
ON THE ORTHOGONALITY OF ASSIGNMENTS AND PROCEDURES

IN ALGOL

Stephen Weeks* Matthias Felleisen~

Department of Computer Science

Rice University

Houston, TX 77251-1892

Abstract

According to folklore, Algol is an “orthogonal” ex-

tension of a simple imperative programming lan-

guage with a call-by-name functional language.

The former cent ains assignments, branching con-

structs, and compound statements; the latter is

based on the typed ,X-calculus. In an attempt to

formalize the claim of “orthogonality”, we define a

simple version of Algol and an extended A-calculus.

The calculus includes the full /!I-rule and rules for

the reduction of assignment statements and com-

mands. It has the usual properties, e.g., it satisfies

a Church- Rosser and Strong Normalization The-

orem. In support of the claim that the impera-

tive and functional components are orthogonal to

each other, we show that the proofs of these the-

orems are combinations of separate Church- Rosser

and Strong Normalization theorems for each sub-

language.

An acclaimed consequence of Algol’s orthogonal

design is the idea that the evaluation of a program

has two distinct phases. The first phase corre-

sponds to an unrolling of the program according

to the usual /3 and fixpoint reductions, which pro-

vide the formal counterpart to Algol’s famous copy

rule. The result of this phase is essentially an im-

perative program. The second phase executes the

output of the first phase in the imperative fashion

*New address: Carnegie Mellon University, School of

Computer Science, Pittsburgh, PA 15213-3891

f Both authors were supported in part by NSF grants

CCR 89-17022 and CCR 91-22518.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its dete appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-20th PoPL-1 /93-S. C., USA

Q 1993 ACM 0-89791 -561 -5/93 /000110057 . ..+1 .50

of a stack machine. Given our calculus, we can

prove a Postponement Theorem and can thus for-

malize this phase separation.

1 The Origins of Algol

According to folklore, Algol 60 “orthogonally” ex-

tends a simple imperative programming language

with a typed A-calculus. The underlying impera-

tive language usually consists of assignment state-

ments, branching statements, loops, and state-

ment sequences for computing basic arithmetic al-

gorithms. The typed A-calculus adds recursive,

higher-order procedures, which provide the power

to abstract over algorithms in the command lan-

guage. In his most recent description of Forsythe,

a successor to Algol, Reynolds expounds this view,

which he says is

implicit in Algol 60, underlies Forsythe

and distinguishes it from such languages

as Algol 68, Scheme, and ML: The pro-

gramming language is a typed lambda cal-

culus with a primitive type comm, such

that terms of this type, when reduced to

normal form, are programs in the simple

imperative language. [17:3]

Moreover, he reiterates the common belief that as

a result of this design, a Forsythe program

is executed in two phases. First the pro-

gram is reduced to normal form. (In Al-

gol jargon, the copy rule is repeatedly ap-

plied to eliminate procedure calls.) Then

the resulting simple imperative program

is executed. [17:3]

Given the recent interest in integrating varia-

tions of assignment statements into functional pro-

gramming languages in a controlled manner and

57

in the design of simple logics for such mixed lan-

guages [2, 9, 10, 12, 13, 16, 21], these folklore claims

about Algol’s design clearly deserve a rigorous anal-

ysis. On one hand, such an analysis will enhance

our understanding of the role of “orthogonality” in

Algol in the same manner in which S@ndergard’s

and Sestoft’s paper [20] clarified the often misused

terminology of “referential transparency”, and in

which Felleisen’s work [6] defined the idea of “ex-

pressiveness of programming languages.” On the

other hand, the results are a contribution to the

construction of simple logics for mixed functional-

imperative programming languages and to their ab-

st ract implement ation.

The first step for such an analysis clearly requires

the formulation of a small Algol-like language and

its A-calculus. The calculus we develop includes

the jull @-rule, despite the presence of assignments,

and has the usual properties, i.e., Church- Rosser,

Standardization, and Strong Normalization for the

recursion-free subset. In support of the claim that

the two sub-languages are orthogonal to each other,

we show that the proofs of Church-Rosser and

Strong Normalization, the most interesting prop-

erties of the calculus, consist of two separate sub-

proofs, one for each sub-language, and a proof that

the two systems mix smoothly. Most importantly,

we confirm Reynolds’s second conjecture with a

Postponement Theorem, which shows how the eval-

uation of a program can indeed be separated into a

functional phase followed by an imperative phase.

We begin by defining the syntax, calculus, and

semantics of a simple Algol-like language. Sec-

tion 2.3 addresses the basic consistency results for

the calculus and the derived semantics. Section 3

contains the Postponement ‘Theorem. In Section 4,

we prove that Postponement combined with Strong

Normalization for each sub-calculus entails Strong

Normalization for the complete calculus. We ad-

dress the shortcomings of our dialect in the last

section; we also include a brief discussion of related

work.

Note: Except for the strong-normalization theo-

rem, the paper does not include full proofs. We

refer the interested reader to our technical report

92-193 (anonymous ftp: titan. cs.rice.edu in pub-

lic/languages) which contains the full proofs of the

remaining theorems.

2 Idealized Algol

Our version of Idealized Algol (IA) is a simpli-

fication of Forsythe, a generalized version of Al-

gol 60 [17, 18, 19]. Specifically, the imperative sub-

language of IA only contains an arithmetic expres-

sion language for numerals and a small set of total

primitive functions. The language is simply typed,

and, for simplicity, excludes intersection types and

coercions, complex data, and non-local control op-

erators. Thus, it is simple enough to permit an eas-

ily comprehensible semantics, yet complete enough

to permit a generalization of our results to other

Algol-like languages.

Based on the syntactic definition in the first sub-

section; we specify the semantics of the language

in the second subsection via a combination of two

reduction systems. One system describes the com-

mand component, the other one is a simply-typed

A-calculus. The union of the two basic reduction

relations generates the calculus for the entire lan-

guage. We then show in the final subsection that

this calculus provides an adequate reasoning sys-

tem for the language, i.e., it is consistent and strong

enough to define a well-behaved evaluator.

