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Abstract

Many big data computations involve processing data that changes
incrementally or dynamically over time. Using existing techniques,
such computations quickly become impractical. For example, com-
puting the frequency of words in the first ten thousand paragraphs
of a publicly available Wikipedia data set in a streaming fashion
using MapReduce can take as much as a full day. In this paper, we
propose an approach based on self-adjusting computation that can
dramatically improve the efficiency of such computations. As an
example, we can perform the aforementioned streaming computa-
tion in just a couple of minutes.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords  Self-adjusting computation; incremental MapReduce

1. Introduction

Due to pervasive use of computer systems to collect, communicate,
and process data, techniques for computing with large amounts of
data that do not fit into traditional databases, a.k.a. big data, has
become increasingly important. Since such computations require
relatively sophisticated systems support, approaches inspired by
functional programming, where many different computations can
be specified with the use of higher-order features, have become
particularly attractive and seem promising. For example, MapRe-
duce [Dean and Ghemawal], which is the most widely used system
for big data, is inspired by the higher-order map and reduce func-
tions commonly used in functional programming.

Essentially, any interesting big-data computation requires asymp-
totically linear time (or more) in the size of the data examined, be-
cause it examines each and every piece of data. This constitutes an
important problem in computing with big data sets, because data
sets change frequently over time, often as new data is accumulated.
For example, when collecting information about real-time trans-
actions (e.g., financial trades, email messages, phone calls, sensor
data tracking), data sets grow monotonically over time as more
transactions take place. Ideally, for computations on big data to
remain consistent and relevant, the results must be updated every
time the data changes. However, such /ive updates are difficult to
perform in practice, because of their high computational complex-
ity, which can be quadratic in the size of the data. Specifically,
performing n linear-time updates on some data set of size n in a
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streaming fashion requires ©(n?) work (time using a single CPU),
which is known not to scale beyond small n.

In this paper, we propose an approach to the problem of live
updates that reduces the computational complexity, by a near-linear
factor, ®(n/logmn) more specifically, where n is the input size.
Our proposal is to update computations incrementally by taking
advantage of the similarity of data between successive runs. More
precisely, let Do, D1, D2, ... be the data sets at time zero, one, two,
etc. In many cases, the difference between D;i_1 and Dj is small,
because the latter is derived from the former by a small change.
For example, when a new piece of data arrives from a server, we
may expand our data set with that piece of data and update our
computation.

One way to perform such updates is to design specific dynamic
algorithms or incremental algorithms for each specific application
of interest. Instead, we use self-adjusting computation, a general-
purpose technique that applies to all functional programs, to make
it possible to perform such updates automatically and efficiently.
The idea behind self-adjusting computation [Acar et al/2006,2009]
is to track the dependencies between the different parts of the
computation so that when the computation data changes, the output
can be updated by re-evaluating only the affected parts of the
computation and re-building only the pieces of data affected by the
change. While prior work on self-adjusting computation required
making reasonably substantial changes to the program code, recent
developments allow the types of a program to be annotated with just
a few keywords and employ a type-directed translation algorithm
to generate the necessary changes to the code automatically [Chen
et al.|2011,2012]. In this paper, we use this implicit approach.

In its more general setting, self-adjusting computation can be
applied to any functional program[] Thus, it seems possible to in-
crementalize any big-data computation expressed as purely func-
tional program. Our ultimate goal is to achieve exactly that, but
in this paper, we restrict ourselves to the MapReduce paradigm.
We implement a single-node (sequential, non-distributed) version
of MapReduce in the implicit self-adjusting language that we pro-
posed in a recent paper [Chen et al!l2012]. Our implementation al-
lows us to read data from a file system into the memory and change
the data incrementally, while performing automatic incremental up-
dates after each change. Using our implementation, we report ex-
perimental results on a standard MapReduce benchmark, comput-
ing the frequency of words in a Wikipedia datasets, a big html file.
We consider the case in which each successive line of the Wikipedia
data, which roughly corresponds to a paragraph of text, arrives suc-
cessively as a stream. In order to facilitate experimental evaluation,
we consider the first 1M of the data. Using standard MapReduce,
the streaming word-count computation takes 12.5 hours. Using the
self-adjusting version of the MapReduce that we propose, the run-
time is about 2 minutes, nearly 500 times faster.

