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Abstract

A thread-modular proof for the correctness of a concurrent program
is based on an inductive and interference-free annotation of each
thread. It is well-known that the corresponding proof system is
not complete (unless one adds auxiliary variables). We describe
a hierarchy of proof systems where each level k corresponds to
a generalized notion of thread modularity (level 1 corresponds to
the original notion). Each level is strictly more expressive than
the previous. Further, each level precisely captures programs that
can be proved using uniform Ashcroft invariants with k universal
quantifiers. We demonstrate the usefulness of the hierarchy by
giving a compositional proof of the MACH shootdown algorithm
for TLB consistency. We show a proof at level 2 that shows the
algorithm is correct for an arbitrary number of CPUs. However,
there is no proof for the algorithm at level 1 which does not involve
auxiliary state.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

Keywords Thread-modularity, Owicki-Gries, Concurrency, Pa-
rameterized verification

1. Introduction

Verifying concurrent programs against safety properties is a funda-
mental problem in computer-aided verification. Bugs in concurrent
programs can arise due to unanticipated schedules between threads.
In practice, such bugs are difficult to test for, reproduce, or debug.
A naı̈ve approach to verification constructs a sequential program
that runs all possible interleavings of the threads in the original
program (the “product construction”). The safety property is veri-
fied on the product program by identifying an inductive invariant.
The product construction approach does not scale because the num-
ber of potential schedules grows exponentially with the number of
threads. More seriously, the product construction does not work in
the parameterized setting, in which we want to verify a program no
matter how many threads are running in parallel.
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The classical approach to verification of concurrent programs
uses a different, modular, approach. In this approach, one reasons
about a single thread of the original program, summarizing the
effect of all other threads that run in parallel. To prove an invariant,
one infers an inductive invariant Inv for the single thread which
is additionally non-interfering: if the state of the tracked thread
satisfies Inv and some other thread takes a step, non-interference
guarantees that Inv continues to hold for the updated state. This
approach, called thread-modular reasoning [28] in the world of
model checking and the Owicki–Gries proof system [37, 40, 47]
in the world of program logics, can prove safety properties of many
parameterized multi-threaded programs. Indeed, thread-modular
reasoning is the basis for many software verification tools [3, 10,
18–20, 22, 26–28, 30–32, 34, 36, 38, 39, 43, 51, 52].

It is well-known that thread-modular reasoning is incom-
plete [6]: a program may satisfy a safety property but there may
not be a thread-modular proof (i.e., a non-interfering inductive
invariant Inv) demonstrating it. The incompleteness is not a theo-
retical curiosity; many practical examples, such as the ticket pro-
tocol for mutual exclusion, do not have thread-modular proofs. A
natural challenge is to design proof systems that are suitable for
practical examples while retaining the nice modularity properties
of thread-modular reasoning. Theoretically, thread-modular rea-
soning can be made complete by adding auxiliary state [46, 47].
However, in practice, it is often not clear how to systematically
introduce enough auxiliary state to regain precision while keeping
the state space small (although initial work exists on the synthe-
sis of auxiliary counter variables [24]). Independently of the ease
of adding auxiliary state, it is worthwhile to investigate whether
we can increase the expressiveness of thread-modular reasoning
without adding arbitrary auxiliary state.

In this paper, we investigate a hierarchy of proof systems,
k-thread modular proofs, between thread modularity and full prod-
uct construction. At each level k ≥ 1, k-thread-modular reasoning
generalizes thread-modular reasoning (for k = 1, we find the orig-
inal version of thread-modular reasoning, or equivalently, the orig-
inal Owicki-Gries proof system). The notion of a thread-modular
proof at level k, for k ≥ 1, is based on two concepts: the inductive
annotation for the product of k threads by assertions, which is as
in thread-modular reasoning, and the non-interference at level k,
which expresses the precondition for the action of an additional
(k + 1)-st thread by a conjunction of k assertions (each conjunct
stems from an assertion in the inductive annotation for the product
of the k threads). The resulting hierarchy is strict: for each k > 1,
there exist programs, even ones where each thread is finite-state,
which can be proved correct by a thread-modular proof at level k
but not by any thread-modular proof at level k − 1. Further, the
hierarchy is incomplete for infinite-state threads; thus, the addition
of auxiliary state cannot be dispensed with in general.
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Natural questions about the hierarchy of thread-modular proof
systems are about soundness, the power of the proof system at level
k, or detecting that no proof at level k exists.

We characterize the power of thread-modular proofs at level k
by showing a correspondence between such proofs and Ashcroft
invariants with k universal quantifiers. Ashcroft invariants [8] can
prove concurrent programs over a fixed number of threads by using
assertions over the global states, where program counter variables
indexed by thread identifiers refer to the local control location
of each thread. An Ashcroft invariant as in [25] uses universal
quantifiers over thread identifiers to express assertions over the
global state of a program with an unbounded number of threads.1

We show a relative completeness result: any program provable
using an Ashcroft invariant with k universal quantifiers admits a
thread-modular proof at level k and vice versa. From the soundness
of Ashcroft invariants, we derive in one shot soundness for thread-
modular proofs at level k for each k ≥ 1. A corollary of our
relative completeness result is that thread-modular proofs (without
auxiliary variables!) are complete for finite-state threads (see also
[4, 32] for different formulations of the same result).

In order to detect that no thread-modular proof at level k exists,
we encode the existence of an invariant for a thread-modular proof
at level k through a Horn clause constraint as in [30, 32, 35]. We
show that there is no thread-modular proof at level k if and only if
there is a ground derivation of false for the Horn clause encoding.
Further, the Horn clause encoding enables us to prove strictness of
the hierarchy (see also [35]).

We show that higher levels of thread modularity are not just
a theoretical curiosity by presenting a number of examples which
cannot be proved using thread-modular reasoning at level 1 but
which can be proved using thread-modular reasoning at level 2. In
particular, we prove the correctness of a non-trivial algorithm: the
TLB shootdown algorithm in the Mach operating system [13]. We
show that the key safety invariant for this protocol can be proved for
an arbitrary number of concurrent processors by a proof at k = 2
(but not at k = 1). An indication of the complexity of the proof
is perhaps the fact that the existence of a subtle race condition in
the original —rather old— algorithm had not been detected before.
The race may be triggered in modern hypervisor systems [12]. We
prove correctness of a slightly modified version that prevents the
race.

In summary, we have the following facts about k-thread-
modular proof systems.

1. Thread-modular proof systems at level k increase the expres-
sive power of thread modularity without introducing arbitrary
auxiliary state.

2. The power of the proof system at level k is exactly characterized
by uniform Ashcroft invariants with k universal quantifiers.

3. The induced hierarchy is strict, already for finite-state threads.
The hierarchy is incomplete: there are correct parameterized
programs which cannot be proved by thread-modular proofs at
any level k. Further, it is semi-decidable if a program does not
have a proof at level k.

4. For finite-state threads, the k-thread-modular proofs are com-
plete: for every program and safety property, if the program
satisfies the property, then there is a k-thread-modular proof for
some k.

The contribution of the results above does not lie in their novelty.
Indeed, most of the results have been known before and have been

1 Ashcroft’s original paper only considered concurrent programs with a
fixed number of threads. Recently, [25] extended the method to parameter-
ized programs by introducing universal quantification over thread ids.

used, implicitly or explicitly, in work on automatic verification
for parameterized systems (see, e.g., [4, 5, 11, 14, 35, 45, 51,
53]). Instead, the contribution of our work lies in putting together
these results in one uniform framework and showing that k-thread-
modular reasoning forms a basis for verifying systems that may
presently be out of the scope of existing approaches to automatic
verification.

The remainder of the paper is organized as follows. Section 2 in-
troduces a parameterized model of multi-threaded shared memory
concurrency. Section 3 defines the thread-modular proof system at
level k and Section 4 shows that the proof system forms a strict
hierarchy for parameterized systems with increasing k. Section 5
connects thread-modular proofs at level k with Ashcroft invari-
ants with k quantifiers. In Section 6, we augment our programming
model with synchronous statements, which can affect the values of
local variables of multiple threads. Synchronous statements are re-
quired to model multi-processor protocols; we give the example of
Mach’s TLB shootdown algorithm and its proof at level k = 2. We
conclude with related work (Section 7) setting our work in context.

2. Preliminaries

We will define a program P through a thread template T . A thread
template is a sequential program in which one distinguishes be-
tween global and local variables. The program consists of an un-
bounded number of threads where each thread runs the same thread
template, or rather the instance of the thread template with its own
copy of the local variables. Thus, a thread can read and write global
variables and its local variables, but not the local variables of any
other thread. In particular, the execution of a thread cannot depend
on the existence of some other thread in a specific state. Having
only a single thread template is not a proper restriction since multi-
ple thread templates can always be combined into one (using global
flags and a big switch statement in the beginning).

For the formal definition of a thread template, we fix a tuple g of
variables that we will call global, and a tuple x of variables that we
will call local. We will see that each instance of the thread template
will get its own copy of local variables, and that we will use x1, . . . ,
xn to refer to the copies of tuples of local variables for n individual
threads.

The set of statements Stmts for a thread template refers to the
global and local variables in g resp. x. The syntax of statements
s ∈ Stmts is defined by the grammar

s ::= [ϕ] | v := e | s1; s2

using assume statements, assignments, and sequential composition,
where ϕ is a Boolean expression over global and local variables, e
is an expression over global and local variables, and v is one of the
global or local variables in g resp. x.

A thread template T = (Loc, δ, ℓinit) is a control flow graph,
i.e., a graph with a set Loc of nodes called program locations,
and a set of labeled edges δ ⊆ Loc × Stmts × Loc. Thus, each
edge (ℓsrc, s, ℓtgt) is labeled by a statement s ∈ Stmts. The initial
location is ℓinit ∈ Loc.

