
Quasi-Static Scoping:

Sharing Variable Bindings Across Multiple Lexical Scopes*

Shinn-Der Lee and Daniel P. Friedman

Computer Science Department

Indiana University

Bloomington, Indiana 47405

sdleeacs.indiana. edu

Abstract

Static scoping embodies a strong encapsulation mechanism

for hiding the details of program units. Yet, it does not allow

the sharing of variable bindings (locations) across indepen-

dent program units. Facilities such as module and object

systems that require cross references of variables therefore

must be added as special features. In this paper we present

an alternative: quaai-st atic scoping. Quasi-at atic scoping is

more flexible than at atic scoping, but has the same encapsu-

lation mechanism. The user can control when and in what

scope to resolve a quasi-at atic variable, i.e., to associate it

with a variable binding. To demonstrate its versatility, we

add quasi-static scoping to Scheme and show how to build

the aforementioned facilities at the user-level. We also show

that quasi-at atic scoping can be implemented efficiently.

1 Introduction

Static (Lexical) scoping is ideal for hiding the internal de-

tails of program units. In addkion, a static variable’s refer-

ence occurrences can all be identified syntactically at com-

pile time. Thus, there is little, if any, computation needed at

run time to resolve a variable reference, i.e., to determine the

variable binding (location) denoted by the reference. Con-

sequently, at atic scoping facilitates eilicient implementation.

Yet, static scoping does not allow variables to be shared

across independent scopes [14]. Facilities such as module

and object systems that support cross references of variables

among lexical scopes thus must be added as special features.

They provide the necessary scoping information to assist

the evaluator (compiler or interpreter) in resolving variable

references.

● Thk research was partially supported by the National Science
Foundation under grants CCR S9-01919 and CCR 90-00597.

Permission to copy without fee all or part of this material is

grented provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-20th PoPL-1 /93-S. C., USA

Q 1993 ACM 0-89791 -561 -5/93 /0001 /0479 . ..$1 .50

dfried@cs.+adiana. edu

In this paper we present an alternative: guasi-datic scop-

ing. With quasi-at atic scoping, a free variable in an ex-

pression can be designated as quasi-static. A quasi-static

variable is initially unresolved, i.e., not associated with any

variable binding. To avoid int roduang dynamic behavior,

it has no default binding in the expression’s evaluation-time

environment. Rather, the user must resolve it prior to deref-

erencing; otherwise, it is a dangling reference and raises an

error.

We therefore provide a resolution operation to aasociate a

quasi-at atic variable in an expression with a variable binding

in any scope. This resolution is performed independently of

the given expression’s evaluation, and it need not resolve all

the quani-static variables of the expression at once. Thus

when and in what scope a quasi-static variable is resolved is

entirely at the user’s discretion.

Moreover, once a quaai-static variable is resolved, it re-

mains iixed as if it had been a static variable, hence the

term quasi-static. It thus provides the same encapsulation

mechanism as at atic scoping and therefore the same degree

of program modularity and security. In addition, since a

resolved quasi-at atic variable is a at atic variable, run-time

dereferencing requires no extra work.

Any renaming (a-conversion) of a static variable is done

consistently throughout the variable’s syntactically evident

finite scope. Hence, a static variable’s resolution can safely

depend on its name. The name-based resolution of a quaei-

static variable, however, does not survive under a-conversion,

since the scope of a shared quasi-static variable cannot be

determined lexically. We avert this problem by recognizing

that every variable has two names: an internal name and an

extemol name. The former is a-convertible and is used in

the finite scope of every at atic and quasi-at atic variable. The

latter is not subject to renaming and is used by the quasi-

static variable resolution operation to associate a reference

in one scope with a binding in another scope.

In the next section we extend Scheme with quasi-static

scoping. In Section 3 we demonstrate the expressive power

of quasi-static scoping by using it as a basic building block

for constructing module and object systems. In the follow-

479

ing two sections we present a denotational semantics and

an efficient implementation of quasi-static scoping. In the

last section we make comparisons to other work and discuss

future research directions.

2 Extending Scheme with Quasi-Static Scoping

Scheme is an elegant statically-scoped functional language

with imperative features that has a simple and clean se-

mantics [4]. In this section we add quasi-static scoping to

Scheme, showing that quasi-static scoping and static scoping

can co-exist and complement each other.

2.1 Quasi-Static Procedures

A quasi-static variable is not as static as a static one; it

should only be used in circumstances where a static vari-

able is inadequate. Thus, a variable is static unless stated

otherwise. In an applicative-order language like Scheme, a

procedure is the only value with possible references to free

variables. Hence, we add a new type of procedure, called

a quasi-static procedure, that haa some of its free variables

quasi-statically bound. A quasi-static variable is unresolved,

i.e., not associated wit h a variable binding, when the proce-

dure is defined. It is later resolved to some existing variable

binding at the user’s discretion.

A quasi-static procedure is the result of evaluating a qs-

lambdaO expression of the following form:

(qs-lambdao ((ql Qi) . . . (qk Qk)) formals bodY)

The names ql, qk, where k 2 0, and QI, Qh are

the internal and external names of the procedure’s quaai-

static formal parameters, respectively. They are identfied

by their positions in a qs-lambdaO form. To further dis-

tinguish them visually, however, we use upper-case for the

external ones and lower-cue for the internal ones. Like the

static formals, the quasi-static formals ql, qk are also

the procedure’s bound variables with a finite scope consisting

of only the body expression. Consequently, like the static

formals, they are subject to a-conversion. Their external

names, however, a~e not. In order to avoid ambiguities, the

formal parameters, static and quasi-static, must have dif-

ferent internal names, and the external names of the quasi-

static formals must be different as well.

When a qs-lambdaO expression is evaluated, the envi-

ronment in effect defines the free static variables referenced

in the body; the quasi-static formals are unresolmd and are

known outside through their corresponding external names.

Calling a quasi-static procedure binds its static formals but

not its quasi-static formals. The latter are associated with

variable bindings using resolvel described below.

For example, the two expressions in Figure 1 define two

independent quasi-static procedures odd? and even?. The

procedure odd? has an unresolved quasi-static formal pa-

rameter whose internal and external names are even? and

(define odd?

(qs-lambdaO ((even? F)) (z)

(if (zero? z) #f (even? (-s l)))))

(define even?

(qs-lambdaO ((odd? G)) (z)

(if (zero? z) #t (odd? (-z l)))))

Figure 1: Two independent quasi-static procedures.

1’, respectively. We can rename the internal name just as

we might rename a bound variable. Thus, the expression

(define odd?

(qa-lambdaO ((foo ~)) (z)

(if (.vem? z) #f (/00 (- z l)))))

defines the same odd? procedure. On the other hand, the

resolution operation relies on the external name F to SSSG

ciate even? with a variable blndmg. Hence, it is not subject

to a-conversion.

The two procedures odd? and even? have no access to

each other; they are not mutually recursive. Applying the

procedure odd? in Figure 1 binds x, but the quasi-static

formal parameter even? remains unresolved. Hence, the ap

plication (even? (– z 1)) raises an unbound variable error.

One of our design criteria is to make quasi-static scop-

ing as orthogonal to Scheme as possible. Quasi-static pro-

cedures are therefore disjoint from ordinary Scheme proce-

dures. Thus, we need a new predicate (qs-procedure ? ezp)

that returns true only if the expression ezp evaluates to a

quasi-static procedure. Hence, (qs-procedure ? (lambda (z)

z)) iS f~e M iS (procedure? (qs-lambdaO () (z) z)), even

though the latter has no quasi-static formals and behaves

exactly like (lambda (z) z).