!'Self-adjusting computation is also applicable to imperative programs but
for most data-driven computations, this does not seem beneficial.



signature MAPREDUCE =
sig
type pair
val mapper :
val reducer :

& — pair
pair * (pair * pair — pair)

val mapreduce :
end

« list — pair list

Figure 1. Signature for MapReduce in SML

2. Self-Adjusting MapReduce

We implemented a proof-of-concept prototype to test the feasibil-
ity of incrementalizing large-scale data-driven applications. Specif-
ically, we developed a MapReduce framework in Standard ML.

2.1 User Interface

Figure [ shows the type signature for MapReduce in the Stan-
dard ML language. As is standard in MapReduce systems, the
MapReduce module takes three arguments: the type of key-value
pair, a mapper function and a reducer, which contains an initial
key-value pair and a reduction function. The mapreduce function
then takes an input list and applies the user defined mapper and
reducer to produce the final key-value pair list.

As an example, consider computing the frequency of words
in a text file. The type of key-value pair will be string * int.
The mapper function converts string s to (s, 1). The reducer will
add the value in the input key-value pairs. With the mapper and
reducer, we can read the text file into a list of strings, and execute
the mapreduce function to compute word frequency.

2.2 Internals

We present a brief overview of self-adjusting computation and
how we implement the signature in Figure [[l as a self-adjusting
program that can respond to streaming live data automatically and
efficiently.

2.2.1 Self-Adjusting Computation

Overview. The key concept behind self-adjusting computation is
the notion of a modifiable (reference), which stores changeable val-
ues that can change over time [Acar et al!|2006]. The programmer
operates on modifiables with mod, read, and write primitive con-
structs to create, read from, and write into modifiables, respectively.
The run-time system of a self-adjusting language uses these prim-
itives to represent the execution as a dependency graph, enabling
a change propagation algorithm that utilizes a particular form of
memoization techniques [Acar et al![2009, 12008].

For example, given a self-adjusting map function, we can run it
in much the same way as running the conventional version. Such
a complete run takes asymptotically as long as the conventional
program but incurs some constant-factor overhead in practice. After
a complete run, we can change any or all of the elements and
update the output by performing a change propagation algorithm.
As an example, consider inserting one cell into the input list and
performing change propagation. This propagation will only trigger
the application of the newly inserted cell, and all the rest of the
results remain unaffected. Change propagation takes ©(1) time
to update the result, while a complete re-execution will require
O(n) time. In writing the self-adjusting map function, we realized
this efficiency without designing and implementing an incremental
algorithm, but we nevertheless had to make significant changes to
the code in order to use the primitives for modifiable references
correctly.

Level Types. To help reduce the need for making pervasive
changes to the code by explicitly using primitives for modifiable
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functor MapReduce
(structure Pair : KEY_VALUE_PAIR
val mapper : o — Pair.t
val reducer : Pair.t * (Pair.t * Pair.t — Pair.t))
: MAPREDUCE = struct

type pair = Pair.t

datatype o list $C = Nil | Comns of a * o list $C

val map : (¢ — pair) — « list $C — pair list $C
val groupby : pair list $C — (pair list $C) list $C
val reduce : pair * (pair * pair — pair) —

pair list $C — pair $C

fun mapreduce (input : « list $C) : pair $C list $C =
let
val pairs = map mapper input

val merged = groupby pairs
in
map (fn block = reduce reducer block) merged
end
end

Figure 2. MapReduce in SML with level type annotations

references, recent work proposed an implicit approach where such
changes can be inferred from relatively straightforward type an-
notations [Chen et al.! 2011]. We refer to the type annotations as
levels and the resulting types as level types. With level types, the
programmer only needs to identify changeable data, whose values
can be changed, in the program, and mark their types with a $C
level. All other types represent stable data, whose value cannot be
changed. For example, the type int $C is a changeable integer. It
indicates that its value can change across different executions. The
type int 1list $C is a changeable list with stable integers. It indi-
cates that the programmer can only insert and delete elements in the
list, but is not allowed to mutate the content of the elements. Using
level types, the programmer writes essentially “ordinary” Standard
ML code, annotates the data types with levels as necessary, and
the compiler type-checks the level annotations to make sure they
are consistent, and generates self-adjusting executables automati-
cally [[Chen et al.[2012].

