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Abstract, A distributed date siructure is a data
structure that can be manipujated by many parallel
processes simultaneously. Distributed data siructures are
the natural complement to parallel program structures,
where 3 parallel program (for our purposes) is one that is
made up of many simultaneously active, communicating
processes, Distributed data structures are impessible in
most parallel programming languages, bub they are
supported in the parallel language Linds and they are
central to Linda programiming style. We outline Linda,
then discuss some distributed data structures that have
arisen in Linda programming experiments to date. Our
intent Is neisher to discuss the design of the Linda system
nor the performance of Linda programs, though we do
comment on both topics; we are concerned Instead with 2
few of the simpler and more basic techniques made
possible by a language model that, we argue, is subtly
but fundamentally different in its implications {rom most
others.
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1. Introduction

A distributed date struclure §s a data structure thai can be
manipuiated by  many parallel  processes  simultaneously.
Distribuved data structures are the natural complement w0 parallel
program structures, where a parallel program {for our purposes) is
one that is made up of many simultanecusly active, communicating
processes. Drespite this natural relationship, distribuied daia
structures are impossible in most paraliel programiming languages.
Most parallel langusges are based instead on what we ¢all the

manager process model of paralielism, which requires that shared
data objects be encapsulated within manager processes; operations
on shared data are carried out by the manager process on the user’s
behalf.
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The manager-process model has important advaniages. It
represents a safe and convenient borrowing from the convenidonal,
sequeniial environment: Since only one process deals with a given
data object, it may do so in the conventional way. Programimners
never face the potentially complicated logic of many processes
simultaneously manipulating one objeet. But MANAKET Processes
have disadvantages as well. All processes in this model must funnel
their shared-data manipulations through the manager, and there are
potential costs in  parsllelism and {n  runtime interprocess
communication and process management overhead. Cperations that
might safely have been carried out by many user processes in
parallel are performed by the {single) manager process one ab a
time; every operation on a shared object entails a conversation with
its manager-process chaperone, and creating a new sharable data
object requires either the creation of a new Process or an increase in
the load on an existing manager. Harder to quantify but perhaps of
greater importance, the manager-process model prejudices the
development of 2 truly parallel programming style by forcing
parallel programs into conventional, sequential molds. We Hlustrate
these claims with examples in the sections following.

Linda {{Gel85], [CG85]) consists of a small set of communication
and process-control operators that support the creation and
manipulatien of distributed data structures. When they are
injected into a host language A, these operators turn A into a
parallel programming language. Whether the result is better viewed
a8 2 pew language or 25 an old one with added system calls depends
on the compiler or pre-processor we use. Linda is a new language 1o
the extent that the cormpiler, among other ihings, recognizes the
Linda operatlons, checks and rewrites them on the basis of symbol
table information, and can optimize the pattern of kernel calls that
result based on its knowledge of constants and loops.

Most of our programming experiments so far have been
conducted in C-Linda, but we have recently implemented a Fortran-
Linda pre-processor, at the request of Yales's MNumerical Analysis
group. Linda runs on AT&T Bell Labs’ $/Net multi-computer
[Ahus3] and on an Ethernet-based Micro-Vax network;
implementasions for two different hypercube mumcomputers} are
now in design.  {(The S/Net is a collection of up to sixty-four
compuiey nodes — currently MS-88000' ~ communicating over a
fast, word-paraliel broadcast bus. On both the S/Net and, of
course, on the Vax network, processors are memory-disjoint ~ no
mermory is physically shared among them.}

In the following we outline Linda, then discuss some distributed

dala structures shat have arisen in Linda programming experiments
o date,

In closing we briefly discuss some related work., Our

Ya 198mode Intel WPSC and & Binode cubs designed and bully by Erie
DeBenedictis of ATET Bell Labs.
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the matched tuple itself remaining in TS in either case. eval(t) is
the same as out(#), except that eval adds an unevaluated tuple to
TS. (eval is not primitive in Linda; it will be implemented on top

of out. We haven't done this vet in 8/Net-Linda, so we omit
further mention of eval.)

