
Probabilistic Termination
Soundness, Completeness, and Compositionality

Luis Marı́a Ferrer Fioriti Holger Hermanns
Saarland University

Abstract
We propose a framework to prove almost sure termination for prob-
abilistic programs with real valued variables. It is based on ranking
supermartingales, a notion analogous to ranking functions on non-
probabilistic programs. The framework is proven sound and com-
plete for a meaningful class of programs involving randomization
and bounded nondeterminism. We complement this foundational
insight by a practical proof methodology, based on sound condi-
tions that enable compositional reasoning and are amenable to a
direct implementation using modern theorem provers. This is in-
tegrated in a small dependent type system, to overcome the prob-
lem that lexicographic ranking functions fail when combined with
randomization. Among others, this compositional methodology en-
ables the verification of probabilistic programs outside the com-
plete class that admits ranking supermartingales.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logic and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Probabilistic Programs; Termination.

Keywords Probabilistic Programs; Program Verification; Termi-
nation; Supermartingales.

1. Introduction
Termination is one of the simplest and yet most important liveness
properties. If the program involves randomization, or is operating
in a randomized environment, the natural analogon of termination
is almost sure termination, saying that the probability of eventually
terminating is one, so divergence has zero probability.

Proving termination of non-probabilistic programs is equiva-
lent to constructing a ranking function [14]. That is a mapping
v : S → D such that v(s) � v(s′) for all transitions s → s′ in
the program, where (D,�) is well-founded (a partial order with-
out infinite descending chains). In case of programs over countable
state spaces and bounded branching, one can restrict to (N, >) as
well-founded relation. Having a numeric domain allows one to syn-
thesize ranking functions via the solution of convex optimization

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3300-9/15/01.
http://dx.doi.org/10.1145/2676726.2677001

problems [5, 9, 33, 34]. In addition, the value v(s) provides an up-
per bound on the maximum number of steps before termination if
assuming the program to start at state s.

For probabilistic programs, ranking functions provide a sound
method to prove termination, but are far from being complete. To
illustrate this, consider the following probabilistic program:

whilen > 0 do
c := uniform(0, 1)
if c < 0.5 then

n := n− 1
fi

od

Clearly, the program terminates with probability one, since ig-
noring the decrementing command forever has probability zero.
Yet, there cannot exist a ranking function proving termination, be-
cause each time the conditional branch is skipped the program state
remains unchanged, but well-founded relations are anti-reflexive.
However, with probability 1

2
the next value of n will be decre-

mented to n − 1, and with the same probability it will be n. This
means that the expected value of variable n after each iteration is
decreased by 0.5.

Bournez and Garnier [3] were the first to connect probabilis-
tic program termination to Lyapunov ranking functions [15] (or
Foster-Lyapunov functions). These constitute the analogon of rank-
ing functions for probabilistic programs, by considering expected
values instead of values: They allow the value of some states to
increase when executing some transitions, as long as the expected
value (i.e. its average) decreases. Formally a mapping v : S → R+

is a Lyapunov ranking functions if there exists a constant ε > 0,
such that:

v(s) ≥
∑
s′∈S

P(s, α, s′)v(s′) + ε (1)

whenever α is a program instruction enabled at state s, and
P(s, α, s′) is the probability of going from s to s′ using the com-
mand a. Notably, (R+,�) is a well-founded relation on the positive
reals, where a � b ≡ a > b+ ε. Lyapunov ranking functions pro-
vide a sound method to prove almost sure (a.s.) termination, and
in analogy to ranking functions, v(s)/ε is an upper bound on the
expected number of steps before termination [15]. Thus, in fact,
Lyapunov ranking functions guarantee a stronger property, namely,
that the expected time to termination is finite. This is sometimes re-
ferred to as positive almost sure termination [3]. For probabilistic
programs with countable state spaces, Lyapunov ranking functions
not only are a sound method to prove positive almost sure termina-
tion but a complete one – but only as long as non-determinism is
absent. We overcome this foundational restriction with this paper
and embed the resulting theory into a practical, compositional proof
method. When dealing with nondeterminism and probabilism, fam-
ilies of schedulers play an important role. As we will see, one of the

489

distinct technical aspects of our approach is that the semantic space
of a probabilistic program is set up in such a way that all possible
schedulers share a common probability space. This enables correct
reasoning about measurability of the quantities involved. In our
setting the base quantities are ranking supermartingales, which in
turn are a generalization of Lyapunov ranking functions. The main
contributions of the paper are:

• We present a new semantics for non-deterministic programs
where schedulers share a common probability space. (Sec-
tion 4)

• We demonstrate that the Lyapunov ranking functions proposed
by Bournez and Garnier [3] are not complete for positive almost
sure termination in the non-deterministic case, and the same
holds for ranking supermartingales. (Section 2)

• We extend the ranking supermartingale approach of Chakarov
and Sankaranarayanan [7] to the bounded non-deterministic
case, arriving at a sound and complete characterization of ter-
minating programs. (Section 5)

• We provide a compositional and sound proof method for almost
sure termination. The framework only relies on the synthesis of
probabilistic linear loop invariants [7, 19]. (Sections 6, and 7)

• We provide a method to identify program variables that must
have finite expectation. (Theorem 7.6)

2. Motivating Counter-Examples
Lyapunov ranking functions provide the apparatus to bound the ex-
pected number of steps a probabilistic program will take. As such,
they are sound and complete for positive almost sure termination
provided the probabilistic program is deterministic. In the presence
of (bounded) non-determinism the notion appears to have a natural
extension, obtained by requiring that the expected number of steps
needed is finite for all possible resolutions of the non-determinism.
However, as we illustrate below, and in contrast to results that were
undisputed for a decade [3, Theorem 3], the completeness results
for (positive) almost sure termination do not extend to the case of
non-deterministic programs. Moreover, we show below that Lya-
punov ranking functions are still incomplete even if besides all ex-
pectations also the supremum of all expectations is known to be
finite.

A simple quiz show. Consider the program illustrated in Figure 1.
It represents a quiz show, where after the quiz and prior to termi-
nation (state $) the gained money is spent one unit at a time. A
participant can initially (state ?) either answer a yes/no question
or decide to stop the game immediately. If the participant decides
to finish, he obtains a prize f(n), where n is the number of ques-
tions answered thus far. If the participant answers correctly he can
continue playing. In case of failing a question, he loses the game
immediately and receives a consolation prize g(n). For the partici-
pant in question, the quiz is so difficult that he realizes that the best
strategy is to answer at random (state ¢). Analyzing this game, we
first observe that the participant will receive (with probability one)
a finite amount of money, because the event of answering ques-
tions correctly forever has probability zero. We now analyze the
expected amount of money that the participant will receive. This
depends on the number n of questions the participant is willing to
answer before stopping, and of course on the choice of f and g:

En =
f(n)

2n
+
∑

1≤k≤n

g(k − 1)

2k
E∞ =

∑
1≤k

g(k − 1)

2k

The quantityE∞ corresponds to the expected gain if the participant
never stops answering questions. Thus, he always gets the consola-
tion prize.

∀nEn <∞∀nEn <∞∀nEn <∞ does not work. In a scenario where f(n) = 3n, and
g(n) = n, we see that clearly En < En+1 < ∞ and En → ∞
as n → ∞. So it seems that the best strategy is to never give up.
However, E∞ = 1. This is because the limit of the expectation is
not the expectation of the limit. In other words, there is no optimal
strategy. Despite being able to find a Lyapunov ranking function
for each particular resolution of the non-determinism (as allEn are
finite), we are unable to build a single, universal Lyapunov ranking
function. It would require assigning∞ to some of the states.

supnEn <∞supnEn <∞supnEn <∞ neither. Consider now the case where f(n) = 2n

and g(n) = n. Now we have En → 2 as n → ∞, so now the
prize earned is bounded, and our participant will not get rich for
sure. In this case the aspect of interest is the expected money that
the participant will receive under the assumption that he already
answered m questions correctly:

En,m =
2n

2n−m
+

∑
m+1≤k≤n

k − 1

2k−m
with m ≤ n

Here, the maximum expectation after answering m questions turns
out to be 2m + m + 1, obtained by n → ∞. Yet, the maximum
expectation after answering the m+ 1-th question (right or wrong)
is 1

2

(
2m+1 + (m+ 1) + 1

)
+ 1

2
m, and that value is again 2m +

m+ 1. Therefore, the expectation remains invariant, i.e. a function
assigning to each state the maximum expected termination time
does not “rank” in expectation. And this function cannot be twisted
to a ranking one without assigning∞ to at least one of the states.

Cheating works! Now suppose that we, but not the participant,
are able to record all results of the random choices and their effects
prior to the show. Suppose also, that the results of the random
choices are independent of the strategy of the participant about
when to stop answering. We might for instance know that the fourth
random choice will make the participant miss the fourth question,
thus we are sure that he will get the consolation prize if he decides
to answer at least four questions. We can then also infer that he will
win the prize if he is prudent enough to withdraw before the fourth
question. In other words, we know the maximum amount of money
the participant is capable of winning regardless of his strategy. As
this quantity is random we can analyze its expected value E∗. If
f(k + 1) > f(k) > g(k), then:

E∗ =
∑
1≤k

f(k)

2k

In the above two examples, E∗ is infinite because f(k) ≥ 2k.
In Section 5 we show that a Lyapunov ranking function can only
be constructed if and only if E∗ is finite. The proper definition of
E∗ which implicitly ranges over all possible strategies, relies on a
novel semantics for non-deterministic and probabilistic programs,
introduced in Section 4.

3. Preliminaries
In this section we present some basic concepts of probability and
measure theory, as needed for this paper. More detailed descriptions
can be found in reference books such as Ash [1] and Williams [35].

