
Enhancing Modular OO Verification with Separation Logic

Wei-Ngan Chin1,2 Cristina David1 Huu Hai Nguyen1,2 Shengchao Qin3

1 Department of Computer Science, National University of Singapore, Singapore
2 Computer Science Programme, Singapore-MIT Alliance, Singapore

3 Department of Computer Science, Durham University, UK
{chinwn,davidcri,nguyenh2}@comp.nus.edu.sg shengchao.qin@durham.ac.uk

Abstract
Conventional specifications for object-oriented (OO) programs
must adhere to behavioral subtyping in support of class inheri-
tance and method overriding. However, this requirement inherently
weakens the specifications of overridden methods in superclasses,
leading to imprecision during program reasoning. To address this,
we advocate a fresh approach to OO verification that focuses on the
distinction and relation between specifications that cater to calls
with static dispatching from those for calls with dynamic dispatch-
ing. We formulate a novel specification subsumption that can avoid
code re-verification, where possible. Using a predicate mechanism,
we propose a flexible scheme for supporting class invariant and
lossless casting. Our aim is to lay the foundation for a practical
verification system that is precise, concise and modular for sequen-
tial OO programs. We exploit the separation logic formalism to
achieve this.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.3.3 [Programming Lan-
guages]: Language Construct and Features; F.3.1 [Logics and
Meanings of Programs]: Specifying, Verifying and Reasoning
about Programs

General Terms Languages, Theory, Verification

Keywords Automated Verification, Enhanced Subsumption, Sep-
aration Logic, Lossless Casting, Static and Dynamic Specifications.

1. Introduction
Object-based programs are hard to statically analyse mostly be-
cause of the need to track object mutations in the presence of
aliases. Object-oriented (OO) programs are even harder, as we have
to additionally deal with class inheritance and method overriding.

One major issue to consider when verifying OO programs is
how to design specification for a method that may be overridden by
another method down the class hierarchy, such that it conforms to
method subtyping. In addition, it is important to ensure that subtyp-
ing is observed for object types in the class hierarchy, including any
class invariant that may be imposed. From the point of conformance
to OO semantics, most analysis techniques uphold Liskov’s Sub-
stitutivity Principle (Liskov 1988) on behavioral subtyping. Under

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’08, January 7–12, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

this principle, an object of a subclass can always be passed to a
location where an object of its superclass is expected, as the ob-
ject from each subclass must subsume the entire set of behaviors
from its superclass. To enforce behavioral subtyping for OO pro-
grams, several past works (Dhara and Leavens 1996; Barnett et al.
2004; Kiniry et al. 2005) have advocated for class invariants to be
inherited by each subclass, and for pre/post specifications of the
overriding methods of its subclasses to satisfy a specification sub-
sumption (or subtyping) relation with each overridden method of
its superclass.

Each specification of a method (or a piece of code) is typically
given as a pair (pre, post) of precondition pre and postcondition
post. We use an infix notation pre ∗→ post to denote such a speci-
fication. A basic specification subsumption mechanism was orig-
inally formulated as follows. Consider a method B.mn in class B

with (preB ∗→ postB) as its pre/post specification, and its overrid-
ing method C.mn in subclass C, with a given pre/post specification
(preC ∗→ postC). The specification (preC ∗→ postC) is said to be
a subtype of (preB ∗→ postB) in support of method overriding, if
the following subsumption relation holds:

preB∧type(this)<:C =⇒ preC postC =⇒ postB

(preC ∗→ postC) <:C (preB ∗→ postB)

The two conditions are to ensure contravariance of precondi-
tions, and covariance on postconditions. They follow directly from
the subtyping principle on methods’ specifications. As the two
specifications are from different classes, we add the subtype con-
straint type(this)<:C to allow the above subsumption relation to be
checked for the same C subclass. To reflect this, we parameterize
the subsumption operator <:C with a C-class as its suffix.

The main purpose of using specification subsumption is to sup-
port modular reasoning by avoiding the need to re-verify the code
of overriding method C.mn with the specification (preB ∗→ postB)
of its overridden method B.mn. In the case that specification sub-
sumption does not hold, an alternative way to achieve behavioral
subtyping is to use the specification inheritance technique of Dhara
and Leavens (1996) to strengthen the specification of each over-
riding method with the specification of its overridden method, as
follows:

Consider a method B.mn in class B with (preB ∗→ postB) as its
pre/post specification, and its overriding method C.mn in subclass C,
with pre/post specification (preC ∗→ postC). To ensure specifica-
tion subsumption, we can strengthen the specification of the over-
riding method via specification inheritance with the intersection of
their specifications, namely:

(preC ∗→ postC)
�

(preB∧type(this)<:C ∗→ postB).
Specification inheritance requires the use of multiple specifica-

tions (or intersection type) to provide for a more expressive mech-
anism to describe each method. By inheriting a new specification
for the overriding method, this technique uses code re-verification

87

itself to ensure that a behavioral subtyping property would be en-
forced. We can generalise a definition of the subsumption relation
between two multiple specifications, as follows:

DEFINITION 1.1 (Multi-Specifications Subsumption). Given two
multiple specifications,

�n
j=1 specBj (for class B) and

�m
i=1 specCi

(for subclass C), where each of specBj and specCi is a pre/post
annotation of the form pre ∗→ post. We say that they are in speci-
fication subsumption relation, (

�m
i=1 specCi) <:C (

�n
j=1 specBj),

if the following holds : ∀j∈1..n ∃i∈1..m · specCi <:C specBj.

While modular reasoning can be supported by the above sub-
sumption relations, the reasoning were originally formulated in the
framework of Hoare logic. Recently, separation logic has been pro-
posed as an extension to Hoare logic, providing precise and con-
cise reasoning for pointer-based programs. A key principle fol-
lowed in separation logic is the use of local reasoning to facilitate
modular analysis/reasoning. An early work on applying separation
logic to the OO paradigm was introduced by Parkinson and Bier-
man (2005). In that work, two key concepts were identified. Firstly,
an abstract predicate family pt(v1, .., vn) was used to capture some
program states for objects of class hierarchy with type t. Each ab-
stract predicate has a visibility scope and is allowed to have a dif-
ferent number of parameters, depending on the actual type of its
root object. Moreover, each predicate family acts as an extensible
predicate for which incremental specification is given and verified
for each class. Secondly, the concept of specification compatibil-
ity was introduced to capture the subsumption relation soundly, as
follows:

A specification preC ∗→ postC is said to be compatible with
preB ∗→ postB under all program contexts, if the following holds:

∀code · {preC}code{postC} =⇒ {preB}code{postB}
(preC ∗→ postC) <: (preB ∗→ postB)

Specification compatibility can be viewed as a more fundamen-
tal way to describe specification subsumption in terms of Hoare
logic triples. However, it cannot be directly implemented, since its
naive definition depends on exploring all possible program codes
for compatibility. In this paper, we provide a practical alternative
towards automated verification of OO programs that can support
better precision and avoid unnecessary code re-verification. We use
key principles of separation logic to achieve this.

1.1 Towards Better Precision and Reuse

The focus on specifications that support method overriding has a
potential drawback that these specifications are typically imprecise
(or weaker) for methods of superclasses. Such specifications typi-
cally have stronger preconditions (which restrict their applicability)
and/or weaker postconditions (which lose precision). This draw-
back can cause imprecision for OO verification which has in turn
spurred practical lessons on tips and tricks for specification writers
(Kiniry et al. 2005). Furthermore, mechanisms such as specification
inheritance may have unnecessary code re-verification, especially
when specification subsumption holds.

Let us consider the specification of a simple up-counter class
in Figure 1. This Cnt class is accompanied by three possible sub-
classes (i) FastCnt to support a faster tick operation, (ii) PosCnt

which works only with positive numbers, (iii) TwoCnt which sup-
ports an extra backup counter.

Let us first design the specifications for instance methods of
class Cnt without worrying about method overriding. A possible
set of pre/post specifications is given below where this and res

are variables denoting the receiver and result of each method.

void Cnt.tick() static this::Cnt〈n〉 ∗→ this::Cnt〈n+1〉
void Cnt.set(int x) static this::Cnt〈n〉 ∗→ this::Cnt〈x〉
int Cnt.get() static this::Cnt〈n〉 ∗→ this::Cnt〈n〉∧res=n

class Cnt { int val;
Cnt(int v) {this.val:=v}
void tick() {this.val:=this.val+1}
int get() {this.val}
void set(int x) {this.val:=x}

}
class FastCnt extends Cnt {
FastCnt(int v) {this.val:=v}
void tick() {this.val:=this.val+2}

}
class PosCnt extends Cnt inv this.val≥0 {
PosCnt(int v) {this.val:=v}
void set(int x) {if x≥0 then this.val:=x else error()}

}
class TwoCnt extends Cnt { int bak;
TwoCnt(int v, int b) {this.val:=v; this.bak:=b}
void set(int x) {this.bak:=this.val; this.val:=x}
void switch(int x)
{int i:=this.val; this.val:=this.bak; this.bak:=i}

}

Figure 1. Example: Cnt and its subclasses

We refer to these as static specifications and precede them with the
static keyword. They can be very precise as they were considered
statically on a per method basis without concern for method over-
riding, and can be used whenever the actual type of the receiver is
known. The notation y::c〈v1, .., vn〉 denotes that variable y is point-
ing to an object with the actual type1 of c-class and where each
field y.fi is denoted by variable vi. For example, in this::Cnt〈n〉,
the field this.val is denoted by variable n. This format for objects
is used primarily for static specification. To describe an object type
whose type is merely a subtype of the c-class, we shall use a differ-
ent notation, namely y::c〈v∗〉$, which implicitly captures an object
extension with extra fields from its subclass.

If we take into account the possible overriding of the tick

method by its corresponding method in the FastCnt subclass, we
may have to weaken the postcondition of Cnt.tick. Furthermore,
to guarantee the invariant this.val≥0 of the PosCnt class, we may
have to strengthen the preconditions of methods Cnt.set, Cnt.tick
and Cnt.get. These weakenings result in the following dynamic
specifications which are the usual ones being considered for dy-
namically dispatched methods, where the type of the receiver is a
subtype of its current class.

void Cnt.tick() dynamic this::Cnt〈n〉$∧n≥0
∗→ this::Cnt〈b〉$∧n+1≤b≤n+2

void Cnt.set(int x)
dynamic this::Cnt〈n〉$∧x≥0 ∗→ this::Cnt〈x〉$

int Cnt.get()
dynamic this::Cnt〈n〉$∧n≥0 ∗→ this::Cnt〈n〉$∧res=n

Such changes make the specifications of the methods in super-
classes less precise, and are carried out to ensure behavioral subtyp-
ing. Furthermore, these specifications must also cater to potential
modifications that may occur in the extra fields of the subclasses by
their overriding methods either directly or indirectly. Due to con-
flicting requirements, we advocate the co-existence of both static
and dynamic specifications. The former is important for precision
and shall be used primarily for code verification, while the latter is
needed to support method overriding and must be used for dynam-
ically dispatched methods. Formally:

1 To make our static specifications more reusable through inherited meth-
ods, we shall avoid the use of an explicit constraint, like type(this)=c,
on the actual type of the receiver.