Intuitively, in each execution step of the program, one of the
threads moves its control along an edge (ℓsrc, s, ℓtgt) in the graph
and executes the statement s labeling the edge atomically (only one
thread moves at a time).

We use the thread identifiers 1, . . . , n to distinguish n threads.
For i = 1, . . . , n, we use Ti to refer to the instance of the thread
template T for the thread i. The instance Ti is obtained by taking
the control flow graph for T and replacing each statement s by the
statement (s : i). Thus, (ℓsrc, (s : i), ℓtgt) is an edge in Ti if
(ℓsrc, s, ℓtgt) is an edge in T . The statement (s : i) is obtained by
replacing each local variable by its i-th copy. We will use xi for
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the tuple of local variables of thread i (i.e., for the i-th copy of the
tuple of local variables x).

We define P (n), the instance of the parameterized program P
for the natural number n, as the parallel composition of T1, . . . , Tn.

P (n) = T1 || . . . ||Tn

Avoiding a general definition of parallel composition, we represent
the program P (n) by its control flow graph, which is defined as
the product of the control flow graphs for T1, . . . , Tn. The set of
locations of P (n) is Locn. Thus, a location of P (n) is of the form
(ℓ1, . . . , ℓn) where ℓ1, . . . , ℓn are locations of the thread template
T . Each edge in P (n) is labeled by a statement of the form (s : i)
for some i between 1 and n and corresponds to an edge labeled s
in the control flow graph for T . Formally,

((ℓ1, . . . , ℓi−1, ℓsrc, ℓi+1, . . . , ℓn),
(s : i), (ℓ1, . . . , ℓi−1, ℓtgt, ℓi+1, . . . , ℓn))

is an edge in P (n) whenever (ℓsrc, s, ℓtgt) is an edge in the thread
template T .

The control flow graph for the program P (n) defines a sequen-
tial program (sometimes called the interleaving semantics or the
non-deterministic sequentialization of the parallel composition of
T1, . . . , Tn). We can thus apply the same concepts as for sequen-
tial programs in order to define notions such as: state, execution,
correctness, the validity of Hoare triples, etc. for P (n).

The variables of P (n) are given by g, x1, . . . , xn, i.e., the
tuple of global variables and the n tuples of (the copy of) the local
variables of each thread.

A state of P (n) is a pair σ = ((ℓ1, . . . , ℓn), ν) of a program
location of P (n) and a valuation of the variables of P (n). A state
σ of P (n) thus specifies the values of the global variables (“ν(g)”)
and, for each of the n threads, the control location (“ℓi”) and the
values of the corresponding copy of local variables of the thread
(“ν(xi)”).

The notion of correctness of P will refer to initial states and
to error states, notions which we introduce next. The definitions
of initial state resp. error state must be uniform, i.e., applicable to
P (n) for every n ≥ 1.

We use the symbol init to refer to a set of initial valuations forP ,
i.e., a union of sets of initial valuations of P (n) for every n ≥ 1.
We assume that init is defined by a condition on the valuation of
global variables and the local variables of each thread; i.e., init
is of the form init = {ν | ν(g) ∈ initglobal ∧ ∀i.ν(xi) ∈ initlocal}
for some sets initglobal and initlocal. An initial state is of the form
σ = ((ℓ1, . . . , ℓn), ν) where each of ℓ1, . . . ℓn is the initial location
ℓinit of the thread template T and ν is an initial location, i.e.,
ν ∈ init. An execution of P (n) must start in an initial state.

We use the symbol errn to refer to the set of error states of
P (n). We assume that errn is defined by a generator set errm of
dimension m, i.e.,

errn = {((ℓ1, . . . , ℓn), ν) | ((ℓi1 , . . . , ℓim), ν′) ∈ errm.

ν′(g) = ν(g), ν′(xj) = ν(xij ) for j ∈ {1, . . . ,m}

for some ν′, i1, . . . , im s. t. 1 ≤ i1 < · · · < im ≤ n}

for some set of states errm of P (m). Thus, for n < m, errn does
not contain any states; in other words, P (n) does not have any
error states. For example, to capture thread reachability, err can be
defined by a generator set of dimension 1. Then, errn is the set of
locations ((ℓ1, . . . , ℓn), ν) such that for one i ∈ {1, . . . , n} and ν′

with ν′(g) = ν(g), ν′(x1) = ν(xi), the state ((ℓi), ν
′) is in errm.

To specify mutual exclusion, err can be defined by a generator set
of dimension 2, say, errm = {((ℓcrit, ℓcrit), ν)|ν valuation} where
ℓcrit is a distinguished critical location of the thread template T .
Then, err is the set of locations (ℓ1, . . . , ℓn) such that two out of

globals l
init l = 0
error (crit, crit)

idle

crit

[l = 0]
l := 1l := 0

Figure 1. Mutual exclusion with a lock

globals n
locals id
init n = 0

start

ready

master slave
...

...

n := n+ 1
id := n

[id = 1] [id 6= 1]

Figure 2. Encoding thread identifiers

ℓ1, . . . ℓn form a pair of critical locations (i.e., for some i < j,
ℓi = ℓcrit and ℓj = ℓcrit).

From now on, we assume that the thread template T , the set of
initial states init, and the set of error states errm is fixed. We define
P (n) to be correct if an error state is not reached in any execution
of P (n). If P (n) is correct, then P (m) is correct for every m ≤ n
(this is simply because every execution of m threads corresponds
to an execution of n threads where n−m do not move). We define
that the program P is correct if P (n) is correct for every n ≥ 1.

Example 1. [Mutual exclusion with a lock [28]] Figure 1 shows
a thread template for a simple mutual exclusion protocol using a
global lock l. The template has two locations, idle and crit, and the
initial location is idle. The initial valuation sets the global variable
l to 0. The edge from idle to crit performs an atomic test-and-set: if
l is 0, it is set to 1. The edge from crit back to idle sets l back to 0.
A program with arbitrarily many copies of this template satisfies
mutual exclusion: no two threads are simultaneously at crit. We
can specify the error condition using a generator set of dimension
2 of all states of the form ((crit, crit), ν).

Example 2. [Encoding thread identifiers] While we define pro-
grams using parallel composition of a single thread template, we
can encode several common programming idioms. Figure 2 shows
an example template which assigns a unique thread identifier to
each thread and ensures that the thread with identifier 1 (the “mas-
ter”) executes code different from all other threads (the “slaves”).
The global variable n is used as a source of unique identifiers; each
thread initially assigns itself a unique identifier by incrementing n
and copying the current value atomically to its local variable id .
We use this initialization trick in the TLB shootdown example in
Section 6. Moreover, in the example, the thread with identifier 1
executes code different from the other threads. The idea can be gen-
eralized to encode any finite number of distinct templates.

3. Thread Modularity at Level k

We now introduce the proof system and illustrate it with some
examples.

3.1 The Proof System

An assertion ϕ for P (n) is a formula over the variables of P (n).
It denotes a set of valuations ν of global variables g and local
variables x1, . . . , xn for each of the n threads (namely, the set of all
valuations ν that satisfy ϕ). An assertion for P (n) can be evaluated
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on a state of P (m) for every m ≥ n. We shall assume that
the assertion language contains the logical system of elementary
arithmetic [49], the language of the natural numbers with addition
and multiplication.

Given some k ≥ 1, we will define a proof rule that uses
assertions ϕ over states of P (k) in order to prove the correctness of
P (n) for every n ≥ k (and thus also for every n ≥ 1). The proof
rule will use these assertions ϕ also over states of P (k + 1).

We transform ϕ into the formula ϕ[xk+1/x1] by substitut-
ing xk+1 for x1, which is a formula over the local variables
xk+1, x2, . . . , xk (of thread k + 1, thread 2, . . . , thread k). Simi-
larly for ϕ[xk+1/x2], which is a formula over the local variables
x1, xk+1, x3, . . . , xk (of thread 1, thread 3, . . . , thread k, and
thread k + 1), etc. Just as we use ϕ, a formula over the (tuples
of) variables x1, . . . , xk, as an assertion over states of P (k + 1),
we can use the formula ϕ[xk+1/xi] (obtained by substituting xk+1

for xi) as an assertion over states of P (k+1). This is what we will
do below.

A Hoare triple for P (n) is formed by assertions ϕ and ψ for
P (n) and the instance of a statement s by thread i, for some i
between 1 and n.

{ϕ} (s : i) {ψ}

The Hoare triple above is valid for P (n) if the following holds for
every pair of states σ and σ′ of P (n): if σ satisfies ϕ and σ can go
to σ′ under the execution of the statement (s : i) by thread i, then
σ′ satisfies ψ.

An annotation Φ for P (n) is a map from Locn to assertions ϕ
for P (n). Thus,

Φ(ℓ1, . . . , ℓn)

is an assertion for P (n) (i.e., a formula ϕ over the global variables
g and the local variables x1 of thread 1, . . . , the local variables xn
of thread n).

We assume that the set of initial valuations is defined by an as-
sertion. From now on, init refers to the assertion over global vari-
ables g and local variables x that defines the set of initial valuations
for the thread template. Then

∧n

i=1 init[xi/x] defines the initial
valuations of P (n). Likewise, err(ℓ1, . . . , ℓn) refers to the asser-
tions that define the set of valuations ν with ((ℓ1, . . . , ℓn), ν) ∈
errn. It can be defined from the assertion for the generator set of
dimension m as:

∧

1≤i1<...<im≤n

errm(ℓi1 , . . . , ℓim)[xi1/x1] . . . [xim/xm] .