2.1 Syntax and Informal Semantics

The definition of the syntactic part of the language

proceeds in two stages: the general syntax of com-

mands and expressions, and a type system for fil-

tering out legal commands and expressions.

Syntax. Figure 1 specifies the set of syntactically

feasible commands and expressions. The first part

of the set of terms (above the line) constitutes the

raw syntax of the imperative sub-language; the sec-

ond part (below the line) is the A-calculus exten-

sion, including a ret-construct for declaring recur-

sive objects (procedures and the “diverging inte-

ger”). Both Az.kf and new(x,N).J4 bind z in M;

no other construct binds a variable in a term. A

variable occurs free in a term if it is not bound by

a surrounding binding construct. A contezt is a

term with a single “hole”, [], in the place of a sub-

term; C[] denotes a context. The notation L’[&f]

refers to the result of “filling” the hole of the con-

text C[] with term .34, possibly capturing some

free variables of M.

Convention 1. We adopt a number of Baren-

58

Syntax:

M .._..— ‘n’lop/z /(MM) arithmetic expressions

where n Ez.

Op G {+,–,*}

C Vars

[skip I (ifO M M M) I (begin MM) nop, bra~ching, sequencing

I new(x,M).M block

I (deref M) I (setref! MM) dereferencing, assignment

Type System:

● Constants

I Az.M I (ret M) (recursive) procedures

n P ‘n’ : int

T b op : int+int+int

● Variables

z E dom(n)
7rbz:7r(z)’

● Functions

m[z/r] D M : r’

● References

r D M : int, ~[z/int refl B N :<

T D new(z,M).N :<

rDM:intref

r D (deref M) : int

?rDJf:int ref, rDN:int

ir D (setref! M N) : comm

● Simple Commands & Expressions

r D skip : comm

~D~:int, rDM:o, ~D N:o

mp(ifOLNN):o

rDkf:comm, mDN:o

T D (begin M N) :0

TD(MN):T

FIGURE 1: Syntax and Type Inference System for IA

dregt’s [1] A-calculus conventions for IA. Specifi-

cally, we identify terms that are equivalent mod-

U1O change of bound variables and use ill s N

to denote this equivalence. The sets of free and

bound variables in distinct terms do not interfere

with each other in definitions and theorems. Con-

texts are not subject to this convention. D

Types, Legal Syntax. The type system filters

legal from illegal terms and separates the set of

terms into a sub-language of commands (of comm)

and expressions. It is an adaptation of the type

system for Forsythe [19],

An expression in the imperative sub-language

may either be of ground type (o) or of a first-order

arithmetic function type (o ~ o) and o ~ (o ~ o).

For example, ‘n’ is of type o and (+ ‘l’) is of

type o ~ o. A command in the imperative sub-

language is a term of type comm whose (maximal)

59

sub-expressions are of ground type, e.g.,

(begin skip ((+ ‘l’) ‘3’))

is a command in the imperative sub-language while

(begin skip (+ ‘1’))

is not. Like Algol and Fors yt he, IA restricts ref-

erences to cent tin only basic data values (int ‘s).

Thus,

new(x,rO’).(setref! z ((+ (deref z)) (deref z)))

is a block of type command.

The extension of the imperative sub-language to

IA is accomplished by relaxing the constraint on

expression types. The full language admits ex-

pressions of type ~-m for arbitrary types ~, e.g.,

int~int~comm is a permissible type now. The sys-

tem does not lift the restriction that the result of

new-blocks are of ground type.

For the formal specification of type system, we

begin with a definition of the ful.llanguage of types:

T ..—..— 0 [‘T+2-

0 ..—..— comm \ int I int ref

c ..—..— comm I int

The type inference system is defined by a set of in-

ference rules, whose basic components are typings.

A typing, T D Ikf : r consists of a type assign-

ment, m, an expression, Al, and a type, ~. A type

assignment, r, is a finite function from variables

to types. We use the notation r[z/~] to indicate

the type assignment such that r[z/T](z) = r and

m[z/r](y) = m(y), if y ~ z. The typing ~ b M : ~

asserts that expression ill has type ~ when the free

variables in Al are assigned types by z. Figure 1

cent ains the inference rules for IA.

While the type inference system is a straightfor-

ward extension of that for the simply typed A-cal-

culus, two apparent restrictions deserve some com-

ments. Both ifO-expressions and begin-expressions

are commands as well as expressions, depending

on which ground type they are assigned. In ad-

dition, the requirement that ifO-expressions and

begin-expressions be of type o is only to simplify

the theory, and may be removed in practice with

the following abbreviations:

(ifO L M N) ~ A2.(ifO L (M i) (N E))

(begin MN) ~ M.(begin M (N 2));

in each case, i is a vector of variables of the length

required to assign an appropriate ground type to

the expressions (J4 F) and (N Z).

Informal Semantics, Pragmatic. The be-

havior of IA’s imperative sub-language is that of an

assembly language for a stack-machine. Numerak

are basic values; arithmetic expressions are evalu-

ated as usual. Blocks allocate a new location (ref-

erence) with some initial value, execute their body,

and finally deallocate the location. The compound

and branching terms are also executed in the usual

manner: the former sequences the execution of two

terms, the latter compares the result of its first

sub-expression to ‘O’ and branches to the second

if the answer is affirmative and to the third term

otherwise.

The informal semantics of the procedural lan-

guage is easily explained via Algol’s copy rule [14].

A procedure replaces its parameters by its argu-

ments (aft er renaming internal bound variables,

which we implicitly assume according to Conven-

tion 1). A recursive definition is unrolled as far as

necessary.

The sub-language of IA does not provide a loop-

ing construct but again, this omission only simpli-

fies the analysis of the theory and is no real obstacle

to programming in IA. For example, a while loop

is a simple abbreviation, based on recursive func-

tions:

(while MN) ~

(ret Aw.Ax.Ay.

