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Abstract In this paper a generalization of a 

certain Lipton's theorem (see Lipton [5]) is 

presented. Namely,we show that for a wide class of 

programming languages the following holds:the set 

of all partial correctness assertions true in an 

expressive interpretation I is uniformly decidable 

(in I) in the theory of I iff the halting problem 

is decidable for finite interpretations. In the 

effect %~ show that such limitations as effective- 

ness or Herbrand definability of interpretation 

(they are relevant in the previous proofs)can be 

removed in the case of partial correctness. 

1. B~CI~q~qOL~9 

In this section we recall same history of the 

considered problem and we restate the known 

results. 

In order to show the inherent ccmple~(ity of the 

problem of partial correctness Cod~ introduced the 

notion of relative completeness. Supplying }~oare's 

system with an oracle answering questions on vali- 

dity of first-order formulas he was able to sepa- 

rate the reasoning about the programs from the 
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reasoning about the undrelying language of ivar- 

iants. The idea of oracle results in Ik)are-like 

system far programming language which is consi- 

dered in [3]. Tnis system is relatively complete, 

i.e. complete over expressive interpretations. 

( An interpretation I is said to be expressive 

iff the weakest preconditions of programs are 

first-order definable in I. ) 

Natural question arose for other,more complica- 

ted programming languages : does the e~ressive- 

ness stand for the sufficient condition for the 

existence of relatively complete Hoare's logic ? 

Clarke ( see [i~) d'%scovered that for languages 

with certain natural features ( e.g. call by 

name. parameter passing, functions,global variables 

and coroutines with local recursive procedures 

that can access global variables ) it is impossibl 

e to construct a Hoare°s logic which is sound and 

relatively camplete in the sense of Cook.Tb~s 

inccmioleteness result is based om the observation 

that if a programming language possesses a 

relatively ccmplete proof system for partial 

correctness assertions then the halting problem 

for finite interpretations must be decidable. 

Lipton ( see [5 ]) attempted to prove the convers 

e : if PL is an acceptable programming language 

and the halting problem for progra~s in PL is 

decidable for finite interpretations then PL has 

a relatively complete proof system for partial 

correctness assertions. 
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Roughly spe6f~ing, a programming language ?L is 

said to be acceptable iff every program in PL can 

be. effectively translated into, for instance, 

Priedman's sehems ( see- [4]) and ~ is closed 

under reasonable programming constructs. 

Eventually, Lipton obtained the following partial 

answer : 

Th.l ( Lipton, 1977 ) 

Let PL be a deterministic acceptable program- 

ruing language. Then the following are ecuivalent: 

i. IgJ has a ~ecidable halting problem for finite 

interpretat ions. 

2. The true quantifier-free partial correctness 

assertions are recursively enumerable in .'n(I) 

and in a certain presentation of I for expressive 

and effective interpretations I. 

Clarke,German and }{alpern (see [2]) obtained 

a significant generalization of the Lipton's 

theorem to the first-order partial ( and total 

too ) correctness assertions. Their results are 

quoted below. 

An interpretation I is said to be Herbrand- 

-definable iff every element of I is the value of 

a constant term. 

Th. 2 (Clarke, C,~rman, Halpern 1982) 

Let PL .be a deterministic acceptable program- 

ruing language with recursion. Then the following 

are equivalent : 

i. PL has a decidable halting proble~ for finite 

interpretations. 

2. The true first-order partial (resp. total) 

correctness assertions are uniformly (in I) 

decidable in Th(1) for expressive and !lerbrand- 

-definable ~nterpretations I. 

If we limit ourselves to expressive interpreta- 

tions,then the following holds : 

Th. 3 (Clarke,Cerman,Halpern 1982) 

Let PL be a deterministic acceptable program- 

ming language. Then the following are equivalent: 

I. PL has a decidable halting problem for finite 

interpretat iotas. 

2. The true first-order p~rtial (resp. total) 

correctness assertions are decidable in Th(I) and 

in a certain presentation of I for exoressive 

and effective interpretations I. 

~btice that a decision procedure (in Th.3) for 

correctness assertions depends simultaneously 

on Th(1) and on I,i.e. it is not uniform in I. It 

means that such a procedure does not stand for a 

realistic analogue_ of Hoare-type proof system, 

since ~bare-type proof systems are inc~e,nencl~.nt of 

the particular concrete interpretation. 