2.2.2 Implementation

Figure [2| shows our single-node MapReduce implementation in
SML extended with level types [Chen et al.|2012]. Our mapreduce
function contains three phases. First, the map function converts
the input list into a list of key-value pairs. Second, the groupby
function groups the pairs with the same key into one sub-list. We
use merge sort and a scan to implement the groupby phase. Third,
we apply the reduce function to each sub-list generated by the
groupby. The reduce uses a divide-and-conquer algorithm, and
assumes the reducer operation is associative. Overall, assuming the
mapper and the reducer take constant time, the whole mapreduce
function will require ®(nlog n) time with input list of size n.

To make the MapReduce framework incremental, we need to
put type annotations in the code. Since all our operations are based
on list, in order to allow changes to the list, we annotate the list
datatype as a changeable list with a polymorphic type. This list
data type allows inserting and deleting cells. Whether the elements
in the list are changeable or not depends on the instantiation of
the polymorphic variable «. In the map phase, we usually pass
in a changeable list with stable elements, because we need to be
able to insert and delete input data. In the reduce phase, each sub-
list returned by the groupby function is reduced to a changeable
key-value pair, therefore we derive a changeable list of changeable
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Figure 3. Number of words for each line (x-axis) in the dataset.

key-value pairs as the final return type. As a result, when we
insert a new input cell, the result can be updated by changing
the result of the reducer operating on the keys of the new cell,
without requiring structural changes to the output. Using level
types, we only annotate the type signature as shown in Figure[2land
make no further changes to the purely functional implementation
of MapReduce. Our compiler [Chen et al/2012] derives the self-
adjusting executable.

To ensure efficient updates under dynamically changing data,
our implementation uses stable algorithms [[Acai |2003; Ley-Wild
et al. 2009] to implement the map, groupby, and reduce func-
tions. In a stable algorithm, changing a small fraction of the input
causes only small changes to the dependency structure of the com-
putation created by applying the algorithm to some input data. The
classic (i.e., iterative) and the parallel implementations of map are
both stable. For groupby, we use merge-sort, a divide-and-conquer
sorting algorithm, followed by a simple scan, which are both stable.
For reduce, we use the standard divide-and-conquer algorithm,
which is stable. More generally, many algorithms, including par-
allel, divide-and-conquer, and iterative algorithms have been found
to be stable (e.g., [Aca12005; Ley-Wild et al.[2009]).

3. Evaluation

To evaluate the effectiveness of our approach, we consider the clas-
sic wordcount as the benchmark, which determines the frequency
of words in a document.

We use a publicly available dataset with the contents of Wiki-
pedid] as the input for wordcount. To ensure reasonable execution
times, we consider a small prefix of the dataset, specifically 1M
of data, consisting of 8173 lines, and 123026 words. The dataset
and the prefix that we consider is an html file where each line
corresponds roughly to a paragraph of text. Figure [3] shows the
number of words on each line in the dataset. We take this dataset as
a stream, and feed it into wordcount line by line. The benchmark
updates the word frequencies after the arrival of each line.

For our measurements, we used a 2 GHz Intel Xeon with 64
GB memory, 0.25MB L2 cache, and 18MB L3 cache, and used the
Linux operating system. The machine has multiple CPUs (32 cores
partitioned between 4 nodes), but our benchmark is sequential. We
compile our benchmark using the MLton [MLton] compiler for
Standard ML extended to support self-adjusting computation with
implicit type annotations.

As a baseline, we use two implementations of wordcount: the
conventional, non-self-adjusting ML implementation of MapRe-
duce, and the example wordcount code in Hadoop. Figure d]shows

2 Wikipedia data-set: http://wiki .dbpedia.org/

17

Figure 4. Update time per line (x-axis) for wordcount with non-
self-adjusting ML implementation.
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Figure 5. Update time per line (x-axis) with the self-adjusting
mapreduce.

the update time with the non-self-adjusting ML implementation af-
ter the arrival of each line in our dataset. As expected, the running
time grows linearly as the input size increases, because wordcount
has to re-process the whole data set after the arrival of each line.
The slope of the running time remains constant, except a change
around line 4000. The sudden slope change is due to the data fill-
ing up the fast cache. The whole computation takes 12.5 hours to
finish.