Definition 1. An annotation Φ for P (k) is a thread-modular proof
at level k if it is initial, inductive, interference-free, and safe.

(initial) The assertion ϕ0 = Φ(ℓinit, . . . , ℓinit) at the initial loca-
tion of P (k) is entailed by the assertion init,

init[x1/x] ∧ · · · ∧ init[xk/x] |= ϕ0

(inductive) The assertions ϕ and ψ at the source resp. target
location of an edge in P (k) and the statement labeling the
edge form a valid Hoare triple. That is, for the assertion
ϕ = Φ(ℓ1, . . . , ℓi−1, ℓsrc, ℓi+1, . . . , ℓk) and the assertion
ψ = Φ(ℓ1, . . . , ℓi−1, ℓtgt, ℓi+1, . . . , ℓk),

{ϕ} (s : i) {ψ}

is valid for P (k) for each labeled edge (ℓsrc, s, ℓtgt).
(non-interference) Every assertion ϕ labeling a location in P (k)

is interference-free under the execution of thread (k + 1). That
is, for the assertion ϕ = Φ(ℓ1, . . . , ℓk) and the assertions
ψ1 = Φ(ℓsrc, ℓ2, . . . , ℓk), . . . , ψk = Φ(ℓ1, . . . , ℓk−1, ℓsrc),

{ϕ ∧ ψ1[xk+1/x1] ∧ . . . ∧ ψk[xk+1/xk]} (s : k + 1) {ϕ}

is valid for P (k + 1) for each labeled edge (ℓsrc, s, ℓtgt).

(safe) For k ≥ m (m is the dimension of the generator set of
error states), we require that for every location (ℓ1, . . . , ℓk), the
corresponding annotation forbids the first m threads to enter an
error state, i. e.,

err(ℓ1, . . . , ℓm) ∧ Φ(ℓ1, . . . , ℓk) |= false

For k < m, we require for every m-tuple (ℓ1, . . . , ℓm),

err(ℓ1, . . . , ℓm) ∧∧
1≤i1<···<ik≤m

Φ(ℓi1 , . . . , ℓik )[xi1/x1] . . . [xik/xk]
|= false .

Intuitively, it is not clear how this definition can be used to
show the correctness of P for any number of threads. A thread-
modular proof at level k is an annotation of P (k) for only a
single k ≥ 1 and it only includes some extended properties for
P (k + 1). Nonetheless, one can show that these conditions are
already sufficient for the correctness of P (n) for any n ≥ 1.
The following theorem will be a consequence of Lemma 3 in
Section 5.1.

Theorem 1 (Soundness). If, for some k ≥ 1, the program P has a
thread-modular proof at level k, then P is correct.

3.2 Examples

Example 3. [Mutual exclusion, continued] For our example pro-
gram (Example 1 in Section 2), a thread-modular proof at level 2
exists; take the annotation Φ below.

Φ :

(idle, idle) 7→ true
(idle, crit) 7→ l = 1
(crit , idle) 7→ l = 1
(crit , crit) 7→ false

The program is used in [28] as a prototypical example for which no
thread-modular proof (in our terminology: no thread-modular proof
at level 1) exists. To see why this is the case, we can use Lemma 1,
Part 2; see Section 4.

We next discuss two classical examples for parameterized pro-
grams. Note that these examples do not have thread-modular proofs
at level 1, again by Lemma 1 below.

Example 4. [Ticket mutual exclusion protocol] Figure 3(a) shows
a template for the ticket mutual exclusion protocol. The protocol
maintains two global integers, s and t, initially equal. Each thread
has a local copy of the variable m. In order to go to the critical
section (location crit), a thread first atomically copies the current
value of the “ticket” t into its local variablem and increments t and

globals s, t
locals m
init s = t
error (crit, crit)

idle

wait

crit

m := t
t := t+ 1

[m ≤ s]

s := s+ 1

(a)

globals n,w
locals s, e
init w > 0
error (work,work)

where s1 = s2

idle

loop

work

s := n
n := n+ w
e := n

[s ≥ e]

[s < e]s := s+ 1

(b)

Figure 3. (a) Ticket protocol, (b) Thread pooling
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second, waits until its local value is less than or equal to s. To move
out of the critical section, a thread increments s. There is an error
if more than one thread is in the critical section at the same time.
Again, there is no proof with k = 1. There is a proof with k = 2,
as illustrated in Figure 4.

Φ :

(idle, idle) 7→ s ≤ t
(wait, idle) 7→ s ≤ m1 < t
(wait, wait) 7→ ( s ≤ m1 < m2 < t

∨ s ≤ m2 < m1 < t)
(crit, idle) 7→ s < t
(crit, wait) 7→ s < m2 < t
(crit, crit) 7→ false

... (symmetric cases)

Figure 4. An annotation for ticket which forms a thread-modular
proof at level 2. We omit the annotations for the symmetric cases,
such as (idle, wait), etc.

Example 5. [Thread pooling] Figure 3(b) shows a thread pooling
example adapted from [51]. Each thread atomically reserves a list
of work items in the edge from idle to loop. The global variable
n gives the number of the next unreserved work item and the
variable w give the number of items that are reserved in the step.
After this step the items from s to e are worked on without any
synchronization with the other threads. The correctness criterion is
that no two threads work on the same item s1 = s2. In this example,
a set of threads co-operatively execute tasks from some global pool
of tasks. A global variable n tracks the current task. Each thread
picks up w tasks starting from the current task and executes the
next w tasks sequentially (using local variables s(tart) and e(nd) to
track their current position). In this example, two threads should not
work on the same task. Thus, it is an error if there are two threads
in the work state whose local variables s are equal. Again, there is
no thread-modular proof at level 1. Figure 5 shows an annotation
for a thread modular proof at level 2.

Φ :

(idle, idle) 7→ w > 0
(loop, idle) 7→ w > 0 ∧ s1 ≤ e1 ≤ n
(work, idle) 7→ w > 0 ∧ s1 < e1 ≤ n
(loop, loop) 7→ w > 0 ∧ ( s1 ≤ e1 ≤ s2 ≤ e2 ≤ n

∨ s2 ≤ e2 ≤ s1 ≤ e1 ≤ n)
(work, loop) 7→ w > 0 ∧ ( s1 < e1 ≤ s2 ≤ e2 ≤ n

∨ s2 ≤ e2 ≤ s1 < e1 ≤ n)
(work,work) 7→ w > 0 ∧ ( s1 < e1 ≤ s2 < e2 ≤ n

∨ s2 < e2 ≤ s1 < e1 ≤ n)
... (symmetric cases)

Figure 5. An annotation for thread pooling which forms a thread-
modular proof at level 2. We omit the annotations for the symmetric
cases, such as (idle, loop), etc.

4. Strictness of the Hierarchy

As described in the introduction, we use a Horn clause encoding
as in [30, 32, 35] in order to detect that no thread-modular proof
at level k exists. There is no thread-modular proof at level k if and
only if there is a ground derivation of false for the Horn clause
encoding. Furthermore, the Horn clause encoding enables us to
prove strictness of the hierarchy.

We next introduce the Horn clause encoding. Suppose that we
are given template T and a level k. First, for each labeled edge
(ℓsrc, s, ℓtgt) and thread identifier i, we perform a logical encod-
ing of the statement s as a constraint between two states in the
standard way. We write s(g, x, g′, x′) for the logical constraint cor-
responding to statement s. For example, in the mutual exclusion
example, the statement [l = 0]; l := 1 is encoded as the constraint
l = 0 ∧ l′ = 1.

Figure 6 shows a set of Horn constraints such that any solu-
tion Inv provides an annotation satisfying the conditions of Defi-
nition 1. The constraints use an (unknown) relation Inv with vari-
ables g, ℓ1, . . . , ℓk, and x1, . . . , xk. The constraints correspond to
the requirements on the annotation Φ in Definition 1. (We only
present the case k ≥ m for “safe”, the other case is analogous.)

We want to relate annotations Φ(ℓ1, . . . , ℓk) in a thread-
modular proof with solutions to the Horn constraints. However,
the annotations are in the language of assertions but the solutions
to the Horn constraints are sets of states. Their correspondence
depends on a well known result from recursion theory: any recur-
sively enumerable set is definable in the language of elementary
arithmetic [49] (note that the solutions to the Horn constraints are
recursively enumerable sets). The translation between the solutions
and the assertions is not effective, but for the completeness result,
it suffices that the annotations always exist. In the following, with
abuse of notation, we do not explicitly talk about the encoding of
sets of solutions into assertions.

Lemma 1. Assume an encoding of thread modularity at level k as
a Horn clause constraint as given in Figure 6.

1. Let Inv be a solution to the Horn clause constraints. Define the
annotation Φ as

Φ(ℓ1, . . . , ℓk) = Inv(g, ℓ1, x1, . . . , ℓk, xk).

Then, Φ is a thread-modular proof at level k.

2. If there exists a ground Horn clause derivation of false , then
there is no thread-modular proof at level k.

Lemma 1 indicates a method to prove the absence of a thread-
modular proof at level k. Theoretically, the corresponding problem
is undecidable (but semi-decidable).

Example 6. [Mutual exclusion, continued] Figure 7 shows the
Horn clause encoding for thread-modular proofs at levels k = 1
and k = 2, respectively. For k = 1, there is a ground Horn
clause derivation of false . By Lemma 1 (Part 2), there is no thread-
modular proof of the program at level 1. For the existence of a
thread-modular proof at level 2, see Example 3.

We next state the strictness of the hierarchy.

Theorem 2. For each k > 0, there is a parameterized program
that has a thread-modular proof at level k + 1 but no thread-
modular proof at level k.

