
An Algorithm for Structuring Programs:

EXTENDED ABSTRA CT

Brenda S. Baker

Bell Laboratories,
Murray Hill, New Jersey 07974

1. Introduction
Structured programming emphasizes

programming language constructs such as
while loops, until loops, and if then else
statements. Properly used, these constructs
make occurrences of loops and branching of
control obvious. They are preferable to goto
statements, which tend to obscure the flow
of control [DDH,DIJ]. This paper describes
an algorithm which transforms a flowgraph
into a program written using repeat (do for-
ever) and if then else statements. The goal
of the algorithm is to produce readable pro-
grams, rather than to avoid the use of goto
statements entirely, goto statements are
generated w h e n there is no better way to
describe the flow of control.

A number of techniques for eliminat-
ing goto statements from programs have
been previously published [AM, B J, BS,
COO, KF, KOS, PKT]. However, these
techniques do not necessarily produce clear
flow of control [KN]. MisOse of control
constructs may mislead the reader into ex-
pecting patterns of control flow which do
not exist in the algorithm. For example,
these techniques may use ~/ repeat state-
ment when the contained code cannot be
executed more than once or add numerous
control variables to avoid goto statements.
They also may avoid goto statements by
copying segments of code or creating sub-
routines. The former method results in
longer programs and bugs may be intro-
duced when all the identical segments must
be modified. The latter method may result

113

in subroutines which appear unnatural.

Therefore, this paper formalizes some
common programming practices as a set of
principles for the use of basic control con-
structs: if then else, repeat, multilevel break
(a branch to the statement following an en-
closing repeat statement) , multilevel next (a
branch to the next iteration of an enclosing
repeat statement), stop, and goto. The prin-
ciples fall into two classes: those which con-
cern the nesting of statements and those
which concern the use of branching state-
ments (goto, next, break, and stop). A pro-
gram which obeys the structuring principles
is called properly structured. An algorithm is
presented which transforms a flowgraph
into a properly structured program, in which
the predicates and straight line code state-
ments are the same as those of the flow-
graph in both number and execution order.
In general, the properly structured program
may contain goto statements. However,
the goto statements occur only where no
other available control construct describes
the flow of control. If a flowgraph can be
written as a properly structured program
with no goto statements, the algorithm does
it.

Section 2 defines flowgraphs and intro-
duces a simple structured language SL. The
principles concerning nesting and ordering
of statements are described in Section 3.
Section 4 presents the first part of the algo-
rithm. The principles for the use of branch-
ing statements and the second part of the
algorithm appear in Section 5.

Section 6 studies how the structuring
principles limit the possible forms of pro-
grams representing the same flowgraph. If a
flowgraph can be represented by a properly
structured program with no goto state-
ments, this program is unique. More gen-
erally, if a flowgraph contains no jumps into
the middle of loops, all properly structured
programs representing it have the same
nesting (but not necessarily order) of state-
ments other than goto, next, break, and
stop.

Section 7 discusses briefly the applica-
tion of the algorithm to structuring real pro-
grams. The algorithm has been implement-
ed in a program called struct, which
translates fortran programs into ratfor
[KER], a fortran preprocessor language.
The structured programs generated by struct
are much more readable than their fortran
counterparts. It is not usually obvious that
they are mechanically generated, since the
structuring principles cause them to imitate
common programming practice. An exam-
ple of a program structured by struct is in-
cluded at the end of the paper.

The structuring algorithm presented in
this paper is proposed as a tool for the
maintenance of fortran programs. One of
the problems in dealing with fortran pro-
grams is that the lack of convenient control
structures makes programs hard to under-
stand, fortran preprocessor languages such
as ratfor have been developed so that new
programs may be written using convenient
control structures. But many existing pro-
grams were written in fortran without the
benefit of preprocessors. Mechanically
structuring these programs improves ihe
readability dramatically, facilitating
modification and debugging.

2. Goals of structuring

This section defines flowgraphs, a sim-
ple structured language SL, and what it
means for an SL program to be a structuring
of a flowgraph.

A flowgraph is a directed graph with
labelled nodes representing computational
steps and arcs representing flow of control
between nodes. Each node is either a

114

straight line code (sic) node with one
outarc, a stop node with no outarcs, or a
predicate (pred) node, with a "true" outarc
and a "false" outarc. A flowgraph has exact-
ly one stop node, and there is a path to it
from every node in the flowgraph. One
node of the flowgraph is designated as the
start node.