Measure Theory. An arbitrary set Ω that contains all possible
outcomes of an experiment is called a sample space. A σ-algebraF
is a collection of subsets of Ω that is closed under complement and
countable union, and Ω ∈ F . The elements of F are called events.
We say thatA isF-measurable ifA ∈ F . In case Ω = R, the Borel
σ-algebra denoted by B(R) is the σ-algebra generated by the class
of open sets. A function f : Ω→ Ω′ is measurable with respect to
F and F ′ if f−1(B) ∈ F for all B ∈ F ′. A probability measure
µ is a function of signature F → [0, 1] such that µ(Ω) = 1, and it

490

n, i, c := 0, 0, 0
while c < 0.5do

if ∗ then
c := uniform(0, 1)
if c < 0.5 thenn := n+ 1 else i := g(n)fi

else
c, i := 1, f(n)

fi
od

while 0 < ido i := i− 1od

?

¢

$

i := f(n)

1
2 : i := g(n)

1
2 : n := n + 1

i = 0
i > 0

i := i − 1

Figure 1. Quiz show example.

is countably additive: the probability of a countable disjoint union
of events is given by the sum of the individual probabilities. An
event A occurs almost surely (a.s.) if µ(A) = 1. Similarly A is
a null event if µ(A) = 0. Two events A and B are independent
when µ(A ∩ B) = µ(A)µ(B). Two σ algebras F and G are
independent if all eventsA ∈ F andB ∈ G are independent. Given
an element x ∈ Ω, δx is the Dirac distribution of x and satisfies
δx({x}) = 1. The conditional measure of µ under a non-null event
B is µ|B(A) = µ(A∩B)

µ(B)
A probability space is a triple (Ω,F , µ),

where F is a σ-algebra of Ω, and µ is a probability measure for F .

Random Variables. A function X : Ω→ R is a random variable
(r.v.) on (Ω,F , µ), if it is (F ,B(R))-measurable. A r.v. X is
discrete provided the range of X is countable. A particular discrete
r.v. is the indicator function of a measurable set A. It takes values
in {0, 1}, and satisfies (1A(ω) = 1) ≡ (ω ∈ A). The expected
value of a random variable X is the quantity:

E(X) ,
∫

Ω

Xdµ

where
∫

is the Lebesgue integral, see Ash [1] for a detailed expla-
nation. In case of a discrete r.v., the expected value can be expressed
as a weighted average. In particular, E(1A) = µ(A). If E(|X|) is
a finite value, we say X is integrable. It ensures that E(X1A) is
finite for any measurable event A.

Filtrations. A finite or infinite sequence {Fn} of σ-algebras is a
filtration if Fk ⊆ Fk+1 ⊆ F for all k ∈ N. For example consider
the experiment of tossing two coins, i.e. the sample space Ω is
{HH,TT,HT, TH}. A possible filtration is F0 = {∅,Ω}, F1 =
{∅, {HH,HT}, {TT, TH},Ω}, and F2 = P(Ω). A sequence
of random variables {Xn} is adapted to a filtration {Fn} if Xn
is Fn-measurable for all n, and it is predictable if Xn is Fn−1-
measurable for all n.

Stopping Times. A discrete random variable T that takes values
in N ∪ {∞} is a stopping time with respect to a filtration {Fn} if
the event {T ≤ n} is Fn-measurable. Since each element Fn of a
filtration is a σ-algebra, then the events {T > n} and {T = n} are
also Fn-measurable. From the previous example a stopping time is
the r.v. TH that satisfy TH(H) = 1, TH(TH) = 2, and is infinity
otherwise. We have T−1

H (0) = ∅ ∈ F0, T−1
H (1) = {HH,HT} ∈

F1, and T−1
H (2) = {TH} ∈ F2. Stopping times posses several

properties that we will exploit in this paper. For example if T1

and T2 are stopping times so are T1 ∧ T2 (minimum), T1 ∨ T2

(maximum), and T1 + T2. Also, any random variable that takes a
constant value in N is trivially a stopping time. The expected value
of a stopping time can be expressed in a very convenient form:

E(T) =
∑
1≤k

P(T ≥ k) (2)

We can also define the σ-algebraFT of events that occur up to time
T as follows:

A ∈ FT ≡ ∀n : A ∩ {T ≤ n} ∈ Fn. (3)

Notice that T is measurable in FT . If S and T are stopping times
with S ≤ T , then FS ⊆ FT . Thus, sequences of increasing
stopping times define a filtration.

Conditional Expectation. Given an integrable r.v. X on a proba-
bility space (Ω,F , µ), and G a sub-σ-algebra of F , the conditional
expectation E(X | G) is a r.v. measurable in G that satisfies:∫

A

X dµ =

∫
A

E(X | G) dµ for all A ∈ G

Intuitively E(X | G) is the expected outcome of a random experi-
ment (represented by X), if some partial information of the result
is available (represented by G). Consider again the experiment of
tossing two coins. The expected number of observed heads is one.
However, if the result of one of the coins is already known, then the
expected value changes. It would be 1.5 in case the revealed coin
landed heads, and 0.5 otherwise. Some important properties about
conditional expectations are the following:

E(X | {∅,Ω}) = E(X) (4)
E(X + Y | G) = E(X | G) + E(Y | G) (5)

E(E(X |H) | G) = E(X | G) if G ⊂ H (6)
E(XY | G) = XE(Y | G) if X is G-measurable (7)

Their intuitive meaning is as follows: (4) if no information is avail-
able it is the same as taking the expected value; (6) the conditional
expectation depends on the maximum amount of available informa-
tion; (7) the expectation depends only on unknown information.

Uniform Integrability. The concept of uniform integrability is an
extension of integrability of a r.v. to a family of random variables,
similar to the notion of uniform convergence in real analysis. A col-
lection {Xn} is uniformly integrable (UI), if the following holds:

lim
K→∞

sup
n

E(|Xn|1[|Xn|>K]) = 0 (8)

Informally, the expected values of a UI family are bounded and the
probability mass is globally concentrated within this boundary, i.e.
for any constant ε > 0, we can find a constant δ > 0 such that
E(|Xn|1A) ≤ ε for all n, and all events A such that µ(A) ≤ δ.
Uniform integrability is a central concept in probability theory. It is
a necessary and sufficient condition to guarantee that a sequence of
r.v. converging in probabilities also converges in expectation, and it
ensures that E(|Xn|) is finite, thus integrability. It will also play an
important role in our findings.

491

4. Probabilistic Programs
In this section we present the syntax of our idealized probabilistic
programs, and we provide a semantics in terms of random vectors
over a probability space.

4.1 Syntax
Our programs will be composed by the following grammar:

〈statement〉 ::= 〈ident〉 ’:=’ 〈expr〉
| 〈ident〉 ’:=’ 〈distribution〉
| ’ if ’ 〈ndbexpr〉 ’ then ’ 〈statement〉 ’ else ’ 〈statement〉 ’ fi ’
| ’while ’ 〈bexpr〉 ’ do ’ 〈statement〉 ’ od ’
| 〈statement〉 ’;’ 〈statement〉

〈expr〉 ::= 〈constant〉 | 〈ident〉 | 〈expr〉 ’+’ 〈expr〉
| 〈expr〉 ’*’ 〈expr〉 | 〈expr〉 ’-’ 〈expr〉

〈bexpr〉 ::= 〈expr〉 ’<’ 〈expr〉 | 〈expr〉 ’>’ 〈expr〉
| 〈bexpr〉 ’and’ 〈bexpr〉 | 〈bexpr〉 ’or’ 〈bexpr〉

〈ndbexpr〉 ::= ’*’ | 〈bexpr〉
Here, 〈distribution〉 stands for any probability distribution

that is integrable, and has a known expected value, like uniform, ex-
ponential, normal, etc. The program if ∗ thenP1 elseP2 fi rep-
resents a non-deterministic choice between the statement P1, and
P2. If P ′ is a statement contained inside a program P , we say
P is the parent of P ′ and we denote it by P ′ / P . P ′ E P is
the reflexive version of /. It is worth mentioning that probabilistic
choices P1 ⊕p P2 in the style of McIver and Morgan [30] can be
encoded in our framework as c := uniform(0, 1); if c < p then
P1 elseP2 fi .

Given an arithmetic or boolean expression e, the set of variables
that occur syntactically in e is denoted by vars(e). The set of vari-
ables that are modified by a program P , i.e. all the program vari-
ables that appear on the left of assignment instructions, is denoted
by lvars(P).

4.2 Semantics
There are several ways to define semantics of probabilistic pro-
grams. Kozen [27] provides a denotational semantics in terms
of continuous linear transformations of probability distributions.
Given an initial distribution of the program variables, the seman-
tics is a sub-probability distribution indicating the distribution of
the program variables at termination time. The sub-distribution is a
probability distribution provided the program a.s. terminates. Non-
determinism is not considered in this semantics, but can be intro-
duced using probabilistic power-domains [24]. On another route,
probabilistic non-deterministic programs can be represented oper-
ationally as Markov Decision Processes [20]. The usual approach
then is to define the sample space as the set of possible path execu-
tions, after non-determinism is resolved by means of a scheduler.
The latter is basically a mapping from finite paths (determining
the program state) to enabled commands. Each scheduler induces a
dedicated probability measure on measurable paths. Therefore, the
same program under two different schedulers yields two different
probability spaces.

The approach we follow is closer to the latter but is equipped
with a more refined semantics. The core innovation is that all sched-
ulers are defined over the same probability space, still they induce
distinct random processes. This will allow us to break conceptual
limitations of the earlier approaches. An event may then have dis-
tinct interpretations, according to the scheduler considered. Other
events have a global meaning. These “global” events in turn will
enable us to identify the set of programs where Lyapunov ranking
functions provide a complete proof methodology.