2.RELATIVE C(IMPLETF/TF~S OF PARTIAL COP~RECFNESS 

In this section our main result is presented. 

~b shall prove, the following 

Th.4 

Let PL be a deterministic acceptable program- 

mJ.ng language with recursion. Then the following 

are equivalent : 

I. PL has a decidable halting problem for finite 

interpretations. 

2. The t~ue first-order partial correctness 

assertions are uniformly decidable in Th(I) for 

expressive interpretations I. 

It seem~ that theorem 4 (ccrgparing to th.2,th.3) 

provides more information on ability to find good 

axiom system for ccmplicated programming languages 

In words of Clarke,german and Halpern [2] : 

".Tn order for a d~cision procedure to be a 

realistic analogue of ~ rlny~-}bare axiom system 

it should, in some. sense,be uniform; i.e. indepen- 

de.nt of the particular interpretation that is 

being used." 

In order to outline the proof of our result some. 

definitions and notions are necessary.The basic 

one is the notion of an acceptable programming 

language. ~ do not quote the long definition and 

we refer the reader to the paper L2]. Intuitively, 

a programming language PL is said to be acceptable 

iff for every program in PL it is possible to 

effectively ascertain its step-by-step C(mlputatio 

n in interpretation I by checking in I open 

formulas; moreover, PL is closee unc]er reasonable 

programming constructs. Vor instance, almost all 
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Algol-like programming languages are acceptable. 

Let ~ be an acceptable programming language. 

For a program P in PL ond for an interpretation I 

~(x,y) denotes the input-output relation of the 

program P in the interpretarion I. 

def. An interpretation I is expressive (for PL) 

iff for every program P in PL there is a first- 

-order formula Bp(x) such t~hat I Bp(X) iff for 
T " 

some y in I, ~(x,y). 

~ef. TE ~£DI '~ iff for all x,v in T,if I ~(x) 
' ' ! 3" 

and ~(x,y) then I ~T(y). 

def. An interpretation I is weakly arithmetic iff 

there exist first-order formulas N(x) ,F(x,y) ,.q(x,y) 

, Z(x) ,h~d(x, y, z) ,Mult(x,y, z) (with respectively k, 

2k,2k,k,3k ~nd 3k free variables for sane. k) such 

that E der ~ (:.s an equivalence relation on I k and 

formulas !:,7,'~,Add,Mult ~efine on the .get 

{x I I~](x~ the mo~el M such that the guoteient 

model M/E ~ isomorphic to the standard model 

<~; 0, +l, +, * -) 

hbw we ar in e .nos~tion to outline t~ne proof of 

t~heorem 4. 

T~et 1 'rj= = expressive interpretation. 

AS in Lipton [5] ,our proof splits into two cases. 

The case when for every program P in PL there 

is a number B such that P never accesses more than 

B values on any input was proved by Clarke,C~.rman 

and l~ipern in [2]. 

In the case when some program can access an un- 

bounded number of different values our approach is 

different from that of Clarke,German and I~alpern. 

The key idea is to represent the input-output rela- 

tion of a program by means of the le&st relations 

satisfying certain first-order conditions. ~ join 

fi~ed-point approach and ideas of coding of terms 

used by Clarke,German and ~Lalpern in [2]. 

Let P be in PL and let x={x I ..... Xq} be the set 

of t3~ee variables of the program P (dep(P) in ~] ) 

Let y = {Yl ..... Yql be a copy of x. Let N,E,Z,S,Add 

,~llt be new predicate symbols for arithmetical 

notions, H,U,F be (respectively) 2-ary, l-ary and 

and. 2-ary new predicate symbols. 

Lemma 

We can effectively construct first-order axioms 

Fac (encod~ing) for }_~,U, and axioms SyntP for F and 

a first-order formula InOUtp(N, ...,Mult,H,U,F) 

such that : 

i. For every first-order formulas N,...,Mult 

which model in I axioms Ax for aritahmatic (AXI-9 in 

[2]) and for ev~-ry first-order formulas II,U,F which 

moclel in I axioms Fac and SyntP,the following 

holds : 

for all x,y in I,if ~(x,y) then 

I ~InOu~(N ..... F) ( x , y ) .  