The structuring algorithm presented in
this paper translates a flowgraph into a sim-
ple structured language SL. SL contains op-
tionally labelled statements of the following
forms:

(1) straight line code (sic) s tatements (i.e.
assignment, read, write, etc.),

(2) stop

(3) goto L, where L is a label,

(4) if (p) then {S1} else {$2}, where S1 and
$2 are (possibly null) sequences of op-
tionally labelled SL statements, and p
is a predicate,

(5) repeat {S}, where S is a (possibly null)
sequence of optionally labelled SL
statements,

(6) break(i), where i is a positive integer,

(7) next(i), where i is a positive integer.

Statements of types 1-4 are interpreted in
the standard way. repeat {S} causes the se-
quence S to be iterated until a stop is exe-
cuted, or until a goto, break(i), or next(i) (i
greater than 1) causes a jump out of the re-
peat statement, break(i) causes a jump to
the s tatement following the ith enclosing
repeat statement, next(i) causes a jump to
the next iteration of the ith enclosing repeat
statement.

For simplicity, no elseless if then
statement is provided, but its equivalent is
obtained by a null else clause. Also, more
complex constructs such as while and until
are not provided since they can be ex-
pressed in terms of repeat, if then else, and
break. For simplicity, return is not includ-
ed; it may be treated like stop during struc-
turing.

goto, next(i), stop, and break(i) state-
ments are referred to as branching state-
ments~ other s tatements are nonbranching
statements.

An SL program is well-formed if the
following conditions are satisfied:

(1) Every statement is accessible from the
start of the program,

(2) the program contains at least one stop
statement, and a stop s tatement is ac-
cessible from every sic s tatement and
from both the "true" and "false"
evaluations of every if predicate.

As a result of condition (2), every loop in a
well-formed program has an exit.

A flowgraph FLOW(P) may be ob-
tained from a well-formed SL program P to
describe the flow of control between sic
statements, if predicates, and stop state-
ments. Each sic s tatement in P is
represented by a distinct sic node, each if
predicate in P is represented by a distinct
pred node, and all stop statements are
represented by a single stop node in
FLOW(P). There is an arc from an sic node
p to a node q in FLOW(P) if after executing
the corresponding sic s tatement in P, con-
trol can pass directly to the statement
represented by q, i.e. without first executing
any other sle s tatement or if predicate.
There is a "true" ("false") arc from a pred
node p to a node q if control passes directly
to the s tatement represented by q when the
if predicate represented by p is evaluated to
"true" ("false"). The start node of FLOW(P)
is the node representing the first sic state-
ment, if predicate, or stop statement execut-
ed in P.

Two well-formed SL programs P1 and
P2 are equivalent if FLOW(P 1) = FLOW(P 2).
Note that this is a stronger statement than
merely requiring that the se~t of execution
paths be the same. If one program has two
copies of an sic s tatement while the other
has only one, the programs may have ident-
ical sets of execution paths but are not
equivalent by this definition. This
definition of equivalence was chosen be-
cause the algorithm of this paper does not
copy code.

A well-formed SL program P is a struc-
turing of a flowgraph G if G =FLOW(P).

The structuring algorithm presented in
this paper identifies the basic structure in-

115

herent in a flowgraph and writes it as an SL
program. It has two parts. The first part
determines the organization of the final pro-
gram, that is, it decides how many repeat
statements to use, how nonbranching state-
ments should be nested, and the ordering of
nonbranching statements. The result is a
program form. i.e. an incomplete program
consisting only of sic, if then else, and re-
peat statements together with a specification
of the correspondence between these state-
ments and nodes in the flowgraph. The
second part of the algorithm determines
where branching statements should be ad-
ded to produce the proper flow of control.
For example, if the final structured program
generated by the algorithm is

repeat {
if (p) then {x = x + l }
else {

y = y-I-1
if (q) then { goto 10 }
else {}
}

y = f(y)
10 x = g(x)

if (r) then {break(I) }
else {}
}

z = h(x,y)
stop

then the first part of the algorithm generates
the following:

repeat {
if (p) then {x = x + l }
else {

y = y + l
if (q) then {}
else {}
)

y = f(y)
x = g(x)
if (r) then {}
else {}
}

z = h(x,y)

The second part of the algorithm adds the
goto 10, the label 10, the break(l), and the
stop.

The program form obtained by delet-
ing all branching statements from an SL
program P is denoted by FORM(P). Thus, if
the algorithm generates an SL program P,
the first part of the algorithm generates only
FORM(P).