2.2 Quasi-Static Variable Resolution

The only operation that can resolve a procedure’s quasi-

static formal parameters is the resolvel special form. It

maps a quasi-static procedure into another distinct quasi-

static procedure with possibly fewer unresolved quasi-static

formal parameters. A resolvel expression has the form

(resolvel z Q qs-proc)

(The 1 of resolvel indicates that it involves only a single

variable.) The variable z must be associated with a vari-

able binding and the expression qs-proc must evaluate to

a quasi-static procedure, say, ~. The resolvel expression

then returns a new quasi-static procedure g. For each un-

resolved quasi-static formal parameter q of ~, if its external

name is Q, the q in g becomes an alias of z. That is, the q in

g is associated with the variable binding of z. Furthermore,

such a resolved q becomes a static variable of g and there-

fore does not participate in future resolution operations on

g. Otherwise, q remains unresolved in g.

480

(letrec ((nay-odd? (resolvel rny-wen? F odd?))

(rn~euen? (resolvel m~odd? G even?)))

(rn~ochf? 6))

Figure 2: Mutual recursion with resolution.

We can use resolvel to construct programs from exist-

ing compiled programs, rather than their source code, by

linking their quasi-static variables. For inst ante, Figure 2

shows how to build a mutually recursive version of the two

procedures odd? and even? of Figure 1 with resolvel. The

first resolvel expression returns a quasi-static procedure,

called m~ odd?, that is similar to odd? except that its quasi-

static variable even?, having external name F, is alissed to

the variable my- even?. Similarly, the qussi-st atic variable

odd? of the procedure my-even? is an alias of the variable

my- odd?. Hence, my- odd ? and my even? are mutually recur-

sive and the expression in Figure 2 is equivalent to

(letrec ((m~odd?

(qa-lambdaO () (z)

(if (zero? z) #f (myeuen? (- z l)))))

(my-even?

(qs-lambdaO () (z)

(if (zero? z) #t (m~odd? (- z 1))))))

(my-odd? 6))

2.3 Currying Quasi-Static Procedures

The addition of qs-lambdaO takes away an important pro-

gram transformation technique: currying. For instance, con-

sider currying the static formal parameters of the following

quasi-static procedure

(q:~)dao ((z X)) (a b)

Because x is not used until the inner procedure of the curried

result is applied, we would like to allow X to be resolved at

either of the two nested quasi-static procedures

(qs-lambdaO ~ (a)

(qs-lambdaO ~ (b)

(Z a b)))

Putting ((s X)) in either ~ or ~ and placing () in the other

is incorrect, because X can then only be resolved at one of

the two qussi-static procedures. Putting ((z X)) in both ~

and ?Z is equivalent to placing it only in ~, since the inner—
a shadows the outer one. So, that also does not work.

What we need is something that can provide two (in

general more than one) occasions to resolve X. In addition,

they should be connected in such a way that if X is resolved

at the outer procedure then the X of the inner procedure is

also resolved and has the same variable binding. Otherwise,

the inner procedure provides another chauce to resolve X.

Hence we define the following qa-lambda special form

(qa-lambda ((iql oql) . . . (iqm 09=))

((N:,)---J Qh))

A qs-lambda expression generalises a qa-lambdaO expres-

sion with the extra list ((igl Ogl) . . . (iqm oqm)), where

m ~ O. (The O of qa-lambdaO means its m is O.) The

list indicates that the inner qussi-st atic formals iqi, iqm

lezically inherit the status of the outer quasi-static variables

oq~, oq~, respectively. That k in the res~ting qussi-
static procedure, iqj is an alias (having the same variable

binding) of oqj, provided oqj is resolved. Otherwise, iqj is

an unresolved quasi-static formal parameter with the same

external name as oqj and is therefore resolvable. Further-

more, because lexical- inheritance is unidirectional, resolving

iqj does not resolve oqj as well. So, it is possible for iqj to be

resolved but not oqj. Again, the inheriting quasi-static for-

mals iql, iqm must be dHerent horn the other formals.

They are the procedure’s bound variables and are therefore

subject to a-conversion. The outer ones, however, are free

within the expression.

Now, the curried version of the above two-argument quasi-

static procedure is

(qa-lambdaO ((z X)) (a)

(qs-lambda ((z z)) () (b)

(c a b)))

We can resolve X at either quasi-static procedure. If X

is resolved before the outer procedure is called, the inner x

lexically inherits the identity of the outer z. Thus, it is a

static variable of the inner procedure. On the other hand, if

X is unresolved at the outer procedure, the inner z lexically

inherits the external name X. It is therefore still a resolvable

quasi-static formal.

The ability to lexically inherit quasi-static variables has

applications beyond expressing currying. We can use it

to implement Common Lisp’s optional keyword parameters

[18]. Consider the quasi-static procedure ~ defined in Figure

3. It has a quasi-static parameter a named externally as A

that is lexically inherited by the inner quasi-static procedure

(q-lambda ((a a)) () () (set! a (+ n a)) a).

When ~ is called with 3, A is unresolved. Consequently,

the inner quasi-static procedure becomes (qa-lambda ((a

A)) () () (set! a (+ n a)) a). But before the inner quaai-

static procedure is called, its A is resolved with private-val.

Therefore, a is aliaeed to private-val, which acts as the

default binding of a. Hence, the result of (j 3) is (+ 3 1).

Also, each call to f generates a distinct private-val so that

the assignments (set! private-val (+ n private-val)) do not

affect one snother. If we intend to share default-val among

sll calls to f, however, we should remove the inner let and

replace (resolvel private-val . ..) with (resolvel defauk-

val . . .),
On the other hand, invoking g on 3 yields (+ 3 10). The

quasi-static parameter a is an alias of y. Because A has

been resolved, the second resolvel operation has no effect

481

(define f

(let ((de~ault-ual l))

(qa-larnbdaO ((a A)) (n)

(let ((private-rnd ck~atdt-val))

((resolvel priuate-ual A

(qa-lambda ((u a)) () ()

(set! a (+ n a))

a)))))))

(define g

(let ((y 10))

(resolvel y A ~)))

Figure 3: Optional keyword parameter.

on the inner quasi-static procedure. The formal ‘parameter

a therefore behaves just like an optional keyword parameter

of ~. Its external name A is the keyword and its default

value is default-val.

Whereas static formals can be curried, quasi-static for-

mals are not. For example,

(qs-lambdaO ((a X) (y Y)) (a ~)

(z (y a b)))

is different from

(qs-lambdaO ((z X)) (a)

(qs-lambda ((z z)) ((Y Y)) (~)

(z (y a b))))

because in the latter we cannot resolve Y at the outer pro-

cedure. Beaides, since there is no ordering between X and

Y, it is unclear which one should come first.

2.4 Derived Forms

In addition to the two new special forms qs-lambda and

resolvel, we define two syntactic extensions resolve and

ink-resolver.

The resolvel operation involves only a single variable.

To express the same operation for multiple variables, we use

the resolve syntactic extension defined in Figure 4. Alter-

natively, we could take resolve aa a core form and define

resolvel se a degenerate csae of resolve. Indeed, the alter-

native view is beneficial from the perspective of implement w

tion efficiency. It will not only avoid allocating space for the

quasi-static procedures generated by the intermediate steps,

but also eliminate the time taken to generate and garbage

collect them.