(ifO z skip (begin y ((w z) g))))

Other loops are similar abbreviations.

The following phrase is a simple procedure, mix-

ing functional and imperative facilities:

Aj.new(S,rO’).new(i,j).

(begin (while (deref i) do

(begin (setref! S ((+ (deref S))

(deref i)))

(setref! i ((- (deref i)) ‘l’))))

(deref S))

The procedure passes the type inference system as

an expression of type int-+int, that is, as a pro-

cedure from integers to integers. It implements a

simple imperative algorithm for computing the sum

from zero to its parameter i. We refer to the above

procedure as X!.

60

An equivalent functional implementation of Z! is

the following (pure) IA phrase:

(ret Asu7rt.Ai.(ifO i ‘O’ ((+ i) (sum ((-i) ‘11)))))

We use XA in the following sections to refer to this

procedure.

2.2 Semantics and Calculus

To formalize IA’s semantics, we define an equa-

tional calculus.1 The definition of the basic notion

of reduction for IA relies heavily on our experience

with extended J-calculi for untyped languages with

assignment stat ements, specifically, the definition

of the An-R-calculus for a call-by-name language

and that of the &B-calculus for a language with

first class reference cells [2, 9].

Convention 2. We adopt Barendregt’s [1] con-

ventions about reduction relations and calculi. A

notion of reduction, r, denotes a binary relation on

the set of phrases. The relation ~r, the compat-

ible closure of r, is defined by:

(Al, iV) C r * C[M] -r C’[N] for all contexts C.

The relation +: is the reflexive transitive closure

of -r. The relation =r is the equivalence relation

generated by xr. Given two notions of reduction

rl and r2, rl r2 denotes rl U r2. c

In order to describe the rules for assignment, we

must first define a set of special cent exts, evalu-

ation contezts, and their associated bound refer-

ences. The following grammar simultaneously de-

fines evaluation contexts and the corresponding set

1In contrast, Lent [1 I] defines an operational semantics

of an IA-like language baaed on structural operational se-

mantics. His major concern is an “adequacy theorem” for

his language with respect to a semantic model.

of trapped references, TR(E):

E ::= TR(E)

1[1 0

I ((WE) w TR(E)

I ((OP ‘~’) ~) TR(E)

[new(z,E).J4 TR(E)

I new(z,rnl).E {z} u TR(E)

I (deref E) TR(E)

I (setref! EM) TR(E)

/ (setref! z E) TR(E)

I (ifO E J4 A4) TR(E)

I (begin E &f) TR(E)

The hole in an evaluation context indicates the

sub-expression whose assignment commands and

dereferencing expression maybe executed next. It

is an easy induction to show that a term has a

unique partitioning into an evaluation context and

an assignment command or dereferencing expres-

sion, unless it is a numeral or a skip. This fact

guarantees the well-behavedness of the imperative

part of the calculus; we call this the unique parti-

tion property.

Figure 2 defines the basic notions of reduction for

IA. The first part (above the line) characterizes

the behavior of the imperative sub-language and

the second part (below the line) is the usual set

of reductions for the simply-typed, call-by-name A

calculus with a recursion construct.

The rules capture the informal semantics in

an intuitive manner. Sequencing of the begin-

expression is enforced by the structure of evalua-

tion contexts and the B rule. Together, these only

allow non-local assignments in the second subex-

pression of a begin-expression to take place after

the first subexpression has been completely evalu-

ated to a skip and removed by the B rule. Despite

the presence of assignments, function applications

satisfy the ful/ /3-axiom. Potential conflicts be-

tween assignments to and dereferences of the same

references are eliminated by the use of ewduation

cent exts due to the above-mentioned unique par-

tition property for phrases. Thus, assignments to

distinct references may proceed in parallel. For an

example, consider the following phrase:

((+ (~! ‘lo’)) (x! ‘5’))

61

(6) ((op ‘n’) ‘n-t’) - ‘n Op m’

(POP) new(z,rn’).v - v, v E ‘n’ or skip

(D) new(x,rn’).E[(deref z)] + new(z,rrt’).l?~rt’l, z @TR(E)

(a) new(z,rn’).ll[(setref! z ‘m’)] - new(z,rm’).l?[skip], z @TR(E)

(T) (ifO ’01 M N) -+ M

(F) (ifOrn+l’MfV) - N

(B) (begin skip M) + M

(P) ((AZ.M) N) - MIIA-V]
(fix) (ret M) 4 (M (ret M))

FIGURE 2: Basic Notions of Reduction

Here all side-effects in the two distinct procedure

calls of Z! can proceed independently. The current

calculus does not support the permuted reduction

of all independent assignments or dereference ex-

pressions.

Based on the primitive notions of reduction, we

define three compound term relations. The first,

ia, is intended to describe evaluation in the full

language IA. The second, /?fix, corresponds to the

axioms describing the functional part of the lan-

guage. The third, p, corresponds to the axioms de-

scribing the command component of the language:

ia ~ @fixup

pfix ~ /3ufix

P ~ 8upopu Duau TuFu B

To emphasize that the above is a calculus, we some-

times write r E M = N when M =r N where r is

either ia, /?fix, or p.

Given the calculus, we can define the behavior of

a program in a precise manner. A program, which

must be a closed integer expression, produces a re-

sult if and only if it is provably equal to a numeral

The latter is the result of the program.

Definition 2.1. (Programs, Evaluation) A pro-

gram M is a closed expression of type int, i.e.,

M G Z%ogrums if and only if@ D M : int.

The evaluator is a partial function from programs

to numerals:

eval : Programs ++ Numerals.

62

If M is a program, then eval(ill) = ‘n’ if and only

if ia R M = ‘n’. We write evalP(M) = ‘n’ when

pt-M=rn7. n

2.3 Characteristics of eval

To show that the language IA is a deterministic,

well-behaved language like Algol, we need to prove

that the evaluator is indeed a function, and that

this function is only undefined if all reductions

starting from the program are infinite. The easiest

way to prove these results is via a Church-Rosser

theorem and a subject reduction theorem for types.