3. Deciding on principles for organizing
programs

The goal of the algorithm presented in
this paper is not to eliminate goto state-
ments, since the methods of eliminating all
goto statements have not been found to
produce readable programs [KN]. Instead,
the algorithm follows a set of principles for
the use of control constructs to ensure that
the mechanically structured programs ap-
pear natural to the reader. These principles
describe some reasonable practices for pro-
gramming in SL. They also appear to be
followed (albeit flexibly) by many program-
mers. Since a number of principles are
needed to ensure production of natural SL
programs, some examples are presented to
motivate how this set of principles evolved
for use in the structuring algorithm. The
principles describe how repeat statements, if
then else statements, and branching state-
ments should be used in SL programs.

First, some examples of uses of repeat
statements are presented. In the following
program, the repeat is inappropriate because
it contains code which does not iterate.

repeat {
s = l
stop
}

The following are some equivalent programs
with room for improvement in how repeat
statements are used.

(a) y = l
goto 10
repeat {

if (p) then {break(l) }
else {}

10 y = f(y)
}

x = g(y)
stop

(b) goto 10
repeat {

y = fly)
if (p) then { break(l) }
else { next(l) }

10 y = 1
}

x = g(y)
stop

In (a), the repeat s tatement can be entered
only by jumping into it. In (b), this prob-
lem is compounded because the s tatement
y = l is written inside the repeat even
though it is executed only once. In particu-
lar, this s tatement cannot be reached after
executing the s ta tement y = f(y) which is
the first s tatement in the repeat. A much
clearer way of writing the same computation
is the following.

y = l
repeat {

y : f(y)
if (p) then {break(l) }
else {}
}

x : g(y)
stop

The objectionable program segments
presented above can be avoided by obeying
the following principle.

116

(1) Every repeat s ta tement can be entered
through its "head", i.e. not just via a
goto to a s ta tement nested within it.
Every repeat s ta tement contains at
least one sic or if then else statement.
Every s ta tement within a repeat is ac-
cessible f rom the first s ta tement
within the repeat without exiting from
the repeat. Every nonbranching state-
ment within the repeat can lead to an
iteration of the repeat without first ex-
iting f rom the repeat.*

Equivalent SL programs need not have
the same n u m b e r of repeat s tatements.
Consider the following examples.

(a) repeat {
repeat {

if (p) then { break(l) }
else {}
}

if (q) then {break(l) }
else { x = x + l }
}

(b) repeat {
if (p) then {

if (q) then { break(l) }
else { x : x + l }
}

else {}

The first example uses two repeat state-
ments where one suffices. The algorithm
generates only one repeat since a single re-
peat appears simpler.

(2) A. repeat s ta tement may not be the
first nonbranching stat~ement reached
upon enter ing anothe/" repeat state-
ment.

Next, two examples of peculiar uses of
if then else s ta tements are presented.

*Programmers often violate this principle in order
to avoid goto statements when a loop has several
pieces of exit code. As implemented in struet, this
principle has an associated size limit so that small
segments of code (but not large segments) may
appear in a repeat without iterating.

(a) if (p) then {
j = l
goto I0
}

else {
j = 2

I0 y = f(j)
}

stop

(b) if (p) then {}
else {

j = 2
goto 10
}

j : l
10 y = f(j)

stop

In (a), the s ta tement y : ffi) is placed inside
the else clause, forcing a j ump into the else
clause f rom the then clause. In (b), the
s ta tement j : 1 is placed after the if state-
ment , forcing the else clause to contain a
goto jumping around the s ta tement follow-
ing the if clause. Example (a) could be
prevented by forbidding jumps into then or
else clauses. Example (b) could be prevent-
ed by requiring that a then or else clause
contain as much as possible without causing
a j u m p into it or violating the conditions on
repeat statements.

But problems are caused by programs
in which a loop may be entered in more
than one place. A flowgraph G is reducible
[HU72] if each cycle has exactly one entry
point, that is, if every cycle in G contains a
node q such that every path from the start
node to a node in the cycle must pass
through q. Otherwise, a flowgraph is irredu-
cible. A well-formed SL program P is reduci-
ble (irreducible) if FLOW(P) is reducible (ir-
reducible). Since reducibility is a property
of flowgraphs, an irreducible program does
not have an equivalent reducible program.
(However, an irreducible flowgraph may be
t ransformed into a reducible flowgraph by
duplicating part of the graph.) Consider the
following equivalent irreducible programs.