A quasi-static procedure “imports” variable bindings and

a resolution operation “exports” them. They complement

each other. But, whereas a quasi-static procedure is a first-

CISSS value, a resolution operation is not. Fortunately, we

can abstract over the operand of a resolution operation to

make it into a first-class value. This ia captured by the

ink-resolver syntactic extension defined in Figure 5, where

all the external names are dMerent. Such a one-argument

(resolve ((ZI Qi) (a Qz) . ..) qs-proc)

a (resolvel ZI Qi

(resolve ((za Q2) . ..) qs-pruc))

(resolve () qs-proc)

* qs-proc

Figure 4: Syntactic extension resolve.

(ink-resolver (z, Q,) . . . (zn Qn))

* (lambda (qs-proc)

(resolve ((ZI QI) . . . (G Q~)) qs-proc))

Figure 5: Syntactic extension ink-resolver.

procedure is a quasi-static procedure transformer we call a

resolver. It is essentially a first-class environment of the

variables Z1, Zn known externally through the names

QI, Q-. For instance, the expression

(define pt

(let ((z 3) (y 4))

(ink-resolver (. X- COJ?) (y Y-COR))))

returns a resolver pt with external names X- COR and Y-

COR.

Besides constructing it from scratch, there are two other

ways to build a resolver. First, we can construct a sub-

resolver of a resolver by extracting variable bindings from

the latter. For instance, consider the expressions

(define z-of-pt

((pt (c@arnlxiaO ((z X)) ()

(ink-resolver (z X))))))

(define y-qf-pt

((pt (qa-hunlxho ((z y)) ()

(ink-resolver (z Y))))))

By matching the external name X, the quaai-st atic formal

z is aliased to the variable z of pt. Then the resulting zero-

argument procedure is called to return a resolver of z under

the external name X. Therefore, z-of-pt is a sub-resolver of

pt. Similarly, y-o~-pt is a sub-resolver of pt.

Second, we can construct a new resolver by superimposi-

ng one resolver on another. For example, the expression

(define ptO (superimpose z-of-pt y-of-p~))

where supen”mpose is

(define superimpose

(lmbda (j g)

(9 (f ~))))

defines a resolver pt(l that is the same as pt in behavior.

The way z-of-pt is constructed above relies on the fact

that we know the resolver pt has a binding with the external

name X. If we have no access to that knowledge, we can

use the following defined? syntactic extension to determine

whether the external name X is defined in the resolver pt

482

(defined? Q resolver)

+ ((resolver (qe-larnbdaO ((q Q)) ()

(let ((unique “unique”))

((resolvel unique Q

(qe-l~bda ((9 q)) ()()
(not (e*? q unique)))))))))

Briefly, Q is an optional keyword parameter with a unique

default value unique. If resolver has a binding for Q, the

variable q is aliased to that binding and therefore the test

(not (eq? q unique)) is true. Otherwise, q assumes the

default binding unique and so the test fails.

The same problem, however, is undecidable for a quasi-

static procedure. We cannot tell if a quasi-at atic procedure

has an unresolved quasi-static formal parameter with a par-

ticular external name. Interestingly, the problem becomes

deadable if we allow a quasi-static procedure with no unre-

solved quaei-st atic formals to be coercible into an ordinary

Scheme procedure (cf. Section 2.1). Briefly, by resolving the

given procedure with external names defined in some pre-

define order and testing whether each result is a Scheme

procedure, we can determine the “largest” external name

aesociat ed with the procedure. Repeating the process until

there are no more unresolved quasi-static formal parame-

ters and we have the external names of all the unresolved

quasi-static formals in descending order.

From the perspective of information hiding, we consider

thk asymmetry desirable. What is exported should be made

public whereas what is imported should be kept private.

3 Module and Object Systems

To further demonstrate the versatility of quasi-static scop-

ing, we use it to build a module system and an object sys-

tem. The former illustrates variable binding sharing among

modules, the latter depicts code sharing among objects.

3.1 Modules

A module is a protection mechanism that realiaes the prin-

ciple of information hiding. Its operational detail is hidden

from other modules. A module communicates with other

modules only by importing and exporting variables. Hence,

its extensional behavior is totally specified by its import and

export variables.

In our module system, there are two kinds of first-class

entities: interfaces and clients. An interface is a resolver

that exports a collection of sharable variable bindings, which

serve as communication channels between the clients that

import them. A client is a quasi-static procedure with its

quasi-static formals being the client’s impart variables. It

gains access to sharable variables by linking with interfaces

and interacts with other clients by writing to and reading

from shared variables.

Besides implementing information hiding, our module

system also supports increment al development and testing

~

(error “squsre root function undefined’’))))

(mk-resolver (sqrt SQUARE-ROOT))))

Figure 6: User interface.

(define tester-intj

(let ((tester

(lambda (inq.d)

((inapl (qa-lambdaO

((qrt SQE7’) (epsilon EPSILON)) ()

. ..))))))
(ink-resolver (tester TEST))))

(define installer-intf

(let ((installer

((user-intf

(qs-lambdaO ((sqrt SQUARE-ROOT))

(lambda (irnpl)

((itnpl (qa-lambdaO ((~ SQRT)) ()

(set! qrt f))))))))))

(ink-resolver (installer INSTALL))))

)

[define impl-intf (superimpose tester-intf installer-in~))

Figure 7: Implementor interface.

of modules. As presented in the previous section, there are

various ways of building interfaces (resolvers). Two inter-

faces can be combined into a single one and a sub-interface

can be constructed out of an existing one. In addition, the

definition, and therefore the compilation, of a client is inde-

pendent of its linking with its interfaces. Thus, a client can

be created without the existence of its interfaces. Later, it

can be linked to its interfaces when they become available.

Moreover, changing the definition of a client requires only

the recompilation and relinking of the client, no other clients

are affected. Our module syetem M thus highly attractive to

the development and testing of programs in an interactive

environment.

To illustrate, we show how to apply the module concept

to manage the development of a square root function. In

Figure 6 we define an interface user-intf that is intended for

the function’s users. It exports a single variable sqrt,whose

implement ation is yet to be defined, under the external name

SQUARE-ROOT. Next we define in Figure 7 an interface

impl-int~ for the function’s implementor. The interface is a

combination of two independent interfaces: tester-intf and

installer-int~. The interface tester-intf exports the vari-

able tester with the external name TEST. The procedure

tester serves as the specification that the implementation

must meet. It takes an implementation impl and returns

483

define test.Mnstall

(impl-intj

(q:~-:bdao ((test TEST) (install INSTALL)) (impl

((test impl) (install impl) ‘installed)

(else ‘rejected)))))

define newton-sqrt

(let ()

(define tolerance O)

(define itemte

(lambda (z n)

(if (< (ahs (– (* x z) n)) tolemnce)

~iterate (/ (+ z (\ n z)) 2.0) n))))

(define sqrt

(lambda (n)

(itemte 1.0 n)))

(ink-resolver (toiemnce EPSILON) (qrt SQR’Z’))))

: test&install newton-sqrt)

Figure 8: A square root function implementation.

#t only if the implementation satisfies the unspecified tests.

An implementation impl of the square root function is in the

form of an interface. It must provide at least two export vari-

ables under the external names SQR2’ and EPSILON. The

former ia sasociated with the implementation of the square

root function. The latter denotes the tolerance of the func-

tion’s solutions. The tests are expected to tune the tolerance

factor of the implementation to meet the needs of the users.

The other interface installer-intj exports another variable

installer whose external name is INSTALL. The procedure

installer provides the implementor a means to deposit the

final result in the sqrt variable that ia visible to the users.

It gains access to sqrt by importing SQUARE-ROOT from

the user interface user-intf.