Proof. The example in Figure 8 can be viewed as a generalization
of the program of Figure 1 from 1 to k (at most k threads can be
in the criticial section). Instead of the global variable l (a lock with
values 0 and 1), we now have the global variable ctr (with values
0, 1, 2, . . . ). Intuitively, it counts the number of threads that have
entered a critical section. We consider the safety property is that
the counter is never zero while at least one process is in the critical
section. (As it will turn out, the proof of k-mutual exclusion will
be part of the proof of this property.) For this example, there is a
thread-modular proof of level k+ 1. The proof uses the annotation
Φ of P (k + 1) where the assertion labeling a location states that
ctr is at least the number of threads that are in crit in this location,
but at most k, formally Φ(ℓ1, . . . , ℓk, ℓk+1) = (n0 ≤ ctr ≤ k)
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(initial) init(g, x1) ∧ · · · ∧ init(g, xn) → Inv(g, ℓinit, x1, . . . , ℓinit, xk)

(inductive) Inv(g, ℓ1, x1, . . . , ℓi, xi, . . . , ℓk, xk) ∧ s(g, xi, g
′, x′i) → Inv(g′, ℓ1, x1, . . . , ℓ

′
i, x

′
i, . . . , ℓk, xk) for (ℓi, s, ℓ

′
i)

(non-interference) Inv(g, ℓ1, x1, . . . , ℓk, xk) ∧
Inv(g, ℓ†, x†, ℓ2, x2, . . . , ℓk, xk) ∧

...

Inv(g, ℓ1, x1, . . . , ℓk−1, xk−1, ℓ
†, x†) ∧ s(g, x†, g′, ·) → Inv(g′, ℓ1, x1, . . . , ℓk, xk) for (ℓ†, s, · )

(safe) Inv(g, ℓ1, x1, . . . , ℓk, xk) ∧ err(g, ℓ1, x1, . . . , ℓm, xm) → false for k ≥ m

Figure 6. Horn clause encoding for thread modularity at level k (where (ℓi, s, ℓ
′
i) and (ℓ†, s, · ) refer to statement s on an edge leading

from ℓi to ℓ′i and, respectively, from ℓ† to some other location in the control flow graph)

k = 1 :
l = 0 → Inv(l, idle)

Inv(l, idle) ∧ l = 0 ∧ l′ = 1 → Inv(l′, crit)

Inv(l, crit) ∧ l′ = 0 → Inv(l′, idle)

Inv(l, ℓ1) ∧
Inv(l, idle) ∧ l = 0 ∧ l′ = 1 → Inv(l′, ℓ1)

Inv(l, ℓ1) ∧
Inv(l, crit) ∧ l′ = 0 → Inv(l′, ℓ1)

Inv(l, crit) ∧ Inv(l, crit) → false

k = 2 :
l = 0 → Inv(l, idle, idle)

Inv(l, ℓ1, ℓ2) → Inv(l, ℓ2, ℓ1)

Inv(l, idle, ℓ2) ∧ l = 0 ∧ l′ = 1 → Inv(l′, crit , ℓ2)

Inv(l, crit , ℓ2) ∧ l
′ = 0 → Inv(l′, idle, ℓ2)

Inv(l, ℓ1, ℓ2) ∧
Inv(l, idle, ℓ2) ∧
Inv(l, ℓ1, idle) ∧ l = 0 ∧ l′ = 1 → Inv(l′, ℓ1, ℓ2)

Inv(l, ℓ1, ℓ2) ∧
Inv(l, crit , ℓ2) ∧
Inv(l, ℓ1, crit) ∧ l

′ = 0 → Inv(l′, ℓ1, ℓ2)

Inv(l, crit , crit) → false

Figure 7. Horn clauses for mutual exclusion with locks

if n0 is the number of ℓi’s such that ℓi = crit). This implies that
1 ≤ ctr if n0 = 1, i.e., if a thread is in the critical section then
the value of ctr is different from 0 (no error state is reachable).
This also implies that, if k + 1 threads are in crit in the location
(crit, . . . , crit, crit), the assertion labeling the location is false
(which is entailed by k + 1 ≤ ctr ≤ k, taking n0 = k + 1) which
entails k-mutual exclusion.

There is, however, no thread-modular proof of level k. To see
this, we will use Lemma 1 (part 2) and construct a ground Horn
clause derivation of false in the Horn clause constraint that corre-

globals ctr
init ctr = 0
error crit

where ctr = 0

idle

crit

[ctr < k]
ctr := ctr + 1

ctr := ctr − 1

Figure 8. k-mutual exclusion

sponds to level k. In this derivation, all k threads enter crit, i.e.,
Inv(k, crit, . . . , crit). Using the non-interference clause for the
ctr := ctr − 1 edge one can derive Inv(k − 1, crit, . . . , crit).
From this state one can reach the error condition by letting k − 1
threads leave the critical section.

Theorem 3. There exist correct parameterized programs that can-
not be proved by thread-modular proofs at any level k.

Proof. If we remove the guard ctr < k in the program of Figure 8,
the resulting program is still safe but there is no thread-modular
proof for any k. This can be seen by applying the same reason-
ing using Lemma 1 (part 2) as above. This shows that the thread-
modular proof method cannot be used to prove every correct pro-
gram without adding auxiliary state.

Theorem 2 continues to hold for the restriction of parameter-
ized programs to a finite-state thread template (the program of
Figure 8 used in the proof of Theorem 2 can be made finite-state)
but Theorem 3 does not. That is, for every correct parameterized
program over a finite-state thread template, a thread-modular proof
does exist at some level k in the hierarchy (we will show this in
Section 5; see Theorem 5). This means that no auxiliary variables
are needed for the thread-modular proof of a parameterized pro-
gram over a finite-state thread template. However, the complete-
ness of thread modularity in the finite-state case comes at a price;
the level k can become very high in comparison to the size of the
template.

5. The Power of Thread Modularity at Level k

In this section, we will first introduce a variation of Ashcroft in-
variants and an extension of Cartesian abstraction. We will then
be able to state the relative completeness of thread modularity at
level k (Theorem 4). Sections 5.1 and 5.2 are devoted to the main
lemmas of the proof. In Section 5.3 we will investigate the conse-
quence of relative completeness to the case of threads with finite
state.

Ashcroft Invariants. We will introduce the notion of an Ashcroft
invariant for P (n) (a concurrent program with n threads) through
the notion of an invariant for the corresponding array program
P [n] (a sequential non-deterministic program with arrays of size
n). Intuitively, we go from P (n) to P [n] as follows. We view the
value of the local variable x in the thread t as the element x[t] of
an array x at position t. We flatten the control flow graph of P (n)
into one with one single node and many self-loops, namely one for
every edge of P (n). We accommodate the control flow of P (n) by
treating program locations as data in P [n].
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Formally, the local state of the array program P [n] is given by
valuations that assign to each local variable in X an array with the
index set Tid = {1, . . . , n}. For a variable x ∈ X and a thread t ∈
Tid , we write x[t] for the value of the local variable x in the thread
t. Furthermore, we introduce an array pc with the index set Tid that
assigns to each thread the current location. The valuation for global
variables does not change. The array program P [n] consists of a
single while loop which executes non-deterministically one of the
transitions that we obtain as follows. We have a transition to P [n]
with the statement [pc[t] = ℓsrc]; s[t]; pc[t] := ℓtgt for every edge
(ℓsrc, s, ℓtgt) ∈ δ of the control flow graph of P and every thread
t ∈ Tid . Here, s[t] is the statement s where every occurrence of
x ∈ X is replaced by x[t]. The assume statement [pc[t] = ℓsrc]
and the update pc[t] := ℓtgt accommodate the control flow (the
thread t goes from the source to the target location of the edge).

The initial states are the states where pc[t] = ℓinit and
init[x[t]/x] hold for every t ∈ Tid . The bad states are the valu-
ations that satisfy

pc[1] = ℓ1 ∧ . . . ∧ pc[n] = ℓn ∧

err(ℓ1, . . . , ℓn)[x[1]/x1] . . . [x[n]/xn].

Obviously, the program P (n) is bisimilar to the array program
P [n]. The bisimulation relation relates a state ((ℓ1, . . . , ℓn), ν)
with the valuation ν[] with ν[](g) = ν(g), ν[](pc) = {i 7→ ℓi|1 ≤
i ≤ n} and ν[](x) = {i 7→ ν(xi)|1 ≤ i ≤ n}. It follows that
P (n) is safe if and only if P [n] is safe.

An array invariant is defined to be a formula Ψ that satisfies the
conditions below (Tid = {1, . . . , n} is the set of array indices).
The existence of an array invariant proves the correctness of the
array program P [n].

(initialization)
∧

t∈Tid

(init[x[t]/x] ∧ pc[t] = ℓinit) |= Ψ .

(continuation) For every t ∈ Tid and every edge (ℓsrc, s, ℓtgt):

{Ψ} [pc[t] = ℓsrc]; s[t]; pc[t] := ℓtgt {Ψ} .

(safe) For every location tuple (ℓ1, . . . , ℓn):

pc[1] = ℓ1 ∧ · · · ∧ pc[n] = ℓn ∧

err(ℓ1, . . . , ℓn)[x[1]/x1] . . . [x[n]/xn] ∧Ψ |= false .

Fix k ≥ 1. We introduce a class of formulas ϕ over variables
in G ∪X ∪ {pc, t1, . . . tk}, where the thread variables t1, . . . , tk
range over the set Tid = {1, . . . , n} of thread indices (which are at
the same time thread ids). A local variable x ∈ X , a local variable
pc, and a thread variable ti may occur in ϕ only in an array read
of the form x[ti] or pc[ti]. In particular, the thread variables ti may
occur only as the index of an array read.