88

DEFINITION 1.2 (Static Pre/Post). A specification is said to be
static if it is meant to describe a single method declaration, and
need not be used for subsequent overriding methods.

DEFINITION 1.3 (Dynamic Pre/Post). A specification is said to
be dynamic if it is meant for use by a method declaration and its
subsequent overriding methods.

Past works, such as America (1991); Dhara and Leavens (1996);
Liskov and Wing (1994); Parkinson (2005); Barnett et al. (2004);
Muller (2002), are based primarily on dynamic specifications,
though implicit static specifications via type(this)=c can also be
used in ESC/Java and Spec#, while JML uses code contract (Leav-
ens et al. 2007, ch 15) as a form of static specification. However,
these proposals for static specifications are somewhat ad-hoc, as
they do not impose any relation between static and dynamic speci-
fications. In our approach, we emphasize static specifications over
dynamic specifications. Most importantly, we always ensure that
the static specification of a method from a given class is always a
subtype of the dynamic specification of the same method within the
same class. This principle is important for modular verification, as
we need only verify the code of each method once against its static
specification. It is unnecessary to verify the corresponding dynamic
specification since the latter is a specification supertype. Our pro-
posal uses the following principles for OO verification, achieving
both precision and reuse.

DEFINITION 1.4 (Principles for Enhanced OO Verification).

• Static specification is given for each new method declaration,
and may be added for inherited methods to support new auxil-
iary calls and subclasses with new invariants.

• Dynamic specification is either given or derived. Whether given
or derived, each dynamic specification must satisfy two sub-
sumption properties. Each must be a :

specification supertype of its static counterpart. This helps
keep code re-verification to a minimum.
specification supertype of the dynamic specification of each
overriding method in its subclasses. This helps ensure be-
havioral subtyping.

• Code verification is only performed for static specifications.

1.2 Our Contributions

The main contributions of our paper are highlighted below:

• Enhanced Specification Subsumption : We improve on a clas-
sical specification subsumption relation. Apart from the usual
checking for contravariance on preconditions and covariance on
postconditions, we allow postcondition checking to be strength-
ened with the residual heap state from precondition checking.
This enhancement is courtesy of the frame rule from separation
logic which can improve modularity.

• Static and Dynamic Specifications : We advocate the coexis-
tence of static and dynamic specifications, with an emphasis on
the former. We impose an important subsumption relation be-
tween them. This principle allows for improved precision, while
keeping code re-verifications to a minimum.

• Lossless Casting : We use a new object format that allows loss-
less casting to be performed. This format supports both partial
views and full views for objects of classes that are suitable for
static and dynamic specifications, respectively.

• Statically-Inherited Methods : New specifications may be
given for inherited methods but must typically be re-verified.
To avoid the need for re-verification, we propose for specifica-
tion subsumption to be checked between each new static speci-
fication of the inherited method in a subclass against the static

specification of the original method in the superclass. We iden-
tify a special category of statically-inherited methods that can
safely avoid code re-verification for static specifications.

• Deriving Specifications : We propose techniques to derive
dynamic specifications from static specifications, and show how
refinement can be carried out to ensure behavioral subtyping.

• Prototype System and Correctness Proof : We have imple-
mented a prototype system to validate our proposal, and formu-
lated a set of lemmas on its correctness.

The next section provides more details of our approach in sup-
porting objects for class inheritance, and methods via an enhanced
specification subsumption relation.

2. Our Approach
Our approach to enhancing OO verification is based on separation
logic. We shall describe how we adapt separation logic for reason-
ing about objects from a class hierarchy and how to write precise
specifications that avoid unnecessary code re-verification.

2.1 Separation Logic and Aliasing

Separation logic (Reynolds 2002; Isthiaq and O’Hearn 2001) ex-
tends Hoare logic to support reasoning about shared mutable data
structures. It adds two more connectives to classical logic: separat-
ing conjunction ∗, and separating implication −−∗. h1 ∗ h2 asserts
that two heaps described by h1 and h2 are domain-disjoint. h1−−∗h2

asserts that if the current heap is extended with a disjoint heap de-
scribed by h1, then h2 holds in the extended heap. In this paper we
use only separating conjunction.

Existing formalisms from separation logic literature (e.g. Isthiaq
and O’Hearn (2001); Reynolds (2002); Parkinson and Bierman
(2005)) capture heap constraints (with an initial reference from
p) using two different notations, namely : i) p �→ [. . .] to denote
a pointer p to a single data object represented by [. . .], and ii)
pred(p, ..) for a pointer p to a set of linked objects in accordance
to a predicate named pred. In order to express both notations in a
uniform manner, we introduce the notation p::c〈..〉 where c is either
a data object or a heap predicate.

Aliasing can be locally specified and captured in separation
logic. For instance, the formula x::PosCnt〈a〉∗y::PosCnt〈b〉 speci-
fies two distinct PosCnt objects referenced respectively by x and
y that are non-aliased. In contrast, the formula x::PosCnt〈a〉∧x=y

specifies a single PosCnt object referenced by both x and its local
alias y. There may be other aliases to an object of the heap formula
but the ability to perform local reasoning in separation logic al-
lows us to ignore them. The following static method’s specification
captures both scenarios using multiple specifications of the form
�n

i=1(prei ∗→ posti) below:

void simTick(PosCnt x, PosCnt y)
x::PosCnt〈a〉∗y::PosCnt〈b〉 ∗→

x::PosCnt〈a+1〉∗y::PosCnt〈b+1〉�
x::PosCnt〈a〉∧x=y ∗→ x::PosCnt〈a+2〉

{x.tick(); y.tick()}
Note the effect of the method (specified in the post-conditions) can
be very different depending on whether x and y are aliased, or not.

We support a heap predicate mechanism that can be user-
specified to capture a group of related objects. As an example,
we may use an ll predicate (or view) to capture a linear linked-list
of n nodes, as follows:

root::ll〈n〉 ≡ (root=null∧n=0) ∨ (∃i, m, q ·
root::node〈i, q〉∗q::ll〈m〉∧n=m+1) inv n≥0

class node {int val; node next; ..methods..}

89

For convenience, we name the first parameter of each predicate
with a default name, called root, that may be omitted in the LHS.
Each predicate may also have other parameters, such as pointers,
integers or even bags and lists. These parameters correspond to
model fields of some specification languages (Barnett et al. 2004;
Muller 2002). Existential quantifiers may also be omitted without
ambiguity. These simplifications result in the following more con-
cise predicate definition:

ll〈n〉 ≡ (root=null∧n=0)∨
root::node〈i, q〉∗q::ll〈n−1〉 inv n≥0

For simplicity, we shall also restrict our constraint domain to
support essential features such as pointers, class subtyping and
integers. The above definition captures an equivalence between a
predicate and a heap formula in separation logic. Whenever the
predicate holds, we can replace it by its heap formula. Similarly,
whenever the formula holds, we can replace it by its corresponding
predicate. The first technique is known as unfolding (or unrolling),
while the second technique is known as folding (or rolling). These
reasonings are sound and can be automated, as shown in Nguyen
et al. (2007).

An important facet of separation logic is the frame rule:

� {Δ} e {Δ1}
� {Δ∗ΔR} e {Δ1∗ΔR} modifies(e) ∩ vars(ΔR) = ∅

The side-condition says that the program e does not modify the
variables in ΔR. The frame rule captures the essence of “local
reasoning”: to understand how a piece of code works it should
only be necessary to reason about the memory it actually accesses.
Ordinarily, aliasing precludes such a possibility but the separation
enforced by the ∗ connective allows local reasoning to be captured
by the above rule. Through this frame rule, a specification of the
heap being used by e can be arbitrarily extended as long as free
variables of the extended part are not modified by e.

To automate the reasoning process, we have formalised in
Nguyen et al. (2007) a procedure for entailment with frame in-
ference capability :

DEFINITION 2.1 (Entailment with Frame Capability). The entail-
ment ΔA�ΔC ∗ΔR checks that heap nodes in the antecedent ΔA

are sufficiently precise to cover all nodes from the consequent ΔC ,
and can return a residual heap state ΔR (from ΔA) that is not used.

For example if we have ΔA = x::ll〈n〉∧n>5 and ΔC = x::node〈 , y〉,
the entailment process would succeed (via unfolding ll〈n〉 in ΔA

to match with the object node in ΔC) and also return residual (or
frame) ΔR = y::ll〈n−1〉∧n>5. That is:

ΔA ≡ x::ll〈n〉∧n>5
≡ x::node〈 , q〉∗q::ll〈n−1〉∧n>5
� ΔC ∗ ΔR

� (x::node〈 , y〉) ∗ ΔR

� (x::node〈 , y〉) ∗ (y::ll〈n−1〉∧n>5)

2.2 Object View and Lossless Casting

For separation logic to work with OO programs, one key problem
that we must address is a suitable format to capture the objects of
classes. We should preferably also address the problem of perform-
ing upcast/downcast operations statically in accordance with the
OO class hierarchy, and without loss of information where possi-
ble.