117

(a) if (p) then { goto 10 }
else {}
repeat {

if (q) then { j = I }
eLse {
lo j = 2

}
if (r) then {stop }
eLse {}
}

(b) if (p) then {goto I0 }
else {}
repeat {

if (q) then {
j = l
goto 20
}

else {}
I0 j = 2
20 if (r) then {stop }

else {}
}

The first example allows a goto into the
else clause f rom outside the smallest repeat
enclosing the else clause. The second ex-
ample avoids the goto into the else clause
but forces an additional goto to be generat-
ed in the then clause. Locally, i.e. within
the r epea t s ta tement , the first example is
structured better. In particular, it does not
look as if the s ta tement j = 2 can be execut-
ed after both the then and else clauses.
Therefore, the following principles are used
by the algorithm.

(3a) A goto may jump into a then or else
clause only f rom outside the inner-
most repeat enclosing the clause.

(3b) A s ta tement in the innermost repeat
enclosing an if then else s ta tement p
must be placed within the then clause
of p if this does not force a violation of
Principle (3a). The same principle ap-
plies to else clauses.

The following principle guarantees
that loops are created 0nly by repeat state-
ments and that each goto s ta tement jumps
to a s ta tement which occurs after it in the
program.

(4) Control may flow to a lexically preced-
ing point in the program only to an
iteration of a repeat, i.e. by executing a
next(i) or by reaching the bot tom of a
repeat statement.

A well-formed SL program which
satisfies principles (1)-(4) has proper nesting.

4. The first part of the structuring algo-
rithm

The first step in structuring a flow-
graph G is to locate the loops in G. A loop is
a path of G which begins and ends at the
same node. A cycle is a loop in which only
the first node (which is the same as the last
node) occurs twice. Loops can be located
by construct ing a spanning tree by means of
a depth first search [HU74], which.proceeds
as follows.

Begin by visiting the start node of G
and sett ing NUM to the number of
nodes in the flowgraph. When visiting
a node m, do the following:

I f node m has an arc t o a node p not
already visited, make p a child of m in
the spanning tree, and visit p next.
Otherwise, n u m b e r m with NUM, de-
c remen t NUM by l, and return to visit
the parent o f m (if it exists) again.

A back arc is an arc f rom a descendant to an
ancestor in the spanning tree; other arcs are
forward arcs. Each node entered by one or
more back arcs will become the first state-
ment within a repeat in the final program.
I f a cycle has more than one entry point,
exactly one entry point is entered by a back
arc.

Let L be a list of the nodes of the
graph ordered by the number ing assigned
during the depth first search. This list will
be used to ensure that all gotos in the final
program flow downward on the page. Note
that an arc (p,q) is a back arc if and only if
q appears before p in L. Also, if (p,q) is a
back arc, there is a path f rom q to p which
includes only nodes between q and p in L.

At this point, the nodes which will be-
come the first s ta tements within repeats
have been determined. For each node n en-
tered by a back arc, add a single repeat node

118

p. Replace each arc (q,n) by an arc (q,p),
and add an arc (p,n). Insert the repeat node
p immediately before n in L. Call the new
graph the extension of G, EXT(G).

Note that the addition of the new
nodes does not change the ordering of the
nodes already in L. Therefore , an arc (p,q)
is a back arc if and only if q precedes p in L..

A repeat node p is the head of all loops
and cycles which include p but no nodes
preceding p in L. In the final program, the
corresponding repeat s ta tement will contain
the s ta tements corresponding to nodes in
loops headed by p. For each node q, the al-
gori thm determines HEAD(q) , which is the
repeat node which will correspond to the
smallest repeat enclosing q in the final pro-
gram. In particular, of the repeat nodes
which are heads of loops containing q,
HEAD(q) is the closest one preceding q in L.
I f no such node exists, HEAD(q) is
undefined. Note that for a repeat node p,
HEAD(p) is ei ther a different repeat node or
is undefined. The repeat corresponding to p
will be nested within the repeat correspond-
ing to HEAD(p) in the final program.

To produce the following segment of
code

i f (p) then { x = l }
else { x = 2 }
y = f(x)

the algorithm needs to know that the state-
ments x = 1 and x ---- 2 can be reached only
through the true and false branches of the
if s ta tement , but that y = fix) can be
reached through both branches.