Both results hold for the two sub-languages and

carry over to IA in a uniform manner.

We begin by proving that eval is a well-defined

function.

Theorem 2.2 Let M be a program, let n, m ~ Z.

1. If eval(M) = ‘n’ and eval(M) = ‘m’ then

m=n.

2. eval(M) = ‘n’ if and only if M <~~ ‘n’.

Proof. Both parts are immediate consequences of

Theorem 2.3. ~

Theorem 2.3 (Church-Rosser) If L +~~ M

and L +~e N, then there exists K such that

M +~a K and N b~~ K.

Proof. The proof consists of three lemmas. The

first two establish the Church-Rosser property for

each subsystem, i.e.

third lemma shows

smoothly.

p and /3fix, separately. The

that the subsystems merge

1.

2.

3.

The notion of reduction @fix is Church-

Rosser. This fact immediately follows from

the Church-Rosser Theorem for simply-typed

A-calculus (with ret). The new syntax does

not interfere with the proof.

The reflexive-compatible closure of p satisfies

the diamond property directly. Hence, by a

diagram chase, the reflexive, transitive closure

of ~p satisfies the diamond property, and p

is Church-Rosser.

The two reductions generated by .i3fix and p

commute. This is shown by defining a paral-

lel reduction relation ~ ~, and showing that

and ~--pfix 1 p comm~te”

The Church-Rosser Theorem for

rectly from the three lemmas by the

Lemma [1:64]. I

ia follows di-

Hindley-Rosen

The second important property of the evaluator

for IA is that it never gets “stuck”. That is, we

can show that every program either goes into an

infinite loop or terminates giving a numeral. This

result is the subject of the following theorem.2

Theorem 2.4 (Uniform Evaluation) For all

programs M, either M +~a ‘n’, for some n c Z,

or for all N such that M -+~~ N, there exists N’

such that N -+-i. N’.

Proof. The result follows from two lemmas. The

first (Lemma 2.5) shows that reductions preserve

types, and hence that a program always reduces to

a program. The proof of the second (Lemma 2.6)

provides a characterization of cert ain normal forms,

and in particular shows that a program in normal

form must be a numeral. ~

The first of the two auxiliary lemmas states that

reductions preserve the type of programs and more

generally of arbitrary expressions.

Lemma 2.5 If M -+i. N and T b M : T, then

TDN:T.

Proof. By induction on the structure of M: The

base cases are vacuously true. The inductive cases

2If IA contained integer division (or other partial prim-

itive functions), then the calculus ia would have to include

error values and reductions for error values. The Uniform

Evaluation Theorem would have to state that a program

either reduces to a numeral or an error value.

63

require an easy application of the inductive hypoth-

esis or a careful inspection of the type of the con-

tractum of a redex. D

The second lemma shows that a program in nor-

mal form is a numeral.

Lemma 2.6 If P is a program in normal form,

i.e., there is no P’ such that P -+i. P’, then P =

‘n’ for some n C Z.

Proof. We prove t he following more general lemma

by induction on the structure of an arbitrary ex-

pression N: if

{(z~, int ref), (zn, int ref)} b N : ‘r,

and N is a normal form, then N < tl, the language

described by the following grammar:

t~ ::= ‘n’ I op I (op ‘n’) I (op tz)] xi

I Ay.M I skip I t2

tz ::= E[(deref z;)] I E[(setref! z; ‘n’)]

where z; # TR(E)

The specific result follow by noting that a program

M must satisfy @ b M : int. B

Theorems 2.2 and 2.4, together with Theo-

rem 2.3, show that the calculus defines a well-

behaved interpreter and that it is sound with re-

spect to program equivalences [2]. Also, the proofs

of the preceding theorems and lemmas show that

the functional and imperative sub-languages are in-

dependent and that meta-properties follow from

modularized proofs. In the next section we will

prove that the evaluation itself can proceed in a

highly modular fashion.

3 Postponement

As discussed in the introduction, one of Algol’s de-

sign goals is a phase separation of the evaluation of

programs. For IA, the first phase eliminates pro-

cedures and their uses by reducing programs with

@fix sufficiently far. The result is a mixed program

whose functional components are irrelevant for the

rest of the evaluation. The second phase executes

the imperative program according to the p-rules or

on a regular stack machine. The following theorem

makes this idea precise.

Theorem 3.1 Let M be a program, let n < Z.

Then, eval(ill) = ‘n’ iff for some program N,

M-+x N --..$ rn’

Proof. The direction from right to left is trivial,

the other direction is difficult. We proceed as fol-

lows. The first step is to define a parallel reduc-

tion relation, ~ ~, which contains -p but is

cent ained in -~. This fcNows the method of

Tait\L@f for the Church-Rosser Theorem. The sec-

ond step is to replace all —+-p steps with ~ ~

steps in the reduction M x~~ ‘n’, which must ex-

ist since eval(fll) = ‘n’. The final step is to prove

that we can slide all XOfiix to the left and all

~ ~ to the right. The proof method is inspired

by Plotkin’s proof of standardization for the un-

typed A-calculus [15:140]. ~

Conceptually, this theorem says that we may

view compilation as reduction in the functional

fragment and execution as reduction in the imper-

ative fragment. However, as Reynolds also points

out, recursion presents a major obstacle since

the reduction phase may go on for-

ever, producing an infinite “head-normal”

term. Nevertheless, such an infinite term

can still be viewed as a simple imperative

program; operationally, one simply imple-

ments the two phases as coroutines. [17:3]

Put differently, a compiler CZLnnOt know in advance

how far to unroll a recursive program. Hence, the

compiler must unroll it all the way, which means

that the result is an infinite term. The important

point is that although this infinite term is in (an ex-

tended version of) the impel~ative language, it can

still be executed in the usual imperative reduction

system.