Consider two variables, x and y, which point to objects from
Cnt class (with a single field) and TwoCnt class (with two fields), re-
spectively. Intuitively, we may represent the first object by x::Cnt〈v〉
where v denotes its field, and the second object by y::TwoCnt〈v, b〉
where v, b denote its two fields. However, a fundamental problem
that we must solve is how to cast the object of one class to that of

its superclass, and vice-versa when needed. To do this without loss
of information, we provide two extra information : (i) a variable to
capture the actual type of a given object and (ii) a variable to cap-
ture the object’s record extension that contains extra field(s) of its
subclass. When a TwoCnt object is first created, we may capture its
state using the formula :

y::TwoCnt〈t, v, b, p〉∧t=TwoCnt∧p=null

The above formula indicates that the actual type of the object is
t=TwoCnt and that there is no need for any record extension since
p=null. With this object format, we can now perform an upcast to
its parent Cnt class by transforming it to:

y::Cnt〈t, v, q〉∗q::Ext〈TwoCnt, b, p〉∧t=TwoCnt∧p=null

Though this cast operation is viewing the object as a member
of Cnt class, it is still a TwoCnt object as the type information
t=TwoCnt indicates. Furthermore, we have created an extension
record q::Ext〈TwoCnt, b, p〉 that can capture the extra b field of
the TwoCnt subclass. For simplicity, we currently use an implicit
pointer q to capture the extension record. This model allows a
sequence of upcast operations to be easily captured. Such an upcast
operation is lossless as we have sufficient information to perform
the inverse downcast operation back to the original TwoCnt format.
To allow lossless casting between Cnt and TwoCnt, we add an
equivalence rule :

TwoCnt〈t, v, b, p〉 ≡ root::Cnt〈t, v, q〉∗q::Ext〈TwoCnt, b, p〉
An unfold step (which replaces a term that matches the LHS
by RHS) corresponds to an upcast operation, while the fold step
(which replaces a term that matches the RHS by LHS) corresponds
to a downcast operation. Such a rule can be derived from each
superclass-subclass pairing. Formally:

DEFINITION 2.2 (Lossless Casting). Given a class c〈v∗〉 with
fields v∗ and its immediate subclass d〈v∗, w∗〉 where w∗ denotes
its extra fields, we shall generate the following casting rule that is
coercible in either direction:

root::d〈t, v∗, w∗, p〉 ≡ root::c〈t, v∗, q〉∗q::Ext〈d, w∗, p〉
Note that for any object view d〈t, . . .〉 it is always the case that
the subtype relation t<:d holds as its invariant. Furthermore, the
default root parameter on the LHS may be omitted for brevity.

Lossless casting is important for establishing the subsumption
relation between each static specification and its dynamic counter-
part, as the extension record can be preserved, if needed, by each
static specification. Lossless casting is also important for the static
specification of inherited methods which should preferably be in-
herited without the need for re-verification. This can be achieved
by exploiting local reasoning which allows us to assert that an ex-
tension record need not be modified by each inherited method.

There are also occasions when we are required to pass the
full object with all its (extended) fields. This occurs for dynamic
specifications where subsequent overriding method may change the
extra fields of its subclass. To cater to this scenario, we introduce an
ExtAll〈t1, t2〉 view that can capture all the extension records from
a class t1 for an object with actual type t2. This scenario occurs for
the dynamic specification of Cnt.set method, as shown below:

this::Cnt〈t, , p〉∗p::ExtAll〈Cnt, t〉∧x≥0
∗→ this::Cnt〈t, x, p〉∗p::ExtAll〈Cnt, t〉

Such a dynamic specification may be used with any subtype
of Cnt. The entire object view must be passed to support dynamic
specifications which are expected to cater to the current method and
all subsequent overriding methods. The ExtAll predicate itself can
be defined as follows:
ExtAll〈t1, t2〉 ≡ t1=t2∧root=null ∨ root::Ext〈t3, v∗, q〉

∗q::ExtAll〈t3, t2〉∧t3<t1∧t2<:t3 inv t2<:t1

The notation t3<t1 denotes a class t3 and its immediate super-
class t1. The ExtAll predicate is used to generate all the ex-

90

tension records from class t1 to t2. For example, expression
x::ExtAll〈Cnt, Cnt〉 yields x=null, and x::ExtAll〈Cnt, TwoCnt〉
yields x::Ext〈TwoCnt, b, null〉.

Our format allows two kinds of object views to be supported:

DEFINITION 2.3 (Full and Partial Views). We refer to the use of
formula x::c〈t, v∗, p〉∗p::ExtAll〈c, t〉 as providing a full view for
an object with actual type t that is being treated as a c-class object,
while x::c〈t, v∗, p〉 provides only a partial view with no extension
record. For brevity, full views are also written as x::c〈v∗〉$, while
partial views are coded using x::c〈v∗〉.

This distinction between partial and full views (for objects) fol-
lows directly from our decision to distinguish static from dynamic
specifications. Partial views are typically used for the receiver ob-
ject of static specifications, while full views are used by dynamic
specifications. Some readers may contend that lossless casting of
an object x from d〈v∗, w∗〉 to c〈v∗〉 may also be captured with the
help of separating implication by representing the extension record
using x::c〈v∗〉−−∗ x::d〈v∗, w∗〉. This approach works well for partial
views, but cannot easily handle the ExtAll predicate required by
full views. Moreover, by omitting separating implication, our cur-
rent approach to automated verification is easier to build and prove.

2.3 Ensuring Class Invariants

Ensuring that class invariants hold can be rather intricate, with
the key problems being how and when to check for the invariants.
Based on the simplest assumption, one would expect object invari-
ants to hold at all times. However, this assumption is impractical
for mutable objects. One sensible solution is to expect invariants
to hold based on visible state semantics, which is typically aligned
to the boundaries of public methods. Even this approach may not
be flexible enough. Thus, in Boogie (Barnet et al. 2004; Leino
and Müller 2004), programmers are also allowed to use a spec-
ification field, called valid, that can indicate if the invariant for
an object is being preserved or temporarily broken for mutation.
Similarly, in (Middelkoop et al. 2006), programmers are allowed
to indicate invariants that are inconsistent (not preserved) at some
method boundary.

We aim for a similar level of flexibility but which still re-
mains easy to use. To achieve this, we introduce the concept of an
invariant-enhanced view for each class with a non-trivial invariant,
as follows:

DEFINITION 2.4 (Invariant-Enhanced View). Consider a class
c with a non-trivial invariant δc (�=true) over the fields v∗ of the
object. We shall define a new view of the form c#I〈v∗〉 to capture
its class invariant, as : c#I〈v∗〉 ≡ root::c〈v∗〉∗δc. Furthermore,
for each subclass d〈v∗, w∗〉 with an extra invariant δd over the
fields v∗, w∗, we expect its invariant to be δc∗δd and shall provide a
corresponding view : d#I〈v∗, w∗〉 ≡ root::d〈v∗, w∗〉∗δc∗δd.

The use of separating conjunction to capture the class invariant
allows a form of object ownership to be specified for heap objects
present in δc. Furthermore, invariant-enhanced view can easily and
explicitly indicate when an invariant can be enforced and when it
can be assumed. If a c〈v∗〉 is being used, the class invariant is nei-
ther enforced nor assumed. If a c#I〈v∗〉 is used in the precondi-
tion, its invariant must be enforced at each of its call sites, but can
be assumed to hold at the beginning of its method declaration. If a
c#I〈v∗〉 is used in the postcondition, its invariant must be enforced
at the end of its method declaration, but can be assumed to hold at
the post-state of each of its call sites.

With the help of invariant-enhanced views, we can provide
pre/post specifications that guarantee class invariants are always
maintained by public methods. This can help ensure that all objects

created and manipulated by public methods are guaranteed to sat-
isfy their class invariants. Alternatively, it is also possible to allow
some methods (typically private ones) to receive or produce objects
without the invariant property. This corresponds to situations where
the class invariant is temporarily broken. Our invariant-enhanced
views can achieve this as they can be selectively and automatically
enforced in pre/post annotations.

For example, the invariant-enhanced view of PosCnt is:

PosCnt#I〈t, v, p〉 ≡ root::PosCnt〈t, v, p〉∗v≥0

Two methods get and tick are being inherited from the Cnt super-
class, while a third method set is re-defined to ensure the class in-
variant. We may provide new static specifications for these three re-
spective methods, to incorporate the invariant-enhanced view. Fig-
ure 2 shows how this is done for our running example. It is suf-
ficient to use a weaker precondition of the form this::PosCnt〈v〉
for static-spec(PosCnt.set) without compromising its postcondition
this::PosCnt#I〈x〉. This corresponds to a temporary violation of
the class invariant of PosCnt.

2.4 Enhanced Specification Subsumption

With our use of more precise static specifications, we can now
leverage on a better specification subsumption that can exploit the
local reasoning capability of separation logic. In particular, the
extended fields of objects that are not used should be preserved by
specification subsumption. More formally, we define the enhanced
form of specification subsumption, as follows:

DEFINITION 2.5 (Enhanced Spec. Subsumption). A pre/post an-
notation preB ∗→ postB is said to be a subtype of another pre/post
annotation preA ∗→ postA if the following relation holds:

preA� preB∗Δ postB∗Δ� postA

(preB ∗→ postB) <: (preA ∗→ postA)

Note that Δ captures the residual heap state from the contravariance
check on preconditions that is carried forward to assist in the
covariance check on postconditions.

As an example of its utility, consider the following specification
subsumption that is expected to hold for enhanced OO verification.

static-spec(Cnt.set) <: dynamic-spec(Cnt.set)

For the above to hold, we must prove:

this::Cnt〈t, v, p〉 ∗→ this::Cnt〈t, x, p〉
<: this::Cnt〈t, v, q〉∗q::ExtAll〈Cnt, t〉∧x≥0 ∗→

this::Cnt〈t, x, q〉∗q::ExtAll〈Cnt, t〉
The above subtyping cannot be proven with the basic specifica-

tion subsumption relation from Sec 1 (without the use of a residual
heap state), but succeeds with our enhanced subsumption relation.