An array invariant of width k is an array invariant Ψ of the form

Ψ ≡ ∀t1, . . . , tk. Distinct(t1, . . . , tk) → ϕ

where ϕ is a formula in the class given above. Thus, Ψ has
k universally quantified thread variables; its free variables lie in
G ∪X ∪ {pc}.

An Ashcroft invariant of width k for P (n) is defined as an
array invariant for P [n] of width k. It is called a uniform Ashcroft
invariant for P of width k if it is an Ashcroft invariant for P (n) for
every n ≥ k.

Proposition 1. If n ≥ k, then the existence of an Ashcroft invariant
of width k for P (n) (the concurrent program with n threads)
implies that P (n) is correct. The existence of a uniform Ashcroft
invariant of width k for P (the parameterized program) implies
that P is correct, i.e., that P (n) is correct for every n ≥ 1.

A uniform Ashcroft invariant of width k for P is generally not a
safe inductive invariant for P (n) for n < k (in fact, it is equivalent
to true for n < k). The second part of the proposition above still
holds because the safety of a program P (k) (trivially) implies the
safety of all programs P (n) for all n < k.

Cartesian Abstraction. Intuitively, Cartesian abstraction ab-
stracts away the dependence between the components of a tuple
by looking at only one component at a time. The extension to k-
Cartesian abstraction is to look at k components at a time.

The connection between thread modularity and Cartesian ab-
straction is well-known; see, e.g., [16, 17, 42]. In the setting of
concurrent programs, Cartesian abstraction looks at the local state
of one thread at a time (together with the global state).

In the pure version of Cartesian abstraction as used, e.g., in [9],
the abstraction function α maps a set X of n-tuples of values to
an n-tuple (Y1, . . . , Yn) of sets of values, and the concretization
function γ maps an n-tuple of sets (Y1, . . . , Yn) to their Cartesian
product. Then γ(α(X)) is the smallest set in the form of a Carte-
sian product that contains X as a subset. If the set X of n-tuples
is symmetric (closed under permutation), we take α as a function
that maps X simply to a set Y of values (as opposed to the n-tuple
(Y, . . . , Y ) with the same set Y in every component). In our exten-
sion, α maps X to a set Y of k-tuples of values.

Definition 2 (k-Cartesian Abstraction). The k-Cartesian abstrac-
tion for P (n) is defined by the following abstraction function αk
which maps a set X of states of P (n) to a set of states of P (k).

αk(X) = {((ℓt1 , . . . , ℓtk ), νk) | ((ℓ1, . . . , ℓn), ν) ∈ X,
Distinct(t1, . . . , tk),

νk(g) = ν(g),
νk(x1) = ν(xt1)

...
νk(xk) = ν(xtk ) }.

By the theory of abstract interpretation [15], the concretization
function γk (which maps a set Y of states of P (k) to a set of
states of P (n)) is determined by γk(Y ) =

⋃
{X | αk(X) ⊆ Y }.

Equivalently,

γk(Y ) = {((ℓ1, . . . , ℓn), ν) | αk({((ℓ1, . . . , ℓn), ν)}) ⊆ Y }.

We now define what it means that the k-Cartesian abstraction
of the concurrent program P (n) is safe, for n ≥ 1. We cannot
define the Cartesian abstraction of a program by a source-to-source
transformation of the program or by an abstract transition system
(there is no notion of abstract state). Instead, we will use the post
operator of P (n) which is defined by

post(X) = init ∪ {σ′ | ∃σ ∈ X.(σ, σ′) is a transition of P (n)}

for a set of states X of P (n). The abstract post operator in the k-

Cartesian abstraction P (n) is defined by post# = αk ◦ post ◦
γk. We say that the k-Cartesian abstraction of P (n) is safe if

γk(post
#m(∅)) ∩ errn = ∅ for all m (“no error state is reachable

in the abstract”).

Lemma 2. If there exists an Ashcroft invariant of width k for P (n),
then the k-Cartesian abstraction of P (n) is safe (for n ≥ k).

Proof. Let Ψ = ∀t1, . . . , tk ∈ Tid . Distinct(t1, . . . , tk) → ϕ be
an Ashcroft invariant for P (n). We define asXΨ the states of P (n)
that satisfy Ψ, to be accurate, the set of states that are bisimilar to
a state of P [n] that satisfies Ψ. Using the bisimulation between
P (n) and P [n] and the fact that Ψ is an array invariant of P [n],
it follows that XΨ contains the initial states of P (n), is closed
under the transition relation and disjoint from the error states, i.e.,
post(XΨ) ⊆ XΨ and XΨ ∩ errn = ∅.
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Similarly, we define Yϕ as the set of states of P (k) that sat-
isfy the instantiation of ϕ to threads 1, . . . , k, to be accurate, the
set of states that are bisimilar to a state of P [k] that satisfies
ϕ[1/t1] . . . [k/tk]. By definition of Ψ, we have XΨ = γk(Yϕ) and
αk(XΨ) ⊆ Yϕ.

Now, γk(Yϕ) = XΨ and post(XΨ) ⊆ XΨ imply

post
#(Yϕ) = αk(post(XΨ)) ⊆ αk(XΨ) ⊆ Yϕ.

Hence, post#
m+1

(∅)) ⊆ post#
m+1

(Yϕ) ⊆ Yϕ. Finally, we have

γk(post
#m+1

(∅)) ⊆ γk(Yϕ) = XΨ. Since Xψ ∩ errn = ∅, this
shows that the k-Cartesian abstraction is safe.

From now, for technical reasons, we assume that k is not smaller
than the dimension m of the generator set of error states (defined
in Section 2).

Theorem 4 (Relative Completeness). Given a parameterized pro-
gram P , the following are equivalent.

1. P has a k-thread-modular proof.

2. There is a uniform Ashcroft invariant of width k for P .

3. There is an Ashcroft invariant of width k for P (k + 1).
4. The k-Cartesian abstraction of P (k + 1) is safe.

Proof. The implication (1) ⇒ (2) follows from Lemma 3 in
Section 5.1. For (2) ⇒ (3), note that a uniform Ashcroft invariant
for P is an Ashcroft invariant for P (n) for every n ≥ k. The
implication (3) ⇒ (4) follows from Lemma 2 with n = k + 1.
For (4) ⇒ (1), see Lemma 4 in Section 5.2.

The equivalence of (3) ⇔ (2) means that if there is an Ashcroft
invariant of width k for P (k + 1), there is also a uniform Ashcroft
invariant of width k for P . We note a similar consequence of
Theorem 4: if the k-Cartesian abstraction of P (k + 1) is safe, the
k-Cartesian abstraction of P (n) is also safe for any n ≥ k. This
follows from the implication (4) ⇒ (2) and Lemma 2.

5.1 From Level k to k Quantifiers

We now show that thread-modular proofs at level k are a sound
proof method by giving a uniform Ashcroft invariant with k uni-
versal quantifiers.

Lemma 3. If the annotation Φ for a program P (k) is a thread-
modular proof at level k, then

Ψ := ∀t1, . . . , tk ∈ Tid . Distinct(t1, . . . , tk) →

∧

(ℓ1,...,ℓk)∈Lock

((

k∧

i=1

pc[ti] = ℓi) →

Φ(ℓ1, . . . , ℓk)[x[t1]/x1] · · · [x[tk]/xk])

is a uniform Ashcroft invariant for P .

Proof. Let n ≥ k and Tid = {1, . . . , n}. The initialization
property of Ashcroft invariants follows directly from (initial) in
Definition 1.

To show the continuation property of an Ashcroft invariant, we
pick an arbitrary (ℓsrc, s, ℓtgt) ∈ δ and t ∈ Tid and show the
validity of

{Ψ} [pc[t] = ℓsrc]; s[t]; pc[t] := ℓtgt {Ψ}

In the postcondition, we fix distinct t1, . . . , tk ∈ Tid and
(ℓ1, . . . , ℓk) ∈ Lock and show that

(
k∧

i=1

pc[ti] = ℓi) → Φ(ℓ1, . . . , ℓk)[x[t1]/x1] · · · [x[tk]/xk] (1)

holds after executing the program fragment on a state satisfying Ψ.

Case 1: t = ti for some i = 1, . . . , k. If the pre-state does
not satisfy pc[tj ] = ℓj for some j 6= i or if ℓi 6= ℓtgt, the
formula (1) holds in the post-state because the left side of the
implication is false. If pc[ti] = ℓsrc does not hold in the pre-state,
the assumption in the program fragment fails and the Hoare triple
is valid. Otherwise, Ψ and therefore also

Φ(ℓ1, . . . , ℓi−1, ℓsrc, ℓi+1, . . . , ℓk)[x[t1]/x1] · · · [x[tk]/xk]

hold in the pre-state. One needs to show that after executing s[t] the
post-state satisfies

Φ(ℓ1, . . . , ℓi−1, ℓtgt, ℓi+1, . . . , ℓk)[x[t1]/x1] · · · [x[tk]/xk] .

This follows from the property (inductive) in Definition 1.

Case 2: t is distinct from t1, . . . , tk. If the pre-state does not
satisfy pc[tj ] = ℓj for some j = 1, . . . , k, the formula (1) holds
in the post-state since the left side of the implication is false. If
pc[t] = ℓsrc does not hold in the pre-state, the assumption in the
program fragment fails and the Hoare triple is valid. Otherwise, Ψ
and therefore also

Φ(ℓ1, . . . , ℓk)[x[t1]/x1] · · · [x[tk]/xk]

hold. By instantiating ti in Ψ with t for i = 1, . . . , k, we can also
derive that

Φ(ℓ1, . . . , ℓi−1, ℓsrc, . . . ℓk)[x[t1]/x1] · · · [x[t]/xi] · · · [x[tk]/xk]

holds in the pre-state. One needs to show that after executing s[t]
the post-state satisfies

Φ(ℓ1, . . . , ℓk)[x[t1]/x1] · · · [x[tk]/xk] .