To check the correctness and efficiency of our implementation,
we also ran the same experiment with a single-node Hadoop, using
the system-provided wordcount example program. For processing
the whole dataset, Hadoop takes 31 seconds, while our ML imple-
mentation needs 20 seconds. Since Hadoop is designed as a batch
processing system, it appears to have more overhead compared to
our implementation. We therefore do not include the detailed up-
date time for Hadoop in our evaluation.

Figure [3 shows the update time for each line using our self-
adjusting mapreduce. The update time for the self-adjusting pro-
gram ranges from 0 to 0.4 seconds depending on the number of
words per line. Comparing the update time to the words-per-line
distribution shown in Figure 3l we see that the update time is pro-
portional to the number of words per update: the more words, the
longer the update takes. This is in contrast to the non-self-adjusting
implementation, where the update time is proportional to the size
of the whole data, rather than the size of the “delta” change in the
input. Performing the whole experiment with the self-adjusting ver-



sion takes 1.7 minutes compared to the 12.5 hours with the non-
self-adjusting version. This is a 440-fold speedup.

This massive speedup comes at the cost of a significant, 45-fold
increase in memory usage. Since self-adjusting mapreduce records
the dependencies in the computation as a dynamic dependency
graph, it takes 16GB of memory, while the ordinary ML version
requires 350MB. This shows that in future work it will be important
to reduce the memory consumption of the self-adjusting version.

4. Related Work

The problem of incremental computation, efficiently updating re-
sults of computation as the data that they depend on change over
time, has been studied in several communities including in the al-
gorithms, programming-languages, and software systems commu-
nities.

Algorithms and Programming Languages. In the algorithms
community, researchers design dynamic algorithms that permit
changes to their input and efficiently update their output when
such changes occur. This vast research area (e.g., [Demetrescu
et al. 2003]) shows that dynamic algorithms can be asymptoti-
cally more efficient than their conventional counterparts. Dynamic
algorithms can, however, be difficult to develop and implement
even for simple problems; some problems took years of research
to solve and many remain open. In the programming languages
community, researchers developed incremental computation tech-
niques to achieve automatic incrementalization for a broad range
of computations. The large body of research on incremental com-
putation showed that it can be possible to achieve some degree
of generality and efficiency (e.g. [Ramalingam and Reps [1993]).
Recent advances on self-adjusting computation developed tech-
niques that can achieve efficiency and full generality simultane-
ously (e.g., [Acar et al! 2006, 2009; Hammer et al|2009]). Tech-
niques for parallel self-adjusting computation have also been pro-
posed [Hammer et al![2007; Burckhardt et al|2011].

Systems. There has also been recent interest in incremental big-
data computations in the software systems community. Some sys-
tems such as Google’s Percolator [Peng and Dabek] require the
programmer to write a program in an event-driven programming
model. Similarly, continuous bulk processing (CBP) [Logothetis
et al.] proposes a new data-parallel programming model, which of-
fers primitives to store and reuse prior state for incremental pro-
cessing. Unfortunately, these approaches require the programmer
to implement the incremental update algorithm, which essentially
amounts to designing dynamic algorithms on a problem-specific
basis. Other systems such as Dryadlnc [[Popa et alll, Nectar [Gunda
et al.], and Incoop [Bhatotia et all] rely on caching of prior results to
improve efficiency. Incoop additionally uses self-adjusting compu-
tations’s stability notion to improve the response time by organiz-
ing MapReduce computations. Stream processing systems such as
Comet [He et al!] and NOVA [Olston and et al 2011]] provide tech-
niques for re-using computations in a specified set of queries as
the data arrives as part of a stream. None of these approaches use
self-adjusting computation’s change propagation technique which
enables not just re-using previous computations but also actively
pushing changes into computations that otherwise cannot be re-
used.

5. Conclusion and Future Work

We presented our preliminary results for investigating the use of
self-adjusting computation for computing with dynamically chang-
ing live, big data. We implemented a single node, self-adjusting
version of the MapReduce system using our approach based on
implicit programming with type annotations, and presented exper-
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imental results that show that the self-adjusting version is about
500-fold faster than (non-self-adjusting) MapReduce. Our results
show, however, that this speedup comes at the cost of increased
memory usage, by about 50 fold. In future work, we plan to reduce
this memory overhead by increasing the granularity of dependen-
cies tracked by the underlying self-adjusting-computation system,
and investigate generalizing our results to the distributed setting, as
well as to programs beyond the MapReduce model.
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