2. There exist first-order formulas N~, ..... F~ 

such that they model in I axionzs Ax, Falc,SyntP and 

for all x,y in I , ~(x,y) iff 

iff I~InOu~(N w ..... F~ )(x,y). 

Proof (Outline) 

The set Enc consists of recursive definitions for 

coding of terms over variables xvy (scmet/~ing like 

H(z,d) in [2]) and recursive definitions for uni- 

versal predicate [!(z) for open formulas over 

variables xuy: U(z) iff the z-th open formula over 

xvy is satisfied. (RecursJve definitions for I!,F 

involve~ N,E, ...,~llt and recursive definitions for 

[I involve H,N,E,... ,Mult. ) 

~ can construct a recursively enumerable sequenc 

e B0(x,y),81(x,y) .... of open fc~T~ulas such that 

~ (x,y) iff I~B0(x,y)vBl(x,y)v... 

Let f(n) = standard cod of Bn(X,y). 

The set SyntP consists of recursive definitions 

(for F) representing f (treated as a relation). 

We define 

InOUtp(N ..... F) = (~w) (.gv) (N(w)^N(v)AF(w,v)^U(v)). 

Let I be the interpretation that is being consi- 

dered.Since. I is expressive,tJ~e theor~n of deMillo, 

Lipton, Snyder (see ~]) imply that I is we&kly 

arithmetic.The relations which are defined in I by 

first-ordem formulas which make I we~kly arith- 

metic are programmable .in I (as relations). This 

fact is derivable from the proof of the theorem 

of de Millo,Lipton, Snyci~r. Recall that PL is 

assumed to be deterministic and it is closed under 

recursion. Recursive definitions in Fac and in 

SyntP "work right" on standard natural ntunbers. 

Hence,point 2 of our lemma holds by expressivity 

of I. [] 
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~,~ Drove the theorem by r~-J~ing use of the followi 

ng. fixed-point r~le (,?R.) : 

pre:~.i.sses : Ax(~,... ,Mult), ~nc (.~,... ,Mult, ~'{, U), 

~qyntP (N ..... Mult), 

~(~)--~(.Vy. ) (InOUtp(N" ..... F) (x,y) --9 

-~ ~(y) ) 

(for certain first-order 

formulas N,... ,M~It, H, U,F) 

conclusion: ~{P]~ 

Let I ~ ~{P]~; . After constructing a formula 

InOutp(_N ..... _~) and .~.ts Er~.(N ..... H,U),.~yntP(N .... 

.... Mult), algorithms guesses the forrm/las N,..., F 

such that the premisses of the rule (FR) are true 

in I,then applies the rule (FR). 

The lemma implies correctness of pur algorithm. 

Thus we have proved that the ~t of all parti&l 

assertions true in I is uniformly recursively 

en~m~erable in Th ( I). 

It remains to be pro~ that the set of all true 

in I negations of partial correctness assertions 

is uniformly recursively en%mlsrable in Th(1). 

Notice that it is possible to assign, effectively 

to a program P a rec~sively enumerable sequence 

B0(x,y) ,Bl(x,y),... ol .-,~en formulas such that 

~(x,y) iff I~80(x,y).B l(x,y)v... 

The theorem follows from the following fact: 

I ~ ~{P~/ iff there exists n in 60 such that 

I ~ (3x, y) (¢~(x) ~ 8n(X,y) z, -1~;(y) ~. 

Concluding remarks 

i. Our method can not .be. transferred to the c&se 

of total correctness.Tnis is solved by Clarke, 

German and }~alpern in ~] for case of Herbrand- 

-~'efinable and expressive interpretations. 

2. He do not use coding, of finite sequences. 

3. It seer~ that the proof of the theorem 4 

suggests a way for constructing, a relatively comp- 

lete ~roo r" systPJn for c~lJ.cat~ prograrm~i.ng 

l~nguages. ~m~e.lv, such a system sho~l].c! contain the 

rule (.~2.) eJ~d it should employ relational variable 

s in ordex to make possible to construct a formula 

InOutp (N, ... ,F) . 

4. ~"~leoreln 4 does not stan~ for a ~efinite 

improvement of the Liptons theorem. Is ,it [x~ssible 

to reskn~e the assuraption that r~ is closed under 

recursion ? ,Moreover,the probleln of relative 

corapleteness of .c~n~,~Jc logics b~sed on acceptable 

programming langLmges remains c~en. 
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