Such branching and merging of con-
trol can be described by dominators in the
flowgraph [AU]. Node p dominates node q if
every path f rom the start node to node q
must pass through node p. Node p is the
immediate dominator of node q if no other
dominator of q lies "closer" to q (that is, if
every dominator of q other than p also dom-
inates p). Every node in the flowgraph ex-
cept the start node is dominated by at least
one node, the start node. Moreover, every

node except the start node has an immedi-
ate dominator.

Because principle (3) implies that the
inside of a repeat must be structured as if
the repeat can be entered only at its head,
the structuring algorithm uses a modified
graph for calculating dominators. Intuit ive-
ly, it pretends that each arc enter ing a cycle
at a point other than its head enters the
head instead. Let REDUCE(EXT(G)) be a
flowgraph obtained as follows from
EXT(G). I f (p,q) is an arc and p is not in a
cycle headed by HEAD(q) , the arc (p,q) is
replaced in REDUCE(EXT(G)) by an arc
(p,r), where r is the first repeat node in L
which is the head of a loop containing q but
not the head of any loop containing p. The
resulting graph REDUCE(EXT(G)) is reduci-
ble. For each node p, DOM(p) is defined to
be the immediate dominator of p in the
graph REDUCE(EXT(G)).

For each node p, HEAD and DOM are
used to obtain a set FOLLOW(p) specifying
nodes which belong "after" p at the same
level of nesting as p. For each pred node p,
define

FOLLOW(p) ={q[q is entered by 2 or
more forward arcs in
REDUCE (EXT(G)),
p =DOM(q) , and
HEAD (p) = HEAD (q) }

For each repeat node p, define

FOLLO W (p) = { ql HEAD (q) = HEAD (p)
and DOM(q) is in a loop
headed by p}.

For each sic node p, define

FOLLOW(p) = { q[HEAD (q) =HEAD (p)
and p =DOM(q)} .

Note that the sets FOLLOW(p) are pairwise
disjoint, for all nodes p.

Every node is in a FOLLOW set except
for the nodes which will correspond to the
first s ta tements at each level of nesting. In-
tuitively, FOLLOW(p) is the set of non-
branching s ta tements reachable from p

119

which must follow p at the same level of
nesting as p. For example, suppose p is a re-
peat node and q is in FOLLOW(p). Since
HEAD(q) =HEAD(p), q must be placed
within the smallest repeat containing p but
not within p. Since DOM(q) is in a loop
headed by p, every path to q within this re-
peat must pass through p. By principle (3),
q must be at the same level of nesting as p
within this repeat. Fur thermore , q must be
below p to avoid an upward goto.

The nesting and ordering of non-
branching statements in the program is
determined by generating a program form
from the flowgraph. G, i.e. a sequence
PF(G) of nested nonbranching statements
which will be FORM(P) for the final pro-
gram P generated by the algorithm. PF(G)
is generated by calling the following recur-
sive routine on the start node of the ex-
tended flowgraph EXT(G). To be precise,
the correspondence between statements of
PF(G) and nodes of EXT(G) should be
specified; for simplicity, it is merely as-
sumed to exist.

getform(n) {
if (n is an sic node) then {

print the straight line code
}

else if (n is a repeat node with
arc to node q) then {

print("repeat{")
call test(q)
print("}")
}

else if (n is a pred node with
predicate r and a true arc to
node p and a false arc to node q)
then {

print(':if (r) then {")
call test(p)
print("} else {")
call test(q)
print("}")
}

for each member q of FOLLOW(n) in
order of appearance in L {

call getform(q)
}

}

test(q) {
if (q is not in any FOLLOW set) then {

call getform(q)
}

}

Since the FOLLOW sets are pairwise disjoint,
getform is called exactly once on each node
in EXT(G). The resulting program form is
PF(G).

5. Branching statements and the second
part of the algorithm

Next, the use of branching statements
is considered. The first principle for the use
of branching statements is the following.

(5) A goto s ta tement may not jump to
another branching statement. A goto
may not jump to the first s tatement
inside a repeat; it must jump to the re-
peat instead. A branching s tatement
may not appear unless deleting it
alters the flow of control in the pro-
gram.

The above principle does not specify
where branching statements should be used.
Consider the following example.

if (p) then {
x = l

stop
}

else {
x = 2
stop
}

The form of the following program is
preferable.

if (p) then {x = I }
else { x = 2 }
stop

On the other hand, when the then and else
clauses jump to different places, it is prob-
ably preferable to put the branching state-
ments inside the then and else clauses. The
following principle is followed by the struc-
turing algorithm to determine where
branching statements shoul~ be added.