This follows from the property (non-interference) in Definition 1.
Now consider for a location (ℓ1, . . . , ℓn) the formula

err(ℓ1, . . . , ℓn) =
∧

1≤i1<···<im≤n

err(ℓi1 , . . . , ℓim) .

We assume that pc[j] = ℓj for 1 ≤ j ≤ n, that err(ℓi1 , . . . , ℓim)
for some 1 ≤ i1 < · · · < im ≤ n holds and that Ψ holds and show
that this leads to a contradiction. For the case k ≥ m, set tj = ij
for j ≤ m and pick distinct tj arbitrarily for m < j ≤ k. Since Ψ
holds, also ϕ(ℓt1 , . . . , ℓtk ) holds. Since tj = ij for j ≤ m, also
err(ℓt1 , . . . , ℓtm) holds. Using the property (safe) in Definition 1
we can derive the contradiction. For the case k < m, instantiate
t1 < · · · < tk in Ψ for every subset {t1, . . . , tk} ⊆ {i1, . . . , im}.
Again, the property (safe) in Definition 1 can be used to derive a
contradiction.

5.2 From k-Cartesian to Level k

The following lemma relies on our assumption k is not smaller than
the dimension m of the generator set of error states.

Lemma 4. If the k-Cartesian abstraction of P (k+ 1) is safe then
P has a k-thread-modular proof.

Proof. We show the contraposition using Lemma 1: if there is a
derivation of false in the Horn clause system, then the k-Cartesian
abstraction is not safe.

In particular, we show that if there is a derivation of depth m
in the Horn clause system of Inv(g, ℓ1, x1, . . . , ℓk, xk), then there
is a state ((ℓ1, . . . , ℓk, ℓk+1), ν) of P (k + 1) with ν(xi) = xi for
i = 1, . . . , k that is reachable in at most m steps in the k-Cartesian
abstraction, i. e.,

((ℓ1, . . . , ℓk, ℓk+1), ν) ∈ γk(post
#m(∅)).

We prove this by induction over m.
For m = 1, Inv(g, ℓ1, x1, . . . , ℓk, xk) is derived from the

clause (initial), i.e., ℓ1 = · · · = ℓk = ℓinit and xi ∈ initlocal.
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For ν with ν(xi) = xi and ν(xk+1) = ν(x1), we have

((ℓ1, . . . , ℓk, ℓinit), ν) ∈ init ⊆ γk(post
#(∅)).

m 7→ m+ 1: If the last derivation step was an inductive step

Inv(g, ℓ1, . . . , ℓi, xi, . . . , xk) → Inv(g′, ℓ1, . . . , ℓ
′
i, x

′
i, . . . , xk)

then by induction hypothesis there is a state

((ℓ1, . . . , ℓk, ℓk+1), ν) ∈ γk(post
#m(∅))

where ν(g) = g, ν(xj) = xj for j ∈ {1, . . . , k}. From this state,
P (k + 1) can take the same edge in the i-th thread and reach
((ℓ1, . . . , ℓ

′
i, . . . , ℓk, ℓk+1), ν

′) where ν′(g) = g′, ν′(xi) = x′i
and ν′(xj) = ν(xj) for j 6= i. Thus, this state is in

post(γk(post
#m(∅))) ⊆ γk(post

#m+1
(∅)).

If the last derivation step uses the non-interference clause from
Figure 6, then for Inv(g, ℓ1, x1, . . . , ℓk, xk) we have by induction
hypothesis

((ℓ1, . . . , ℓk, ℓk+1), ν) ∈ γk(post
#m(∅))

where ν(g) = g, ν(xi) = xi. Hence, projecting on the first k
variables, we have

((ℓ1, . . . , ℓk), ν
′) ∈ αk(γk(post

#m(∅)))

where ν′(xi) = ν(xi) = xi for i = 1, . . . , k, and similar for all
permutations of the k threads. From the other literals on the left
side of the Horn clause, we also get

((ℓ1, . . . , ℓi−1, ℓ
†, ℓi+1 . . . , ℓk), νi) ∈ αk(γk(post

#m(∅)))

where νi(xi) = x† and νi(xj) = xj for j 6= i. By definition of the
abstraction function and since γk ◦ αk ◦ γk = γk, we obtain

((ℓ1, . . . , ℓk, ℓ
†), ν) ∈ γk(post

#m(∅))

with ν(xi) = xi, i = 1, . . . , k and ν(xk+1) = x† since all

its projections to k threads are in αk(γk(post
#m(∅))). This state

has the successor ((ℓ1, . . . , ℓk, ℓ
†′), ν′) where ν′(g) = g′ and

ν′(xi) = xi for i = 1, . . . , k. Thus, this state is in

post(γk(post
#m(∅))) ⊆ γk(post

#m+1
(∅))

and the induction thesis holds for m+ 1.
Finally, if false is derived, it can only be derived by the safe

clause from Figure 6. The induction hypothesis

((ℓ1, . . . , ℓk, ℓk+1), ν) ∈ γk(post
#m(∅))

holds for ν with ν(g) = g, ν(xi) = xi, i = 1, . . . , k. Also,
err(g, ℓ1, x1, . . . , ℓm, xm) holds. By definition of errn, this implies
that ν ∈ errk+1(ℓ1, . . . , ℓk+1). Hence, the k-Cartesian abstraction
of P (k + 1) is not safe.

5.3 Finite-state Threads

We conclude this section with an application of Theorem 4, which
shows that k-thread-modular proofs are complete for parameterized
programs with finite-state threads; i.e., when the global and local
variables in the underlying thread template range over finitely many
values.

Theorem 5. A parameterized program P with finite-state threads
is correct if and only if there is a level k such that P has a thread-
modular proof at level k.

Proof. The “if” direction follows by soundness. We prove the “only
if” direction. We formulate the problem of checking if P is correct
as the non-coverability problem for a well-structured transition
system [2]. We do it in two steps as follows.

First, we maintain a counter for each control location and each
valuation of the local variables. The counter for a location and a

valuation tracks the number of threads at that control location and
with that valuation. With this encoding, a state consists of a finite
part giving the valuation to the global variables and a finite vector
of non-negative counters. The set of states is well-quasi ordered
(see [2] for the basic definitions), where one state is less than equal
to another iff their valuations to the global variables are identical
and the vectors of counters of the first is less than equal to the
other co-ordinatewise. We lift the transitions of the program P to
transitions between states in the natural way. The transition relation
is monotonic with respect to the well-quasi ordering; this is because
adding more threads to a program does not prohibit any transition
that was allowed before. This encoding shows that the program P
corresponds to a well-structured transition system.

Second, since the set of error states is representable as an as-
sertion with only existential quantifiers, it determines an upward
closed set of states in the well-quasi ordering of states. Thus, check-
ing if P is correct is equivalent to checking that the upward closed
set of error states is not reachable from the initial states. This is the
non-coverability problem for the well-structured transition system
defined by P .

Let B (for “Bad”) be the set of states which can reach the up-
ward closed set of error states. From the theory of well-structured
systems [2], we know that B is also upward closed and repre-
sentable as the upward closure of a finite set of tuples, called the
minimal elements, where each minimal element consists of a val-
uation to the global variables and a tuple of natural numbers kij ,
giving a count of the minimal number of threads at location ℓi and
with local state j.

Given a representation of B by the finite set E of its minimal
elements, let k be the maximum of all ke, where ke is the sum of
all numbers kij appearing in a minimal element e ∈ E. Note that
k is finite because E is finite. Let ¬B be the complement of B. We
write B(n) (resp. ¬B(n)) for the set of states of P (n), for n ≥ 1,
that are encoded by states in B (resp. ¬B) and B(≥ k) (resp.
¬B(≥ k)) for the set of states ∪n≥kB(n) (resp. ∪n≥k¬B(n)).

By definition, ¬B(n) does not intersect with the set of error
states, and it is closed under transitions of P (n). By assumption,
P is correct, thus P (n) is correct, for every n ≥ 1. Thus, ¬B(n)
contains the set of initial states of P (n), for every n ≥ 1. Because
of this, ¬B(n) defines a safe inductive invariant for P (n).

We show that B(≥ k), the restriction of B to the set of pro-
grams with at least k threads, has a representation as a finite dis-
junction of assertions with k existential quantifiers. Essentially, the
disjunction is over the set of minimal elements in the representation
of B, and each disjunct encodes the fact that the global variables
evaluate to the value given by the minimal element and that there
are at least kij distinct threads in location ℓi with valuation j to the
local variables. For example, the minimal element “the value of the
global variable g is cg and there are at least k1 threads in location
ℓ1 with value cx1 for the local variable and at least k2 threads in ℓ2
with value cx2” is expressible as

∃t1∃t2 . . . ∃tk1∃tk1+1 . . . ∃tk1+k2 ∈ Tid .