We first show the contravariance of the preconditions:

this::Cnt〈t, v, q〉∗q::ExtAll〈Cnt, t〉∧x≥0
� this::Cnt〈t, v, p〉∗Δ

This succeeds with Δ≡p::ExtAll〈Cnt, t〉∧x≥0. We then prove
covariance on the postconditions using:

this::Cnt〈t, x, p〉∗Δ � this::Cnt〈t, x, q〉∗q::ExtAll〈Cnt, t〉
This is proven with the help of residual heap state Δ (with an

extension record) from the entailment of preconditions.
Our preservation of residual heap state is inspired by the needs

of static specification. By the use of a new object format (with loss-
less casting) and a novel specification subsumption mechanism,
we can now support a modular verification process in which re-
verification is always avoided for dynamic specifications. Our en-
hanced specification subsumption can also be viewed as a practical

91

class Cnt { int val;
Cnt(int v) static true ∗→ res::Cnt〈v〉
{this.val:=v}
void tick() static this::Cnt〈v〉 ∗→ this::Cnt〈v+1〉;

dynamic this::Cnt〈v〉$∧v≥0 ∗→ this::Cnt〈w〉$∧v+1≤w≤v+2
{this.val:=this.val+1}
int get() static this::Cnt〈v〉 ∗→ this::Cnt〈v〉∧res=v

dynamic this::Cnt〈v〉$∧v≥0 ∗→ this::Cnt〈v〉$
{this.val}
void set(int x) static this::Cnt〈v〉 ∗→ this::Cnt〈x〉;

dynamic this::Cnt〈v〉$∧x≥0 ∗→ this::Cnt〈x〉$
{this.val:=x}

}
class FastCnt extends Cnt {
FastCnt(int v) static true ∗→ res::FastCnt〈v〉
{this.val:=v}
void tick() static this::FastCnt〈v〉 ∗→

this::FastCnt〈v+2〉 {this.val:=this.val+2}
}

class PosCnt extends Cnt
inv this.val≥0 {

PosCnt(int v) static v≥0 ∗→ res::PosCnt#I〈v〉
{this.val:=v}
void tick() static this::PosCnt#I〈v〉 ∗→ this::PosCnt#I〈v+1〉

dynamic this::PosCnt#I〈v〉$ ∗→ this::PosCnt#I〈v+1〉$
int get() static this::PosCnt#I〈v〉 ∗→ this::PosCnt#I〈v〉∧res=v
void set(int x) static this::PosCnt〈v〉∧x≥0 ∗→ this::PosCnt#I〈x〉

dynamic this::PosCnt〈v〉$∧x≥0 ∗→ this::PosCnt#I〈x〉$
{if x≥0 then this.val:=x else error()}

}
class TwoCnt extends Cnt { int bak;
TwoCnt(int v, int b) static true ∗→ res::TwoCnt〈v, b〉
{this.val:=v; this.bak:=b}
void set(int x) static this::TwoCnt〈v, 〉 ∗→ this::TwoCnt〈x, v〉
{this.bak:=this.val; this.val:=x}
void switch(int x) static this::TwoCnt〈v, b〉 ∗→ this::TwoCnt〈b, v〉
{int i:=this.val; this.val:=this.bak; this.bak:=i}

}
Figure 2. Static and Dynamic Specifications given for Cnt and its Subclasses

algorithm for implementing Parkinson’s specification compatibil-
ity (Parkinson 2005). This link shall be formally proven later in
Lemma 6.1.

3. Conformance to the OO Paradigm
We present mechanisms to ensure that method overriding and
method inheritance are supported in accordance with the require-
ments of the OO paradigm.

3.1 Behavioral Subtyping with Dynamic Specifications

Dynamic specifications are meant for the methods of a given class
and its subclasses. They must conform to the behavioral subtyping
principle to support method overriding (and inheritance), as defined
by the requirement below:

DEFINITION 3.1 (Behavioral Subtyping Requirement). Given
a dynamic specification preC ∗→ postC in a method mn in class
C and another dynamic specification preD ∗→ postD of the corre-
sponding method mn in a subclass D. We say that the two spec-
ifications adhere to the behavioral subtyping requirement using
(preD ∗→ postD) <:D (preC ∗→ postC), if the following subsumption
holds : preD ∗→ postD <: (preC∧type(this)<:D ∗→ postC).

As shown above, we can use the enhanced specification sub-
sumption relation to check for behavioral subtyping. For an exam-
ple, consider the dynamic specification of method Cnt.set and its
overriding method PosCnt.set. Assuming that these dynamic spec-
ifications are given, the behavioral subtyping requirement can be
checked using:

dynamic-spec(PosCnt.set) <:PosCnt dynamic-spec(Cnt.set)

Hence, we have:

this::PosCnt〈 〉$∧x≥0 ∗→ this::PosCnt#I〈x〉$ <:
this::Cnt〈v〉$∧x≥0∧(type(this)<:PosCnt) ∗→ this::Cnt〈x〉$

By contravariance of preconditions, we successfully prove:

this::Cnt〈v〉$∧x≥0∧(type(this)<:PosCnt) �
this::PosCnt〈 〉$∧x≥0 ∗ Δ

where Δ is derived to be x≥0. By covariance of postconditions, we
can prove:

this::PosCnt#I〈x〉$∗Δ � this::Cnt〈x〉$
Hence, the above two dynamic specifications of Cnt.set and

PosCnt.set conform to the behavioral subtyping requirement.

Dynamic specifications may also be given (or derived) for in-
herited methods, especially when their static specifications have
been modified. As with method overriding, we continue to expect
that the behavioral subtyping requirement holds between a dynamic
specification (as supertype) for a method in a class and another
dynamic specification (as subtype) for the same inherited method
in the subclass. Let us consider Cnt.tick and its inherited method
PosCnt.tick. Though no method overriding is present, we must still
ensure dynamic-spec(PosCnt.tick) <: PosCnt dynamic-spec(Cnt.tick).

3.2 Statically-Inherited Methods

Under the OO paradigm, it is possible for a method mn in a class C to
be inherited into its subclass D without any overriding. Furthermore,
the user is free to add a new static/dynamic specification to such an
inherited method for each subclass. Such a scenario may occur for
a subclass with a strengthened invariant. For each inherited method
of this subclass, we anticipate a new static specification possibly
using its invariant-enhanced view. An important question to ask is
if there is a need to re-verify this new static specification against
the body of the inherited method.

We shall first consider static specification where the receiver is
specified using partial view of form this::c〈t, v∗, p〉. For this cat-
egory of static specifications, we are expecting that each method
invocation by this.mn(..) does not modify any fields in the exten-
sion record and is the same as that in the original method prior
to method inheritance. To support the inheritance of static spec-
ifications which use partial views for their receivers, without re-
verification, we identify a category of inherited methods that is se-
mantically equivalent (modulo the receiver) to the original method
in the superclass.

DEFINITION 3.2 (Statically-Inherited Methods). Given a method
mn with body e from class A that is being inherited into a subclass
B, we say that this method is statically-inherited, if the following
conditions hold:

• it has not been overridden in the B subclass.
• for all auxiliary calls this.mn2(..) for which mn�=mn2, it must be

the case that B.mn2 is statically-inherited from A.mn2.

We can show that each statically-inherited method is seman-
tically equivalent to the original method from its superclass. The
above conditions ensure this by checking that the inherited method
always invokes the same sequence of semantically equivalent
method calls, as that when executed with a receiver object from

92

its superclass. With this classification for statically-inherited meth-
ods, we can check inherited static specifications, as follows:

DEFINITION 3.3 (Checking Inherited Static Specifications).
Consider a method mn with static specification spA (using a par-
tial view for its receiver) from class A that is being inherited into
a subclass B with static specification spB. If this method has been
statically-inherited into subclass B, we only need to check for speci-
fication subsumption spA<:spB. Otherwise, we have to re-verify the
method body of mn with the new static specification spB.

As an example, PosCnt.tick is statically-inherited from Cnt.tick
(with a partial view this::Cnt〈v〉), and we can conclude that both
methods are semantically equivalent modulo the receiver. To avoid
the re-verification of the static specification of PosCnt.tick, we
only need to check for the following subtyping:

static-spec(Cnt.tick) <: static-spec(PosCnt.tick)

Some other methods, such as PosCnt.get, FastCnt.get, FastCnt.set,
TwoCnt.tick and TwoCnt.get, are also statically-inherited. For a
counterexample that is not statically-inherited, consider:

class A {
int foo { return this.goo() }
int goo { return 1 }

}

class B extends A {
int goo { return 2 }

}
The foo method cannot be statically-inherited in subclass B, since
it invokes an auxiliary goo method that is not statically-inherited
(in this case overridden). In other words, method B.foo() is not
semantically equivalent (modulo the receiver) to A.foo() since they
invoke different sequences of method calls when given the same
parameters except for the receiver. As a result, we expect that the
static specification (with partial view) for B.foo must be re-verified
against its inherited method body from A.foo.

We have two solutions for handling methods that are not
statically-inherited. One solution is to transform each method
that is not statically-inherited into an overriding method. This is
achieved by cloning the method declaration for each such method
in its subclass. By doing so, we force code re-verification to be
performed for the cloned methods, when inheriting static specifica-
tions into such non statically-inherited methods. A second solution
is to utilize full views on the receivers of static specifications. By
using full views on receivers, we shall be handling each method
invocation of the form this.mn2(...) by using its corresponding
dynamic specification. As a consequence, each such static specifi-
cation (with full views on receiver) can always be inherited into any
subclass without the need for re-verification, regardless of whether
the method is statically-inherited or not. However, some loss in
precision may occur since dynamic specifications are now used by
each receiver during the verification of its method’s body.

4. Deriving Specifications
While a static specification can give better precision, having to
maintain both static and dynamic specifications may seem like
more human effort is required by our approach to OO verification.
To alleviate this, we provide the following set of derivation tech-
niques that can be used, where needed.

• derive dynamic specifications from static counterparts.

• refine dynamic specifications to meet behavioral subtyping.

• inherit static specifications from method of superclass.

Let us initially assume that none of the dynamic specifications
are given for our running example. We first present a simple tech-
nique for deriving a dynamic specification from its static counter-
part, as follows:

DEFINITION 4.1 (From Static to Dynamic Specification). Given
a static specification specS for class C, we shall derive its dynamic
counterpart specD, as follows:

specD = ρC specS where
ρC = [this::C〈v∗〉�→this::C〈v∗〉$,

this::C#I〈v∗〉�→this::C#I〈v∗〉$]
Some examples of dynamic specifications that can be automat-

ically derived from their static counterparts are:

dynamic-spec(Cnt.get) = ρCnt static-spec(Cnt.get)
= this::Cnt〈v〉$ ∗→ this::Cnt〈v〉$ ∧ res=v

dynamic-spec(Cnt.tick) = ρCnt static-spec(Cnt.tick)
= this::Cnt〈v〉$ ∗→ this::Cnt〈v+1〉$

dynamic-spec(PosCnt.get) = ρPosCnt static-spec(PosCnt.get)
= this::PosCnt#I〈v〉$ ∗→ this::PosCnt#I〈v〉$ ∧ res=v

dynamic-spec(FastCnt.tick)
= ρFastCnt static-spec(FastCnt.tick)
= this::FastCnt〈v〉$ ∗→ this::FastCnt〈v+2〉$

This technique can help us derive dynamic specifications that
are almost identical to static specifications, and are especially rele-
vant for methods (e.g. in final classes) where overriding is not pos-
sible. However, these automatically derived dynamic specifications
may fail to meet the behavioral subtyping requirement. Failure of
behavioral subtyping can be due to two possible reasons:

1. Dynamic specification of method in superclass is too strong, or

2. Dynamic specification of method in subclass is too weak.

We propose two refinement techniques for related pairs of dy-
namic specifications to help them conform to behavioral subtyping.
A conventional way is to use specification inheritance (or special-
ization) to strengthen the dynamic specification of the overriding
method. However, in our approach, this technique of strengthening
the dynamic specifications of a method in the subclass may violate
a key requirement that the dynamic specification be a supertype of
its static counterpart. Thus, prior to using specification specializa-
tion, we must either check that each inherited dynamic specification
is indeed a supertype of the static specification from the overriding
method, or can be made to inherit the static specification from the
overridden method, as follows :

DEFINITION 4.2 (Specification Specialization). Given a dynamic
specification preDA ∗→ postDA and its static specification preSA ∗→
postSA for a method mn in class A, and its overriding method in a
subclass B with static specification preSB ∗→ postSB. A dynamic
specification (preDA∧type(this) <: B ∗→ postDA) can be added to
the overriding method of the B subclass if either of the following
occurs:

• preSB ∗→ postSB <:B preDA ∗→ postDA holds, or
• ρA→B(preSA ∗→ postSA) can be inherited into the static specifi-

cation of mn in class B and successfully verified.