The parameters to an in{() or read() statement needn’s all be
formals. The leading parameter is always an actual, but any others

may be actuals as well. All actuals must be matched by

corresponding actuals in a tuple for tuple-matehing to oceur. Thus
the statement

in("P", 1int 1, 18)
may withdraw tuple ("P", 6, 18) but not tuple ("P*, &, 12).

When o variable appears in a tuple without a type declarator, its
value is used as an actual. The annotation var may precede an
already-declared variable to indicate that the programmer intends a
formal parameter. Thus, if 1 and J have already been declared as
integer variables, the following two statements are equivalent to the
preceding one:

i = 18; 1n('P*, var i, J)

Linda’s extended naming convention -- it resembles the select
operation in relational databases -- is referred to as structured
naming. Structured naming makes TS content-addressable, in the
sense that processes may select among a collection of tuples that
share the same first component on the basis of the values of any
other component fields. Any parameter to out, () or eval () except
the first may likewise be a formal; a formal parameter in a tuple
matches any type-consonant actual in an in or read statement's
template.

The implementation and performance of the Linda kernel are
discussed briefly in section 4.

3. Programming examples

The distributed data structures we’'ve experimented with so far
have occured mainly in the context of replicated~-worker parallelism.
In network-style parallelism (the more common variety), a program
is partitioned into n pieces, where n is determined by the logic of
the algorithm or the form of the data; each of the n logical pieces is
implemented Dy a process, and each process keeps its attention
demurely fixed on its own conventional, local data structures. In
vhe replicated worker model, we don’t partition our program at all;
we replicate it r times, where r is determined by the number of
processors  we  have  available. All  r  processes clamber
sirnultaneously over a disiributed data structure, seeking . work
where they can get it. The replicated worker model is interesting
for a number of reasons:

1. It scales transpuarently. Once we have developed - and
debugged a program with a single worker process, OUr program will
run in the same way, only faster, with ten parallel workers or:a
hundred. We need be only minimally aware of parallelism in
developing the program, and we can adjust the degree of paralielism
in any given run to the available resources,

2. It eliminates logically-pointless context  switching. Each
processor runs a single process. We add processes only when we ‘add
processors. 'The process-msnagement burden per node is exactly the
same when the program runs on one node as when ‘it Tuns o0 %
thousand. {(This is not true, of course, in-the network modeli VA
network program always creates thé same number of ‘processes. 1T
many processors are avallable; the processes spread out; if ‘there are
only a few, they pile up.) :

3. It balances load dynamically, by default. Fiach worker: process
repeatedly searches for a task 1o execube, execuies it, “and “loops.
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Tasks are therefore evenly divided at runtime among the available
workers.

It is not the case that distributed data structures are interesting
only in the contex? of replicated workers. Of the programs we
discuss, none is a pure example of this type -- all include sorme
partitioning as well as replication of duties -~ and it’s easy to
describe purely network-style programs that rely on distributed
data. But these examples represent our experience to date, and the
link between distributed data structures and replicated workers is
significant.

The examples discuss two basic classes of distributed structures,
unordered and thes ordered ones. Some examples {a distributed
array is one) have conventional analogs; others - for example task
bags, broadcast streams or "negative” data structures asssembied
out of blocked processes instead of data -- don’t.

Unordered structures. It has been remarked® that unordered
structures like sets seem to have found no natural place in
computation, One possible explanation is thay, while we can
entertain the abstraciion of an unordered structure, a conventional
All data
stored in a conventional memory is ordered (if only implicitly) by

machine provides no way o represent such a structure.

the inherently ordered medium. Since the machine has no way to
take advantage of the fact that it is logically simpler to store a set
than an array or a list, and will always take the trouble to store an
array or a list anyway, the programmer might as well be aware of
the data ordering and make use of it.

Where distributed structures are involved, though, the situation
is differrent. A structure that exists in many different places
simultaneously is in fact unordered (though each "place” -~ each
local memory -- may be ordered internally). Manager process
models, by restricting each data siructure ¢ & single process’s
contexs, narrow the horizon right back down to the conventional
uniprocessor’s. Linda does not; it encompasses unordered structures

and is & good match to problems that use them.

As a first example of an unordered distributed data structure,
consider the task bag. A task bag holds next-task assignments in
many kinds of replicated-worker programs. Workers repeatedly
draw their next assignment from a task bag, carry out the specified
assignment and drop any new tasks generated in the process back
into the task bag. The program completes when the bag is empty.
Note that the tasks in the bag are unordered -- we assume thab the
order in which tasks are processed doesn’t matter, so long as they
are all done eventually.

