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Abstract In this paper a generalization of a
certain Lipton”s theorem (see Lipton [5]) is
presented. Namely,we show that for a wide class of
programming languages the following holds:the set
of all partial correctness assertions true in an
expressive interpretation I is uniformly decicable
(in I) in the theory of I iff the halting problem
is decidable for finite interpretations. In the
effect we show that such limitations as effective-
ness or Herbrand definability of interpretation
(they are relévant in the previous proofs)can be
removed in the case of partial correctness.

1. BACKGROUMD

In this section we recall some history of the
consicered problem ancd we restate the known
results. .

In order to show the inherent camwplexity of the
problem of partial correctness Cook introcuced the
notion of relative completeness. Supplying Hoare”s
system with an oracle answering questions on vali-
dity of first-order formulas he was able to sepa-
rate the reasoning about the programs from the
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reasoning about the undrelying language of ivar-
iants. The idea of oracle results in loare-like
system for programming language which is consi-
dered in [3]. This system is relatively complete,
i.e. complete over expressive interpretations.

( An interpretation I is said to be expressive
iff the weakest preconditions of programs are
first-order definable in I.)

Natural guestion arose for other,more camplica-
ted programming languages : does the expressive-
ness stand for the sufficient condition for the
existence of relatively complete Hoare’s logic ?

Clarke ( see [1}) @iscovered that for languages
with certain natural features ( e.g. call by
name parameter passing,functions,global variables
and coroutines with local recursive procedures
that can access global variables ) it is impossibl
e to construct a Hoare”s logic which is sound and
relatively camplete in the sense of Coock.Thi$
incompleteness result is based on the observation
that if a programming language possesses a
relatively camplete proof system for partial
correctness assertions then the halting problem
for finite interpretations must be decidable.

Lipton ( see [5)) attempted to prove the convers
e : if PL is an acceptable programming language
and the halting problem for programs in PL is
Cecidable for finite interpretations then PL has
a relatively camplete proof system for partial
correctness assertions.



Poushly speaking, a programming language ™. is
said to be acceptable iff every program in PL can
be effectively translated into, for instance,
Friedman”s scheme ( see [4]) and PL is closed
under reasonable programming constructs.
Fventually, Lipton obtained the following partial

answer

Th.l ( Lipton, 1977 )

Let PL be a deterministic acceptable program-
ming lanquage. Then the following are ecuivalent:

1. PL has a decidable halting problem for finite
interpretations.

2. The true quantifier-free partial correctness
assertions are recursively enumerable in Th(I)
ané in a certain presentation of I for expressive
and effective interpretations I.

Clarke,German and Halpern (see [2]) obtained
a significant generalization of the Lipton’s
theorem to the first-order partial ( and total
too ) correctness assertions. Their results are
quoted below.

An interpretation I is said to be llerbrand-
-definable iff every element of I is the value of
a constant term.

Th.2 (Clarke,German,Halpern 1982)

Let PL be a Ceterministic acceptable proqram-
ming lanquage with recursion. Then the following
are equivalent :

1. PL has a decidable halting problem for finite
interpretations.

2. The true first-order partial (resp. total)
correctness assertions are uniformly (in I)
cdecidable in Th(I) for expressive and Yerbrand-
-definable interpretations I.

If we limit ourselves to expressive interpreta-
tions,then the following holds :

Th.3 (Clarke,German,Halpern 1982)

Let PL be a deterministic acceptable program
ming language. Then the following are equivalent:

1. PL has a decicable halting problem for finite

interpretations.
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2. The true first-order partial (resp. total)
correctness assertions are decidable in Th(I) and
in a certain presentation of I for exvressive

and effective interpretations I.

NMotice that a decision procedure (in Th.3) for
correctness assertions Cepends simultaneously
on Th(I) and on I,i.e. it is not uniform in I. It
means that such a procedure does not stand for a
realistic analojue of Hoare-type proof system,
since loare-type proof systems are incependent of

the varticular concrete interpretation.