Another feature of our semantics is that it does not have a built-
in distinction between probabilistic and non-probabilistic com-
mands. At each step a value is sampled from a distribution, but
the executed command is free to use or to entirely ignore the sam-
pled outcome.

Definition 4.1 (Guarded Command). Given a finite set of real
valued variables V ars = {X1, . . . , XN} a guarded command
is a tuple (li, G, f , lf) that consists of an initial location li, a
final location lf , a guard G that is a B(R)N -measurable set, an
update vector f = (f1, . . . , fN) of (B(R)N+1,B(R))-measurable
functions.

A command is enabled if the program counter is li, and the
variables satisfy G. After firing an enabled command, the program
counter is set to lf . The values of the program variables are modi-
fied according to the update vector. The value of Xk is determined
by fk : RN+1 → R. The new valuation depends on the old values
and a single sampled value at each step. The underlying probability
space is assumed to ensure that the sampled value adheres to the
right probability distribution.

Definition 4.2 (Probabilistic Program). A probabilistic program is
a tuple (L, V ars, Cmds, l0, l⊥), where L is the program counter,
V ars = {Xk}Nk=1 is a finite set of real valued program variables,
Cmds = {cmdk}Mk=1 is a finite set of guarded commands, l0 is
the initial program location, and l⊥ is the location reached upon
program termination. We require that for each location and variable
valuation at least one command is enabled, except for the final
location.

It is possible to have multiple commands enabled simultane-
ously, namely when several commands have the same initial lo-
cation and their guards overlap. The resulting non-determinism in
such programs is resolved by means of a scheduler. A realistic
scheduler can at each step base its decision on the information cur-
rently available, including information accumulated about the past.
In particular, a scheduler cannot decide to perform an action based
on information about events that will occur in the future. Also,
it must satisfy certain measurability conditions, so as to obtain a
fully stochastic process when removing non-determinism. Before
we dive into the formal definition of schedulers we first need to
formalize the notion of “available information”. This formalization
will be provided by a filtration of the probability space of our pro-
gram, and will be the same for all schedulers. This in turn will allow
us to observe the behavior of all scheduler simultaneously.

Definition 4.3 (Semantic Space of Programs). Let P be a proba-
bilistic program withN variables. A semantic space of P is a tuple
(Ω, F , µ, {Fn}∞n=0, X0, {Cn}∞n=1), such that:

• (Ω,F , µ) is a probability space.
• {Fn}∞n=0 is a filtration of F .
• X0 is a random vector of size N that is measurable in F0.
• {Cn}∞n=1 is a sequence of identically distributed random vari-

ables, with Cn integrable, Fn-measurable, and independent of
Fn−1.

X0 is the initial valuation of the program variables. Cn plays the
role of a (possibly continuous-valued, finite-dimensional) coin, and
represents a value sampled at step n.

This definition does not define a unique semantic space for a
program, but instead specifies the minimum requirements to ob-
tain a meaningful semantics. This generality is essential for the de-
composition presented in Section 6. However, the most basic fil-
tration with the desired properties is {σ(C1, . . . , Cn)}∞n=1 where

492

JXk := EK = {(l0, true, (π1, . . . , πk−1, E, πk+1, . . . , πN), l⊥)}
JXk := 〈distribution〉K = {(l0, true, (π1, . . . , πk−1, πN+1, πk+1, . . . , πN), l⊥)}

JP1;P2K = JP1K ∪ JP2K

J if G thenPt elsePf od K = {(l0, G, (π1, . . . , πN), lPt0), (l0, G, (π1, . . . , πN), l
Pf
0)} ∪ JPtK ∪ JPf K

∪ {(lPt⊥ , true, (π1, . . . , πN), l⊥), (l
Pf
⊥ , true, (π1, . . . , πN), l⊥)}

J if ∗ thenPt elsePf od K = {(l0, true, (π1, . . . , πN), lPt0), (l0, true, (π1, . . . , πN), l
Pf
0)} ∪ JPtK ∪ JPf K

∪ {(lPt⊥ , true, (π1, . . . , πN), l⊥), (l
Pf
⊥ , true, (π1, . . . , πN), l⊥)}

JwhileGdoPW od K = {(l0, G, (π1, . . . , πN), lPW0), (l0, G, (π1, . . . , πN), l⊥)}

∪ JPW K ∪ {(lPW⊥ , true, (π1, . . . , πN), l0)}

Table 1. Semantics of probabilistic programs (all the program locations are assumed to be unique)

σ(C1, . . . , Cn) is the smallest σ-algebra that makes C1, . . . , Cn
measurable.

Definition 4.3 implicitly assumes all sampling instructions of
P , modeled by Cn, to have the same distribution. We impose
this restriction for the sake of clarity of the exposition. It can
be relinquished by fixing the uniform unit distribution for coins
and reconstructing all other integrable distributions from there by
inversion. But this forces us to explicitly deal with Polish spaces,
which obfuscates our arguments with technicalities. All the proofs
contained in this paper can be adapted to that general setting.

The filtration {Fn} faithfully characterizes the information
available after executing the first n commands: the result of the ini-
tial distribution of the program variables (measurable inF0 ⊆ Fn),
and the sampled values of C1, . . . , Cn (all measurable in Fn).
The independence requirement does not only guarantee Cn be-
ing independent of Cm, it also ensures that Fn does not leak any
information about the future. That is Cn is sampled precisely at
time n. To see this, take Cm with m > n. Independence im-
plies µ(Cm ∈ [a, b) ∩ A) = µ(Cm ∈ [a, b))µ(A) for all events
A ∈ Fn and all real intervals [a, b). If the random variable Cm
were Fn-measurable we would be able to take Cm ∈ [a, b) as A
with 0 < µ(Cm ∈ [a, b)) < 1, rendering a contradiction in the
above equality.

Definition 4.4 (Scheduler). Given a semantic space (Ω, F , µ,
{Fn}, X0, {Cn}), a scheduler φ is a collection {φn}∞n=1 of func-
tions with signatures Ω → {1, . . . ,M} such that φn is Fn−1-
measurable.

The measurability condition imposed on schedulers is crucial.
The function φn selects the command to be executed at step n.
The decision depends only on the initial state and the past observed
samples, Fn−1-measurable events. The value of the current and
future samples, measurable in F \Fn−1, have no influence on how
the scheduler resolves the non-determinism present. Notice that the
probability measure µ in the semantic space does not depend on the
scheduler, thus different schedulers can be defined under the same
probability space. This is the key feature of our semantics.

Schedulers that do incorporate randomization in their deci-
sions can be modeled in our framework by augmenting the fil-
tration in our semantic space. For example we can use {σ(U0, C1,
U1, . . . Cn, Un)}withUk uniform in the interval (0, 1). The sched-
uler φn can use the result of Un−1 as it is Fn−1 measurable.

Definition 4.5 (Operational Semantics). Let P = (L, V ars,
Cmds, l0, l⊥) be a probabilistic program with (Ω, F , µ, {Fn},
X0, {Cn}) being its semantic space. The semantics of P under a
scheduler φ = {φn}, is given by the following sequence of ran-

dom vectors on the probabilistic space (Ω,F , µ) that is adapted to
{Fn}:

(L,X)φ0 (ω) , (l0,X0(ω))

(L,X)φn+1(ω) , (lfkn+1
, fkn+1(Xφ

n(ω), Cn+1(ω)))

where kn+1 = φn+1(ω), the command selected by the scheduler
to be executed at time n+ 1.

A scheduler is valid if every selected command is enabled in the
respective state i.e., the following holds.

φn+1(ω) = k ⇒ Lφn = lik ∧Xφ
n ∈ Gk (9)

A valid scheduler φ is memoryless if it picks the next command to
execute based solely on the current value of the program variables:

(L,X)φn(ω) = (L,X)φm(ω)⇒ φn+1(ω) = φm+1(ω) (10)

In the rest of the paper we only consider valid non-randomized
memoryless schedulers. This restriction does not affect any of our
results since this class is provably enough to prove almost sure
termination [13]. However, it simplifies our proofs as φ can be
viewed as a function φ : L× RN → {1, . . .M}.

The connection between our program syntax and guarded com-
mands, i.e. the intuitive semantics of probabilistic programs is
given in Table 1, where πk is the projection of a tuple of sizeN+1
on the k-th component and denotes set complementation. (Note
that the structure displayed on the right of figure 1 is a compressed
version of what is obtained when applying this semantics to the
program on its left.)

5. Almost Sure Termination
In this section we revise the notion of almost sure termination and
its variants. For this, we introduce the notion of ranking super-
martingales, which are a generalization of Lyapunov ranking func-
tions. We prove that the synthesis of ranking supermartingales is a
sound and complete proof method for positive almost sure termina-
tion for a restricted, yet useful, class of programs.

A program terminates if the time (i.e. number of steps) until the
location l⊥ is reached is finite. For this to hold, one has to prove
that the program eventually reaches that location. We introduce
two random variable Tφ and T ∗ that measure these times. The
former indicates the time step when the program under scheduler
φ reaches the final location l⊥. The latter is the earliest time step
for which it is guaranteed that any valid scheduler has already
terminated. We stress that T ∗ can be defined in our setting just
because all schedulers share a common probability space. The

493

formal definition of these r.v. is as follows:

Tφ(ω) , min{n : Lφn(ω) = l⊥} (11)

T ∗ , sup
φ
Tφ (12)

It is not difficult to prove that Tφ is indeed a stopping time. More
elaborated is the argument for T ∗. The definition of T ∗ involves
a supremum over an uncountable set of stopping times, and an
uncountable number of operations over measurable sets does not
necessarily yield a measurable object.

Lemma 5.1. Tφ and T ∗ are stopping times.