In order to formalize these notions, we extend

the language of IA with an additional constant, Q,

denoting observable nontermination. We define the

function [c];, which maps i>n expression in IA to

an expression in extended 1A by “unrolling” all re-

cursive functions i times. We then define a purely

imperative sublanguage of (extended IA that pre-

cisely characterizes the @ normal forms of unrolled

programs. This imperative sublanguage may be

viewed as the target Iangualge of the compiler.

Extended 1A is naturally ordered by, ~, the

prefix-ordering with respect to Q. Unrolling and ,f3-

normalization respect this cmdering, i.e., unrolling

64

an expression further and ~ normalizing the re-

sult yields a (potentially) larger member of the im-

perative sublanguage. Similarly, execution in the

imperative sublanguage respects the ordering. Fi-

nally, we prove a version of the postponement the-

orem for unrolled programs.

Definition 3.2. (Unrolling) The ith unrolling of

an IA expression M, notation: [M]i, is defined by

induction on the structure of M. The only interest-

ing clause is the following:

For all other constructs, the unrolling expansion

is a homomorphic map. We refer to i as the un-

rolling index. The constant Q is of ground type;

for higher types, it is an abbreviation for Ad.fl for

an appropriate vector & of variables. ~

Unrolling a program i times roughly corresponds

to using the axiom (fix) i-times

expression. More precisely,

(ret M) ~fix~ {M(. ~.(Mjrec

i—times

but

on each rec-

M)) . ..)

[(ret M)]i = (~lf],(. ;.([M$,Q))).

i—times

To formalize the precise relationship between the

two operations, we introduce an ordering, L, on

W terms. It is the usual prefix-ordering for terms

with respect to Q.

Definition 3.3. (G)

1.QLM

2.MEM

3. if M z M’ and C ~ C“ then C’[M] E C’[M’]

For contexts, C L C’ if C[Q] ~ C’[Q]. Q

The target language of the “compiler” is the

purely imperative sub-language, W, which is

essentially extended IA without recursion, A-

Abstraction, or arbitrary function application.

Definition 3.4. (W) The imperative sub-

language Wofextended IAis defined by the fol-

lowing grammar:

t ..—..— Q1’n’[z[((opt)t)

I new(z,t).t I (deref t) I (setref! t t)

Iskip I (ifO t t t) I (begin t t)

Legal phrases of W are those that satisfy the type

inference rules of Figure 1 with the additional con-

straint that Q is of one of the groundtypes (o). ~

In order to show that W is the proper target

language, we prove that the result of ~-reducing

an unrolled program to ~ normal form is always a

member of W.

Lemma 3.5 For all i c Pi, L < M, the

@ normal form of [L]i is in W.

Proof. The proof reduces to showing that both

the function and argument position of an appli-

cation in a normal form expression cannot be a

A-expression. c

Since it is impossible to know a priori how far

recursive procedures must be unrolled, the “compi-

lation” of an IA program into a W program must

produce the set of/3 normal form’s of all unrolling

of the original program. Hence, to understand the

evaluation of an IA program as the execution of a

W program, we need to extend evalP (see Defini-

tion 2.1) to sets of W programs.

Definition 3.6. (Eztended evalp) Let W be a

set of W programs, i.e., a set of closed phrases of

ground type. Then, evalP applied to this set is the

point- wise extension of the originaJ evaluator:

evalp(lv) =

——

(For completeness,

{evalp(w) I w G W}

{’n’ [‘w --+; ‘?2’, w c w}.

we define that Q -+P Q.) ~

To prove that evalP is equivalent to the original

evaluator, we must show that both the functional

and imperative reduction system respect the prefix

ordering, G. If this holds, the ~ normal forms of all

finitely unrolled versions of a program clearly form

a totally ordered, infinite set of W programs, which

may be perceived as the infinite @ normal form of

an IA program. 3 If the imperative executions of all

elements of the infinite term preserve the ordering,

and if one of the elements reduces to the correct

final answer, then the two evaluators indeed agree.

We begin by proving that the functional reductions

preserve the approximation ordering.

Lemma 3.7 For all programs M and i < N, if Lj

is the ~ normal form of [M]j, then for all i E N,

Li g Li+l

Proof. The result follows from two lemmas. The

first shows that [M]i Q [M]i+l. The second shows

that ~ normalization respects L. =

Second, we prove that imperative reductions pre-

serve approximations. In particular, if a W pro-

gram terminates, then so do all the programs that

dominate it.

Lemma 3.8 For all M, N c W, if M ~ N and

M +; ‘n’, then N -+? ‘n’.

Proof. By induction on the length of the reduction

M -+} ‘n’: For a single step M -+P Ml, since

M ~ N, either M a Ml if it is an Q reduction or

the “same” redex exists in N. The first case is triv-

ial. For the second case, it is simple to check that

reducing the corresponding redex in N produces a

phrase N1 such that Ml ~ N1, hence the induction

hypothesis may be applied. I

Finally, we state and prove a more general ver-

sion of the postponement theorem that character-

izes compilation as ~-normalization to an infinite

tree and machine execution as an evaluation of the

infinite tree in the imperative fragment.

Theorem 3.9 For all IA programs L, let

W = {MI M is ~ normal form of [L]i for i G R-J}.

Then,

{eval(L)} = evalP(W).

Proof. By Lemma 3.7, W is a chain, i.e., a totally

ordered set. Thus, the theorem reduces to the fol-

lowing claim:

coal(L) = ‘n’

3This situation is analogous to domain theory [1]: infinite

terms are really sets of all their finite approximations.

65

if and only if there exists some unrolling index i

and O normal form M such that

If this claim is true, then, by Lemma 3.8, W con-

t ains at most one result, which must be the result

of the original program.