Distinct(t1, . . . , tk1 , tk1+1, . . . , tk1+k2) ∧ g = cg∧

k1∧

j=1

(pc[tj ] = ℓ1 ∧ x[tj ] = cx1)∧

k1+k2∧

j=k1+1

(pc[tj ] = ℓ2 ∧ x[tj ] = cx2)

To accommodate the set of all minimal elements, we first existen-
tially quantify k thread identifiers, assert they are all distinct, and
then take the disjunction of the constraints for each minimal ele-
ment. In summary, B(≥ k), the restriction of B to the set of en-
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codings of states of P (n) with n ≥ k, can be expressed by a for-
mula with k existential quantifiers. Now, for each nwith nk, the set
B(n), the restriction ofB to the set of encodings of states of P (n),
can be expressed by that same formula. Then ¬B(n) has a rep-
resentation as an Ashcroft invariant of width k, for n ≥ k. Since
the Ashcroft invariant does not depend on n, we have a uniform
Ashcroft invariant for P .

By Theorem 4 (“2 ⇒ 1”), since there is a uniform Ashcroft
invariant for P of width k, there will also exist a k-thread-modular
proof for P .

A similar completeness result has been noted in the context of
algorithms for parameterized verification [4, 32]. The arguments
there directly use the well-quasi ordering to argue termination of
a specific algorithm and do not consider provability in a proof
system. Since Petri net coverability is EXPSPACE-hard [41], and
Petri nets can be simulated by our model, this also means that some
programs can be proved correct only using thread-modular proofs
at level k where k is doubly exponential in the size of the template.

6. Mach TLB Shootdown

We now present a 2-thread-modular proof for the TLB shootdown
algorithm from [13]. In this algorithm, one thread can send inter-
rupts and messages to the other threads. To support this feature, we
extend our programming model by adding a new kind of statement,
called synchronous statement, which allows one thread to read and
write local variables of a second thread (Section 6.2). We modify
our proof rules to accommodate synchronous statements. Finally,
we present a 2-thread-modular proof for the algorithm.

6.1 TLB Shootdown Algorithm

We first introduce the algorithm informally. The TLB shootdown
algorithm [13] is part of the Mach operating system. Modern pro-
cessors use page tables to translate between virtual and physical
memory. For performance reasons, they cache the page table in a
Translation Look-aside Buffer (TLB). The problem is to keep this
cache in sync if the page table needs to be updated. While typical
first and second-level caches have a cache coherence protocol im-
plemented in hardware, there is no hardware support to keep the
TLB consistent.

In [13], the authors present a software solution to achieve con-
sistency. The idea is that before one processor updates the page
table, it interrupts all other processors that use the page table. Then
it waits until the interrupt was received by the other processors and
updates the page table. The other processors wait until the first pro-
cessor is done and then they flush the TLB.

A TLB update (see Figure 9) proceeds in four phases. In the first
phase the INITIATOR is called on the page map (pmap, in short)
that should be updated. The initiator runs lines 1 to 8 to set the
actionneeded flag and signals an interrupt to all processors that
use the pmap (indicated by userpmap[cpu] = pmap). Then it
waits for these CPUs to respond. In the second phase, the other
CPUs receive the interrupt and invoke the RESPONDER. They set
the active flag to false (indicating they are done with using the page
map) and wait at line 3. The INITIATOR waits until all responder
processes have set their active flag to false or are not using the
pmap (lines 9-10). Then, it continues in phase 3. In phase 3 the
INITIATOR updates the pmap entry and its tlb (line 11 to 14).
When the INITIATOR finishes with phase 3, the responders flush
their tlb (line 5 of RESPONDER) and reset the actionneeded flag
(line 6). There are some other special cases that this code handles
correctly, e.g., when two processors run as INITIATOR and when
each processor updates the pmap of the other processor.

Our code abstracts from the original Mach pseudo code. First
we assume that each processor has only one pmap, while in Mach

INITIATOR(pmap)

1 active := false
2 lock plock [pmap]
3 for cpu 6= pid
4 do if userpmap[cpu] = pmap
5 then lock actionlock [cpu]
6 actionneeded [cpu] := true
7 unlock actionlock [cpu]
8 interrupt[cpu] := true
9 for cpu 6= pid

10 do wait until ¬active[cpu]
∨ usermap[cpu] 6= pmap

11 entry [pmap] := ∗
12 if userpmap = pmap
13 then tlb := entry [pmap]
14 unlock plock [pmap]
15 active := true

RESPONDER()

1 while actionneeded
2 do active := false
3 wait until plock [userpmap] = unlocked
4 lock actionlock
5 tlb := entry [userpmap]
6 actionneeded := false
7 unlock actionlock
8 active := true

MAIN()

1 while true
2 do assert tlb = entry [userpmap]
3 if ∗
4 then INITIATOR(∗)
5 if interrupt
6 then interrupt := 0; RESPONDER()

BOOT()

1 pid := ++n
2 atomic userpmap := ∗; assume 1 ≤ userpmap ≤ n;

assume plock[userpmap] = unlocked;
tlb := entry[userpmap]

3 MAIN()

Figure 9. The TLB shootdown algorithm. In the correct version
lines 3 and 4 of RESPONDER must be executed atomically.

it has two (kernel and user pmap). Secondly, our page table is
modeled by a single entry and the TLB is modeled by a cache of
this single entry. A flush is modeled as reading the entry (line 5 of
RESPONDER), while in reality the process only marks the entry
as invalid and rereads it only when it is accessed. The changes
enable us to model the condition when an error occurs by a simple
assertion but they do not affect the complicated synchronization
scheme between the processors.

The main correctness property is given in line 2 of the main
procedure. Whenever the pmap entry is changed in line 11, the
protocol ensures that the tlb will be flushed, either by line 13 of the
initiator or line 5 of the responder before line 2 can be executed.

In our settings the processors are threads and all execute the
same thread template (the procedure MAIN). Each thread has a
local variable pid between 1 and n that stores its own processor id.
We achieve this by adding a small initialization procedure BOOT.
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This procedure uses a global variable n that denotes the number of
initialized processes. On initialization, as in Example 2, this global
variable is atomically incremented (we abbreviate this by ++n in
the code) and assigned to the local variable pid . This ensures that
after this first instruction runs all processes have a distinct process
id between 1 and n. We initialize pid to 0 in the init assertion to
ensure that an uninitialized processes cannot have the same pid as
an initialized process.

The loops “for cpu 6= pid” are implemented as loops from
1 to the global variable n that skip over the body if cpu = pid
holds. It can happen that another process is initialized after the
loop is finished. In that case the initiator is not able to notify this
process. However, the boot routine of the newly initialized process
will ensure that the pmap is unlocked and initializes the TLB entry
atomically.

We model the arrays by local variables that reside in other
threads. Reading or writing to these variables requires a syn-
chronous statement, that we describe in Section 6.2. For exam-
ple, the instruction lock actionlock [cpu] is translated to the syn-
chronous statement

[pid2 = cpu1 ∧ actionlock2 = false]; actionlock2 := true .

This statement mentions variables cpu1 from the thread executing
the statement and variables pid2 and actionlock from another
thread. The assumption [pid2 = cpu1] ensures that the instruction
is executed against the thread cpu1. The remaining part implements
the atomic lock mechanism.

6.2 Synchronous Statements

A synchronous statement s affects the local variables of two threads
at the same time. That is a synchronous statement uses two copies
x1 and x2 of the local variables. For simplicity we do not allow
to write to global variables in synchronous statements. These state-
ments are executed by the first thread (with the local variables x1)
and may also change the local variables x2 of the second thread but
not its program counter.

For a synchronous statement s, we define (s : i, j) as the state-
ment obtained from s by replacing variables x1 by xi and variables
x2 by xj . Then we extend the semantics of the parameterized pro-
cess P (n) by adding an edge

((ℓ1, . . . , ℓi−1, ℓsrc, ℓi+1, . . . , ℓn),
(s : i, j), (ℓ1, . . . , ℓi−1, ℓdst, ℓi+1, . . . , ℓn))

for every i 6= j, 1 ≤ i, j ≤ n whenever (ℓsrc, s, ℓdst) is an edge
in the template. That is for every thread j 6= i, an edge with the
statement (s : i, j) is added.

To check thread modularity at level k in the presence of syn-
chronous statements we have to adapt the rules (inductive) and
(non-interference). The new rule (inductive) is straightforward.
For (non-interference), we only need to prove that the statement
preserves the invariant for the case that it is between thread k + 1
and some thread i, 1 ≤ i ≤ k.

Definition 3. For programs with synchronous statements the rules
inductive and non-interference from Definition 1 are changed as
follows.

(inductive) The assertions ϕ and ψ at the source resp. target loca-
tion of an edge (ℓsrc, s, ℓdst) in P (k) and the statement label-
ing the edge form a valid Hoare triple. That is, for the asser-
tion ϕ = Φ(ℓ1, . . . , ℓi−1, ℓsrc, ℓi+1, . . . , ℓk) and the assertion
ψ = Φ(ℓ1, . . . , ℓi−1, ℓdst, ℓi+1, . . . , ℓk)

{ϕ} (s : i, j) {ψ}

is valid for P (k) and 1 ≤ i, j ≤ k, i 6= j.

(non-interference) Every assertion ϕ labeling a location
(ℓ1, . . . , ℓk) in P (k) is interference-free under the execu-
tion of a synchronous statement by thread (k + 1). That is, for
the assertionϕ = Φ(ℓ1, . . . , ℓk) and ψ1 = Φ(ℓsrc, ℓ2, . . . , ℓk),
. . . , ψk = Φ(ℓ1, . . . , ℓk−1, ℓsrc)

{ϕ ∧ ψ1[xk+1/x1] ∧ . . . ∧ ψk[xk+1/xk]} (s : k + 1, j) {ψ}

is valid for P (k + 1) for 1 ≤ j ≤ k and each labeled edge
(ℓsrc, s, ℓdst).
Thread k + 1 can also passively interfere if thread i ≤ k ex-
ecutes a synchronous statement affecting thread k + 1. Thus,
we require that for the assertion ϕ = Φ(ℓ1, . . . , ℓsrc, . . . , ℓk),
ψ = Φ(ℓ1, . . . , ℓdst, . . . , ℓk), and ψ1 = Φ(ℓk+1, ℓ2, . . . , ℓk),
. . . , ψk = Φ(ℓ1, . . . , ℓk−1, ℓk+1),

{ϕ ∧ ψ1[xk+1/x1] ∧ . . . ∧ ψk[xk+1/xk]} (s : i, k + 1) {ψ}

is valid for P (k + 1) for 1 ≤ i ≤ k and each labeled edge
(ℓsrc, s, ℓdst).