Proof. Tφ is a first arrival time, and is as such the typical example
of stopping times [1, 35]. To see that T ∗ is also a stopping time it is
enough to see that {T ∗ > n} ∈ Fn. Take any sequence of length
c1, . . . , cn, such as ck ∈ {1, . . . ,M}, and consider the scheduler
φc1,...,cn , {φc1,...,cnk}∞k=1 where:

φc1,...,cnk(ω) ,

ck k ≤ n and ck enabled,
i otherwise, with i the minimum

enabled command after k steps.

The definition for the case ck not being enabled is to ensure that
φc1,...,cnk is measurable. The command ci is always well defined
as each non terminal state has at least one enabled command. Any
path that terminates in more than n steps, will be included in
{Tφ

c1,...,cn
> n} for a proper sequence c1, . . . , cn. The number

of such sequences is exactly Mn, a finite quantity, and thus {T ∗ >
n} ≡

⋃
{Tφ

c1,...,cn
> n}.

Remark 5.2. The change in the program counter from step n−1 to
step n depends only on the selected command, and not on the result
of the probabilistic experiment performed at step n. Therefore,
we can infer whether or not the program terminates at step n by
inspecting the resolution of the scheduler at step n. That depends
only on Fn−1-measurable events. However, {Tφ ≤ n} is still Fn-
measurable since Fn−1 ⊆ Fn.

We are now in the position to define some important notions of
termination in the presence of probability:

Definition 5.3 (Almost Sure Termination [3]). Given a program
and its semantics {(L,X)φn} for any valid schedulers φ the pro-
gram is said to be almost surely terminating if for all φ, P(Tφ <
∞) = 1. If in addition E(Tφ) < ∞ for all valid schedulers, then
it is said to be positive almost surely terminating.

Lyapunov ranking functions have been introduced to reason
about programs involving discrete probability measures and count-
able state spaces. A Lyapunov ranking function v can be interpreted
as a random variable V φn as follows:

V φn (ω) = v((L,X)φn(ω)). (13)

From this perspective, condition (1) implies {V φn } is a discrete
supermartingale [35]. Thus, the natural generalization of Lyapunov
ranking functions on continuous distributions are supermartingales:

Definition 5.4 (Ranking Supermartingale). A sequence of r.v.
{Yn} adapted to {Fn} is a supermartingale if E(|Yn|) < ∞,
and E(Yn+1 | Fn) ≤ Yn. In addition, it is a ranking supermartin-
gale if Yn ≥ 0, and E(Yn+1 | Fn) ≤ Yn − ε1{Yn>0} for some
constant ε > 0.

This definition is a slight variation of ranking martingales from
Chakarov and Sankaranarayanan [7], the difference being that we
give an explicit lower bound. Thus, if E(Y φn) = 0, then Y φn = 0
a.s. and therefore termination can be ensured. Another difference is

a technicality, namely we do not require that the expectation always
decreases. By 1{Yn>0} we require that only as long as the program
is still running.

The connection of ranking supermartingales and positive almost
sure termination is given by the following lemma. The result is
similar to [3, 7] but we provide an alternative proof.

Lemma 5.5. Let {Yn} be a ranking supermartingale with ε as
required in the definition above, and T (ω) = minn {n : Yn(ω) =

0}. Then, P(T <∞) = 1, and E(T) ≤ E(Y0)
ε

.

Proof. First, we prove by induction that E(Yn) ≤ E(Y0) −
ε
∑

0≤k<n P(Yk > 0)). The base case n = 0 is immediate since
the sum ranges over an empty set. For the inductive case:

E(Yn+1 | Fn) ≤ Yn − ε1{Yn>0}

⇒ H X ≤ Y ⇒ E(X) ≤ E(Y) I
E(E(Yn+1 | Fn)) ≤ E(Yn − ε1{Yn>0})

≡ H (4), (6), and linearity I
E(Yn+1) ≤ E(Yn)− εE(1{Yn>0})

≡ H Inductive hypothesis, E(1A) = P(A) I
E(Yn+1) ≤ E(Y0)− ε

∑
0≤k<n P(Yk > 0)− εP(Yn > 0)

≡ H Arithmetic I
E(Yn+1) ≤ E(Y0)− ε

∑
0≤k<n+1 P(Yk > 0)

Since Yn ≥ 0, and ε then
∑

0≤k<n P(Yk > 0) ≤ E(Y0)
ε

for all n. Therefore the series
∑

0≤k P(Yk > 0) converges. This
implies that P(Yn > 0) → 0 as n → ∞, and hence in particular
P(T < ∞) = 1. It remains to prove that the expectation of T is
bounded by E(Y0)/ε.

E(T)

= H (2) I∑
1≤k P(T ≥ k)

= H definition of T I∑
1≤k P(Yk > 0)

≤ H previous derivation, P(Y0 ≥ 0) ≥ 0 I
E(Y0)
ε

Theorem 5.6 (Soundness). Let P be a probabilistic program with
semantics {(L,X)φn}, and a ranking supermartingale {Yn} such
that Yn = 0 implies Tφ ≤ n for all valid schedulers φ. Then, P
almost sure terminates, and T ∗ is integrable.

Proof. This is a direct consequence of Lemma 5.5.

The counterexample in Section 2 motivates the following in-
completeness result.

Theorem 5.7 (Incompleteness). There exists a program P with
Tφ integrable for all valid schedulers φ, and supφ E(Tφ) finite
such that there is no ranking supermartingale that guarantees P
terminates.

However, we can characterize the programs on which super-
martingales can be used to prove termination:

Theorem 5.8 (Completeness). If T ∗ is integrable, then there exists
a ranking supermartingale.

494

Proof. We propose the random process {Yn} as a ranking super-
martingale, where

Yn , E(T ∗ | Fn)− T ∗ ∧ n (14)

Notably, the conditional expectation is well defined since 0 ≤
E(T ∗) <∞. To see that {Yn} is adapted to {Fn}, we note that the
first term is Fn-measurable, by the definition of conditional expec-
tation. The second term is Fn-measurable since T ∗ is a stopping
time and thus {T ∗ > n} ∈ Fn. In fact for n > 0 the previous
event is in Fn−1. Lets prove that {Yn} is a ranking supermartin-
gale:

E(Yn+1 | Fn)

= H Definition of Yn+1 I
E(E(T ∗ | Fn+1)− T ∗ ∧ (n+ 1) | Fn)

= H Linearity I
E(E(T ∗ | Fn+1) | Fn)− E(T ∗ ∧ (n+ 1) | Fn)

= H (6), (7), and T ∗ ∧ (n+ 1) is Fn-measurable I
E(T ∗ | Fn)− T ∗ ∧ (n+ 1)

= H a ∧ (b+ 1) = a ∧ b+ 1[a>b] I
E(T ∗ | Fn)− T ∗ ∧ n− 1{T∗>n}

= H (14) twice, and a > b ≡ a > (a ∧ b) I
Yn − 1{Yn>0}

Theorem 5.8 is concise, elegant and seems constructive, but one
needs to know about the terminating behavior beforehand to apply
it, and still one might face that the synthesis of distributions is in
general non-computable [18]. In the remainder of this paper we
attack this problem by building a practical framework to synthesize
ranking supermartingales compositionally.

6. Program Manipulation
We now turn to the question how to analyze properties of complex
probabilistic programs. The general idea is to decompose them into
ones that are smaller and easier to reason about. For example if our
programs is a sequential composition of several subprograms, we
would like to infer properties for each subprogram and then trans-
fer the results to the original program. Kozen [27] showed that se-
quential programs correspond to function composition, conditional
branching to conditional probabilities, and iterations to fixed points
or to infinite summations. The results presented in this section echo
the Kozen decomposition in the context of filter-based semantics.
For a program P we have a semantic space (Ω, F , µ, {Fn}, X0,
{Cn}) for the program semantics, and we would like to distill an
adequate semantics for a subprogram P ′ of P . That is, we need to
build a semantic space (Ω, F , µ, {F ′n}, X′0, {C′n}) forP ′ in such
a way that we can relate the semantics X of P with the semantics
X′ of P ′, in the probability space (Ω,F , µ).

It does not come as a surprise that the {F ′n} should correspond
to the events that occur once l′0 is reached in P , i.e. F ′n = FT+n,
where T is a stopping time such that LφT = l′0. Similarly, the
candidates for C′n are also CT+n, yet we must prove that they
satisfy the conditions of Definition 4.3. This is only the case if l′0 is
a.s. reached.

Lemma 6.1. Let T be an a.s. finite stopping time with respect to
the filtration {Fn}, and {Cn} be as in Definition 4.3. Then, for all
n ≥ 1 CT+n has the same distribution as {Cn}. Moreover, CT+n

is FT+n-measurable and independent of FT+n−1.

Proof. The result follows from the fact that the event {T = ∞}
can be ignored. We first prove that CT+n has the same distribution
as {Cn}.

P(CT+n ∈ A)

= H T a.s. finite I∑
0≤k P(CT+n ∈ A ∧ T = k)

= H substitution I∑
0≤k P(Ck+n ∈ A ∧ T = k)

= H Ck+n independent of Fk+n−1 ⊇ Fk I∑
0≤k P(Ck+n ∈ A)P(T = k)

= H {Cn} identically distributed I
cA
∑

0≤k P(T = k)

= H T a.s. finite I
cA

The proof of CT+n being independent of FT+n−1 is similar
and thus omitted. We now prove that CT+n is FT+n-measurable.

{CT+n ∈ A} ∩ {T + n = m} ∈ Fm
≡ H A ∩B ≡ (A ∩B) ∩B I
{Cm ∈ A} ∪ {T = m− n} ∈ Fm

≡ H Cm is Fm-measurable, and Fm−n ⊆ Fm I
true

6.1 Sequential programs
Consider a sequential program P of the form P1; . . . ;PM . We can
define the random variable T k,φ as the time when the subprogram
Pk is reached, and ∆T k,φ as the amount of time spent on it.