Note that ρA→B = [this::A〈v∗〉�→this::B〈v∗, w∗〉 , this::A#I〈v∗〉
�→this::B〈v∗, w∗〉∗δA] where w∗ are free variables of the extended
record, while δA captures the invariant of A class. The refined
dynamic specification for the overriding method is obtained via
intersection type, (preDB ∗→ postDB)

�
(preDA∧type(this) <:

B ∗→ postDA).

As an example, the pair of dynamic specifications for Cnt.get
and PosCnt.get do not conform to behavioral subtyping. We

93

may therefore attempt to strengthen the dynamic specification of
PosCnt.get by specification specialization through the following
multi-specification:

this::PosCnt#I〈v〉$ ∗→ this::PosCnt#I〈v〉$ ∧ res=v
�

this::Cnt〈v〉$∧type(this)<:PosCnt ∗→ this::Cnt〈v〉$∧res=v

However, the inherited dynamic specification from Cnt.get is
not a supertype of static-spec(PosCnt.get). Hence, in order to pro-
ceed with this refinement, we must also inherit the static specifica-
tion of static-spec(Cnt.get) into PosCnt.get, as follows:

this::PosCnt#I〈v〉 ∗→ this::PosCnt#I〈v〉 ∧ res=v
�

this::PosCnt〈v〉 ∗→ this::PosCnt〈v〉 ∧ res=v

This strengthened static specification is now a subtype of the
correspondingly derived dynamic specification. Furthermore, be-
havioral subtyping holds between the new dynamic specifications
of Cnt.get and PosCnt.get. A caveat about specification special-
ization is that the strengthened static specification of the method
in the subclass may not always guarantee the invariant property.
For example, this::PosCnt#I〈v〉 ∗→ this::PosCnt#I〈v〉 ∧ res=v

guarantees that the class invariant of PosCnt is preserved, but not
this::PosCnt〈v〉 ∗→ this::PosCnt〈v〉 ∧ res=v. It is thus possible
for successfully verified calls of this method to violate the class in-
variant property, but the above multi-specification is fully aware of
when each such violation occurs through the use of different pred-
icates. This violation of a class invariant is one reason why Findler
et al. (2001) considered specification inheritance to be a potentially
‘unsound’ derivation technique.

As a complement to specification specialization, we propose a
dual mechanism that weakens the specification of the overridden
method instead. We refer to this new technique as specification
abstraction. Instead of an intersection type, we use a union type to
obtain a weaker dynamic specification for the overridden method.
Formally:

DEFINITION 4.3 (Specification Abstraction). Given a dynamic
specification preDA ∗→ postDA for a method mn in class A, and
its overriding method in a subclass B with dynamic specification
preDB ∗→ postDB. If behavioral subtyping does not hold between
these dynamic specifications, we can generalise the specification of
the overridden method using the following union type:

dynamic-spec(A.mn) = (preDA ∗→ postDA)�
ρB→A(preDB) ∗→ ∃w∗·ρB→A(postDB)

ρB→A = [this::B〈v∗, w∗〉$�→this::A〈v∗〉$,
this::B#I〈v∗, w∗〉$�→this::A#I〈v∗〉$∗δB]

We refer to this process as specification abstraction. It is a safe
operation that weakens the dynamic specification of an overridden
method to the point where behavioral subtyping holds.

As an example, consider the derived dynamic specifications
from a pair of methods Cnt.tick and FastCnt.tick where be-
havioral subtyping does not currently hold. We are unable to ap-
ply specification specialization, as the inherited static specifica-
tion of Cnt.tick cannot be verified by the overriding method of
FastCnt.tick. However, with the help of specification abstraction,
we can obtain the following union type for dynamic-spec(Cnt.tick)
instead.

this::Cnt〈v〉$ ∗→ this::Cnt〈v+1〉$�
this::Cnt〈v〉$ ∗→ this::Cnt〈v+2〉$

Our current separation logic prover is able to directly handle in-
tersection types but not union types for its multi-specifications. We
propose to handle union type by the following translation instead:

(pre1 ∗→ post1)
�

(pre2 ∗→ post2)
=⇒ (pre1 ∧ pre2) ∗→ (post1 ∨ post2)

For brevity, we shall omit the formal details of how normal-
ization (of separation logic formulae) is carried out for the above
translation. In the case of Cnt.tick, we can perform normalization
to obtain the following weakened dynamic specification:

this::Cnt〈v〉$ ∗→ this::Cnt〈w〉$ ∧ (w=v+1∨w=v+2)

It would appear that the use of specification abstraction loses
modularity, due to its dependence on the dynamic specifications
of overriding methods. However, this is not true. Firstly, the pur-
pose of specification abstraction is to derive dynamic specifica-
tions which need not be re-verified. Secondly, we maintain mod-
ularity as each static specification is verified once, but need only be
re-verified when the specifications it depends on change. Though
changes may occur for a dynamic specification that a method de-
pends on; the necessity for re-verification is analogous to a modular
compilation system which re-compiles a module whenever the type
interface it depends on changes.

While our approach can theoretically derive all dynamic speci-
fications, we shall also allow the option for users to directly specify
dynamic specifications, where required. This option is especially
helpful in supporting modular open-ended classes that could be
further extended with new subclasses. Our overall procedure for
selectively but automatically deriving dynamic specifications shall
be as follows:

DEFINITION 4.4 (Deriving Dynamic Specifications). We derive
and refine dynamic specifications, as follows:

• If the dynamic specifications of both overridden and overriding
methods are given, check for the behavioral subtyping require-
ment.

• If only the dynamic specification of an overridden method
is given, derive the dynamic specification of the overriding
method and then use specification specialization to refine it.

• If only the dynamic specification of an overriding method
is given, derive the dynamic specification of the overridden
method and then use specification abstraction to refine it.

• Otherwise, derive both dynamic specifications and then use
specification abstraction to refine the dynamic specification of
the overridden method in the superclass.

Note that the procedure is geared towards the preservation of
class invariants, where possible, as it favours specification abstrac-
tion over specification specialization.

Lastly, it may also be possible for static specifications to be
omitted for some statically-inherited methods. We propose a way
to derive static specifications for such methods, as follows:

DEFINITION 4.5 (Deriving Static Specifications). Given a method
mn from class A with static specification spA, and a subclass B where
the same method has been statically-inherited. If no static specifi-
cation is given for B.mn, we can derive a static specification for it,
as follows :

static-spec(B.mn) = [this::A〈v∗〉�→this::B〈v∗, w∗〉] spA
The extra fields, w∗, in the subclass are never modified by each
statically-inherited method.

The above substitution is only applicable for partial views, and
it is not needed for full views which will remain unchanged when
deriving static specifications.

Though specification derivation techniques are important aids
that make it easier for users to adopt our OO verification methodol-
ogy, they are not fundamental in the current work. In the rest of this

94

P ::= tdecl∗ e tdecl ::= classt | viewt
classt ::= class c1 extends c2 inv κ∧π { (t v)∗meth∗ }
τ ::= int | bool | void t ::= c | τ
viewt ::= view c〈v∗〉 ≡ Φ inv π sp ::=

�
(Φpr ∗→Φpo)∗

meth ::= t mn ((t v)∗) [static sp1] [dynamic sp2] [{e}]
e ::= null | k | v | v.f | v:=e | v1.f :=v2 | new c(v∗) | v:c

| e1; e2 | t v; e | v.mn(v∗) | if v then e1 else e2

| (c) v | while v where sp do e
Φ ::=

�
(∃v∗·κ∧π)∗ π ::= γ∧φ∧β

γ ::= v1=v2 | v=null | v1 �=v2 | v �=null | γ1∧γ2

κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2 β ::= v=c | v<:c
Δ ::= Φ | Δ1∨Δ2 | Δ∧π | Δ1∗Δ2 | ∃v·Δ
φ ::=true | false |a1=a2 | a1≤a2 | c<v | φ1∧φ2

| φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
a ::= k | v | k×a | a1+a2 | −a | max(a1,a2) | min(a1,a2)

Figure 3. A Core Object-Oriented Language

paper, we shall assume that all required dynamic and static specifi-
cations are available, and proceed to describe core components of
our enhanced OO verification system.

5. Enhanced OO Verification
We shall now formalise our verification system. We consider a
simple sequential language with just the basic features from the OO
paradigm. Some omitted features, such as exceptions, static fields
and static methods, can be handled in an orthogonal manner and do
not cause any difficulty to our verification system.

5.1 A Core OO Language

We provide a simple OO language in Figure 3, and assume that
type-checking is done on the program and specified constraints
prior to verification. This core language is the target of some pre-
processing steps. A program consists of a list of class and view dec-
larations and an expression which corresponds to the main method
in many languages. We assume that the super class of each class is
explicitly declared, except for Object at the top of the class hierar-
chy. We also use this as a special variable referring to the receiver
object, and super to refer to a superclass’s method invocation. For
each view definition, we declare an invariant π over the parameters
{root, v∗} that is valid for each instance of the view. Also, Φ is a
normalised form of Δ, γ captures pointer constraint, β type infor-
mation, φ arithmetic constraints, while π a pure formula without
any heap. Each method meth and while loop is declared with in-
tersection type(s) of the form

�
(Φpr ∗→Φpo)∗. For simplicity, we

assume that variable names declared in each method are all distinct
and use the pass-by-value parameter mechanism. Primed notation
is used to capture the latest value of local variables and may appear
in the postcondition of loops. For example :

while x<0 where true ∗→ (x>0∧x′=x) ∨ (x≤0∧x′=0)
do { x:=x+1 }

Here x and x′ denote the old and new values of variable x at the
entry and exit of the loop, respectively. Note that precondition true

captures the loop’s invariant, while postcondition (x>0∧x′=x) ∨
(x≤0∧x′=0) captures the loop’s effects.