6.3 Correctness

The implementation as given in Figure 9 has a computation that
reaches the error state. The problem is that the step from line
3 to 4 in RESPONDER is not atomic. If another process acting as
initiator runs through line 2 to 5 in INITIATOR and takes the action
lock before the responder moves from line 3 to 4 in RESPONDER,
the system reaches an inconsistent state that may eventually lead
to the error. In personal communication with one of the original
authors of the protocol [12], we learned that the authors considered
the algorithm under an (unstated) relative-speed assumption on the
hardware on which the algorithm was supposed to run. Because the
protocol runs with interrupts disabled on real separated processors,
in practice, an INITIATOR process cannot perform all these steps
before the RESPONDER process is able to take the lock. However,
this relative speed assumption need not hold on virtual machines
where CPUs are simulated and this bug may occur.

To fix this issue, we changed the implementation to execute
lines 3 and 4 of RESPONDER atomically. We also augmented the
waiting condition on line 3 to check that the actionlock is not taken
when line 3 is executed. After this change, the system is provably
correct. Our thread-modular proof on level 2 uses the invariant in
Figure 10. The proof that the invariant is inductive and interference-
free was machine-checked using Z3.

7. Related Work

Thread-modular proof systems are the cornerstone of concurrency
verification [1, 8, 28, 37, 47]. In this paper, we have investigated
a hierarchy of proof systems generalizing thread modularity and
characterized the power of these proofs in concurrent program ver-
ification. We now put our work into perspective, pointing out how
similar ideas have been studied, often implicitly and under differ-
ent names. Similar generalizations to thread modularity have been
studied in various guises [4, 5, 14, 30, 33, 35, 45, 51–53]. For ex-
ample, 2-thread-modular proofs were studied in [14, 45], under the
name pairwise invariants or split invariants, as context inference in
[33], and as thread correlation analysis in [52]. In the context of
parameterized verification of finite-state processes, view abstrac-
tion [4, 5] presents similar notions as an abstract interpretation;
completeness of view abstraction for finite-state threads follows
through a reasoning based on well-structured transition systems.

In the setting of Horn clauses, Grebenshchikov et al. [30], Ho-
jjat et al. [35], Gurfinkel and Shoham [32], and Monniaux [44]
study Horn constraints of the kind that we use to encode k-thread-
modular proofs; in particular, [35] already note the strictness of
the corresponding hierarchy of proofs. The main emphasis in these
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Φ = (pc1 = BOOT1 ∧ pid1 = 0) ∨
(1 ≤ pid1 ≤ n ∧ pid1 6= pid2 ∧ (1 ≤ userpmap1 ≤ n ∨ pc1 = BOOT2)
∧ (INIT2 < pc1 ≤ INIT14 ∧ pid2 = pmap1 → plock2)
∧ (INIT2 < pc1 ≤ INIT14 ∧ INIT2 < pc2 ≤ INIT14 → pmap1 6= pmap2)
∧ (INIT5 < pc1 ≤ INIT7 ∧ pid2 = cpu1 → actionlock2)
∧ (RESP4 < pc1 ≤ RESP7 → actionlock1)
∧ (INIT5 < pc1 ≤ INIT7 ∧ INIT5 < pc2 ≤ INIT7 → cpu1 6= cpu2)
∧ (INIT5 < pc1 ≤ INIT7 ∧ RESP4 < pc2 ≤ RESP7 → pid2 6= cpu1)
∧ (INIT4 ≤ pc1 ≤ INIT8 → cpu1 6= pid1)
∧ (INIT5 ≤ pc1 ≤ INIT8 ∧ pid2 = cpu1 → userpmap2 = pmap1)
∧ (¬active1 → INIT1 < pc1 ≤ INIT15 ∨ RESP2 < pc1 ≤ RESP8)
∧ (INIT7 ≤ pc1 ≤ INIT8 ∧ userpmap2 = pmap1 ∧ pid2 = cpu1 → actneed)
∧ (INIT3 ≤ pc1 ≤ INIT8 ∧ userpmap2 = pmap1 ∧ pid2 < cpu1 → actneed)
∧ (INIT9 ≤ pc1 ≤ INIT14 ∧ userpmap2 = pmap1 → actneed)
∧ (INIT3 ≤ pc1 ≤ INIT8 ∧ userpmap2 = pmap1 ∧ pid2 < cpu1 → interrupted)
∧ (INIT9 ≤ pc1 ≤ INIT14 ∧ userpmap2 = pmap1 → interrupted)
∧ (INIT3 ≤ pc1 ≤ INIT8 ∧ userpmap2 = pmap1 ∧ pid2 < cpu1 → interrupted)
∧ (INIT9 ≤ pc1 ≤ INIT10 ∧ userpmap2 = pmap1 ∧ pid2 < cpu1 → inactive)
∧ (INIT11 ≤ pc1 ≤ INIT14 ∧ userpmap2 = pmap1 → inactive)
∧ (userpmap2 = pid1 ∧ tlb2 6= entry1 → dirty ∨ BOOT1 ≤ pc2 ≤ BOOT2)
∧ (userpmap2 = pid1 ∧ tlb2 6= entry1 → inactive)
∧ (userpmap2 = pid1 ∧ tlb2 6= entry1 → interrupted ∨ (INIT12 ≤ pc2 ≤ INIT13 ∧ pmap2 = userpmap2)
∧ (actionlock1 ∧ ¬(RESP4 < pc1 ≤ RESP7) ∧ userpmap1 = pid2 → plock2)
∧ (actionlock1 ∧ ¬(RESP4 < pc1 ≤ RESP7) ∧ userpmap1 = pmap2

∧ INIT2 < pc2 ≤ INIT14 → INIT5 < pc2 ≤ INIT7 ∧ cpu2 = pid1

∧ (actionlock1 ∧ (INIT2 < pc1 ≤ INIT14) → userpmap1 6= pmap1))

where

actneed = actionneeded2 ∨ RESP5 ≤ pc2 ≤ RESP6 ∨ BOOT1 ≤ pc2 ≤ BOOT2

dirty = (actionneeded2 ∧ pc2 6= RESP6) ∨ (INIT12 ≤ pc2 ≤ INIT13 ∧ userpmap2 = pmap2)
interrupted = interrupt2 ∨ RESP1 ≤ pc2 ≤ RESP8 ∨ BOOT1 ≤ pc2 ≤ BOOT2

inactive = ¬(MAIN1 ≤ pc2 ≤ MAIN2)

Figure 10. Invariant for the TLB shootdown algorithm for thread-modular reasoning at level 2. We omit the symmetric part where process
1 and 2 change their roles.

papers is to identify automatic techniques to solve the Horn con-
straints, paving the way to automatize k-thread-modular proofs for
programs. Our work shines new light on these techniques from a
proof-systems perspective; in particular, we prove that the number
of quantifiers introduces a strict hierarchy for expressiveness but
the method remains incomplete no matter how many quantifiers
are used (and that the former continues to hold in the finite-state
case but the latter does not).

While we have presented our proof system in the simple con-
text of parameterized programs our proof system remains applica-
ble when the program consists of a fixed number of threads (the
setting of potentially different threads can be accommodated with
a single thread template, through well-known encoding tricks). The
size of the verification condition for a thread-modular proof at
level k is O(|P |k+1), that is, polynomial in the size of the tem-
plate |P | and exponential in the level k. In contrast, the size of the
verification condition for the product construction on n threads is
O(|P |n), exponential in the number of threads. Thus, even in the
fixed-thread, non-parameterized setting, it is interesting to look for
thread-modular proofs at higher levels as an alternative to introduc-
ing auxiliary variables.

We now compare our proof system with algorithms for param-
eterized verification for concurrent programs. While there are sev-
eral verification tools for concurrent software based on practically
useful heuristics [29, 38, 50], the theoretical power of these heuris-
tics is often unclear. Moreover, many heuristics (such as auxiliary
state introduction [24, 38]) seem orthogonal to k-thread modularity.

The method of invisible invariants [7, 48] for parameterized
program constructs a candidate for an Ashcroft invariant by first
computing the set of reachable states of the instance of the program

with k threads, and then generalizing the concrete thread ids in the
reachable states. The candidate (a universally quantified formula
with k variables over thread ids) is then checked for inductiveness
(using a syntactic “cutoff theorem”). However, the heuristics may
not yield an Ashcroft invariant even if there is one (with the same
number of quantifiers). Attempts to search for Ashcroft invariants
satisfying a template [21] similarly suffer from the same problem
(that is, if the method fails, one does not know whether there is no
proof with k quantifiers or whether the heuristic did not find it). In
contrast, our results provide a way to find Ashcroft invariants when
they exist (modulo incompleteness of the Horn clause solver) or to
prove they do not.

In conclusion, our results provide a unifying view of many
similar results that have been used, implicitly or explicitly, in work
on automatic verification for parameterized systems. The proof
system of k-thread-modular proof rules is useful not only as a basis
for automatic verification but also for proving systems that may
presently be out of the scope of existing approaches to automatic
verification.
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