A distributed multiset is exactly the right structure for
implementing a task bag. It is easily implemented. The elements of
the task bag will be tuples of the form

("Task”, task-descriptor);
to add a new task workers execute
out ("Task", task-descriptor),
and to remove one for<processing,
in(*Task®, var NextTask):

Note' that we can interpret thisiin statement s meaning either
#choose 3 tuple whose first ¢lemient is " Task®; or choose any tuple
{from a sub-tuple-space fxamed S Tagkt i we ‘can ‘régard all' tuples
with the same prefix'as constituting a su‘b~tup!e—space in themselves.

For exampler LU-matrix decomposition-is. a problem that we
have programmed in several ways using §/Net-Linda; one version of
the algorithim illustraves the use of a-task bag.: These experiments
are interesting in their’ own right for several reasons. LU

2Alan Perlis, personal communication.



decotaposition is the method of choice for solving dense linear
systems. Parallel LU algorithms have non-trivial communication
and control reguirements. Finally, since there are many ways o
solve this problem in Linda, it serves as a good vehicle for exploring
parallel programming methodelogy.

The following is an outline of the LU algorithm, with a
modification to aid numerical stability (partial pivoting):
for (eaech column ¢ of matriz M) {
/* Choose pivol row */
f7ind row r such thav Mlir,el is maximum for
v 4in [, .DIM]
exchangs rows © and T

for sach row r in {(c..DIM} £
/% Reducs row v %/
subtract frow row r a multiple of
ro¥ ¢ sueh thay the ¢’th
autry of row T is O
record the multiplier in L{r.cl;

}

U is the resulting matrix. {(For simpiicity we have omilted some
details, in particular those pertaining to recording the permutations
made to the matrix.)

We lack space to describe in detail the several Linda versions of
this algorithm we’ve tested. In outline, though, one task-bag
approach works as follows. We need a control process and one or
more workers, The control process fills the task bag with a
collection of tuples holding the rows Lo be reduced on this iteration
{one row per suple), and adds one additional tuple that holds the
pivot row. Each worker repeatedly withdraws a row and reduces it,
using read to check the pivot-row tuple; then it sends the result
back to the control process and repeats, until all rows are done.
The control process checks the incoming reduced rows as they
arrive; when they are all in, it refills the task bag with the rows to
be reduced on the next iteration, outpuis the new pivot row, and
the process repeats.

In timing tests on the S/Net, two workers and a control process
finish faster than a version of the same algorithm in uniprocessor C,
and the Linda program shows linear speedup up to the small
number of processors -- currently 8 - available to us. Other Linda
versions in which rows are distributed only once, at the start of the
program, show speedup which Is close to ideal linear speedup of the
comparable C program -~ adding processors results in a progressive
doubling, tripling and so on of the C program’s speed.

The LU task bag is a rather tame member of the rowdy
distributed-data-structure set:  All workers withdraw from it, but
only the control process refills it. Free-for-all task bags, added-to
and deleted-from by svery process in the program, cccur as well.
Consider a program that finds all paths between an arbitrary origin
and destination node in a graph. 7To do so, it creates a bug and
places it on the origin node. The bug trudges outwards through the
gravh. generating new bugs whenever more than one path is
available. The program maintains a task-bag of bugs; "bug-
trudger® processes {the workers) repeatedly remove a bug, toss it
forward one edge, update the bug’s path-taken and length-of-path
logs, then squash it and generate new bugs for each possible next-
edge in the path. The old bug’s path-taken and length-of-path logs
are implanted in each new bug, new bugs are dropped into the task
bag. in outline, then, each bug-trudger process sxecuses

loop €
in(*bug®, var PathSoFar, var LengthSoFar);
updata Pabd and Length;
tor sach naxt sdge

out ("bug®, UpdatedPath, Updatsdlengih);
¥

The graph itself is a distributed data structure as well. Fach nods
is represented by a tuple of the form

{*node”, node<d, adjucent-nodes, adjucent-edge-lengths)
Por example,

{(*acde?, 12, [1,18,14,-11, [86,2.2,-11)
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N 3 .
Here we use “-1% to signal the end of a variable-length array”. To
find node 12°s description, we use read with a structured name:
read("nods”, 1%, var AdjscantNodss, var Ad)acenvEdgas).