The right to left direction of the auxiliary claim

is obvious. For the left to right direction, by the

Postponement Theorem 3.

that there is a reduction:

L ‘>fix N

, coal(L) = ‘n’ implies

-; ‘n’”

Clearly, no ret-expression or ~-expression in N is

relevant to the reduction from N to ‘n’. Hence we

m,py replace all ret-expressions and A-expressions in

N by Q to produce a term N’ such that N’ ~ N and

N’ ---+; ‘n’. Next, let i be the number of fix steps

in the reduction from L to N. Directly correspond-

ing to the sequence of @ reductions in L -*
pfix N

is a sequence of ~ reductions that takes [L]i to a

term N“, which looks like N with some subterms

of the form (ret Nl) replaced by (NI (. . “ (NI Q))).

Hence N’ Q N“. Let M be the /? normal form of

N“, which exists because ~ is strongly normaliz-

ing. Because /3 normalization respects C, we know

that N’ Q M. Hence, by Lemma 3.8, we have

M ~~ ‘n’.

Combining the above, we have the following sit-

uation:

P

r

where double lines indicate a partial order and vec-

tors denotes reductions. We have thus found a nor-

mal form M such that [L]i reduces to M, and M

imperatively reduces to the final answer. This com-

pletes the proof of the auxiliary claim. E

A straightforward implementation of this compi-

lation/execution schema relies on lazy evaluation.

The compiler suspends after producing sufficient

output and pipes its output into an abstract ma-

chine for imperative programs. When the machine

runs out of executable code, it resumes the com-

piler. The abstract machine is a modification of

the CEK machine [7]. The control portion of the

machine is a member of W. The environment acts

as a stack of references. The continuation corre-

sponds to an evaluation cent ext. Figure 3 cent sins

a formal specification of the machine and its in-

structions.

4 Strong Normalization

The simply-typed A-calculus has the important

property that terms without the recursion con-

struct always reduce to normal form. As a result,

the equational theory is decidable, which is clearly

import ant for the implement ation of a broad class

of compile time optimizations. Since the impera-

tive sub-language of IA is also clearly strongly nor-

malizing, the natural question is whether the com-

bined language (without fix) satisfies the strong

normalization theorem.

The key to the Strong Normalization Theorem

for IA is (a stronger version of) the Postpone-

ment Theorem of Section 3 and a proof technique

for combinations of two strongly-normalizing sys-

tems that satisfy the postponement property.4 Ap-

pendix A contains the proof of the meta-theorem

on combining strong normalization results for two

different systems.

Theorem 4.1 ~p

Proof. Since the

is strongly-normalizing.

combination of two strongly-

normalizing systems that satisfy the postponement

property is not necessarily strongly-normalizing,

we need to prove a technical lemma that strength-

ens these properties. For our case, the relevant

properties are:

finite branching A one-step reduction relation is

finitely branching if for every term, the set of

terms reachable in one step is finite.

strong postponement If rl and r2 satisfy post-

ponement, they satisfy strong postponement

if M ~& r2 M’t implies there exists M! such

that M ~~ M’ ~~z M“, and m + n >1.5

4Van Daalen [3:80] apparently proves the same result,

but he ignores the additional conditions we impose. Their

absence breaks the meta-theorem. ,

5Postponement refers to Theorem 3.1 not to Theorem 3.9.

66

Before After

c E K c E K
. -.
((op tl) t~) M -

rnl E ((op *):2):: K +

‘m’ E ((op ‘n’)*):: K +

new(z,tl).tz E K -

rnl
E new(z,*).t2 :: K +

val p::E new(z,rn’).* :: K +

(setref! tl t2) E K -

z E (setref! * tz) :: K +

rnl
E (setref! z *):: K +

(cieref tl) E K -

x E (deref *) :: K +

(ifO tl tz ts) E K. -
rlo E (ifO * t2t3)::K +

‘n + 1’ E (ifO * tzt,)::K -

(begin tl tz) E K -

skip E (begin * t2)::K +

tl

tz

‘n op m’

tl

tz

val

tl

tz

skip

tl

E.z

tl

tz

ts

tl

t2

E

E

E

(x, ‘n:) :: E

E

E

E

E!(x, ‘n’)

E

E

E

E

E

E

E

((op *) t2)::K

((op ‘n’)*):: K

K

new(z,*).t2 :: K

new(ic,rn’).* :: K

K

(setref! * tz)::K

(setref! z*) :: K

K

(deref *) :: K

K

(ifO * t2 t3)::K

K

K

(begin * t2)::K

K

where the operations ! and . on environments are defined as follows:

(((x, m’) :: E)!(z, rm’) = (c, rm’) :: E

((y, ‘n’) :: E)!(x, ‘m’) = (Y, ‘n’):: (E!(z) ‘m’)), where z # Y

((z, ‘n’) :: E).c = ‘n’

((y, ‘n’) :: E).z = E.z, where z # y

FIGURE 3: CEK Machine

Our main technical theorem (Theorem A.4) is the

following:

If rl and rz are strongly-normalizing and

satisfy the finite branching property, and

if r1r2 satisfies the strong postponement

property with respect to r2, then rl r2 is

strongly normalizing.

Given this theorem, to prove that ~p is strongly-

normalizing, all that remains to be shown is that

~p satisfies the strrmg postponement property with

respect to p and that p is strongly-normalizing. It

is obvious that both /3 and p satisfy finite branch-

ing. The proof of the postponement theorem (3.1)

is easily modified to show strong postponement.

The following lemma (Lemma 4.2) shows that p is

strongly normalizing. u

Lemma 4.2 p is strongly-normalizing.

Proof. We note that every p reduction removes at

least one keyword, with the exception of o, which

replaces a set ref ! with a skip. Hence, any reduc-

tion starting with a term t could not possibly have

more that 2s + k steps, wheres is the number of se-

tref !‘s in t and k is the number of other keywords

in t.m

67

5 Extensions and Alternatives

The preceding analysis of a small, but prototypi-

cal version of Algol formalizes a number of folklore

claims. First, it proves that the language’s calculus

is indeed the extension of a term rewriting systems

for a simple imperative language with a typed A-

calculus. Second, the combination is orthogonal in

the sense that major properties for the two sub-

calculi are compatible and hold for the entire sys-

tem. Finally, the analysis confirms the idea that

the evaluation of Algol programs can be neatly sep-

arated into a functional and an imperative phase.