T k,φ , min
n
{n : Lφn = lik} (15)

∆T k,φ , T k+1,φ − T k,φ (16)

Being a first hitting time indicator, T k,φ is a stopping time. The
other random variable, ∆T k,φ, is however not necessarily a stop-
ping time, as it measures a relative amount of time. However, we
can transform it into a stopping time by adjusting the time frame.

Lemma 6.2. ∆T k,φ is a stopping time with respect to the filtration
{FTk,φ+n}.

Proof. We need to prove {∆TW,φ ≤ n} is FTk,φ+n-measurable:

{∆T k+1,φ ≤ n} ∈ FTk,φ+n

≡ H definition of FT I

∀m {∆T k+1,φ ≤ n} ∩ {T k,φ + n ≤ m} ∈ Fm
≡ H (16) I

∀m {T k+1,φ ≤ m} ∈ Fm
≡ H T k+1,φ is a stopping time I

true

Another interesting property is that if an event ω is not termi-
nating in Pk, i.e. T k,φ < ∞ and T k+1,φ = ∞, then ∆T k,φ = ∞
and ∆T l,φ = 0 for all l > k. Also T k,φ can be reconstructed as∑
l<k ∆T l,φ.

495

Lemma 6.3. Let P1; . . . ;PM be a probabilistic program with se-
mantic space (Ω, F , µ, {Fn}, X0, {Cn}), a memoryless sched-
uler φ and its associated semantics {(L,X)φn}, such that T k,φ

a.s. finite. Then, (Ω, F , µ′, {F ′n}, X′0, {C′n}) is a valid seman-
tic space for program Pk, where:

µ′ , µ X0 , XTk,φ

F ′n , FTk,φ+n C′n , CTk,φ+n

Moreover, both semantics are related as follows:

(L′,X′)φn = (L,X)φ
Tk,φ+n

T ′φ = ∆T k,φ

The identities in the previous Lemma are well defined be-
cause all random variables belong to the same probability space
(Ω,F , µ).

6.2 Conditional Branching and Non-Determinism
For branching structures like if G thenPt elsePf od we define
the following stopping times:

T t,φ , min
n
{n : Lφ = lt⊥} (17)

T f,φ , min
n
{n : Lφ = lf⊥} (18)

Since both branches cannot be taken simultaneously, the statement
T t,φ = ∞ ∨ T f,φ = ∞ holds with certainty. In turn, we can
reconstruct the time of termination of the original program as
follows:

Tφ = (T t,φ ∧ T f,φ) + 1

The second summand corresponds to the execution of the join tran-
sition from Table 1. One may be tempted to analyze Pt and Pf in
(Ω, F , µ, {Fn+1}, X1, {Cn+1}). In fact, if both Pt and Pf ter-
minate then the full program does, but the converse does not hold.
For example a non-terminating Pt does not prohibit termination for
initial valuations that do not satisfy the condition. Thus, we should
“eliminate” such events from the semantics of Pt and Pf . To do so,
we define the semantics of both branches in different probability
spaces, but we maintain the same measurable space (Ω,F). More-
over, null events in one probability space are a.s. valid in the other
one.

Lemma 6.4. Let if G thenPt elsePf od be a probabilistic pro-
gram with a semantic space (Ω, F , µ, {Fn}, X0, {Cn}) and φ a
memoryless scheduler defining a semantics {(L,X)φn}. Then, (Ω,
F , µt, {F tn}, Xt

0, {Ctn}) is a valid semantic space for Pt, with

µt , µ|G0 Xt
0 , X0

F tn , Fn+1 Ctn , Cn+1

and similarly for (Ω, F , µf , {Ffn}, Xf
0 , {Cfn}) and Pf . where

µf , µ|G0
. The semantics are related as follows:

(Lt,Xt)φn = (L,X)φn+1 in (Ω,F , µt)
(Lf ,Xf)φn = (L,X)φn+1 in (Ω,F , µf)

(L,X)φn+1 = 1G0(Lt,Xt)φn + 1G0
(Lf ,Xf)φn in (Ω,F , µ)

Notice that Xn, Xt
n, and Xf

n, are all random vectors in the
probability spaces (Ω,F , µ), (Ω,F , µt), and (Ω,F , µf), since
they are (F ,B(R))-measurable. The different probability measures
just induce different stochastic behaviors, as characterized in the
above lemma. Notice that since φ is memoryless we can use the
same analysis for the non-deterministic case, because the non-
deterministic condition ’∗’ can be replaced by a measurable set.

6.3 While Loops
The last program construction that we have to decompose is the
while loop W , whileGdoPW od . There are some important
random variables that characterize W .

TW,φk , min
n
{n : Lφn = lG ∧#n lG = k} ∧ Tφ (19)

∆TW,φk , TW,φk+1 − T
W,φ
k (20)

SW,φ , #∞ lG (21)

where #n l(ω) =
∑

0≤k≤n 1
[L
φ
k

=l]
(ω) is the number of times

location l was reached in the first n steps. The random variable
TW,φk indicates the time when W starts the k-th iteration. In case
W performs the loop body less than k times, we could consider
TW,φk to be infinite, but instead we consider the k-th iteration to
take place immediately at the time W terminates. This technicality
ensures that TW,φk ≤ TW,φk+1 ≤ Tφ, i.e. we have a partial order on
the stopping times, with Tφ as a supremum. Similar to our handling
of the sequential operator, ∆TW,φk indicates the time spent at the k-
th iteration, with ∆TW,φk = 0 in case the loop finishes or diverges
prior to the kth iterations. The last random variable introduced
above, SW,φ, counts the numbers of times the guard of the loop
is evaluated before termination. Some important identities can be
derived:

TW,φk =
∑
l<k

∆TW,φl (22)

Tφ =
∑

l≤SW,φ
∆TW,φl (23)

Similar random variables are to be defined in case of nested while
loops. For the present work we only need the analogon of SW,φ.
Considering the case where W /Wm / . . . / W1, and kj indicates
the current iteration of loop Wj , we define

SW,φk1,...,km
,
∑
0≤n

1
[L
φ
n=lG∧∀j≤m #n lGk

=kj]
(24)

Notice that SW,φk1,...,km
= 0 whenever one of the parent loops Wj

terminated before kj iterations.

Lemma 6.5. LetW be a program of the form whileGdoPW od
equipped with a semantic space (Ω, F , µ, {Fn}, X0, {Cn}), and
a memoryless scheduler φ that defines a semantics {(L,X)φn}.
Then (Ω, F , µk, {Fkn}, Xk

0 , {Ckn}) is a valid semantic space for
PW where

µk , µ|
G
φ
k

Xk
0 , Xφ

T
W,φ
k

Fkn , F
T
W,φ
k

+n+1
Ckn , C

T
W,φ
k

+n+1

Then the following equalities a.s. hold, provided Gφk is not empty,
and TW,φk is a.s. finite.

(Lk,Xk)φn = (L,X)φ
T
W,φ
k

+n
in (Ω,F , µk)

Xφ

T
W,φ
k+1

= 1
G
φ
k
Xk
Tk + 1

G
φ
k
Xk

0 in (Ω,F , µ)

(L,X)φ
T
W,φ
k

+n+1
= 1

G
φ
k

(Lk,Xk)φn

+ 1
G
φ
k

(Lk,Xk)φ
T
W,φ
k

in (Ω,F , µ)

A (maybe) surprising result is that SW,φ is a stopping time for
a specific filtration.

Lemma 6.6. The random variable SW,φ is a stopping time with
respect to the filtration {F

T
W,φ
n
}.

496

Proof. We need to prove {SW,φ ≤ n} is F
T
W,φ
n

-measurable:

{SW,φ ≤ n} ∈ F
T
W,φ
n

≡ H definition of FT I

∀m {SW,φ ≤ n} ∩ {TW,φn ≤ m} ∈ Fm
≡ H SW,φ ≤ n ≡ TW,φn = TW,φ I

∀m {TW,φ ≤ m} ∈ Fm
≡ H TW,φ is an stopping time I

true

The above lemma turns out to be very important to prove termi-
nation. It suggests that we only have to look at the random process
{(L,X)φ

T
W,φ
n
} in order to prove termination of W .

7. Compositional Reasoning about Termination
In this section we present a compositional framework for almost
sure termination that fully exploits the program structure. In general
we are facing a loopW = whileGdoP1 . . . PN od , where each
Pk can be another loop. We aim to prove W is a.s. terminating by
showing that each nested loop of W is a.s. terminating, together
with an a.s. termination proof for a sliced, unnested version of
W . We take great care to make the resulting framework apt for
implementation.

7.1 A probabilistic lexicographic argument
If W does not involve any randomization, them we can apply a
very simple compositional variant rule [14, 26] using Floyd-Hoare
logic:

V-RULE

∀ k : Pk terminates and {R = z }Pk {R ≤ z }
∃ k {R = z }Pk {R < z } < is well-founded

whileGdoP1 . . . PN od terminates

This proof rule induces a lexicographic ranking function on well-
structured programs. To apply this rule we need to prove the ter-
mination of each inner loop separately, and ensure that the variant
argument R does not increase in any Pk. Additionally, we need to
find at least one Pk where R indeed decreases. The inference rule
V-RULE is sound but not complete as R can be increased in an
inner loop as long as that gets compensated later. Despite its sim-
plicity, it is a powerful inference rule, since it can be applied recur-
sively until a simple while loop without nesting remains. Thus, one
only needs a procedure to synthesize ranking functions for simple
loops, combined with effective decision procedures to verify the
non-increasing and strictly decreasing conditions.