Note that we can create any number of “bug trudger®
processes with no change to any part of the program except for the
process-creating statement itsell, Any number of parallel processes
can safely share direct access to the task queue and the graph.

The task-bag model generalizes to a dataflow model.  The task
bag holds templates, one template per tuple; gach template includes
uready? and 1d fields (and any others that are needed). Workers
are general evaluators; they use structured naming to select "ready™®
templates, execute the specified task step, and update any templates
to which & newly-developed value should be propagated. A
template is marked “ready® by the worker that fills its last value
slot. Thus:

loop «
in{(*DataFlowBag®, *ready®, var id,
other-task-describing-fields) ;
execute the task step;
tor each template N to be updated {
in{*DataFlowBag®, var flag, N, ... 3,
1t N is now ready
out ("DataFlowBag®, "ready”, N, updated_flelds):
2lse
out("DataFlowBag®, *not-yet* N, updated fields);
¥
¥

We are using this contrel mechanism to develop in collaboration
with researchers at AT&T Bell Labs a parallel VL8I simulator in
Linda. In one version of the simulator, each node in the circuit
graph is represenved by a task-description tuple, where a tlask-
description consists of a pointer to the function that simulates this
node and a series of slots for input values to the function. A task-
description with all of its slots filled in is “ready”. This Linda
solution will only run well, of course, if the average execution time
for each task step is sufficiently long relative to an out or an in to
amortize communication overhead. We don’t claim by any means
that this approach will work for arbitrarily fine degrees of
parallelism. Preliminary evidence suggests that the simulator, in
which an average task step requires about 9 ms, will meev our
coarseness criterion; we can’t yet say for sure. If not. (1) there are
other replicated worker solutions to this problem which require
fewer T8 operations, and we’ll try those, {2) future versions of the
$/Net architecture, now in design, will allow our kernel to run
faster, and make the grain-size of the datallow-style program we
can handle correspondingly finer,

As a final example, consider Linda’s tuple space itself: it is a
data structure whose semantics are those of an unordered collection

or multiset. The semantics of tuple space reflect a physically
unordered underlying structure. The details of the structure depend
on the particular jmplementation, bub 15 is assumed always to be
unorderad.

in §/MNet Linda, for example, tuple space is stored as a replicated
set of hash tables. Kach processor stores all tuples in tuple space,
but the order in which replicated tuples are stored wvaries from
processor o processor. The replication has both advantages and
costs, Other implementations may store tuples only once, Bjornson
* has proposed a distributed hash table: a hash code computed
from a tuple determines s unique node which will have
responsibility for that tuple. [Gel84] proposes an implementation,
appropriate on hyper-cube-shaped communication networks, in
which each tuple is stored by all members of some row or sub-cube
of each node. See [LeicB5] for a further discussion of these and
retated algorithms.

3, . .
The bug-trudger we Implemented used strings instead of arrays for *adjacent-
nodes” and "adjacent-edge-lengthe®,

4 N s
Fob Biornson, personal communication,



What all these algorithms share i3 an actual physical
distribution of the data in tuple space, and she lack of any ordering
on tuple space elements. No iterator over tuple space is provided
by Linda; no iterator is present in the support kernel; and if a Linda
program iterates over tuples -- by simply doing repeated in’s — it
can expect to see tuples in different orders at different nodess.

Ordered structures

We can build distributed versions of conventional ordered
structures like arrays in tuple space by including index fields in
tuples and using structured names to pick e¢lements out. One of ocur
experiments with 3/Net Linda, for example, involved a matrix
multiplication program that consisted of an initialization process, a
cleanup process, and at least one but ordinarily many worker
processes. Each worker is repeatedly assigned some element of the
product matrix to compute; it computes this assigned element and is
assigned another, until all elements of the product matrix have been
filled in. If A and B are the matrices to be multiplied, then the
initialization process uses a succession of out statements to dump
A’s rows and B’s columns into TS. When these statements have
completed, TS holds