An extension of our results to more expressive

languages than IA is possible. The analysis ob-

viously carries over to extensions of IA that in-

clude different primitive data types (boolean, float,

characters), complex data types of ground types

(strings, arrays, records), and intersection types of

ground types with coercions. Moreover, all the re-

sults can be re-established for a call-by-value vari-

ant of IA; but, for the Postponement Theorem to

hold, the functional system becomes more complex

and must include “bubbling” reductions for imper-

ative operations [5:ch. 5]. It is not clear whether

the results will hold for full Forsythe, which in-

cludes less restrictive intersection types.

The Strong Normalization and Postponement re-

sults cannot carry over to languages with higher-

typed or untyped references. As a consequence,

these results do not hold for the calculi of sev-

eral programming languages that mix functional

and imperative features, i.e., Russel [4], Scheme

(Lisp) [2, 8,9,12, 13], and ML [22]. A recently dis-

covered alternative to mixing functional and fully

imperative languages is the addition of a weakened

form of assignment to functional languages [10, 16].

None of these languages or calculi is comparable to

IA with respect to (imperative) expressive power.

We suspect that most of these languages satisfy

postponement and strong normalization theorems,

but it is not clear whether this is relevant given the

weakness of their assignment statements.

In conclusion, we believe that our work correctly

captures the principles of Algol and that it contin-

ues the tradition of formalizing and exposing met a-

properties of programming languages. Conversely,

in order to determine whether a language is an ex-

tension of Algol or whether it belongs to a different

class of programming languages, it suffices to check

whether its calculus satisfies the above-mentioned

properties or not. We conjecture that it is also

possible to characterize other classes of languages

(e.g., Scheme or ML) through the meta-properties

of their calculi.

Acknowledgements. We appreciate comments

by Robert Cartwright, Ian Mason, Amr Sabry, and

John Gateley on an early draft.

References

1.

2.

3.

4.

BARENDREGT, H.P. The Lambda Calculus:

Its Syntax and Semantics. Revised Edition.

Studies in Logic and the Foundations of Mathe-

matics 103. North-Holland, Amsterdam, 1984.

CRANK, E. AND M. FELLEISEN. Parameter-

passing and the lambda-calculus. In Proc. 18th

ACM Symposium on Principles oj Program-

ming Languages, 1991, 233–245.

DAALEN VAN, D. The Language Theory of

A UTOMATH. Ph.D. Dissertation, Eindhoven

University, 1980.

DEMERS, A. AND J. DONAHUE. Making vari-

ables abstract: an equational theory for Rus-

sell. In Proc. 10th A GM Symposium on Prin-

ciples of Programming Languages, 1983, 59–72.

5. FE LLEISEN, M. The Calculi of Lambda-v- CS-

Conversion: A Syntactic Theory of Control and

State in Imperative Higher-Order Programming

Languages. Ph.D. dissertation, Indiana Univer-

sity, 1987.

6. FELLEISEN, M. On the expressive power of

programming languages. Science of Computer

Programming 17, 1991, 35-75. Preliminary

version in; Proc. 3rd European Symposium on

Programming. Neil Jones, Ed. Lecture Notes

in Computer Science, 432. Springer Verlag,

Berlin, 1990, 134-151.

7. FELLEISEN, M. AND D.P. FRIEDMAN. Con-

8

trol operators, the SECD-machine, and the A-

calculus. In Formal Description of Program-

ming Concepts III, edit ed by M. Wirsing. Else-

vier Science Publishers B .V. (North-Holland),

Amsterdam, 1986, 193-217.

FELLEISEN, M. AND D.P. FRIEDMAN. A syn-

tactic theory of sequential state. Theor. Com-

put. Sci. 69(3), 1989, 243–287. Preliminary

version in: Proc. Idth ACM Symposium on

68

9.

10.

11.

12.

13,

Principles of Programming Languages, 1987,

314-325.

FELLEISEN, M. AND R. HIEB. The revised

report on the syntactic theories of sequential

control and state. Technical Report 100, Rice

University, June 1989. Theor. Comput. Sci.

102, 1992.

GUZMLN, J.C. AND P. HUDAK. Single-

threaded polymorphic lambda-calculus. In

Proc. Symposium on Logic in Computer Sci-

ence, 1990, 333–345.

LENT, A. F. The Category of Functors from

State Shapes to Bottomless CPOS is Adequate

for Block Structure. Master’s thesis, MIT,

1992.

MASON, I.A. AND C. TALCOTT. Equivalence

in functional programming languages with ef-

fects. Journal of Functional Programming 1(3),

July 1991, 287–327. Preliminary version in:

Proc. International C’onjerence on Automata,

Languages and Programming. Springer Lecture

Notes in Computer Science, Vol. 372, Berlin,

1989,574-588.

MASON, I.A. AND C. TALCOTT. Inferring the

equivalence of functional programs that mutate

data. Theor. Comput. Sci. 105(2), 1992, 167-

215. Preliminary version in: F’roc. Symposium

on Logic in Computer Science. Computer So-

ciety Press, Washington, D. C., 1989, 284–293.

14. NAUR, P. (Ed.). Revised report on the al-

gorithmic language ALGOL 60. Comm. ACM

15.

16.

17.

18.

6(l), 1963, 1–17.

PLOTKIN, G.D. Call-by-name, call-by-value,

and the ~-calculus. Theor. Comput. Sci. 1,

1975, 125-159.

REDDY, U. S., V. SWARUP, AND E. IRELAND.

Assignments for applicative languages. In Proc.