There are various ways of realizing the square root func-

tion. Figure 8 illustrates one possibtity. First, testing

and installation are merged into a single procedure called

test .!lfinstall. It takes an implementation and applies the

imported testing procedure to it. It then uses the imported

installation procedure to deposit the implementation into

the variable visible to the users, provided the testing pro-

cedure approves the implementation. Otherwise, it issues a

negative response. After the definition of testWinstall, the

implementor need only come up with a solution in the form

of an interface. For instance, Figure 8 shows a square root

function implementation newton-sqrt, in the form of a two-

variable interface, that is baaed on Newton’s method. To

test and install th~ implementation, the implementor need

only invoke the test tYinstall procedure on it. The square

root function implementation can be altered with minimal

recompilation and relinking. The only changes are to the

implementation itse~ no other clients or interfaces need be

recompiled or relinked.

Our module system uses by-reference export and import,

aa well aa run-time linking. Felleiaen and Friedman’s Scheme

module system [7] also employs run-time linking. But it uses

by-value import and export. There are thus serious restric-

tions on the ordering of linking, since import can occur only

when the export value is readily available. To ease the re-

strictions, they switch to by-name import that essentially.

delays import until the value ia needed. Unfortunately, by-

name import only works for import values that are proce-

dures.

Curtis and Rauen’s Scheme module system [5] uses by-

reference import and export. But its goal ia to perform

compile-time (static) linking since macros are expected to

be sharable as well. Therefore their interfaces are compile-

tirne objects, since they must be computable statically.

ML’s module system [13] uses by-value import and ex-

port. But since ML haa first-class references (variable bind-

ings), by-reference import and export are easily expressible

aa well. ML’s funct ors, which are functions mapping mod-

ules to modules, are not first-class values; instead, they are

first-order objects. With such a restriction, every functor ap

plication can be inlined and hence ML’s import and export

variables can be statically linked as in Curtis and Rauen’s

system. Without first-class functors, however, procedures

like tester and installer of Figure 7 are not expressible in

the two module systems.

In summary, we believe that by-reference import and ex-

port and run-time linking are essential to a Scheme module

system. But we would alao like to have static linking be-

cause of macro sharing and efficiency. Thus, a combination

of the above systems ia preferred.

3.2 Objects

In Scheme object systems [2, 15] where instance variables

are lexical variables, inheritance of instance variables ia not

feasible. One way of getting around this restriction is to

define for each instance variable a pair of methods called

reader and writer, and simulate instance variable inheri-

tance with method inheritance, aa in CLOS [18]. Another

constraint posed by lexical instance variables ia that an ob-

ject’s method, which is a procedure, must be defined within

the lexical scope of the object’s instance variables in order

for it to gain access to the instance variables. Oaklisp [11]

removes the constraint by resorting to the add-method

special form

(add-method (op (type . inst-vars) . args) . body)

where inst-uars ia the list of instance variables of the chss

type that are accessible to the method’s body.

The addition of quasi-static scoping, however, provides

a simple alternative. By treating a method aa a procedure

484

(define rnk-obj vector)

(define obfidispatcher (lambda (z) (vector-re.f x O)))

(define obj4uars (lambda (z) (uector-ref x l)))

(define ob~pamnt (lambda (z) (vector-ref z 2)))

(define obj-mncell (lambda (z) (vector-re~ z 3)))

(define obfiternplate (lambda (z) (vector-mj z 4)))

(define d-cell vector)

(define celbe~ (lambda (z) (vector-ref x O)))

(define ce.li-set! (lambda (S v) (vector-set! z O v)))

Figure 9: Object representation.

with its quasi-static formal parameters as the inst ante vari-

ables referenced in the method, the definition of an object’s

method can be separated from the object’s instance vsri-

ables. Consequently, it facilitates incremental method addi-

tion to an o~ject a la Oakliap. For example, the following

quasi-static procedure

(define distance

(qs-lambdaO ((z X) (y Y)) (self)

(+ z y)))

is a method that references instance variables whose external

names are X and Y. Such a method is called an open metkod.

It can be added to the classes the user deems appropriate.

Furthermore, by packaging an object’s instance variables

into a resolver and making it available to the object’s chil-

dren, we have inst ante variable inheritance as well. To illus-

trate, let cp be an object with at least two instance variables

named X and Y, and let their resolver be defined as

(define cp-iuars

(let ((z 3) (y 4) . . .)

(ink-resolver (z X) (y Y) . . .)))

Moreover, let mp be an object that inherits cp-iuars from

cp. Then, to invoke distance on mp, the open method’s

quasi-static formals are resolved by cp-iuars to produce an

eflectiue method as follows:

(define resolved-distance (cp-iuars distance))

It is then invoked on mp, which is bound to the static formal

parameter self,

(resolved-distance mp)

In the rest of this section we describe a simple object sye-

tem that is based on quasi-static scoping. The object system

employs message passing, has only single inherit ante, and

achieves self-reference through an explicit parameter self.

It is based on delegation. There are no specific objects des-

ignated as class objects; every object is its own class object.

An “instance” object is created from a “class” object by

cloning the latter.

In Figure 9 we define our system’s object represent-

ation. An object is a vector of five elements: a dispatcher,

an inst ante variable resolver, a parent object, a cell of open

methods, and an instance variable template. The dispatcher

defines how the object responds to messages. The instance

variable resolver defines the instance variables to which the

object has access, including the ones that the object inherits

horn its parent. The fourth element is a cell that contains

an incrementally growing asaoaation list of operation and

open method pairs. For ease of presentation, operations are

just symbols. The last component of an object is a template

from which the instance variable resolver is generated. Es-

sentially, clones of an object share the same open method

cell. Code sharing, a single method operating on multiple

sets of inst ante variables, is accomplished through the shar-

ing of open methods among objects.

An object is created by invoking the new procedure of

Figure 10-with an instance variable template, a parent ob-

ject, and the initial values of the object’s inst ante variables.

Each new object has two built-in methods add-method and

clone. The former is responsible for the incremental addi-

tion of methods to the object. It takes an operation and

open method pair, and adds it to the object’s open method

cell. The latter built-in method clones the object itself. It is

similar to new except that it needs only the initial values of

the clone’s instance variables, since the dwpatcher, the par-

ent object, and the inst ante variable template are known to

be those of the cloned object.

Instance variable inheritance is defined by the mk-ivars

procedure of Figure 10. It uses the object’s instance variable

template with initial values to generate the object’s own

inst ante variable resolver. This resolver is then composed

with that of the parent object. Hence, when the composition

is applied to a given open method, the method gains access

to both the object’s own instance variables and the ones

of the parent objects. In case inst ante variable inherit ante

is undesirable, we can replace the procedure mk-ivars of

Figure 10 by

(define mk-ivars

(lambda (template ivals parent)

(apply template iwds)))

This time the parent object’s instance variable resolver is

ignored and only the object’s resolver is used to resolve an

open method. Hence, the parent’s instance variables are not

visible to the method.

The procedure obj-maker of Figure 10 is used by both

new and clone to create an object. Its most noticeable task is

to create the object’s dispatcher. Upon receiving a message

OP, which is an operation, an object’s dispatcher searches the

open methods in its cell. If one ia found, it is passed along

with the object itself to the success continuation sk, which

handles the rest of a method call. Once an open method

is located for a message, we apply the inst ante variable re-

solver of the handler object, the object in which the open

method is found, to yield the final effective method. The

effective method is then called with the actual arguments.

The procedure send of Figure 10 is an abstraction of such a

process.