A, 1, As-first-row)
(*a*, 2, A’s-second-row)

*B*, 1, Bls-first-column)
(*B*, 2, Bs-second-column)

Indices are included as the second element of each tuple 50 that
worker processes, using structured naming, can select the 1th row or
sth  column  for  reading. Workers repeatedly in  a
NextAssigmnent tuple that holds the row and column of the
product element to be computed next. then oul it again. suitably
incremented, for some other worker to find. The row and column
the NextAssignment tuple are used to select the
to compute

read from
appropriate vectors and to label the product tuple:
element {7, ) of the product, a worker exceutes

read(A, 1, var row);

read(B, j, var col);

out{prod, i, j, DotProduct(row, coll));
Thus each element of the product is packed in a separate tuple and
dumped into TS. (Note that the first read statement picks out a
vuple whose first element is "A"¥ and second is the value of 1: this
tuple's third element is assigned to the formal TOW.)

Although the product matrix is stored in tuple space as an
unordered structure, a cleanup process may treat the product as a
bag and reel in its elements in arbitrary order:

for (row = 1; row <= NumROWS, rowt++)
for (col = 1; col <= NumCols; col++) {
in(prod, var row, var col, var Tesult);
prod(row] [col} = resuly;
>
print prod;

(A simllar program's performance on the S/Net resembles the
LU program's performance; again versions with less communication
exist. FPor example, we had each worker compute an entire row at a
vime; the resulting Linda program’s speedup is close to ideal linear
speedup over uniprocessor C [{CG85}.)

A distributed tuple space array is closely analogous to a
conventional array (although it may, of course, expand and contract
dynamically. and it is accessible to many processes simultaneously).
Ordered distributed data structures are also possible that have no
close sequential analogs. Consider the  f{ollowing programiming
problems. In a distributed mailer utility, any number of user
processes may wish to keep abreast of a continually-updated
bulletin board. In a simulator program, we might create a set of
table-management processes, each one: of which stores one partition
of a global state table. Worker processes send state updates to the
table processes, and each table processe needs to scan every update
in order to determine what it should ask workers to do next. (Such
a structure arises in one version of the VLSI simulator mentioned

"Note that two simultaneous-pkeeiting processes executing such a series of in's
would actually split the matching tuples between them in some unpredictable way.
Allowing each to see all the tuples requires some additional structure. The broadeast
stream structure discussed below is an example.
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previously.)

We can handle these probiems in Linda by using 2 distributed
data structure called a broadcast siream. Consider o stream called
S; to implement S, we need an S-counter tuple,

(284, scounter®, current-val)
where current-val is initially 0. In appending to 8, processes
manipulate the S-counter using the utility routine IncrCount, in
outline

IncrCouns (M)
{
in(N, “counter?®, int i);
out (N, *counter®, 1 + 1);
return 1;
¥
Stream S exists as a numbered series of suples:
(g7, 0, Valo), (¥8%, i, Vall), (*S*, 2, Val2)

To append NewVal 10 8, a process executes

out(*$*, IncrCount(*s*), NewlVal)
Any number of processes may share append-access to S; since the
end-of~stream counter inhabits a single tuple, the count is
maintained consistently no matter how many processes ry to
update it simultaneously.

A process that wishes to read the broadcast stream will execute
index = 0;
loop <

read (*8*, index++, var NewVal);

>
The first time read is executed, it awaits a tuple whose first
component is "S", second is 0 and third is any value that is type-
compatible with NewVal; the second read awaits ("S*, 1, D,
the third {*S$*, 2, ...) andso on. So data elements are read in
stream order, as desired.

It
resembles in some ways a plain, naive broadcast, in which senders
reguiarly flash messages to a set of receivers: but
important differences. The broadcast stream’s readers
completely decoupled from its writers: each reading process
proceeds entirely at its own pace, without having to keep up with
the writing processes and without reference to any other reader. If
a reading process consumes messages faster than the writing
processes append them, it repeatedly blocks pending the next
message’s arrival -- as it would be expected to do under naive
broadcast. But a reading process may also scan the stream and
receive each broadcast in sequence long after every writing process
has terminated.

The broadcast stream structure has interesting properties.

there are
are

It’s also interesting to note, again, that the broadcast stream is a
fully distributed data structure: Any number of cooperating
processes may read it, any number may append to it. and no one
process is any more responsible for its storage and upkeep than any
other.