120

(6) A branching s ta tement appears after a
nonbranching s ta tement p if and only
if there is exactly one node q in the
corresponding flowgraph such that
both of the following conditions hold:

(a) q does not correspond to an sic
or if s ta tement nested within p

(b) q is the only node satisfying (a)
which is entered, by an arc from
the node corresponding to p or
from a node corresponding to an
sic or if s ta tement nested within
p.

The next principle assigns a prefer-
ence order to branching s ta tements to en-
sure that branching s ta tements following re-
peat s ta tements can be reached.

(7) Branching s ta tements are used in the
following order of precedence: break(i)
for any i, next(i) for any i, stop, goto.
That is, a s ta tement in the list may not
be used if a choice earlier in the list
may be substi tuted without altering
the flow of control between non-
branching statements.

This principle ensures that a goto state-
ment is not used when another branching
s ta tement suffices.

A program which follows principles
(5)-(7) has proper 6ranching.

The second part of the algorithm adds
proper branching to PF(G) by comput ing
the s ta tements directly reachable from each
nonbranching s ta tement but not nested
within it. In particular, for a node p in
EXT(G), REACH(p) is the set consisting of
all nodes q entered by arcs from p or from
nodes corresponding to s ta tements nested
within p, such that q does not correspond to
a s ta tement nested within p. Branching
s tatements are added to the program recur-
sively from outer levels of nesting to inner
levels. A branching s ta tement is added
after a nonbranching s ta tement p if
REACH(p) contains exactly one node q, and
q is not the node corresponding to the state-
ment reached automatically in the program
if no branching s ta tement follows p. I f a
then or else clause (or the entire program)
contains no nonbranchiqg statements, a

branching s ta tement is added if it is needed
to ensure proper flow of control. The
choice of branching s ta tement is determined
by principle (7) and EXT(G). A label is ad-
ded to each s ta tement entered by a goto.

When the above procedure is applied
to the program form PF(G) generated by
the first part of the algorithm, the resulting
program is called ALG(G).

A well-formed SL program with prop-
er nesting and proper branching is properly
structured. I f P is a structuring of a flow-
graph G and P is properly structured, P is a
proper structuring of G.

Theorem 1. ALG(G) is a proper structuring
of G.

A nice feature of the algorithm is that
it does not generate goto statements need-
lessly.

Theorem 2. I f a flowgraph has a proper
structuring with no goto statements, the al-
gori thm produces one.

A simple analysis of the algorithm
yields the following upper bounds for t ime
and space.

Theorem 3. In the worst case, the genera-
tion of ALG(G) from G requires at most
space O(n 2) and time O(n21ogn), where n is
the n u m b e r of nodes in G.

In practice, the implementat ion of the
algorithm in struct handles fortran programs
several hundred lines in length in a reason-
able amount of time on a pdp - l l / 45 with
60K 8-bit bytes.

6. Properly structured programs

In this section, the implications of the
structuring principles are investigated.

One question one might ask about the
conditions for proper nesting and proper
branching is how much flexibility they per-
mit in writing programs. In particular, sup-
pose one is given a computat ion specified by
a flowgraph. In writing an SL program to

121

perform this computation, how much flexi-
bility is there in the number and type of
control statements, in the nesting of state-
ments, and in the ordering of statements at
each level of nesting? In other words,
where may differences occur between
equivalent properly nested programs? Con-
sider the following example.

if (p) then {}
else { goto 10 }

repeat {
X ---- f(y)

10 y ffi f(x)
if (q) then { break(l) }
else {}
}

This code segment could be rewritten as

if (p) then {goto 10 }
else {}

repeat {
y = fix)
if (q) then {break(l) }
else {}

10 x---- fly) }

There is a choice because the loop is en-
tered in two places, that is, the underlying
flowgraph is irreducible. However, when
the underlying flowgraph is reducible, there
is no flexibility in the number or nesting of
nonbranching statements.

Theorem 4. If e I and P2 are equivalent
properly nested reducible SL programs, then
FORM(P 1) and FORM(P 2) are identical in
the number of occurrences of each non-
branching s tatement and in how the non-
branching statements are nested within
each other.

Note that Theorem 4 does not state
that P1 and P2 are identical in the order of
nonbranching statements at each level of
nesting. In fact, the order of statements is
not uniquely determined. For example,
consider the following code.