2.RFLATIVFE, COMPLFTENESS OF PARTIAL CORRECTNESS

In this section our main result is presented.

Vie shall prove the following

Th.4

Let PL be a deterministic acceptable program-
ming lanquage with recursion. Then the following
are equivalent :

1. PL has a decidable halting problem for finite
interpretations.

2. The true first-order partial correctness
assertions are uniformly decidable in Th(I) for

expressive interpretations I.

Tt seems that theorem 4 (comparing to th.2,th.3)
provides more information on ability to find good
axiom system for camplicated programming lanquages
In worcs of Clarke,german and Halpern [2]:

"Tn oréder for a cdecision procedure to be a
realistic analogue of a Floyd-Hoare axiom system
it should, in same sense,be uniform; i.e. indepen-
dent of the particular interpretation that is

being used.”

In order to outline the proof of our result some
cefinitions and notions are necessarv.The basic
one is the notion of an acceptable proagramming
language. We do not quote the long definition and
we refer the reader to the paper [2]. Intuitively,
a prograrming language PL is said to be acceptable
iff for every program in PL it is possible to
effectively ascertain its step-by-step computatio
n in interpretation I by checking in I open
formulas; moreover, PL is close¢ uncer reasonable

prograrming constructs. For instance,almost all



Algol-like prograrming lanquages are acceptable.

Let PL be an acceptable programming language.

For a program P in PL and for an interpretation I
, All)(x,y) denotes the input-output relation of the
program P in the interpretarion I.

def. An interpretation I is expressive (for PL)
1f€ for every program P in PL there is a first-
-order forrmula BP(x) such that I Bp(x) iff for

same vy in I, AII,(x,y).

Gef. TR ALY iff for A1l x,y in T,if I BQ(X)
and AII)(x,y) then 1 EY(y).

cef. An interpretation I is weakly arithmetic iff
there exist first-order formulas N(x),F(x,y),5(x,v)
2(x),ACA(x%,v,2) ,Mult(x,v,2z) (with respectively k%,
2k, 2k,k, 3k and 3k free variables for save %) such
that F der: .es an eguivalence relation on Ik and
formulas ¥, 7,$,Add,Mult define on the set
{x lI):N(xg' the model M such that the quoteient
model M/F .+ isomorphic to the standard mocdel
{;0,+1,+,%,=).

Now we a3t in & position to outline the proof of
theorem 4.

I_ef 1 b= . expressive interpretation.

As in Lipton[5],our proof splits into two cases.

The case when for every program P in PL there
is a number B such that P never accesses more than
B values of\ any input was proved by Clarke,German
and Halpern in [2).

In the case when same program can access an un-
bounded number of different values our approach is
different fram that of Clarke,German and Illalpern.
The key idea is to represent the input-output rela-
tion of a program by means of the least relations
satisfying certain first-order conditions. We join
fixed-point approach and ideas of coding of terms
used by Clarke,German and Halvern in [2].

Let P be in PL and let x={x1,...,xq} be the set
of free variables of the program P ( dep(P) in [2])
let y = {yl,...,yq] be a copy of x. Let N,F,Z,5,Add
,Mult be new predicate symbols for arjthmetical

notions, H,U,F be (respectively) 2-ary,l-ary and
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and 2-ary new predicate symbols.

Lerma

We can effectively construct first-order axioms
Fnc (encoding) for H,U, and axioms SyntP for F and
a first-order formula InOutP(ﬂ,...,_M_u_].E,g,g,E)
such that :

1. For every first-order formulas N,...,Mult
which model in I axioms Ax for arithmetic (AX1-9 in
{2]) and for everv first-order formulas H,U,F which
rmodel in I axioms Fnc and SyntP,the following
holds :
for all x,y in I,if A;,(x,y) then

I k:InQJtP(N., e B (X Y) .

