) additional constructs such as 
while loops and a form of  case statement. 
Predicates are negated by. struct when 
necessary for the generation of  if  then 
statements, ratfor has only single-level 
break and next statements. Therefore,  
struct does not adhere strictly to the condi- 
tions of  proper branching. The Appendix 
contains an example of  a fortran program 
and the ratfor program generated from it by 

struct. 
The mechanically structured versions 

of programs are easier to understand than 
their fortran counterparts,  sometimes 
dramatically so. Their  natural appearance 
indicates that the structuring principles 
describe reasonable programming practices. 
A more extensive discussion of struct and 
its success in structuring fortran appears in 
[BAK]. 

It is expected that struct will be a use- 
ful tool in the maintenance of existing pro- 
grams. New programs may be written in 
ratfor, while existing fortran programs may 
be structured into ratfor for greater ease of 
modification and debugging. 
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Appendix 

A fortran subroutine (from R. C. Singleton, Algorithm 347, an efficient algorithm for sorting 
with minimal storage, Comm. ACM 12,3 (1969), p. 186): 

subroutine sort(a,ii,jj) 
c sorts array a into increasing order 
c from a(ii) to a(jj) 

dimension a(1),iu(16),il(16) 
integer a,t , t t  
m = l  
i =  ii 
j = j j  

5 if (i .ge.j) goto 70 
10 k = i  

ij : (j+i)/2 
t : a(ij) 
if (a(i) .le. t) goto 20 
a(ij) : a(i) 
a(i) = t 
t = a ( i j )  

20 l=j 
if (aQ) .ge. t) goto 40 
a(ij)  = aCj) 
a(j) = t 
t = a(ij) 
if (a(i) .le. t) goto 40 
a(ij) = a(i) 
a(i) = t 
t = a(ij)  
goto 40 

30 a(l) = a(k) 
a(k) = tt 

40 1 = 1--1 
if (a(l) .gt. t) goto 40 
tt = a(l) 

50 k = k + l  
if (a(k) .It. t) goto 50 
if (k .le. 1) goto 30 
if ( l - - i  . le .  j - -k )  goto  60 
il(m) = i 
iu(m) = 1 
i=k  
re=m+1 
goto 80 

60 il(m) = k 
iu(m)=j 
j= l  
re=m+1 
goto 80 

70 r e :m- -1  
if(m.eq. 0) return 
i=il(m) 
j=iu(m) 

80 if (j--i .ge. 11) goto 10 
if (i .eq. ii) goto 5 
i=i--1 

90 i = i + l  
if (i .eq. j) goto 70 
t : a(i-I-1) 
if (a(i) .le. t) goto 90 
k : i  

100 a(k+l)  = a(k) 
k :  k--1 
if (t .it. a(k)) goto 100 
a(k+l)  : t 
goto 90 
end 
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T h e  preceding subrou t ine  as s t ruc tured  by struct  into ratfor:  

subrout ine  sort(a,i i , j j)  
# sorts a r ray  a into increasing order  
# f rom a(ii) to a(jj) 

d imens ion  a(1),iu(16),il(16) 
integer  a , t , t t  
m = l  
i = i i  

J--ii 
repeat  

if (i < j )  
go to 10 

repeat  
{ 
m =  m--1 
if (m==O) 

re tu rn  
i = i l ( m )  
j ---- iu(m) 
while  ( j - - i > = 1 1 )  

10 k = i  
ij = ( j+i ) /2  
t = a(ij) 
if (a(i) > t) 

a(ij) = a(i) 
a(i) = t 
t : a( i ] )  

l = j  
if (a~j)< t) 

a(ij) = a(j) 
a(j) : t 
t =  a(ij) 
if (a ( i )>t )  

a(ij) = a(i) 
a(i) = t 
t = a(ij) 

repeat  

! =  1--1 
if ( a ( l ) < = t )  

{ 
tt = a(l) 
repeat  

k = k + l  
if (a(k) >----t) 

b reak  
} 

i f  (k > 1) 
b reak  

a( l )  : a ( k )  
a(k)---- tt 
) 

} 
i f  (l--i  < : j - k )  

i l ( m )  : k 
iu(m) --- j 
j----I 
m : m + l  
} 

else 

i l ( m )  : i 
iu(m) = 1 
i : k  
m : m + l  
) 

i f  ( i = = i i )  
break 

i :  i--1 
repeat 

{ 
i : i +1  
i f  ( i = = j )  

b reak  
t = a ( i+ l )  
if (a ( i )>O 

{ 
k = i  
repeat  

{ 
a ( k + l )  = a(k) 
k = k - 1  
if  (t > = a ( k ) )  

b reak  

a(k-I-1) : t 
) 

) 

re tu rn  
end 
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