Condition {R = z }Pk {R ≤ z } is basically another way of
expressing R′ ≤ R where R′ is the value of the expression R af-
ter executing Pk. Such a predicate, involving primed and unprimed
expressions, can be regarded as a transition invariant [32]. Also,
predicatesR′ ≤ R andR′ < R correspond to conditions Unaffect-
ing and Ranking in the work of Bradley, Manna and Sipma [5].

We aim for an extension of the V-RULE to the probabilistic
case, implying the need to synthesize ranking supermartingales in-
stead of ranking functions. We thus need to construct the proba-
bilistic counterpart of transition invariants, or more precisely of
conditions Unaffecting and Ranking. Since we are dealing with
decreasing expectations, the natural way forward considers proba-
bilistic transition invariants as relations between unprimed expres-
sions and the conditional expectation of primed ones. This means

requiring E(R′ |R) ≤ R for Unaffecting. An effective way of en-
suring this is given by the following inductive definition:

Dec≤(E,X := e) , E(E[X/e] |V ars) ≤ E
Dec≤(E,P1;P2) , Dec≤(E,P1) ∧Dec≤(E,P2)

Dec≤(E, if . . .) , Dec≤(E,Pt) ∧Dec≤(E,Pf)

Dec≤(E,while . . .) , Dec≤(E,PW)

Notice that the base case corresponds to the weakest precondition
of that simple assignment. In case that E is propositionally lin-
ear, i.e. an expression of the form 1G1E1 + . . . + 1GnEn where
Gk is a conjunctive linear predicate, and Ek is a linear expres-
sion, the Motzkin transposition theorem can be applied to check
Dec≤(E,P) as pointed out by Katoen et al. [25]. If Dec≤(E,P)
is satisfied, it ensures that {Eφn} is a supermartingale irrespective
of the scheduler φ, provided all Ek are integrable.

The probabilistic counterpart of the Ranking condition is simi-
lar:

Dec<(E,X := e) ,E(E[X/e] |V ars) ≤ E − ε
Dec<(E,P1;P2) , (Dec<(E,P1) ∧Dec≤(E,P2))∨

(Dec≤(E,P1) ∧Dec<(E,P2))

Dec<(E, if . . .) ,Dec<(E,Pt) ∧Dec<(E,Pf)

Dec<(E,while . . .) , false

where ε > 0, is existentially quantified. Dec<(E,P) guarantees
that the expectation of E strictly decreases by the execution of P .
Notably, E is not necessarily decreased after the execution of a
loop, because the loop body might be executed zero times. The
conditions Dec≤ and Dec< constitute an over approximation and
can be weakened so as to provide a more precise but costly analysis.

Definition 7.1 (Compositional Ranking Supermartingale). Given
a loop whileGdoPW od , a compositional ranking supermartin-
galeR is a propositionally linear expression over the program vari-
ables such that Dec≤(R,PW) and Dec<(R,PW).

7.2 A counter-example
Although it does appear plausible that with this probabilistic in-
terpretation the V-RULE is sound in the context of probabilistic
programs, this is not the case in general. Consider the following
non-terminating program P with a nested loop P ′:

X := 1;
whileX > 0 do

C := 0
whileC < 0.5 do

C := uniform(0, 1);
if C < 0.5 then X := 2(X − 1) else X := 2 fi

od
X := X − 1

od

The inner loop P ′ finishes once the sampled value is greater than
0.5, in that case the variable X is set to 2. The next instruction
decrements the value ofX to 1, and thus the guard of the outer loop
remains satisfied. Suppose that we overlook that the program never
terminates, and we instead want to find a compositional ranking
supermartingale for P so as to prove a.s. termination. The obvious
choice would be X: It is decremented in every outer iteration, and
the program finishes as soon as X is 0 in the guard of P . We only
need to prove that, the value ofX decreases in expectation after P ′

terminates, i.e. we aim to show

E(XT | F0) ≤ X0 (25)

497

where X0, and XT are the values of X before and after executing
P ′. We want to prove the above by showing that the value of X
does not increase in expectation after a single iteration:

E(Xn+1 | Fn) ≤ Xn for all n (26)

The latter is true because E(Xn+1 | Fn) = 1
2
E(2(Xn−1) | Fn)+

1
2
E(2 | Fn) = Xn. Effectively X is a compositional ranking su-

permartingale according to Definition 7.1. But, E(XT | F0) = 2 >
1 = X0 since XT = 2, i.e. condition (26) does not imply (25),
while it should be implied if the probabilistic version of the V-
RULE were sound. The root of this problem is thatDec≤ cannot be
used to prove (25). In the following section we show under which
circumstances Dec≤ can indeed be used safely.

7.3 Preserving probabilistic transition invariants
In this subsection we present sufficient conditions to guarantee that
supermartingale properties are kept after almost sure termination.
We also give stronger conditions that are relatively straightforward
to automate. As a basis we use that the supermartingale proper-
ties are ensured at a stopping time whenever the underlying super-
martingale is uniformly integrable:

Theorem 7.2 (Optional Sampling [1]). Let {Xn} be a super-
martingale and {Tn} a sequence of increasing stopping times, then
{XTn} is a supermartingale in {FTn} if either one of the following
conditions holds:

• Tn ≤ cn for all n where cn are constants.
• {Xn} is uniformly integrable.

The first condition allows us to infer the supermartingale prop-
erty on bounded terminating programs, for example without loops.
For the general case however, we are left with the second condition,
which in turn forces us to prove condition (8). Unfortunately, the
latter is not readily mechanizable in contemporary theorem provers,
and thus is an impediment for our efforts to arrive at a directly im-
plementable framework. We therefore embark on making it more
manageable.

Lemma 7.3 (UI of Dominated Sequences [35]). Let {Xn} be a
random process, and Y be an integrable r.v. such that |Xn| ≤ Y
for all n. Then the random process {Xn} is uniformly integrable.

Lemma 7.4. Let {Xn} a random process adapted to {Fn} such
that Xn integrable and E(|Xn+1 −Xn| | Fn) ≤ c for some fixed
constant c, and let T an integrable stopping time. Then {Xn∧T } is
uniformly integrable.

Proof. Let Dn , |Xn − Xn−1|1{T≥n}, for all 0 < n, then
|Xn∧T | ≤ |X0|+

∑
1≤kDk for all n. Using Lemma 7.3, we only

need to prove that the expectation of the summation is finite.

E(Dn+1 | Fn)

= H definition of Dn I
E(|Xn+1 −Xn|1{T≥n+1} | Fn)

= H {T > n} is Fn-measurable, and (7) I
E(|Xn+1 −Xn| | Fn)1{T≥n+1}

≤ H hypothesis I
c1{T≥n+1}

Applying (4) we obtain E(Dn) ≤ cP(T ≥ n), then:

E(
∑

1≤kDk)

= H linearity I∑
1≤k E(Dk)

≤ H previous derivation I
c
∑

1≤k P(T ≥ k)

= H characterization of E(T) I
cE(T)

< H T integrable I
∞

As we use supermartingales to guarantee a.s. termination, re-
quiring T integrable is not a impediment in our framework. The
main implementation benefit of this lemma is that the condition
E(|Xn+1−Xn| | Fn) ≤ c can be directly inferred from a program
statement using normal static analysis or the following function that
take into account the expected behavior:

BM(x := e) ,

{
V ars if E(|e−X| |V ars) ≤ c
V ars \ {x} otherwise

BM(P1;P2) , BM(P1) ∩BM(P2)

BM(if G thenPt elsePf od) , BM(Pt) ∩BM(Pf)

BM(whileGdoPW od) , V ars \ lvars(S)

As uniform integrable families preserve martingale properties
in general, one can use Lemma 7.4 also as a means to prove
that a program is not positive a.s. terminating: This boils down to
finding a positive submartingale that is 0 only when the program
terminates.

Corollary 7.5. Let {Yn} a positive submartingale with respect to
the filtration {Fn}, i.e. E(Yn+1 | Fn) ≥ Yn and Yn ≥ 0 for all
n, such that E(|Yn+1 − Yn| | Fn) ≤ c. Then, the stopping time
T = minn{n : Yn = 0} is not integrable unless Y0 = 0.

7.4 Probabilistic V-RULE + typechecking⇒ a.s. termination
The theory developed thus far revolves around probabilistic asser-
tions on the program variables, and we discussed the basis of ob-
taining these assertions in a symbolic manner. However, the results
are correct only if we guarantee that the program variables appear-
ing in the assertions are integrable. This task is in itself not trivial.
A program could induce an arbitrary distribution on the program
variables, including some with for example infinite expectation.
We know that all variables are of type R, but we need means to
infer which ones are integrable. We will attack this remaining prob-
lem now, by means of static typechecking with dependent types. To
guarantee that the relevant expressions are integrable we again rely
on uniform integrability as this implies bounded expectation.

We shall label each program instruction with two sets of pro-
gram variables yielding the form {Y1, . . . , Yn }P {Z1, . . . , Zm }.
Informally, it means that if variables Y1, . . . , Yn are integrable be-
fore executing P , then Z1, . . . , Zm, will be integrable after P ter-
minates. A program will be well-labeled if the labeling is obtained
using the inference rules in Table 2. The rule for loops is based
on the requirements of Lemma 7.4. The linear combination of in-
tegrable random variables is also integrable. A r.v. of the form
X ∗ Y is not necessarily integrable even if both X and Y are. As
an example, consider X that is (

√
2)n with probability 1

2n
, then

E(X) =
√

2√
2−1

, but E(X2) = ∞. This restriction can be relaxed
if a previous static analysis of the program shows that at least one
the two variables is bounded. The rest of the rules are straightfor-
ward.