Conference on Functional Programming and

Computer Architecture. Lecture Notes in Com-

puter Science, Vol. 523. Springer Verlag,

Berlin, 1991, 192-214.

REYNOLDS, J.C. Replacing complexity

with generality: The programming language

Forsythe. Unpublished manuscript, Carnegie

Mellon University, Computer Science Depart-

ment, 1991.

REYNOLDS, J.C. The essence of Algol. In AL

gorithmic Languages, edited by de Bakker and

190

20.

21.

22.

A

van Vliet. North-Holland, Amsterdam, 1981,

345-372.

REYNOLDS, J. C. Preliminary Design of the

Programming Language Forsythe. Technical

Report CMU-CS-88-159, Carnegie Mellon Uni-

versit y, Computer Science Department, 1988.

S@ NDERGARD, H. AND P. SESTOFT. Referen-

tial transparency, definiteness and enfoldabil-

ity. Acts Informatica 27, 1990, 505–5 17.

WADLER, P. Comprehending monads. In

Proc. 1990 ACM Conference on Lisp and

Functional Programming, 1990,61-78.

WRIGHT, A. AND M. FELLEISEN. A syntactic

approach to type soundness. Technical Report

160. Rice University, 1991. Information and

Computation, 1992, to appear.

Strong Normalization

In order to show that the orthogonal combination

of two strongly-normalizing systems is strongly-

normalizing, we would like a theorem similar to

the following, found in van Daalen [3:80]:

Theorem A.1

If rl and r2 are strongly-normalizing and if rlrz

satisfies the postponement property with respect to

r2 then rl r2 is strongly-normalizing.

Unfortunately the above theorem is not true.

There are several problems. First, the postpone-

ment property does not imply that there is any

relationship between the length of the reduction

L-~lr2 N and the length of the reduction L-~l

M +:, N. In order to solve this problem, we in-

troduce a stronger notion of postponement, which

places a lower bound on the length of the generated

reduction.

Definition A.2. (Strong Postponement) rlrz

satisfies the strong postponement property with re-

spect to r2, if e –+~.rz M’1 implies there exists M{

such that e *Z Mt +~z M“, and m + n >1. B

Problems can also arise when rl or r2 allows ar-

bitrary length (not infinite) reductions for a given

term. Oflland, arbitrarily long reductions starting

from a single term might appear to directly con-

tradict strong-normalization; however, in general,

this is not the case. As an example, consider the

69

following notion of reduction over the language X*,

with alphabet X = {O, 1, 2}.

r = {(O,lm) I n > l}U {(1,2)}

Notice that r is strongly-normalizing, but for any

term containing a O, there are reductions of arbi-

trary length.

Intuitively, for more “standard” reduction sys-

tems such as /?, p, and ia, strong normalization

coincides with bounded reduction length. In com-

paring these systems with r, we notice that they

share a property that r does not have, namely, only

a finite number of reductions are applicable to any

given term. The notion r does not satisfy this finite

branching property, because for a term t containing

a 0, there are an infinite number of terms t’such

that t -r t’. After introducing some terminology,

we will provide a simple criterion which character-

izes strongly-normalizing systems which prohibit

arbitrary length reductions starting with a given

term.

Definition A.3. (Reachability) Let r be a notion

of reduction.

e The set of terms reachable in i steps from ex-

pression A4 using notion of reduction r is de-

fined by:

R;(M) ~ {M’ I M +,; M’}

o The set of terms reachable from M is defined

by:

R,(M) ~ u B;(M)

i>o

● r satisfies the finite reachability y property if for

all expressions M, Rr(M) is finite.

e r satisfies the finite branching property if for

all expressions M, R;(M) is finite.

● r satisfies the bounded reduction length prop-

erty if for all expressions M, there exists a j,

such that U;>j R;(M) = 0., For an expression

M, we denote the smallest such j by P,(M).

B

With some technical lemmas, we can show that

in the presence of finite branching, strong-

normalization exactly corresponds to bounded re-

duction length. Then we can prove the following

theorem.

Theorem A.4

If rl and rz are strongly-normalizing and satisfy

the jinite branching property, and if r1r2 satisfies

the strong postponement property with respect to r2,

then rl r2 is strongly-normalizing.

We begin by making some observations about

reachability. We then prove the necessary lemmas

for Theorem A.4, and finally the theorem itself.

Observation A.5

R,(M) = M u (u R,(M’))

M’@(14)

Observation A.6 Bounded reduction length im-

plies strong normalization.

Proposition A.7 Strong normalization plus jinite

branching implies finite reachability.

Proof. We use infinite reachability and finite

branching to generate an infinite reduction se-

quence. Let M be a term that violates finite reach-

ability. By Observation A.5 and finite branching

we may conclude that there exists an M’ < B:(M)

that violates finite reachability. Apply a similar

argument to M’. Continue. I

Proposition A.8 Strong normalization plus jinite

reachability implies bounded reduction length.

Proof. In fact, pr(M) < l&(M)l. Any longer

reduction would necessarily repeat a term, contra-

dicting strong-normalization. n

We are now ready to prove our main theorem.

Proof. (Theorem A.4) We show that r1r2 sat-

isfies bounded reduction length, thus by Obser-

vation A.6 is strongly-normalizing. By Proposi-

tions A.7 and A.8 we know that rl and r2 sat-

isfy bounded reduction length. We show that

prlr2(M) < m’ + n’, where m’ = prl (M), n’ =

max{prz (M’) / M’ ~ Ii& (M)}. We note that n’ is

well-defined because rl satisfies finite reachability

(by Proposition A.7) and r2 satisfies bounded re-

duction length. Consider a reduction Al ~~lr2

M“. Because r1r2 satisfies the strong postpone-

ment property with respect to r2, there exists a

reduction M PE M’ --+;, M“ with m + n >1.

We know that m- < ml. ‘Since M’ c R,, (M)

we

1<

also know that n < Pr, (M’) < n’. Hence

m+n<m’+n’. m

70