5.2 Verification System

Our verification system for OO programs is implemented in a mod-
ular fashion. It processes the class declarations in a top-down man-
ner whereby the methods of superclasses are verified before those
of the subclasses. We shall assume that static specifications are
given, and that dynamic specifications are already given (or au-
tomatically derived). Also, for each method that is not statically
inherited in a subclass, we shall clone the method for that subclass.
There are three major subsystems present, namely: (i) View Gen-

erator, (ii) Inheritance Checker, and (iii) Code Verifier. These are
elaborated next.

5.2.1 View Generator

For each subclass in the class hierarchy, we must generate a lossless
upcasting rule in accordance with Defn 2.2. However, the format
Ext〈c, v∗, p〉 actually denotes a family of record extensions that
is distinct for each subclass c. To distinguish them clearly in our
implementation, we provide a set of specialised record extensions
of the form Extc〈v∗, p〉 instead. With this change, we can generate
the following casting rules for our running example:

PosCnt〈t, n, p〉 ≡ root::Cnt〈t, n, q〉∗q::ExtPosCnt〈p〉
FastCnt〈t, n, p〉 ≡ root::Cnt〈t, n, q〉∗q::ExtFastCnt〈p〉
TwoCnt〈t, n, b, p〉 ≡ root::Cnt〈t, n, q〉∗q::ExtTwoCnt〈b, p〉
Correspondingly, we may also provide an ExtAll view for the

class hierarchy. In the case of our running example, we can generate
the following definition for the ExtAll view:

ExtAll〈t1, t2〉 ≡ (t1=t2)∧root=null
∨ root::ExtPosCnt〈q〉∗q::ExtAll〈PosCnt, t2〉
∧PosCnt<t1∧t2<:PosCnt

∨ root::ExtFastCnt〈q〉∗q::ExtAll〈FastCnt, t2〉
∧FastCnt<t1∧t2<:FastCnt

∨ root::ExtTwoCnt〈b, q〉∗q::ExtAll〈TwoCnt, t2〉
∧TwoCnt<t1∧t2<:TwoCnt

Lastly, for each subclass with a non-trivial invariant, we also
generate two invariant-enhanced views for this subclass. For our
running example, only the subclass PosCnt has an invariant. Hence,
our generator will provide the following:

PosCnt#I〈t, n, p〉 ≡ root::PosCnt〈t, n, q〉∧n≥0

In summary, the above shows how we explicitly generate pred-
icate views for casting and class invariants. In practice, our pro-
totype verification system creates these views on demand during
entailment checking itself.

5.2.2 Inheritance Checker

This subsystem ensures that specifications of added methods are
consistent with class inheritance and method overriding require-
ments. Whenever a new subclass B is added, we expect a set of new
overriding methods and another set of statically-inherited methods.
We propose to check for consistency, as follows:

• Firstly, we check that each static specification is a subtype of
the dynamic specification.

• For each new overriding method B.mn, we identify the nearest
overridden method in a superclass of B. We then check that each
given dynamic specification is a subtype of the given dynamic
specification of its overridden method in its superclass.

• For each statically-inherited method B.mn, we check that its
given static specification is a supertype of the corresponding
static specification in its superclass. If a dynamic specification
is also given, we check that it is a subtype of the given dynamic
specification in its superclass.

Some of the static and dynamic specifications may have been
automatically derived. As these derived specifications are correct
by construction, we shall not be checking for the specification
subsumption relation amongst them.

5.2.3 Code Verifier

To support verification, we shall use Hoare-style rule of the form
� {Δ1}e{Δ2}. This rule is applied in a forward manner. Given a
heap state Δ1 and an expression e, we expect the above verification

95

to succeed and also produce a poststate Δ2. There are four features
in our core language that are peculiar to the OO paradigm, namely
(i) the object constructors, (ii) the cast constructs, (iii) instance
method invocations and (iv) super calls. Let us discuss how they
are handled.

For the object constructor, we use the following rule where each
primed variable v′i captures the latest value of variable vi:

Δ1=Δ ∗ res::c〈c, v′
1, .., v

′
n, null〉

� {Δ} new c(v1, .., vn) {Δ1}
This rule produces an object of actual type c using partial view.

Consider a cast construct (c)(v:c1) where v:c1 captures the
compile-time type of v inserted before verification. We shall treat it
as being equivalent to a primitive call of the form:

c castc (c1 v) static v::c1〈t, ..〉 ∗→ v::c1〈t, ..〉∧t<:c
∧ true ∗→ true

The above declaration allows the cast construct to possibly fail
at runtime. If casting succeeds, we may expect that the actual
type of the object to be a subtype of c, as captured by the first
pre/post annotation. The second pre/post annotation is added for
completeness, and may be used if we are unable to establish the
heap state of v.

Another important feature to consider is instance method call of
the form (v:c).mn(v1 ..vn). We first identify the best possible type of
v using β=findtype(Δ, v:c). The result β will tell us if we have the
actual type t=c1 or the best static type t<:c1 where t=type(v) and
c1<:c. Note that c1 can be more precise than the compile-time type
c due to our use of flow- and path-sensitive reasoning. If the ac-
tual type is known, we choose the static specification of method mn

from class c1. Otherwise, we choose its dynamic specification in-
stead. This decision is captured by spec=findspec(P, β, mn) where
P denotes the entire OO program. The overall rule is:

β=findtype(Δ, v:c) ρ = [v1 �→v′
1, ..., vn �→v′

n]
findspec(P, β, mn) =

�m
i=1(prei ∗→ posti)

∃i ∈ 1..m · (Δ�(ρ prei) ∗Δi Δr = (Δi ∗ posti))

� {Δ} (v:c).mn(v1..vn) {Δr}
If Δ is a disjunctive formula with different types for v, we

can use findtype/findspec operations in the entailment procedure,
so that the best specification is selected for either the actual or
the static type of the object at v for each disjunct. For multi-
specifications, we choose the first specification whose precondition
holds. We assume that these multiple specifications are ordered to
yield a more precise result ahead of the less precise ones.

We can easily deal with the invocation of super methods. This
feature can be used in place of the receiver this parameter to refer
to the overridden method. It can be easily handled by our approach
since super method calls are essentially static calls that can be
precisely captured by static specifications. Consider an overridden
method mn in a superclass A and a call super.mn(..) being used
in an overriding method in subclass B. We can handle this super

call by re-writing it to this.A.mn(..). In this case, our verification
process will select the static specification of the overridden method
in class A to use. Past works, such as Parkinson and Bierman
(2005); Kiniry et al. (2005), do not handle super method calls for
verification well, as there is an inherent mismatch between super

method calls (which are static calls) and the mechanism based on
dynamic specifications.

6. Correctness
There are several soundness results that are needed to show the
overall safety of our verification system.

The semantics of our constraints is that of separation logic
(Reynolds 2002), with extensions to handle our shape views. To

define the semantic model we assume sets Loc of locations (pos-
itive integer values), Val of primitive values, with 0 ∈ Val de-
noting null, Var of variables (program variables and other meta
variables), and ObjVal of object values stored in the heap, with
c[f1 �→ν1, .., fn �→νn] denoting an object value of data type c where
ν1, .., νn are current values (from the domain Val∪Loc) of the cor-
responding fields f1, .., fn. This object denotation shall be abbre-
viated as c(ν1, .., νn). Let s, h |= Φ denote that stack s and heap
h form a model of the constraint Φ, with h, s from the following
concrete domains:

h ∈ Heaps =df Loc ⇀fin ObjVal
s ∈ Stacks =df Var → Val∪Loc

As we use a first-order language, lexical scoping can be easily
enforced by only allowing elements from the topmost stack frame
to be accessible at runtime. A complete definition of the model for
separations constraints can be found in Nguyen et al. (2007).

We use a small-step dynamic semantics for our language (Fig.
3) but extended with pass-by-reference parameters. For simplicity,
we assume that all while loops have been transformed to equivalent
tail-recursive methods with the help of pass-by-reference parame-
ters. The machine configuration is represented by 〈s, h, e〉 where s
denotes the current stack, h denotes the current heap, and e denotes
the current program code. The semantics assumes unlimited stack
and heap spaces. Each reduction step can then be formalized as a
small-step transition of the form: 〈s, h, e〉↪→〈s1, h1, e1〉. The full
set of transitions is given in Fig. 4. We have introduced an inter-
mediate construct ret(v∗ , e), with e to denote the residual code of
its call, to model the outcome of call invocation. It is also used to
handle local blocks.

The following lemma highlights a key result showing that our
use of specification subsumption relation is sound for avoiding re-
verification, as follows:

LEMMA 6.1 (Soundness of Enhanced Spec. Subsumption).
Given that method body e has been successfully verified us-

ing preB ∗→ postB. If specification subsumption preB ∗→ postB<:
preA ∗→ postA holds, then its specification supertype preA ∗→ postA

is guaranteed to verify successfully against the same method body.