485

define new

(lambda (tenqdate parent . ivak)

(let ((7nceU (mk-ceU built-in-methods))

(ivars (mk-ivars template iuals parent)))

(obj-maker ivars parent nwell template))))

define add-method

(qa-lambdaO (self op method)

(let ((rnceU (obfimcell se~)))

(cell-set! mcell

(cons (cons op method) (cell-ref mceil))))))

define clone

(qs-lambdaO (self . ivals)

(let ((parent (ob~parent se2f))

(template (obfitemplate m#))

(mcell (obj-wncell se2j)))

(let ((iuars (mk-iuars template iuah parent)))

(obj-rnaker ivars parent mcell template)))))

define built-in-methods

(list (cons ‘add-method add-method)

(con3 ‘clone clone)))

define mk-ivars

(lambda (template ivah parent)

(let ((ivars (apply template ivals)))

(lambda (method)

((ob>ivars parent) (ivars method))))))

:define obj-maker

(lambda (ivars parent mce12 template)

(let ((parent-dispatcher (obfidispatcher parent)))

(letrec

((obj (mk-obj

(lambda (op sk jk)

(cond

((assg op (cehej mceil))

=> (lambda (P) (sk (cdr p) obj)))

(else (parent-dispatcher op sk jk))))

ivars parent mcell template)))

obj))))

ldefine send

(lambda (receiver op . args)

((obfidispatcher receiver) op

(lambda (method handier)

(apply (resolve-method receiver handler method)

receiver args))

(lambda () (method-call-error op)))))

:define resolve-method

(lambda (receiver handler method)

((obj+ivars handler) method)))

Figure 10: A simple object system.

(define base-object

(mk-obj

(lambda (OP sk j%) (jk))

(lambda (z) z)

‘no-parent

(ink-cell ‘())

(lambda args (ink-resolver))))

Figure 11: The base object.

(define cartesian-distance

(qa-larnbdaO ((z X) (Y Y)) (~eu)

(Sgrt (+ (* z z) (* y y)))))

(define manhattan-distance

(qa-lambdaO ((z X) (y Y)) (seZf)

(+x Y)))

(define cpl

(new (lambda (z y) (ink-resolver (.X) (y Y)))

base-object 3 4))

(define cp2 (send cpl ‘clone 1 2))

(send cp2 ‘add-method ‘distance cartesian-distance)

(define mp (new (lambda args (ink-resolver)) cpl))

(send mp ‘add-method ‘distance manhattan-distance)

Figure 12: Cartesian and Manhattan points.

On the other hand, if an object cannot handle a given

message, it is delegated to the object’s parent. Eventually,

if no object in the inheritance chain is able to respond to

the message, the dispatcher of the ultimate parent object,

base-object of Figure 11, is used to activate the failure con-

tinuation E.

The procedure resolve-method used in send implements

early binding for the inst ante variables. That is, the effec-

tive method assumes its instance variables from the handler

object. The following alternative implements late binding in

which the effective method gets its inetance variables from

the receiver object, the object initially receiving the message

of a method call.

(define resolve-method

(lambda (wceiver handler method)

((obj+ivars receiver) method)))

Finally, we uee the example in Figure 12 to demonstrate

incremental method addition and inst ante variable inher-

itance at work. Firet we define two open methods cartesian-

distance and manhattan-distance that both reference in-

stance variables X and Y. The former computes the Carte-

sian distance of a two-dimensional point tlom the origin,

whereas the Iat t er comput ee the Manhattan dist ante. Next,

we use new to define a two-dimensional point object cpl

486

whose coordinates are (3, 4). The object has no parent ob-

ject. It has two instance variables called X and Y exter-

nally, as defined by the instance variable template (lambda

(z y) (ink-resolver (z X) (y Y))). When this object is

created it has no other methods beeides the two built-ins

add-method and clone. We invoke the latter to create a

clone cp~ of cpl. Next, we add the cartesian-distance open

method to cp,??. Since both cpl and cp2 share the same open

method cell, cartesian-distance is available to cpl as well.

Then, we decide to view cpl as a Manhattan point object.

Hence, we define an object mp that inherits from cpl. This

new object inherits all the methods and instance variables

of cpl. But the carteaian-distance method is inappropriate

for mp. Thus, we add a new method manhattan-didance to

mp, shadowing the version associated with cpI. SO, invok-

ing the distance method on mp uses manhattan-distance to

operate on the instance variables of cpl, showing the effect

of instance variable inheritance.

4 Formal Semantics

We present in Figure 13 a denotationrd description of a

simplified Scheme wit h quasi-static scoping. Besides qs-

Iambda and resolvel, we also include variable reference,

variable assignment, and procedure invocation. In order to

simplify the present ation, we only describe single-argument

procedures. Furthermore, we treat an ordinary Scheme pro-

cedure se a quasi-static procedure with no quasi-static for-

mal parameters. That is, in this section (lambda (z) e)

is considered equivalent to (qa-lambdaO () (z) e), which in

turn is equivalent to (qs-lambda () () (z) e).

4.1 Finite Functions

We summarize the finite function definitions employed in the

semantics. Let f : A * B denote a finite function from A

to B. We write b/a G f if f(a) = b and represent f by the

finite set {b/a I b/a c f }. The arid finite function is denoted

by 0.

Let ~ : A * B, then

c Dom(f) = {aEAl 3bE B, b/a~f} is the domain of f,

● Rng(f)= {b EB13a EA, b/a Ef} is the range of ~.

Let .f, f’, f“ : A a B, Dorn(f) n Dona(f’) = 0, A’ q

A, B’~B, aeA, bEB, andg:B-s+C, then

●

●

●

b

●

●

f@ f’ = {b/a I b/a E f or b/a ~j’} is the sum of f and f’,

f \A’ = {b/a E f I a $1A’} is the domain omission of f over

A’,

f\\B’ = {b/a E f [b @B’) is the mnge omission of f over

B’,

f[b/al = (f\{a}) @ {b/a} is the ezterwion of f with a

mapped to b,

f[f”l = (f\Dom U“)) @ /“ is the e~ten~ion of ~ with $“,
go f = {c/a I b/a c f, cjb c g} is the composition of f and

9.

The operation e is commutative and associative; the

operation o is associative; the operations [], \, and \\ are

left associative. The descending precedence order is [], \,

\\, o, and@.

4.2 Evaluation Function

In addition to an expression e, the evaluation function []

takes three more arguments w, p, and u, each of which is a

finite function. The link u maps variables (internal names)

to external names. It records the quasi-static variables de-

clared in the enclosing context of e. The environment p

maps variables to locations. It defines the resolved vsri-

ables, both static and quaai-st atic, that are accessible to e.

Not shown in the semantic clauses for variable reference,

assignment, and quasi-static variable resolution M that the

variable in question must be defined in the environment:

z E Dom (p). The domains of w and p are not necessar-

ily diejoint. A variable that is defined in both w and p is

a quasi-static variable that has been resolved prior to the

evaluation of e. The store a maps locations to values. It is

included here to model variable assignments.

A quasi-static procedure is denoted by a triple (c, u~, pr)

of a piece of code, a link, and an environment. The link

w= specifies the procedure’s unresolved quasi-static formals.

The environment p, defines the procedure’s ~esolved quasi-

static formals. The domains of p, and UU are always disjoint,

since a quasi-static formal parameter M either resolved or

unresolved. The code c is the denotation of the procedure’s

body parameteriaed over the resolved quasi-static formals,

as well as the value of the procedure’s static formal param-

eter.

When a procedure (c, w-, P*) is invoked, the p, com-

ponent, which defines the resolved quasi-static formals, is

passed to c. The link w., however, is discarded, since any

unresolved quaei-st atic formals are no longer resolvable in

the body. See the procedure invocation clause in Figure 13.