If processes in the stream’s head tuple instead of reading i
(using a second shared counter for coordination), the broadcast
stream becomes a task queue. We can append and remove using
other ordering disciplines as well - a task stack is as easy as a task
queue, for example.

There is an interesting symimetry between the templates that are
parameters to 17 and the tuples that are parameters to 0BL; tuples
and templates are structurally identical. This fact has implications
for the implementor: tuples can be dispatched through the network
searching for matching templates, or templates can be sent in search
of tuples. Of concern here are the logical implications of the
symmetry, the fact that we can think of distributed data structures
that are constructed out of templatés as well as tuples. Consider a
replicated-worker task bag program in a state in which all workers
but one are blocked awaiting a task tuple. As the workers waib ab
their

in("Task", var TaskDescriptor)



statements, we may think of  the  {"Task”, yar
TasxDescriplor) templates as constituting a "negative task bag”
- & Dhag of blocked processes,

We may bulld ordered sets of blocked processes as well {ordered
*negative distributed data structures®). We can use such 3 negative
structure to build an unconventional solution to the classic readers-
writers problem. Suppose many processes share access 10 a complex
data object which s too large, we assume, 1o be conveniently stored
in a single Linda tuple. Processes are permitted to access the shared
object directly, but only alier walting uniil v is permissible for
them to do so. The rules of access specily that many readers or a
single writer may Lave access 10 the data, but not both; a constant
stream of read-requests must futhermore not be allowed to postpone
satisfaciion of a write request indefinitely, nor may a stream of
write-requests indefinitely postpone reading.

The simplest and clearest way to solve this problem is to to
append each new read or write request 1o the end of a single gueus.
if the gueue’s a read request, the requestor is
permitted to proceed as scon as RO writer is active;, if the head
request is a write request, the requestor may proceed as soon as
neither readers nor a writer are active.

head reguest is

When a reader or writer is
given permission to procsed, its request is removed from the head of
the queus.
notifies the system when it is done.

The requesting process reads or writes directly, and

The following is this solution as it 15 expressed in Ada (from
[Hab®3]). The Ada version Is a typical manager process solution.
When user processes need to read or write, they send a
PSTART(read)” or "START(write)" request t0 2 mManager process
called "RWScheduler”; when they are done, they inform the
manager by executing “STOPREAD” or *STOPWRITE®. Thus a
reader process execules

START (read) ;
read:
STOPREAD;
and a writer similarly. User messages are queued automatically in
FIFO order for inspection by RWScheduler. There is one queue for
"STARTY requests, one for "STOPWRITE® notifications and one
for "STOPREAD?" notifications. The manager uses its Internal
state variables "nrreaders® {the number of active readers}) and
*writing” {TRUE if there is an active wriler] to accept reguests
from these gueues, and thereby allow the requesiing processes to
proceed at the logleally correct points.
task body BYscheduler is
nrreaders: IHTEGER
writing: BOOLEAN
begin
loop
selsct
when neb writing =>
accept START(r: in request)

do

if r = rsad then
nrreaders (= prreaders + 1)
2lge
for 1 in & .. nrreaders loop
accept STOPREAD;
end loop;
nrreaders % 0
writing 1= TRUE;
end 1if;
end START;
or
when writing =»
accept STOPWRITE do
Wriving = FALSE
end STOPWRITE;
or
when nobt ¥riting =>
accept STOPREAD do
nrreaders ¥ arreaders - 1]

end STOPBRREAD;
#nd sulecy;
end loop;
ond R¥WScheduler;
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The Linda solulion implements the same algorithm in an
entirely different way. Linda reader processes again execuse
sharvrsas (O
read;

stopread()
and writers similarly. But no mapager process administers a
request queue. Instead, the queue is o negative distributed data
structure -~ an ordered set of templates, or blocked processes. A
process queue may, in other words, be distributed just as a data
queue may; we can assemble blocked processes into the same range

of structures that are possible with tuples.