10
20

if (p) then {
if (q) then { goto 10 }
else {}
}

else {
if (r) then { goto 10 }
else {}
}

x - ~ l
goto 20
x = 2
y = f(x)

This segment could be rewritten by ex-
changing x = 2 with x = 1 and moving the
goto statements to the else clauses.

However, there is no flexibility in ord-
er when n o goto statements occur.

Theorem 5. If Pl and P2 are equivalent
properly nested SL programs with no goto
statements, then FOR M(P 1) -- F ORM(P 2).

Proper branching does not restrict the
form of the program.

Lemma 1. For every properly nested SL
program P1, there exists an equivalent SL
program P2 with proper branching such that
FORM(P 2) = F O R M (P 1). Moreover, P2 is
unique (except for labels on statements).

From the above theorems and lemma,
it follows that equivalent properly structured
SL programs with no goto statements are
identical. In terms of the algorithm, this
result may be stated as follows.

Corollary 1. If P is a properly structured SL
program with no goto statements, then
e = A L G (F L O W (P)) .

Intuitively, this corollary states that
flexibility in writing a go toless program oc-
curs only in choosing the flowgraph or in
choosing to violate the principles of proper
structuring. In other words, when a pro-
grammer wishes to write a p roper ly struc-
tured program'without goto statements, flex-

122

ibility lies only in modifying the computa-
tion to be performed, i.e. the flowgraph for
the program, and not in the way the pro-
gram itself describes the computation.

It must be noted that an SL program
without goto statements may not have an
equivalent properly structured SL program
because of the restriction that a repeat may
not be the first s tatement inside another re-
peat. The following code segment is an ex-
ample.

repeat {
repeat {

if (s) then {break(2) }
else {

if (p) then {
if (q) then {}
else { break(l) }
}

else {
if (r) then {}
else {break(l) }

x = x + l
}

}
x = x + 2
}

If x ---- x+2 and x ---- x + l were within a sin-
gle repeat, they would be at the same level
of nesting as the if (p) statement. But at
most one of them could be reached without
a goto from within the if (p) statement.
Therefore, there is no equivalent properly
nested program without goto statements.

7. Applying the algorithm

The algorithm has been implemented
in a program called struct, which rewrites
fortran programs in ratfor[KER]. The basic
algorithm is extended in struct to generate
(optional) additional constructs such as
while loops and a form of case statement.
Predicates are negated by. struct when
necessary for the generation of if then
statements, ratfor has only single-level
break and next statements. Therefore,
struct does not adhere strictly to the condi-
tions of proper branching. The Appendix
contains an example of a fortran program
and the ratfor program generated from it by

struct.
The mechanically structured versions

of programs are easier to understand than
their fortran counterparts, sometimes
dramatically so. Their natural appearance
indicates that the structuring principles
describe reasonable programming practices.
A more extensive discussion of struct and
its success in structuring fortran appears in
[BAK].

It is expected that struct will be a use-
ful tool in the maintenance of existing pro-
grams. New programs may be written in
ratfor, while existing fortran programs may
be structured into ratfor for greater ease of
modification and debugging.

Acknowledgements

The author wishes to thank A. V.
Aho, R. A. Becker, S. C. Johnson, B. W.
Kernighan, and M. D. Mcllroy for their
helpful comments on this paper.

References

[AU] A. V. Aho and J. D. Ullman, The
Theory of Parsing, Translation, and Com-
piling, Vol. H - Compiling, Prentice-Hall,
Englewood Cliffs, N.J., 1973.

[AM]E. Ashcroft and Z. Manna, Translating
program schemas to while-schemas,
SIAM J. on Comp. 4,2 (1975), 125-146.

[BAK]B. S. Baker, struct, a program which
structures fortran, in preparation.

[BJ] C. Bohm and G. Jacopini, Flow di-
agrams, Turing machines and
languages with only two formation
rules, Comm. A C M 9 (i966), 366-371.

[BS] J. Bruno and K. Steiglitz, The expres-
sion of algorithms by charts, J. A C M
19 (1966),366-371.

[COO]D. C. Cooper, Bohm and Jacopini's
reduction of flow charts, Comm. A C M
1OR (1967),463.

123

[DDH]O.-J. Dahl, E. W. Dijkstra, and C. A.
R. Hoare, Structured Programming,
Academic Press, New York, 1972.

[DIJ] E. W. Dijkstra, Goto statement con-
sidered harmful, Comm. ACM 11
(1968), 147-148.