4.2.1 Resolving an External Name

Let the expression e in the evaluation of a resolvel expres-

sion

[(reaolvel z Q e)] u p a

denote the quaai-st atic procedure (c, w-, p,). Then, in the

resulting quaai-st atic procedure, the quaei-st atic formals in

w= that are aesoeiated with the external name Q are resolved

to the location (p z). The link w. is compmaed with the func-

tion {(p z)/Q}, yielding {(p z)/Q}owti = {(p z)/y I Q/g c

wit}. The result is a finite function from variables to 10CW

tions, i.e., an environment. This environment defines the

quasi-static formals in WU that are resolved by {(p z)/Q}. It

is combined with the environment pr to form the new pro-

cedure’s environment component, {(p z)/Q} ow~ @ p,. Siice

the resolved quasi-static formals are now associated with lo-

cations, they should be removed from the link. Hence, the

487

Lbstract Syntax:

Z,g, z : Var (Internal Names or Variables)

Q: Nam (External Names)

e: Exp (Expressions)

e ::= z I (set! z e) I (e e) I (resolvel z Q e)

I (qa-larnbda ((~, z1)””” (vm z~)) ((z~ Q,)

lemantic Domains:

1 : Loc

P : Env = Var w Loc

%: Inh = Var - Var

w: Lnk = Var -e-i Nam

u: Sto = Loc * Val

c: Cod = Vrd - Env ~ Sto ---i (Vsl x Sto)

Proc = Cod x Lnk x Env

v: Val=Proc +...

Evaluation Function [] : Exp ~ Lnk ~ Env ~ Sto ~ (Val x Sto)

~(~k QJ) (z) e)

(Locations)

(Environments)

(Inheritors)

(Links)

(Stores)

(Codes)

(Procedures)

(Values)

[Z]w pa = ((a(pZ)), o-)

[(set! z e)] wpa = let (v, a’) = [e]w pa in

(v, (a’[v/(pZ)]))

[(eP e=)] w p a = let ((c, WU, P,), u’) = [eP] w PO in

let (v, u“) = [e=] w p u’ in

cvpFu II

[(resolvel z Q e)] w p a = let((c, wu, p.), u’) = [enwpu in

[(lambda (z) e)] w p a =

let w~ = w\{z},

p~ = p\{z} in

(((AvP;u’ . [ellwd((P; @ Pj)[~/z])(a’[v/q)), %,0), u)
where 1 @ Dona(u’)

[(q-larnbdao ((zi Q,)... (zk Q,)) (z) e)] w p ~ =

let w. = {Q,/zl,... , Qk/Zk} in

let wd = fJ\{z}[41
Pf = p\ Dorn(wU)\{z} in

(((~wd.u’. [e]wd ((p; @ P~)[i/Z]) (u’[v/q)), ww 0), a)
where t # Dom(u’)

[(q-lambda ((y, z,)... (V= zm)) ((zl Q~) -” (zk Qk)) (z) e)]upu =

let W. = {Q,/zl, ..- ,Qk/zk},

7r = {ZI/yl, ..., z_/vm} in

let wx = Wor%

p, = poz in

let w . = wT\Dom(pr) @we,

wd = w\{z}[wir @ w.],

= p\Dom (x)\Dom (wo)\{z} in

((fiup;~’ o[e] ‘d ((P;@ Pj)[~/z]) (u’[vM)))WU,p,),u)
where 1 ~ Dom (o’)

Figure 13: Denot ationsl semantics of Scheme with quasi-static scoping.

488

new procedure’s link component is ua\\{Q} = {Q’/z E WV I

Q’ % Q}. Thus, ~ the resulting triple, the domains of the

link and the environment remain disjoint. The code c, how-

ever> is carried over to the new procedure unchanged. Hence,

the two procedures share the same piece of code but oper-

ate on different sets of bindings for the quasi-static formal

parameters.

4.2.2 Deriving Qs-lambda

We develop the meaning of a qa-lambda expression in three

stages. First we describe lambda, which is qa-larnbda

wit bout quasi-static formal parameters. In the second stage

we generalize lambda to qa-lambdaO, which has quasi-

static formal parameters but no lexical inheritance of quasi-

static variables. Finally we include quaai-st atic variable in-

heritance to get qs-lambda. See Figure 13 in which, for ex-

plication purposes, we also include the clauses for lambda

and qs-lambdaO.

The meaning of a lambda expression

~(lambda (z) e)] w p u

is defined as follows:

kt (#d = w\{z},

= p\{z} in

((8V;u’ c[e] ‘d((p; ~Pt)[~/z])(@’[v/~])), % 0), u)
where 1 @ Dorn(a’)

Since there are no quasi-static formals, the resulting triple’s

link and environment components are both arid. The quasi-

static variables ~eclared in the enclosing context of the body

expression e are Ud = w\{z}. They are the ones declared in

the enclosing context of the lambda expression that are not

shadowed by the static formal parameter z. The resolved

@ variables, both static and quaai-static, visible to the

body expression e prior to the evaluation of the lambda

expression are defined by the environment pf = p\{z}. It

is the procedure’s evaluation time environment p but with

the static formal parameter z omitted. The resolved free

variables visible to e during its evaluation are the variables

defined in p,, the resolved quasi-static formal parameters

of p:, and a fresh binding of the static formal parameter z:

(P: e P,)[W
But when the code is invoked, the parameter p: is certain

to be associated with 9, since a lambda expres~on has no

quasi-static formals. Also, by the definition of finite function

extension, (p\{z})[l/z]) is equivalent to p[z/z]. Therefore,

the triple’s code is equivalent to

(Avp~c’ . [e](w\{z}) (p[l/z]) (a’[v/2]))

which, except for the extra link w\{z} and the ignored pa-

rameter p:, is what we have for a procedure in Scheme.

Next we define the meaning of a qa-lambdaO expression

[(w-1-bdao ((zi Q,) o.” (zh Q,)) (z) e)] w PU

as follows:

let w= = {Q1/ZI,... ,Qk/Zk} in
k?t Wd= (J\{z}[wu],

Pj = p\Dom (w=)\ {z} in

(((AuP;u’ - [e] ‘d((P; @ Pt)[l/z]) (du/~])), w-, 0), u)

where 1 @ Dom (u’.)

The resulting triple’s link component WU specifies the unre-

solved quasi-static formals Z1, ..., Zk. Since there M no lex-

ical inheritance, the triple’s environment component is and.

The code component is the same as that of a lambda ex-

pression, except that Wd and P, take on different meanings.

The link w~ = w\{z}[w=] captures the quasi-static variables

declared with respe& to-the body expression e. It consists

of the most recently specified ones and the ones declared in

the enclosing context of the qa-lambdaO expression that

are not shadowed by the static formal parameter. The re-

solved free variables available to the body expression when

the qa-lambdaO expression is evaluated are defined by the

environment p, = p\Dom (wti)\{z}. They are the ones re-

solved before the evaluation of the qa-lambdaO expression

that are not shadowed by the newly specified quasi-static

variables or the static formal parameter.

In order to verify that lambda is a degenerate case of

qa-lambdaO, we need only replace W= by $.

Then, let + be ((g, z,).,. (ym z-)) and # be ((z, Q,)...