Proof: From the premise of specification subsumption (Defn 2.5),
we can obtain: preA�preB ∗ Δ and postB∗Δ�postA. In our context,
preconditions preA, preB and their entailment’s residual Δ do not
contain any primed variables, while only primed variables are mod-
ified indirectly by our program. Hence, adding a formula with only
unprimed variables, such as Δ, to both pre/post always satisfies the
side condition of the frame rule. Let e denote the method body
which has been preprocessed to a form where pass-by-value pa-
rameters are never modified. Let {v1, .., vn} denote the set of free
variables in e, and let N=

�n
i=1(v

′
i=vi). From the premise that

preB ∗→ postB is a verified specification for the code, we have
� {preB∧N} e {postB}. In order to show that its specification su-
pertype preA ∗→ postA is also verifiable for the same code, we need
to derive � {preA∧N} e {postA}. We conclude based on the follow-
ing steps:

� {preB∧N} e {postB} premise
� {preB∧N∗Δ} e {postB∗Δ} frame rule
� {preA∧N} e {postB∗Δ} precondition strengthening
� {preA∧N} e {postA} postcondition weakening �

The above proof uses the following Consequence Lemma stat-
ing the soundness of precondition strengthening and postcondition
weakening:

LEMMA 6.2 (Consequence Rule). The following verification holds:

P ′�P � {P} e {Q} Q�Q′

� {P ′} e {Q′}

96

〈s, h, v〉↪→〈s, h, s(v)〉 〈s, h, k〉↪→〈s, h, k〉 〈s, h, v.f〉↪→〈s, h, h(s(v))(f)〉 〈s, h, v:=k〉↪→〈s[v �→k], h, ()〉
〈s, h, (); e〉↪→〈s, h, e〉 〈s, h, {t v; e}〉↪→〈[v �→]+s, h, ret(v, e)〉 〈s, h, ret(v∗, k)〉↪→〈s−{v∗}, h, k〉

〈s, h, e1〉↪→〈s1, h1, e3〉
〈s, h, e1; e2〉↪→〈s1, h1, e3; e2〉

s(v)=true

〈s, h, if v then e1 else e2〉↪→〈s, h, e1〉
s(v)=false

〈s, h, if v then e1 else e2〉↪→〈s, h, e2〉
〈s, h, e〉↪→〈s1, h1, e1〉

〈s, h, v:=e〉↪→〈s1, h1, v:=e1〉
〈s, h, e〉↪→〈s1, h1, e1〉

〈s, h, ret(v∗, e)〉↪→〈s1, h1, ret(v∗, e1)〉
r = h(s(v1))[f �→s(v2)] h1 = h[s(v1) �→r]

〈s, h, v1.f := v2〉↪→〈s, h1, ()〉
fields(c) = [t1 f1, .., tn fn] ι/∈dom(h)

r=c[f1 �→s(v1), .., fn �→s(vn)]

〈s, h, new c(v1, , vn)〉↪→〈s, h+[ι �→ r], ι〉

s1=[wi �→s(vi)]
n
i=m+s h(s(v0)) = c[. . .]

t0 mn((ref ti wi)
m−1
i=1 , (ti wi)

n
i=m) {e} ∈ meth(c)

〈s, h, v0.mn(v1, .., vn)〉↪→〈s1, h, ret({wi}n
i=m, [vi/wi]

m−1
i=1 e)〉

s1=[wi �→s(vi)]
n
i=m+s t0 mn((ref ti wi)

m−1
i=1 , (ti wi)

n
i=m) {e} ∈ meth(c)

〈s, h, v0.c.mn(v1, .., vn)〉↪→〈s1, h, ret({wi}n
i=m, [vi/wi]

m−1
i=1 e)〉

Figure 4. Dynamic Semantics

Proof Sketch: Based on the premise, we have a set of s, h such that
〈s, h, e〉↪→∗〈s1, h1, v〉 and s, h |= P ∧ s1+[res�→v], h1 |= Post(Q).
By Galois connection, we have s1+[res�→v], h1 |= Post(Q′). Thus,
for all s, h |= P ′, we have � {P ′} e {Q′}. �

We extract the post-state of a heap constraint by:

DEFINITION 6.1 (Poststate). Given a constraint Δ, Post(Δ) cap-
tures the relation between primed variables of Δ. That is :

Post(Δ) =df ρ (∃V·Δ), where
V = {v1, .., vn} denotes all unprimed program variables in Δ
ρ = [v′

1 �→v1, .., v
′
n �→vn]

The next two lemmas state some results on statically-inherited
methods for which re-verification is proven not to be needed.

LEMMA 6.3 (Equivalence of Statically-Inherited Methods).
Consider a method mn from class A that satisfies the conditions of
being statically-inherited into a B subclass. Assuming that

� 〈s, h1, o.mn(p
∗)〉↪→∗〈s1, h3, v〉

h1=h+[s(o) �→A(v1..vn)]
h3=h′+[s(o) �→A(w1..wn)]

then
� 〈s, h2, o.mn(p

∗)〉↪→∗〈s1, h4, v〉
h2=h+[s(o) �→B(v1..vn, vn+1..vm)]
h4=h′+[s(o) �→B(w1..wn, vn+1..vm)]

Proof Sketch : Using the conditions of Defn 3.2, we can prove the
above by an induction on the dynamic semantics (see Fig. 4) over
execution of the body of statically-inherited methods. �

LEMMA 6.4 (Soundness of Statically-Inherited Specifications).
Consider a method mn from class A that has been successfully
verified against its static specification preSA ∗→ postSA, and a
subclass B that statically-inherits mn with static specification
preSB ∗→ postSB. Assuming that a specification subsumption re-
lation of the form preSA ∗→ postSA <: preSB ∗→ postSB holds, then
B.mn is guaranteed to verify successfully against its specification
preSB ∗→ postSB.

Proof Sketch : Follows from Lemmas 6.3 and 6.1. �

We shall now show a result regarding behavioral subtyping.

LEMMA 6.5 (Soundness of Behavioral Subtyping). Consider a
method mn from class A with dynamic specification preDA ∗→ postDA
and that

�
s, h1 |= preDA
h1=h+[s(o) �→A(v∗)]
〈s, h1, o.mn(p

∗)〉↪→∗〈s3, h3, v〉
s3 + [res �→v], h3 |= Post(postDA)

If we assume a similar object from a subclass B such that
� s, h2 |= preDA

h2=h+[s(o) �→B(v∗, w∗)]

and we call the overriding method, then we obtain :
� 〈s, h2, o.mn(p

∗)〉↪→∗〈s4, h4, v〉
s4 + [res �→v], h4 |= Post(postDA)

Proof Sketch : Follows from Defn 3.1 of the behavioral subtyping
requirement and Lemma 6.1. �

Lastly, we prove the soundness of our verification system using
preservation and progress lemmas.

LEMMA 6.6 (Preservation). If

� {Δ} e {Δ2} s, h |= Post(Δ) 〈s, h, e〉↪→〈s1, h1, e1〉
Then there exists Δ1 such that s1, h1 |= Post(Δ1) and � {Δ1} e1 {Δ2}.

Proof Sketch: By induction on e. �

LEMMA 6.7 (Progress). If � {Δ} e {Δ1}, and s, h |= Post(Δ), then
either e is a value, or there exist s1, h1, and e1, such that

〈s, h, e〉↪→〈s1, h1, e1〉.
Proof Sketch: By induction on e. �

THEOREM 6.8 (Soundness of Verification). Consider a closed
term e without free variables in which all methods have been
successfully verified. Assuming that � {true} e {Δ}, then either
〈[], [], e〉↪→∗〈[], h, v〉 terminates with a value v such that the fol-
lowing ([res �→v], h) |= Δ holds, or it diverges 〈[], [], e〉�↪→∗.

Proof Sketch: Follows from Lemma 6.6 and Lemma 6.7. �

7. Related Work
In support of modular reasoning on properties of object-oriented
programs, the notion of behavioral subtyping has been inten-
sively studied in the last two decades, e.g. Liskov (1988); Amer-
ica (1991); Liskov and Wing (1994); Dhara and Leavens (1996);
Meyer (1997); Findler et al. (2001); Muller (2002); Parkinson
(2005). The notion of specification inheritance, where an overrid-
ing method inherits the specifications of all the overridden meth-
ods, was first introduced in Eiffel (Meyer 1997). As an effort to
relate these two notions, Dhara and Leavens (1996) presented a
modular specification technique which automatically forces behav-
ioral subtyping through specification inheritance. More recently,
Leavens and Naumann (2006) proposed a formal characterization
for behavioral subtyping and modular reasoning. The basic idea of
modular reasoning, which the authors call supertype abstraction, is

97

that reasoning about an invocation, say E.m(), is based on the spec-
ification associated with the static type of the receiver expression
E. In Leavens and Naumann (2006), the authors proved the equiva-
lence between supertype abstraction and behavioral subtyping. The
new formalization is supposed to serve as a semantic foundation
for object-oriented specification languages.

Various embodiments of these proposals have been imple-
mented in both static and runtime verification tools and been ap-
plied to rich specification and programming languages such as
ESC/Java (Flanagan et al. 2002), JML (Leavens et al. 2006), Spec#
(Barnett et al. 2004), and ESpec (Ostroff et al. 2006). The Krakatoa
tool (Marché et al. 2004; Marché and Paulin-Mohring 2005) trans-
lates JML specifications into the input language for the Why ver-
ification tool (Filliâtre 2003). Verification conditions generated by
the Why tool can then be discharged by different theorem provers.
However, to the best of our knowledge, neither inheritance nor
method overriding is supported by their system. Software model
checking frameworks (Robby et al. 2003; Hatcliff et al. 2003) have
also been used in the verification of OO programs. Inference mech-
anisms for loop invariants have been proposed in Nimmer and Ernst
(2002); Pasareanu and Visser (2004) amongst others, and they can
make verification even easier to use. However, most of these works
are based primarily on the idea of dynamic specifications. Even
when static specifications are added, like code contracts in JML
(Leavens et al. 2007, ch 15), they did not enforce an important
subtyping relation between a static specification and its dynamic
counterpart. Moreover, in comparison with our approach, Spec#
is more restrictive in handling overriding as it does not allow any
changes in the precondition of the overriding method.

Using the rules of behavioral subtyping, Findler et al. have for-
malized hierarchy violations and blame assignment for pre and
postcondition failures (Findler and Felleisen 2001; Findler et al.
2001). They identified a problem (related to preservation of class
invariants) that arises from synthesizing the specifications of over-
riding methods through specification inheritance. This problem is
caused by specification inheritance’s manner of enforcing behav-
ioral subtyping which may wrongly assume that the original spec-
ification of an overriding method is too weak. In our proposal, we
can avoid this problem by using specification abstraction instead of
specification inheritance, if class invariants are to be preserved for
the overriding methods. Furthermore, while Findler and Felleisen
(2001) and Findler et al. (2001) focus on checking the correctness
of contracts at run-time, we propose a static verification system.