To implement the queue we use two counters, rw-head and
rw-tall. When a process needs to read or write, it coosuits (and
increments, using the IncrCount routine discussed above) the value
of ihe rw-bHall counter; sappose 7 is the valie returned.  The
requesting process now waits until the value of the rw-head
When it is, this requestor is first on line and will be
The

process queue exists as a numbered series of ternplates, each

counter is 7.
the next process permivted access 0 the shared data object.

corresponding to a blocked process:

(*rw-head®, n), ("rw-hesd®, n+1), (C'rw-head”, n1+2 ). ..
When the value of “"rw-head® reaches n, the head template is
matched and the head process continues: when jt reaches n-+1 the

next blocked process continues, and so on.  We use iwo other
counters to allow the head process to determine when it is sale w
vake the plunge and start reading or writing. Tefore proceeding,
the head process must wait for the value of a "writers” counter to
be 0 {at which point no writers are active). and, if iv is itsell a
writer, it must also wait for a "readers" counter to be 0 as well
Finally it increments either the "readers” or the "writers” counter
{depending on whether it intends to read or write). and increments
the “rw-head” counter 1o give the next walting process a chance to
awalt access:
svarvread O
{
read (*rw-head®, IncrCount(*rw-1ail®));
read (*writers*, 0);
IncrCount (*readers®);
IacrCount (*rv-head*);
>
startwrite differs
writers to be zero,
readers:

startwrite
{

both rteaders and
writers

only in for

and

waiting

in incrementing in place of

read (*rw-pead®, IncrCount("rw-tail”));
read("raaders®, 0); read("writers”, 0);
InerCount (Pwriters”);
InerCount{*rv-head"):

>
stopread and stopwrlte are simply
stopread ()

{

peerCount ("readsrs”)
¥
stopwrite O
{

pDecrount (*writers®)
>

The read-write request queue exists in the Linda solution as it does
in the Ada solution -- but in Linda, the queue is a distribuled data
The
no manager process and

structure instead of a conventional non-distributed one.
program is simpler at runtime as a result:
no user-manager conversations are needed.
process to execute several TS operations, of course, but these are
simpler than message-exchange operations -- they involve the user
process and the kernel, not a sender, the kernel and a receiver.)
Linda’s readers-writers code is also shorter and simpler than Ada’s.
Note that Linda’s runtime advantage grows with the number of
objects to be managed. Suppose many objecis are independently
readable  and  writeable: providing more Ada-style managel
processes  increases the process-maintenance  and inter-process

{Linda requires each



commuuication burden; Keeping manager-processes constant and
giving cach more to do increases each manager’s bottleneck
potential.

Note finally that we can build arbitrary linked data structures
i tuple space as well as sequential ones. The language Symmetric
Lisp [Gelg5a]. a high-level paraliel programming language meant to
be implemented using Linda primitives, allows any number of
processes simultaneous access to distributed lists: we can implement
a cong cell with a tuple by using logical names where a conventional
implementation uses physical addresses. Thus

(Ct, *consg*, Ci7, C23)

is a cons cell whose car is the tuple beginning C17 and cdr is €23,

4. The 8/Net implementation

Linda has often been regarded as posing a particularly difficuls
implentation problem. The following paragraphs summarize the
implemented Linda on the S/Net. for the
edification of the curious. The S/Net implementation is discussed

way in which we

Our implementation buys speed at  the expense of
communication bandwidth and local memory: the reasonableness of
this trade-off was our starting point. (Variants are possible that are
more conservative with local memory {Leic85].)

Executing out(#) causes tuple ¢ to be broadcast to every node
in the network: every node stores a complete copy of TS, Executing
in(s) triggers a local search for a matching £. If one is found, the
local kernel attempts to delete ¢ network-wide using a procedure we
discuss below. If the attempt succeeds, ¢ is returned to the process
that executed in{(). (The attempt fails only if a process on some
other node has simultaneously attempted to delete {, and ¢¢ has
suycceeded).  If the local search triggered by in(s) turns up no
matching tuple, all newly-arriving tuples are checked until a3 match
oceurs, at which point the matched tuple is deleted and returned as
before. read() works in the same way as in{), except that no
tuple-deletion need be attempted -- as soon as a matching tuple is
found, it is immediately returned to the reading process.

All nodes
message: if many processes attempt to
The manner in which

The delete protocol rnust satisfy two requirements:
must receive the "delete”
delete simultaneously, only one must succeed.
these requirements are met will depend, of course, on the available
hardware.