(zk Qk)), we define the meaning of a qa-lambda expression

[(w-l~bda # d (z) e)] w p u

as follows:

let w 0 = {Q1/ZI, . . . ,Qk/zk),

K = {ZI/W,..., Zm/Ym} in

let WT = We%,

P, = por in

let WV = wx\Dom(pr) @ wO,

wd = w\{z}[wx @wOJ,

= p\Dom (r)\Dom (wa)\{z} in

((fivPY $[d QJ~((P; @ Pjwl) (d~/~l))!WV,P,)) 4

where 1 @ Dom(u’)

This yields a quaei-st atic procedure (c, WU, p,) whose com-

ponents are defined in detail below.

The syntax @ denotes the inheritor finite function m =

{21/2/,,... , Zm/vm} and the syntax ~ denotes the ~k WO =

{Qi/zl, Qk/zk}. Not shown in the semantic clause is

that the inherited quasi-static variables Z1, ..., z~ must be

declared in the enclosing context. That is, it is a synt u error

unless Rng (r) ~ Dom (w). The inheriting quasi-static for-

male yl, ..., Vm have the same external names as zi, ..., z~,

respectively. Hence, their link is wm = w oz = {Q/~ I z/y G

~; Q/z G w}- The inherited quasi-static variables that have

been resolved prior to the qa-lambda expression’s evaluw

tion are defined in p. So, the environment of the resolved

inheriting quaei-st atic formals is P. = POr = {l/g I z/v G

489

z, l/z c p}, which is the third component of the result-

ing triple. Consequently, the link of the unresolved inher-

iting quasi-static formals is wx\Dom (pr). The link com-

ponent Ww of the procedure’s unresolved quasi-static formal

parameters is therefore w. (B w% \Dom (P.), the sum of w.

and w~\Dom (pK).

The procedure’s code component is the same as that of

qs-lambdaO, except for the difFerent interpretations of w~

and p,. The link w,f of the declared quasi-static variables

that are visible to e is w\{z}[wr @ wO]. They are the vsri-

ables specified by the procedure and the variables declared

in the enclosing context that are not shadowed by the static

formal parameter. The parameter p: is the procedure’s re-

solved quasi-static formals p. when the code is invoked. The

environment p, of the resolved free variables known to the

body expression prior to the qs-lambda expression’s eval-

uation is p\Dom (x)\Dom (wo)\{z}. It is the variables de-

fined in p that are not shadowed by the inheriting qussi-

static formals VI, ym, the quasi-static formals Z1, z~,

or the static formal parameter z.

Again, by substituting 0 for r, it is straightforward to

verify that qs-lambdaO is a degenerate case of qs-lambda.

5 Implementation

We describe an implementation of quasi-static scoping. It

includes the representation of quasi-static procedures, the

run-time support for procedure invocations and quasi-static

variable references, and the quasi-static variable resolution

operation. Since we have designed quasi-static scoping to be

as orthogonal to Scheme se possible, we have also made its

implementation as independent of Scheme implementations

as possible.

We represent a quasi-static closure (procedure)

(qs-lambda ((iql Ogl) . . . (Xg_ o%))

((91 QI) . . . (!lk Qk)) (1)

formals body)

by a fime of I+rn+k+h consecutive memory slots arranged

as follows:

(c)s,,..., %n,am+l,. ... am+k>f l,.. ., fh) (2)

The first slot c is the location of a static C20SWWrepresent-

ing the ordinary Scheme procedure (lambda formals body),

Each of the next m + k slots contains either a location or

an external name. The first m slots are for the inheriting

quasi-static formals iql, iqm. The next k slots are for

the local quasi-static forma.k ql , qk. The last h slots

fl,... ! ~h are locations of the enclosing frames. They are

the display [6] of the procedure’s free quasi-static variable

references. We discuss how the slots are filled later.

The values of m and k are readily available horn the

syntax of the qs-lambda expression itself. The value of h

depends on the syntactic context of the qs-lambda exprew

aion. It is the number of enclosing qs-lambda expressions.

Hence, each frame’s shape can be determined statically.

Every static closure contains a pointer to a frame through

which the procedure’s body gains access to the quasi-static

variables visible to it. For a static closure created by a

lambda expression, this frame is the most recently acti-

vated one when the closure ia built. For a static closure

constructed by a qs-lambda expression, it is the newly cre-

ated frame. That is, a frame’s static closure points back

circularly to the frame itself. This circularity is justifiable

since, when a frame is invoked, the accessible quasi-static

variables are defined in the tiame.

The additional run-time support then consists of a single

register called the Frame Pointer register (FP) that points

to the most recently activated frame. Context switching is

simple. The activation record of each procedure invocation

maintains the caller’s FP value. Returning from a procedure

invocation simply reinstalls FP to that value. Invoking a

procedure, static or quasi-static, requires only saving the

current value of FP in the newly created activation record

before adjusting it to point to the callee’s frame. In case the

call is in tail position, however, the callee’s activation record

assumes the same FP value as that of the caller’s.

We next explain how a quasi-static variable reference

is achieved. We assign to each quasi-static variable ref-

erence occurrence a pair of statically determined numbers

(d, i) called the lezicul address. The number d ~ O is the

depth between a reference occurrence and its binding occur-

rence, i.e., the number of qs-lambda expressions between

the two occurrences. The other number i is the binding oc-

currence’s slot index in its frame. Using the notation [~ to

denote the contents of the location 1, the value of a sero-

depth reference occurrence, (O, i), is denoted by [[[FP] + ii].

The current frame’s location is denoted by [FP]. Adding

the index i to it, ~P] + i, gives us the location of the quasi-

static variable’s dot. Dereferencing it, [~P] + i], yields the

cent ents oft he quaai-st atic variable’s slot. If it cent sins a lo-

cation, dereferencing it, [[[FP] + i]], returns the quaai-st atic

variable’s value. Otherwise, since an external name is not

a location, an attempt to dereference it raises an unbound

variable error.

The value of a reference occurrence with a lexical address

of (d, i), where d ~ 1, requires one more level of indirection.

It is denoted by [[[[FP] + t] + fl] where the statically deter-

mined number t is d+ m+ k, with m+ k being the number of

quasi-static formals in the current frame. Hence [~P] + t]

denotes the frame in which the binding occurrence’s slot re-

sides. Besides this extra indirection, the rest is the same as

a zero-depth reference.

The two kinds of quasi-static variable references described

above both refer to the variable’s r-value. The l-values,

which are needed later, can be obtained as in the r-value

cases except for the last dereferencing. That is, [~P] + i] if

490

the reference occurrence’s depth is sero and [[~P] + t] + il

otherwise.

There are two ways to create a new quasi-static frame.

First is the evaluation of a qs-lambda expression of (1) that

yields a frame of (2). The location c of the static closure iille

the first slot. The next m slots are filled with the l-values

of the inherited quasi-at atic variables Ogl, Oqm, because

iqi inherits the location or external name (not value) of Ogi.

Since qi, q~ are unresolved, their slots are filled with the

external names Q1, Q&, respectively. That is, s~+~ = Q;

fori=l ,..., k. The display’s frame pointers fl,..., ~h

get their values from the current frame pointed to by FP.

The frame pointer fl points to the closest frame when the

new frame is invoked (i. e., ~P]). The other frame pointers

f2,..., fh are the display of the current frame. Siice the

current frame’s shape is known at compilation, its slot in-

dices are known. Therefore it is straightforward to generate

the code needed to copy the display.

We can apply two compile-time optimisations at this

stage. First, the frame need not allocate a slot for any of

the quasi-static formals iql, iqm or ql, qh that is not

referenced in the body. Second, the display need only in-

clude the frames that are actually needed in the body. That

is, if none of the quasi-static variables of an outer frame is

referenced in the body, it can be excluded from the display.