[HU74]M. S. Hecht and J. D. Ullman, Char-
acterizations of reducible flowgraphs, J.
ACM 21,3 (1974), 367-375.

[HU72]M. S. Hecht and J. D. Ullman, Flow
graph reducibility, SIAM J. Comput. 1
(1972), 188-202.

[KER]B. W. Kernighan, ratfor - a preproces-
sor for a rational fortran, Software
Practice and Experience 5,4 (1975),
395-406.

[KF] D. E. Knuth and R. W. Floyd, Notes
on avoiding "go to" statements, lnJbr.
Proc. Letters 1 (1971), 23-31.

[KN] D. E. Knuth, Structured programming
with goto statements, ACM Comp. Sur-
veys 6,4 (1974), 261-302.

[KOS]S. R. Kosaraju, Analysis of structured
programs, J. Comp. Sys. Sci. 9,3 (1974),
232-254.

[PKT]W. W. Peterson, T. Kasami, and N.
Tokura, On the capabilities of while,
repeat and exit statements, Comm.
ACM 16 (1973), 503-512.

124

Appendix

A fortran subroutine (from R. C. Singleton, Algorithm 347, an efficient algorithm for sorting
with minimal storage, Comm. ACM 12,3 (1969), p. 186):

subroutine sort(a,ii,jj)
c sorts array a into increasing order
c from a(ii) to a(jj)

dimension a(1),iu(16),il(16)
integer a,t , t t
m = l
i = ii
j = j j

5 if (i .ge.j) goto 70
10 k = i

ij : (j+i)/2
t : a(ij)
if (a(i) .le. t) goto 20
a(ij) : a(i)
a(i) = t
t = a (i j)

20 l=j
if (aQ) .ge. t) goto 40
a(ij) = aCj)
a(j) = t
t = a(ij)
if (a(i) .le. t) goto 40
a(ij) = a(i)
a(i) = t
t = a(ij)
goto 40

30 a(l) = a(k)
a(k) = tt

40 1 = 1--1
if (a(l) .gt. t) goto 40
tt = a(l)

50 k = k + l
if (a(k) .It. t) goto 50
if (k .le. 1) goto 30
if (l - - i . le . j - -k) goto 60
il(m) = i
iu(m) = 1
i=k
re=m+1
goto 80

60 il(m) = k
iu(m)=j
j= l
re=m+1
goto 80

70 r e :m- -1
if(m.eq. 0) return
i=il(m)
j=iu(m)

80 if (j--i .ge. 11) goto 10
if (i .eq. ii) goto 5
i=i--1

90 i = i + l
if (i .eq. j) goto 70
t : a(i-I-1)
if (a(i) .le. t) goto 90
k : i

100 a(k+l) = a(k)
k : k--1
if (t .it. a(k)) goto 100
a(k+l) : t
goto 90
end

125

T h e preceding subrou t ine as s t ruc tured by struct into ratfor:

subrout ine sort(a,i i , j j)
sorts a r ray a into increasing order
f rom a(ii) to a(jj)

d imens ion a(1),iu(16),il(16)
integer a , t , t t
m = l
i = i i

J--ii
repeat

if (i < j)
go to 10

repeat
{
m = m--1
if (m==O)

re tu rn
i = i l (m)
j ---- iu(m)
while (j - - i > = 1 1)

10 k = i
ij = (j+i) /2
t = a(ij)
if (a(i) > t)

a(ij) = a(i)
a(i) = t
t : a(i])

l = j
if (a~j)< t)

a(ij) = a(j)
a(j) : t
t = a(ij)
if (a (i)>t)

a(ij) = a(i)
a(i) = t
t = a(ij)

repeat

! = 1--1
if (a (l) < = t)

{
tt = a(l)
repeat

k = k + l
if (a(k) >----t)

b reak
}

i f (k > 1)
b reak

a(l) : a (k)
a(k)---- tt
)

}
i f (l--i < : j - k)

i l (m) : k
iu(m) --- j
j----I
m : m + l
}

else

i l (m) : i
iu(m) = 1
i : k
m : m + l
)

i f (i = = i i)
break

i : i--1
repeat

{
i : i +1
i f (i = = j)

b reak
t = a (i+ l)
if (a (i)>O

{
k = i
repeat

{
a (k + l) = a(k)
k = k - 1
if (t > = a (k))

b reak

a(k-I-1) : t
)

)

re tu rn
end

126