2. There exist first-order Zormulas N, ...,E,
such that they model in I axioms Ax,Fnc,SyntP and
for all x,y in I , AL(x,y) iff

iff I }:InOutP(N,, reearFy VX, Y).
Proof §Outline)
The set Fnc consists of recursive definitions for

coding of terms over variables xwy (something like
H(z,d) in [2]) and recursive definitions for uni-
versal precdicate (z) for open forrulas over
variables xvy: U(z) iff the z-th open formula over
xyy is satisfied. (Recursive definitions for I\ F
involve- N,E,...,Mult and recursive definitions for
U involve I, N,E,...,Mult.)

We can construct a recursively enumerable sequenc
e Boéx,y),nl(x,y),... of open formulas such that

A‘.t(x,y) iff Ikﬁo(x,y)vﬂl(x,y)v... .

Let f(n) = standard cod of Bn(x,y).

The set SyntP consists of recursive definitions
(for F) representing f (treated as a relation).
We Jdefine
InOutP(y,...,E) = @w) (&V) (N(W)AN(V)AF (w, v)AU(V) ).

Let I be the interpretation that is being consi-
dered.Since 1 is expressive,the theorem of deMillo,
Lipton, Snyder (see {5]) imply that I is weakly
arithmetic.The relations which are defined in I by
first-order formulas which make I weakly arith-
metic are programmable in I (as relations). This
fact is derivable from the proof of the theorem
of de Millo,Lipton,Snyder. Recall that PL is
assumed to be deterministic and it is closed under
recursion. Recursive definitions in Fnc and in
SyntP "work right" on standard natural numbers.
Hence,point 2 of our lemma holds by expressivity

of I.
a



Yo orove the theorem by malting use of the followi
ng fixed-noint rule (FR) :
premnisses: Ax(N,...,Mult),"nc(¥,...,Mult, !, 1),
SyntP(N, ... ,Mault),
@e)—»(¥Y) (TnOut (N, ..., F) (x,y) ~3
- ¥(y))
(for certain first-orcder
formulas N,...,Mult,!i,U,F)

conclusion: q{rly .

Let Ik 9{P}¥ . After constructing a formula
InOut, (N, ...,F) ané sets Poc(N,...,H, 1), SyntP(N, ...
.+« sMult),algorithms guesses the formulas N,...,F
such that the premisses of the rule (FR) are true
in I,then applies the rule (FR).

The lemma implies correctness of pur algorithm.

Thus we have proved that the set of all partial

assertions true in I is uniformly recursively
enumerable in Th(I).

It remains to be proved that the set of all true
in I negations of partial correctness assertions
is uniformly recursively enumerable in Th(I).

Notice that it is possible to assian.effectively
to a program P a recursively enumerable sequence
Bo(x,y),Bl(x,y),... o” >pen formalas such that

A;(x,y) iff IkBo(x,y)vﬁl(x,y)v... .
The theorem follows fram the following fact:

I P 9{FlY iff there exists n in @ such that
IR@EXy)( €x)A Bn(x,y) PN -N’(y))ij

Concluding remarks

1. Our method can not he transferred to the case
of total correctness.This is solved by Clarke,
German and Halpern in ) for case of Herbrand-
~-cefinable

2. Ve do not use coding of finite sequences.

ané expressive interpretations.

3. It seems that the proof of the theorem 4
suggests a way for constructing a relatively comp-
lete nroo” system for complicated prograrming
lanquages. MNamely,such a svstem should contain the
rule (FR) and it should employ relational variahle

s in orcder to make possible to construct a forrula
In()utp(ﬁ, eeerF)e
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4. Theorem 4 cdoes not stand for a definite
improvement of the Lintons theorem. Is.it possible
to ramove the assumption that PL is closed under
recursion ? Moreover,the problem of relative
camleteness of dynamic logics based on acceptable

programing lanquages remains open.
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