The other way to create a new frame is by evaluating a

resolve expression

(resolve ((zi Q,) . . . (z= Q=)) qs-proc)

First we check that the variables z1, z~ are resolved, i.e.,

associated with locations. For each zi that is a quasi-static

variable, we must make sure that its l-value is a location,

not an external name. Furthermore, the expression qs-proc

must evaluate to a frame

(C, s,,... sam+k, fl,. --tfh)

Let 1~ be the location associated with the variable zi.

Then the resolve expression returns a new frame

(c, s;,..., s~+k, fi, fh), fh)

where for i = 1,.. .,m+k,

{

lj ifsi~Qj forsomen>j>l
a; =

8; otherwise.

That is, each slot Si is compared against the external names

Q1 , Q=. If there is a match with Qj, the corresponding

slot s: is the location lj. Otherwise, s~ is either a location

or a different external name. Hence, s; is the same as si.

We should point out that without sufficient dataflow in-

formation, each lexical variable z; must be assumed to be

assignable. As a result, optirnisations performed by many

Scheme compilers on a lexical variable that is free of side-

effects are not applicable to zi.

Finally we sketch a simple variation of the implemen-

tation presented above. The purpoee of a frame’s display

is to gain access to the slots of the procedure’s free quaei-

static variables. Hence, instead of copying a sequence of

frame pointers, we could copy down the slots of the free

quasi-static variables. The result is reminiscent of the way

Cardelli’s Functional Abstract Machine [3] handles a pro-

cedure’s free lexical variable references. It would require

potentially more time and space to build a frame. On the

other hand, it reduces every quasi-static variable reference’s

lexical address to a depth of zero. Hence, it speeds up free

quasi-static variable referencing.

6 Comparisons and Future Work

We accomplish variable sharing across lexical scopes with re-

solvers that selectively “export” variable bindings and quasi-

static procedures that selectively %nport” variable bin-

dings. Resolvers are run-time linking operators and quasi-

static procedures are compiled but only partially linked pro-

grams.

MIT Scheme’s first-class environments [1, 12] resemble

our resolvers. They dWer from our quasi-static scoping in

four aspects. Fust, there is no mechanism like resolve

that can export variables selectively. Consequently, in the

presence of first-class environments, optimisation techniques

such se constant folding that involve eliminating variables

are no longer meaning preserving transformations. Second,

first-class environments rely on the internal names of vari-

ables. Hence, a-conversion is invalid on some variables. This

imposes a serious problem on macro systems since generated

variable names could cause inadvertent capturing. Third,

eual, the user-accessible interpreter, compiles source code at

run time and the same piece of source code is compiled as

many times as it is used. Thus, the performance is inferior to

our approach in which each piece of source is compiled only

once. Fourth, environment is a notion that is not employed

by every computational model. Thus, adding first-class en-

vironments to a language means that the language cannot be

implemented easily on some environment-less archkcctures

such se the G-machine [16]. Jagannathan’s environment-

baeed reflection language Rascal [9] is another language with

first-class environments. Rascal provides a way to identify

reifiable (export able) variables; however, it still suffers from

the first two disadvantages mentioned above, because some

non-reifiable variables are dynamically bound.

Lamping’s uniiied system of parameterisation [10] em-

phasises the other part of our approach. It uses a special

form data to identify non-lexical variables. But instead of

providing an explicit resolution operation like resolve, it

always uses the run-time dynamic environment to resolve

the non-lexical variables. They are therefore truly dynamic

variables. Consequently, programs are harder to analyze and

the language is diflicult to implement efficiently.

491

Quasi-static scoping can be characterised as a mechw

nism for run-time linking as opposed to the compile-time

linking provided by other systems. It is just one point in the

spectrum of linking disciplines ranging fkom static (compile-

time) to dynamic (run-time). We are convinced that in

a programming environment various linking disciplines are

necessary for diferent purposes. Our goal is therefore to

investigate if there exists a small set of linking disciplines

that will suffice for all needs. If not, we would like to es-

tablish a metric for measuring the degree of “statieity,” or

equivalently “dynarnicit y,” in order to classify all the possi-

ble disciplines.

We are currently exploring various ways of speeding up

the resolution process. For instance, we can assign types to

both resolvers and quaai-static procedures and initiate the

resolution process only if their types match. Then, run-time

external name matching would be eliminated.

Finally, for reasoning about quasi-static scoping, we have

developed a calculus that is consistent and has a standard-

ization procedure. The calculus is an extension of Felleiaen

and Hieb’s calculus of sequential state [8], which in turn is

an extension of Plotkin’s call-by-value .X-calculus [1’7]. Wc

will continue its development into a more complete logical

system and report it elsewhere.

Acknowledgements. We are grateful for the insightful

comments by Kent Dybvig, Chris Haynes, and the late Bob

Hieb during the early stages of this research. We would also

like to thank Mike Ashley, Matthias Felleisen, Julia Lawali,

Jon Rossie, and John Simmons for their comments on earlier

drafts of this paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

H. Abelson and G. J. Sussman with J. Sussman. Struc-

ture and Interpretation of Computer Programs. MIT

Press, 1985.

N. Adams and J. Rees. Object-oriented programming in

Scheme. In Proceedings of the A CM Conference on Lisp

and Fictional Progmmming, pages 277-288, 1988.

L. Cardelli. Compiling a functional language. In Pro-

ceedings of the ACM Conference on Lisp and Functional

Progmmming, pages 208-217, 1984.

W. Clinger and J. Rees (editors). Reviaed4 report

on the algorithmic language Scheme. Lisp Pointers,

4(3):1-55, 1991.

P. Curtis and J. Rauen. A module system for Scheme.

In Proceedings of the ACM Conference,, on Lisp and

Fictional Programming, pages 13-19, 1990.

E. W. Dijkstra. Algol 60 translation. Supplement AL-

GOL Bulletin 10, 1960.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Felleisen and D. P. Friedman. A closer look at ex-

port and import statements. .loumal of Computer Lan-

guages, 11(1):29-37, 1986.

M. Felkisen and R. Hieb. The revised report on the

synt aetic theories of sequential control and state. Z%e-

oretical Computer Science, 102:235-271, 1992.

S. Jagannathan. Reflective building blocks for modu-

lar systems. To appear in the IMSA ’92 International

Workshop on Reflection and Mets-Level Architecture.

J. O. Lamping. A unitied system of parameters+

tion for programming languages. In Proceedings of the

ACM Conference on Lisp and Functional Pmgrumming,

pages 316-326, 1988.

K. J. Lang and B. A. Pearhnutter. Oaldisp: An object-

oriented dkdect of Scheme. Lisp and Symbolic Compu-

tation, 1(1):39-51, 1988.

J. S. Miller and G. J. Rosas. Free variables and first-

claas environments. Lisp and Symbolic Computation,

4(2):107–141, 1991.

R. Milner, M. Tofte, and R. Harper. The Definition of

Standard ML. MIT Press, 1990.

J. H. Morris Jr. Protection in programming languages.

CACM, 16(8):15-21, 1973.

K. N@rmark. Simulation of object-oriented concepts

and mechanisms in Scheme. Technical Report R 90-

01, Institute of Electronic Systems, Aalborg University,

January 1990.

S. L. Peyton Jones. The Implementation of Fictional

Programming Languages. Prentice Hall, 1987.

G. D. Plotkin. Call-by-name, call-by-value and the

~-czdculus. Theoretical Computer Science, 1:125–159,

1975.

G. L. Steele Jr. Common Lisp: The Language. Digital

Press, second edition, 1990.

492