498

BASE
{ ∅ }P { ∅ }

SEQ
{A1 }P1 {B1 } {A2 }P2 {B2 } A2 ⊆ B1

{A1 }P1;P2 {B2 }

MOD
{A1 }P {B1 } A1 ⊆ A2 B1 ⊇ B2

{A2 }P {B2 }

ASSIG-L
e linear vars(e) ⊆ A
{A }x := e {A ∪ {x} }

ASSIG-NL
e non-linear vars(e) ⊆ A
{A }x := e {A \ {x} }

WHILE
{A }P {B } A ⊆ B

{A }whileGdoP od {A ∩BM(P) }
IF

{A1 }P1 {B1 } {A2 }P2 {B2 }
{A1 ∪A2 } if G thenP1 elseP2 fi {B1 ∩B2 }

Table 2. Inference Rules

Theorem 7.6. Given a well-labeled program {A }P {B } with
semantic space (Ω, F , µ, {Fn}, X0, {Cn}), and a valid sched-
uler φ such that:

(i) P(Tφ <∞) = 1,
(ii) Y φ0 integrable for all variables Y ∈ A, and

(iii) SW,φk1,...,km
integrable for all while-loops W E P .

Then, Zφ
Tφ

is integrable for all Z ∈ B, and for all proposition-
ally linear expressions E such that vars(E) ⊆ AS ∩ BS for all
{AS }S {BS } with S E P :

(a) Dec≤(E,P)⇒ E(Eφ
Tφ
| F0) ≤ Eφ0

(b) Dec<(E,P)⇒ E(Eφ
Tφ
| F0) ≤ Eφ0 − ε, for some fixed ε > 0

(c) E ⊆ BM(P) ⇒ E(|Eφ
Tφ
− Eφ0 | | F0) ≤ c, for some fixed

c > 0.

Proof. Structural induction on P for any semantic space. For the
base case {A }X := e {B } we only need to analyze the case
when X ∈ B. The only rule from Table 2 that can be applied is
ASSIGN-L. Thus, e is linear; vars(e) ⊆ A; Y φ0 integrable for all
Y ∈ vars(e); Xφ

Tφ
= eφ0 is integrable. Properties (a)-(c) follow

immediately from the definition of Dec≤, Dec<, and BM .
For the sequential composition {A }P1 {B }P2 {C } and

using (i), we have ∆T 1,φ, and ∆T 2,φ a.s. finite. Applying the
induction hypothesis (IH) on {A }P1 {B } using the same se-
mantic space, we obtain Y φ

∆T1,φ integrable for all Y ∈ B,
and (a)-(c) for all propositionally linear expressions. We can
apply IH on {B }P2 {C } and the semantic space (Ω, F , µ,
{F∆T1,φ+n}, X0, {C∆T1,φ+n}). Using Lemma 6.2 we obtain
Zφ
Tφ

= Zφ
∆T1,φ+∆T2,φ is integrable for all Z ∈ C. Properties

(a)-(c) are again straightforward from the function definitions. The
conditional branching case proceeds similar, but uses Lemma 6.4.

Let’s prove the looping case {A }whileGdoPW od {B }.
From (i) we can deduce ∆TW,φk a.s. finite. We also have that
{A }PW {A } is well-labeled, thus we can apply IH with respect
to the semantic space (Ω, F , µk, {Fkn}, Xk

0 , {Ckn}) as defined in
Lemma 6.5. By induction on k, we obtain Y integrable at time
TW,φk for all Y ∈ A, and conditions (a)-(c) are satisfied at time
TW,φk . If the program variable Z ∈ B then Z ∈ BM(PW). In
turn, we can apply Lemma 7.4 as SW,φ is integrable, and obtain
Z uniform integrable when sampled at times {TW,φk }. Thus, Z
is integrable when the program terminates. Condition (a) follows
from Lemma 7.4 and Theorem 7.2. Conditions (b) and (c) are trivial
sinceDec<(E,W) = false, andBM(W)∩lvars(W) = ∅.

The previous theorem ensures uniform integrability of program
variables at specific points in the execution. However, it requires

to prove that loops are expected to be executed a finite number of
times. This is weaker than requiring positive a.s. termination, but is
clearly stronger than a.s. termination in case of nested loops. The
next theorem shows that the probabilistic lexicographic argument
is sound if a well-labeling is provided. Yet, such a labeling must
ensure that compositional ranking supermartingales employed are
integrable.

Theorem 7.7 (Compositional Termination). Given a well-labeled
program {A }P {B } and a semantic space (Ω, F , µ, {Fn},
X0, {Cn}), such that Y0 is integrable for all Y ∈ A and for
each while-loop {AL }W {BL } in P we have a compositional
ranking supermartingale R satisfying

(i) vars(R) ∈ AL.
(ii) P ′ / W and {A′ }P ′ {B′ } imply vars(R) ∈ A′ ∩B′

Then, P(Tφ < ∞) = 1, and E(SW,φ) < ∞ for all loops, and all
schedulers φ.

Proof. By induction on the structure of P for any semantic space.
The base case is trivially terminating. For the sequence and condi-
tional branching we have to apply similar arguments as in Theo-
rem 7.6, thus we omit them.

We turn to proving that whileGdoPW od is a.s. terminating.
We can assume that {A }PW {A } is well-labeled, i.e. that the
MOD rule was not applied to P and therefore A = AW ⊆
BW . Nesting an induction on k we can prove using IH that PW
a.s. terminates with the semantic space (Ω, F , µk, {Fkn}, Xk

0 ,
{Ckn}). Using Lemma 6.5 and Theorem 7.6 we can then infer that
∆TW,φk is a.s. finite, and that:

E(R
T
W,φ
k+1
| F

T
W,φ
k

) ≤ R
T
W,φ
k
− ε1G0∩...G

T
W,φ
k

in the original semantic space of P because Dec<(R,PW) and
vars(R) ∈ A. Thus {R

T
W,φ
n

1R
T
W,φ
n

>0} is a ranking supermartin-

gale with respect to the filtration {F
T
W,φ
n
}, and from Lemma 5.5

SW,φ is integrable. We are only left with the need to prove that Tφ

is a.s. finite. Here, the identity (22) comes in handy to ensure that,
since all the involved r.v. are a.s. finite.

Theorem 7.7 only ensures a.s. termination, i.e. the random vari-
able T ∗ is not necessarily integrable. The terminating argument
built into the proof is not a global supermartingale that decreases
in expectation at each step, instead it is a ranking supermartingale
that decreases after a.s. finite random steps.

As a concrete example, the following labelled program will be
used to demonstrate that our proof system is indeed capable of
proving a.s. termination of programs where E(T ∗) is not finite. In
other words it exemplifies that we can prove a.s. termination com-

499

positionally in settings where global supermartingales arguments
must fail.

{X}
C,U := 0, 1;
{C,U,X}
whileC < 0.5 do
{C,U,X}
X := U
whileX > 0 do
{C,U,X}
X := X − uniform(0, 1);
{C,U,X}

od
{C,U,X}
C,U := uniform(0, 1), 2U ;
{C,U,X}

od
{C}
It is easy to see that the program is well-labeled according to
the rules in Table 2. Furthermore, 1[C<0.5] is an obvious ranking
supermartingale for the outer loop, and so is X for the inner loop.
Thus we can apply Theorem 7.7 to decide that the program a.s.
terminates. Furthermore, we can infer that SW (the number of
times the outer loop is executed), and ∆TWk (the number of steps
in the k-th iteration) are all integrable. In particular, E(SW) = 2
since SW is a simple geometric distribution, and E(∆TWk) ≤ 4k

as the value of X is decreased by 0.5 on average, starting off from
2k at the beginning of the k-th iteration. Also ∆TWk > 2k, as X
is decreased by at most 1. This plausibilises why the program a.s.
terminates. However E(

∑
k≤SW TWk) ≥

∑
0<k P(S = k)2k =

∞, i.e. the program does not terminate in finite mean time.

7.5 An extensible framework
Independent of the above type system, one would intuitively ex-
pect that if a program almost surely terminates for all possible ini-
tial states (i.e. initializing via Dirac distributions), then the program
terminates under any arbitrary distribution, including those violat-
ing the initial precondition in our labeling.

Theorem 7.8. A program P with variables {Xn} terminates for
all initial valuations such that {Xn,0 = ∞} = ∅ if and only if it
terminates for all initial valuations such that E(Xn,0) <∞.

Proof. Notice that one implication is trivially true. Suppose P ter-
minates for all initial valuations that make the variables integrable.
Let us fix an arbitrary probability space (Ω,F , µ), and an initial
valuation X0, such that all Xn,0(ω) are finite. Consider the se-
mantics of this program under a memoryless scheduler φ, and de-
fine A , {Tφ < ∞}. We want to prove µ(A) = 1. Let’s con-
sider the semantics of the same program under the same probabil-
ity space, but with a different initial valuation. Namely, Xm

n,0 ,
Xn,01[|Xn,0|≤m]. Thus, we can consider the following measurable
sets Am , {Tφ,m < ∞}, and Im , {∃n |Xn,0| > m}. Notice
that Xm

n,0 is integrable, and therefore µ(Am) = 1. We also have
Am \ Im ⊆ A, Am ↑ A and Im ↓ ∅. Thus, µ(Am \ Im) ↑ 1, and
in turn µ(A) = 1 as needed.

This theorem is weaker than expected, namely we guarantee
termination for those initial distributions that make integrable the
program variables. But inside our framework we get this for free
owed to the MOD rule. On the other hand, Theorem 7.8 allows us
to incorporate a powerful inference rule into our framework

ABS
P a.s. terminating A ⊆ V ars \ lvars(P)

{A }P {A }

thereby relaxing the requirements on compositional ranking super-
martingales so that they only need to ensure integrability of unmod-
ified variables. This rule makes it possible to feed into our frame-
work background knowledge about program fragments, especially
obtainable by standard non-probabilistic termination arguments.