When some node fails to receive and buffer a broadceast message,
a negative-acknowledgement signal is available on the $/Net bus.
One possible delete protocol has two parts: The sending Kernel re-
broadcasts repeatedly until the "negative acknowledgement™ signal
is not present. It then awaits an "ok to delete {¥ message from the
node on which { originated. In this protocol the kernel on the
tuple’s origin node is responsible for allowing one process, and only
one, to delete it. (We have implemented other protocols as well.
Processes may use the bus as a semaphore to mediate multiple
simultaneous deletes, for example, and avoid the use of a special
"ok to delete™ message.)

In order to estimate the time required to perform in’s and out’s
we ran the following programs on separate pProcessors.

PING:
count = Q;
while (TRUE) {

in("ping®);
i1f {++count == LIMIT) break;
ocut(*pong*) ;

¥
print elapsed time;

PONG:

while (TRUE) {
out(*ping®);
in("pong*);

>
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Since we wanted to measure basic communication cost, we moved
calls to Linda support routines out of the loops. This is equivalent
to assuming the existence of a compiler that is able to recognize
that the strings "ping" and "pong® are constants, and that these
support routines {make_ptp and pLp tb) return constant values
when called with constany arguments .
using the 68000’s clock via the existing
operating system. Evidence from this test suggests that a minimal
out-1n transaction, from kernel entry on the oul side to Kernel exit
on the in side, excluding -~ as noted -~ the cost of packetizing, takes
about 1.4 msec. Other experiments support these general figures.

Elasped time was measured
routines supplied by

As 2 communications Xernel for a bus-connected network,
S/Net-Linda falls generally within the same category as several
others that have been reported in recent years. Ixamples include
the Birrell and Nelson RPC kernel [BN84]. Cheriton and
Zwaenpoel's V Kernel [CZ83] and Spector’s Remote Operations
kernel (Spec82}, among others. Linda differs fundamentally from all
three in what it offers the user: The V kernet provides RPC-like
synchronous message passing (in addition to an efficient inter-node
file transfer service), and Spector provides flexible systems-level
It is
nonetheless worth pointing out that Linda’s performance, allowing
for all the obvious incomparabilities, is roughly in league with the
others (assuming the software and not the microcoded version of
Spector’s system). In the ¥V kernel, the synchronous send of a short
message, from send-message until the sender receives a reply,
requires 2.56 ms7: a generally comparable operation in Linda -- the
sender executes an oul to send parameters, then an in to retrieve
results -- requires roughly 2.6 ms with a null message. (The figure
for short messages is about the same). Birrell and Nelson’s reported
1.1 ms for remote invocation of a procedure of no arguments that
returns no results the figure represents elapsed time from
invocation through remote procedure execution and return -- is a
Htile over twice as fast as Linda and V; but Linda and the V Kernel
both tun on MC-68000's, the RPC kernel on the much faster
Dorado.

protocol-construction tools toc the systems programmer,

5. Conclusions.

Most paraliel languages and programming systems don’t support
distributed data structures. Some do, and nuUIMeErous experiments
with replicated-worker programs have been reporied -~ for example
on the BBN Butterfly [Deus4], the NYU Ultracomputer {Gott83)
and the Denelcor HEP [Mullg4]. But these systems have relied as a
rule on the existence of physically shared memory among processor
nodes, and have supported distributed data struciures only by
means of relatively low-level system calls. Parallel languages have
in fact been proposed {Qlambda, for example [GM84]) that depend
explicitly on the existence of a shared-memory paraliel architecture,
and still rely on manager processes or Hoare monitors instead of on
distributed data structures in Linda’s sense. Manager processes are
good tools in many cases -- but our experiments to date have led us
to hypothesize that distributed data structures are an inherently
better match to many kinds of parallel algorithm. Ag vhe very least
they are an alternative that, although it has been largely ignoved in
parallel-language work t,o'dat,e, is worth investigating.

SThis is conceptually equivalent to a compiler recognizing that subscripting with a
constant subscript produces a constant address.

7A second paper [0Z85] quotes a higher figure for a modified system, but the lower
number reflects a kernel that is closer to ours.
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