8. Related work
Termination of concurrent probabilistic programs was first studied
by Hart, Sharir and Pnueli [22]. They focused on finite state pro-
grams under fairness assumptions. In that setting termination is a
pure topological property, actual probabilities do not play a role.
Later, they gave a sound and complete characterization for almost
sure termination in case of countable state spaces [21]. Esparza,
Gaiser and Kiefer [12], proposed a sound and complete method
for proving termination of finite state programs. Their approach
is based on [22] and proceeds by finding a ω-regular expression
on the possible outcomes of the random experiments that guar-
antees termination regardless of the actual state. Monniaux [31]
used abstract interpretation techniques to approximate the prob-
ability distribution of un-nested loops. He proved termination in
cases where the probability of executing a loop more than n times
decreases exponentially with n. Brázdil et al. [6] proved a.s. ter-
mination in the context of probabilistic push-down automata us-
ing Azuma’s Lemma. McIver and Morgan [30] propose a sound
variant rule for probabilistic programs. Their notion is less general
than ranking supermartingales as they require variants to be upper
bounded. Bournez and Garnier [3] studied positive a.s. termination
in the context of term rewriting systems, Gnaedig [17] developed a
proof system for positive a.s. termination for rewrite systems under
innermost strategies using induction. It is not clear how the author
dealt with the integrability problems discussed throughout this pa-
per. Chakarov and Sankaranarayanan [7] applied aspects of mar-
tingale theory in the context of verification of deterministic proba-
bilistic programs, presenting sound conditions to prove termination
using global ranking supermartingales.

Termination analysis for non-probabilistic programs has grown
immensely in the last decade. There are several approaches to prove
termination of functional programs and rewriting systems including
the size change principle [29], and dependency pairs [16]. In case of
imperative programs modern approaches rely on synthesizing sev-
eral small ranking functions and combining them. Lexicographic
approaches [4, 5, 10] try to find an order in the ranking functions in
such that the largest modification always decreases. Ramsey meth-
ods [2, 8, 11, 28, 32] exploit the fact that a relation is well-founded
if its transitive closure is contained in a disjunction of well-founded
relation. For a summary on both methods we refer to [10] that pro-
poses a hybrid approach.

9. Discussion
Based on a novel filtration-based treatment of probabilistic program
semantics, this paper has successfully addressed several intrigu-
ing open questions in probabilistic program termination research.
On the foundational side, we have extended the theory of ranking
supermartingales to provably work with bounded nondeterministic
programs. This is complemented with a sound and complete proof
method for almost sure termination, together with a safe method to
identify the set of program variables having finite expectation. The
framework is strictly decoupled from the distributions appearing in
a program, as long as they are integrable and their expectations are
known. Care has been taken to make the entire approach readily
implementable. Our framework is thus capable of proving auto-
matically a.s. termination on programs that state of the art methods
like [3, 7, 12] are unable to verify. Moreover, it goes strictly beyond

500

positive a.s. termination that is the largest setting where Lyapunov
ranking functions are complete.

Among others, our contributions can be used to improve the
weakest expectation calculus of McIver and Morgan [30] in two
dimensions. First, we can drastically weaken their requirement to
provide a proof of termination so as to ensure total correctness. The
second aspect to improve upon is related to the fact that soundness
of their method is in practice restricted to weakly finite programs
(i.e. where the number of reachable states from any initial states
is finite). This is rooted in a requirement that all variables are
bounded, which in turn directly ensures that all relevant expressions
are integrable. Our Theorem 7.6 in conjunction with Theorem 7.7
can be used to drop boundedness restrictions, and thereby extend
the scope of analyzable programs considerably.

Probabilistic programming [18] is a relatively new area of re-
search that merges concepts form programming languages, ma-
chine learning, static analysis, and probabilistic model checking.
Probabilistic models are described as probabilistic programs, and
inference methods are used to compute exact or approximate val-
ues of probabilities and expectations. Our work can be used in
these contexts to perform static analysis of probabilistic programs
prior to using Monte Carlo methods, as simulation results on non-
terminating programs or programs where first moments do not exist
are misleading and usually meaningless. Furthermore, termination
analysis is also an important ingredient to guarantee the correctness
of probabilistic program slicing [23].

Acknowledgments
This work is supported by the EU 7th Framework Programme
under grant agreements 295261 (MEALS) and 318490 (SEN-
SATION), the DFG Transregional Collaborative Research Centre
SFB/TR 14 AVACS, and by the CAS/SAFEA International Part-
nership Program for Creative Research Teams. We would would
like to thank Pedro R. D’Argenio and Jan Krc̆ál for their comments
in a preliminary version of this paper, Hassan Hatefi for many in-
sightful discussions, and the many anonymous reviewers for their
invaluable comments.

References
[1] R. B. Ash and C. Doléans-Dade. Probability and Measure Theory.

Harcourt, 2000.
[2] J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. W. O’Hearn.

Variance analyses from invariance analyses. In POPL, pages 211–224.
ACM, 2007.

[3] O. Bournez and F. Garnier. Proving positive almost-sure termination.
In RTA, LNCS 3467:323–337. Springer, 2005.

[4] A. R. Bradley, Z. Manna, and H. B. Sipma. The polyranking principle.
In ICALP, LNCS 3580:1349–1361. Springer, 2005.

[5] A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with
reachability. In CAV, LNCS 3576:491–504. Springer, 2005.

[6] T. Brázdil, J. Esparza, S. Kiefer, and A. Kucera. Analyzing proba-
bilistic pushdown automata. Formal Methods in System Design, 43
(2):124–163, 2013.

[7] A. Chakarov and S. Sankaranarayanan. Probabilistic program analysis
with martingales. In CAV, LNCS 8044:511–526. Springer, 2013.

[8] M. Codish and S. Genaim. Proving termination one loop at a time. In
WLPE, CW371 Report, pages 48–59. K. U. Leuven, 2003.

[9] M. Colón and H. Sipma. Synthesis of linear ranking functions. In
TACAS, LNCS 2031:67–81. Springer, 2001.

[10] B. Cook, A. See, and F. Zuleger. Ramsey vs. lexicographic termination
proving. In TACAS, LNCS 7795:47–61. Springer, 2013.

[11] N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A gen-
eral framework for automatic termination analysis of logic programs.
Appl. Algebra Eng. Commun. Comput., 12(1/2):117–156, 2001.

[12] J. Esparza, A. Gaiser, and S. Kiefer. Proving termination of probabilis-
tic programs using patterns. In CAV, LNCS 7358:123–138. Springer,
2012.

[13] J. Filar and K. Vrieze. Competitive Markov Decision Processes.
Springer-Verlag New York, Inc., New York, NY, USA, 1996.

[14] R. W. Floyd. Assigning meanings to programs. Mathematical aspects
of computer science, 19:19–32, 1967.

[15] F. G. Foster. On the stochastic matrices associated with certain queu-
ing processes. The Annals of Mathematical Statistics, 24(3):355–360,
09 1953.

[16] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair
framework: Combining techniques for automated termination proofs.
In LPAR, LNCS 3452:301–331. Springer, 2004.

[17] I. Gnaedig. Induction for positive almost sure termination. In PPDP,
pages 167–178. ACM, 2007.

[18] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani.
Probabilistic programming. In FOSE, pages 167–181. ACM, 2014.

[19] F. Gretz, J.-P. Katoen, and A. McIver. Prinsys - on a quest for
probabilistic loop invariants. In QEST, LNCS 8054:193–208. Springer,
2013.

[20] F. Gretz, J.-P. Katoen, and A. McIver. Operational versus weakest
pre-expectation semantics for the probabilistic guarded command lan-
guage. Perform. Eval., 73:110–132, 2014.

[21] S. Hart and M. Sharir. Concurrent probabilistic programs, or: How to
schedule if you must. SIAM J. Comput., 14(4):991–1012, 1985.

[22] S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic con-
current program. ACM Trans. Program. Lang. Syst., 5(3):356–380,
1983.

[23] C.-K. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel. Slicing
probabilistic programs. In PLDI, pages 133–144. ACM, 2014.

[24] C. Jones. Probabilistic non-determinism. PhD thesis, University of
Edinburgh, 1989.

[25] J.-P. Katoen, A. McIver, L. Meinicke, and C. C. Morgan. Linear-
invariant generation for probabilistic programs: - automated support
for proof-based methods. In SAS, LNCS 6337:390–406. Springer,
2010.

[26] S. Katz and Z. Manna. A closer look at termination. Acta Inf., 5:
333–352, 1975.

[27] D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci.,
22(3):328–350, 1981.

[28] D. Kroening, N. Sharygina, A. Tsitovich, and C. M. Wintersteiger.
Termination analysis with compositional transition invariants. In CAV,
LNCS 6174:89–103. Springer, 2010.

[29] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change
principle for program termination. In POPL, pages 81–92. ACM,
2001.

[30] A. McIver and C. Morgan. Abstraction, Refinement And Proof For
Probabilistic Systems. Springer, 2004.

[31] D. Monniaux. An abstract analysis of the probabilistic termination of
programs. In SAS, LNCS 2126:111–126. Springer, 2001.

[32] A. Podelski and A. Rybalchenko. Transition invariants. In LICS, pages
32–41. IEEE Computer Society, 2004.

[33] A. Podelski and A. Rybalchenko. A complete method for the syn-
thesis of linear ranking functions. In VMCAI, LNCS 2937:239–251.
Springer, 2004.

[34] K. Sohn and A. V. Gelder. Termination detection in logic programs
using argument sizes. In PODS, pages 216–226. ACM Press, 1991.

[35] D. Williams. Probability with Martingales. Cambridge University
Press, 1991.

501