The problem of writing specifications for programs that use var-
ious forms of modularity where the internal resources of a module
should not be accessed by the module’s clients, is tackled in several
papers (O’Hearn et al. 2004; Parkinson and Bierman 2005; Leavens
and Muller 2007). In O’Hearn et al. (2004) the internal resources
of a module are hidden from its clients using a so called hypo-
thetical frame rule, whereas in Parkinson and Bierman (2005) the
notion of abstract predicates is introduced. While O’Hearn et al.
(2004) only supports single instances of the hidden data structure,
abstract predicates can deal with dynamic instantiation of a mod-
ule. To support the reasoning of concurrent programs, a rule similar
to the hypothetical frame rule is used in O’Hearn (2007) to model
critical regions with resource invariants. For soundness reason, pre-
cise resource invariants were also required in O’Hearn et al. (2004)
and O’Hearn (2007) due to the desire to support both the conjunc-
tion rule and the hypothetical frame rule. As both rules are not used
in our current system, we do not suffer from this problem and can
safely support less precise heap states and multiple specifications.
Visibility modifiers are taken into consideration in Leavens and
Muller (2007) where a set of rules for information hiding in spec-
ifications for Java-like languages is given. Moreover, the authors
demonstrate their application on the specification language JML.

However, some JML tools, including ESC/Java2 (Flanagan et al.
2002; Cok and Kiniry 2004) ignore visibility modifiers in specifi-
cations.

The emergence of separation logic (Isthiaq and O’Hearn 2001;
Reynolds 2002) provides a novel way to handle the challenging
aliasing issues for heap-manipulating programs. Parkinson and
Bierman (2005) and Parkinson (2005) recently extended separation
logic to handle OO programs. They advocated the use of abstract
predicate families indexed by types to reason about objects from
a class hierarchy. Their approach supports full object views and
essentially dynamic specifications, though for one class at a time.
They also require every inherited method to be re-specified and
mostly re-verified for OO conformance. Furthermore, no imple-
mentation exists. In comparison, we have designed a more compre-
hensive system with static specifications, partial views and modu-
lar mechanisms to minimise on re-verification and to handle super

method calls. These issues were informally referred to as untamed
open problems in Sec 6.5 of Parkinson (2005).

8. Conclusion
We have presented an enhanced approach to OO verification based
on the co-existence of both static and dynamic specifications, to-
gether with a principle that each static specification be a subtype of
its corresponding dynamic specification. Our approach attempts to
track the actual type of each object, where possible, to allow static
specifications to be preferably used. We have built our work on the
formalism of separation logic, and have designed a new object for-
mat that allows each object to assume the form of its superclass
via lossless casting. Another useful feature of our proposal is a new
specification subsumption relation for pre/post specifications that is
novel in using the residual heap state from precondition checking
to assist in postcondition checking.

We have constructed a prototype system for verifying OO
programs. Our prototype is built using Objective CAML aug-
mented with an automatic Presburger solver, called Omega (Pugh
1992). While Presburger arithmetic is limited to integer con-
straints, we have also provided hooks in our system to invoke Is-
abelle and MONA provers. These extensions allow us to support
sets/bags/lists constraints, where required. The main objective for
building this prototype is to show the feasibility of our approach
to enhanced OO verification based on a synergistic combination
of static and dynamic specifications. As an initial study, we have
successfully verified a set of small benchmark programs. The ver-
ification process consists of two parts: verification of the given
static specifications against the bodies of the corresponding meth-
ods (VS) and the specification subtyping checking meant to avoid
re-verification of all dynamic specifications and some static specifi-
cations of statically-inherited methods (SSC). What we are mainly
interested in is the ratio between the VS timing and the SSC tim-
ing. As subsumption checking on specification is typically cheaper
than verifying a piece of program code against its specification,
we expect that VS will dominate the total verification time. This
assumption is indeed validated by the examples we tried. For in-
stance, in the counter example presented in the paper, the time taken
by the SSC (with 16 checks) is 0.06 seconds, while VS (with 11
verifies) takes 0.18 seconds. For examples with larger code bases,
we expect the ratio between the VS and SSC to increase.

One fundamental question that may arise is whether static spec-
ifications are really necessary? Some readers may contend that it is
possible to incorporate the effect of static specification by adding
type(this)=c into the precondition of a dynamic pre/post anno-
tation. As discussed in our paper, this approach is only a partial
solution to static specification as (i) it does not cater to statically-
inherited methods which support reuse of static specifications, (ii) it
does not handle super method calls which are really static method

98

invocations, and (iii) it does not help enforce class invariants in
subclasses when dynamic specifications of a superclass (without
the class invariant property) are being inherited. By making each
static specification be a subtype of its dynamic specification, we
can limit code verification to only static specifications. The under-
lying philosophy of static specification is better served by partial
view and lossless casting. Perhaps, the ultimate goal for OO ver-
ification is to use completely static specifications – with dynamic
specifications derived on demand! Our solution can be viewed as a
significant step towards this utopia.

Post-Submission Note : Independent of our work, Parkinson and
Bierman (2008) proposed in the same proceedings a similar dis-
tinction and relation between static and dynamic specifications, in
support of modular verification and the handling of direct method
calls. Like us, they can support inheritance and overriding, while
avoiding unnecessary re-verifications. However, there are at least
two differences. Firstly, they continue to rely on the rather power-
ful concept of abstract predicate families, while we have avoided its
use in our work. Secondly, we have a marginal emphasis on static
specifications over dynamic specifications, as we advocate for the
latter to be derived from the former, when needed, using the refine-
ment techniques of specification specialization and abstraction.

Acknowledgments : Cristian Gherghina implemented a prototype
system for OO verification. Florin Craciun, Hugh Anderson, Martin
Rinard, Peter O’Hearn and anonymous reviewers provided insight-
ful feedbacks on various aspects of this work. Matthew Parkinson
and Gavin Bierman conducted helpful last minute discussions with
us. This work is supported by an A*STAR-funded research project
R-252-000-233-305 on “A Constructive Framework for Depend-
able Software”. Shengchao Qin is supported in part by the EPSRC
project EP/E021948/1.

References
P. America. Designing an object-oriented programming language with

behavioural subtyping. In the REX School/Worshop on Foundations of
Object-Oriented Languages, pages 60–90, 1991.

M Barnet, R. DeLine, M. Fahndrich, K.R.M Leino, and W. Schulte. Veri-
fication of object-oriented programs with invariants. Journal of Object
Technology, 3(6):27–56, 2004.

M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview. In Workshop on Construction and Analysis of
Safe, Secure, and Interoperable Smart Devices, 2004.

D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Int’l
Workshop on Construction and Analysis of Safe, Secure, and Interoper-
able Smart Devices, pages 108–128, 2004.

K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through spec-
ification inheritance. In IEEE/ACM Intl. Conf. on Software Engineering,
pages 258–267, 1996.

J. C. Filliâtre. Why: a multi-language multi-prover verification tool. Tech-
nical Report 1366, LRI, Université Paris Sud, March 2003.

R. B. Findler and M. Felleisen. Contract soundness for object-oriented
languages. In SIGPLAN Object-Oriented Programming Systems, Lan-
guages and Applications, pages 1–15, 2001.

R. B. Findler, M. Latendresse, and M. Felleisen. Behavioral contracts
and behavioral subtyping. In ESEC/SIGSOFT Foundations of Software
Engr., 2001.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended Static Checking for Java. In ACM PLDI, June 2002.

J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P. Ranganath. Cadena:
An integrated development, analysis, and verification environment for
component-based systems. In IEEE/ACM Intl. Conf. on Software Engi-
neering, 2003.

S. Isthiaq and P.W. O’Hearn. BI as an assertion language for mutable data
structures. In ACM POPL, London, January 2001.

J. Kiniry, E. Poll, and D. Cok. Design by contract and automatic verification
for Java with JML and ESC/Java2. ETAPS tutorial, 2005.

G. T. Leavens and Peter Muller. Information hiding and visibility in inter-
face specifications. In IEEE/ACM Intl. Conf. on Software Engineering,
pages 385–395, Washington, DC, USA, 2007. IEEE Computer Society.

G. T. Leavens and David A. Naumann. Behavioral subtyping is equivalent
to modular reasoning for object-oriented programs. Technical Report
06-36, Department of Computer Science, Iowa State University, 2006.

G. T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. ACM SIGSOFT
Software Engineering Notes, 31(3):1–38, 2006.

G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Mller, and
J. Kiniry. JML Reference Manual (DRAFT), February 2007.

K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In
ECOOP, pages 491–516, 2004.

B. H. Liskov. Data abstraction and hierarchy. ACM SIGPLAN Notices, 23
(5):17–34, May 1988. Revised version of the keynote address given at
OOPSLA’87.

B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans.
on Programming Languages and Systems, 16(6):1811–1841, 1994.

C. Marché and C. Paulin-Mohring. Reasoning about Java programs with
aliasing and frame conditions. In 18th Int’l Conf. on Theorem Proving
in Higher Order Logics. Springer, LNCS, August 2005.

C. Marché, C. Paulin-Mohring, and X. Urbain. The KRAKATOA tool for
certification of JAVA/JAVACARD programs annotated in JML. Journal
of Logic and Algebraic Programming, 58(1–2):89–106, 2004.

B. Meyer. Object-oriented Software Construction. Prentice Hall. Second
Edition., 1997.

R. Middelkoop, C. Huizing, R. Kuiper, and E. J. Luit. Invariants for non-
hierarchical object structures. In L. Ribeiro and A. Martins Moreira,
editors, Proceedings of the 9th Brazilian Symposium on Formal Methods
(SBMF’06), Natal, Brazil, 2006.

P. Muller. Modular specification and verification of object-oriented pro-
grams. Springer, New York, NY, USA, 2002. ISBN 3-540-43167-5.

H. H. Nguyen, C. David, S.C. Qin, and W.N. Chin. Automated Verification
of Shape And Size Properties via Separation Logic. In Intl Conf. on
Verification, Model Checking and Abstract Interpretation, Nice, France,
January 2007.

J. W. Nimmer and M. D. Ernst. Invariant inference for static checking. In
ESEC/SIGSOFT Foundations of Software Engr., pages 11–20, 2002.

P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007.

P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and Information
Hiding. In ACM POPL, Venice, Italy, January 2004.

J. Ostroff, C. Wang, E. Kerfoot, and F. A. Torshizi. Automated model-based
verification of object-oriented code. Technical Report CS-2006-05, York
University, Canada, May 2006.

M. J. Parkinson. Local Reasoning for Java. PhD thesis, Computer Labora-
tory, University of Cambridge, 2005. UCAM-CL-TR-654.

M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In
ACM POPL, pages 247–258, 2005.

M. J. Parkinson and G. M. Bierman. Separation logic, abstraction and
inheritance. In ACM POPL, 2008.

C. Pasareanu and W. Visser. Verification of Java programs using symbolic
execution and invariant generation. In SPIN Workshop, April 2004.

W. Pugh. The Omega Test: A fast practical integer programming algorithm
for dependence analysis. Communications of the ACM, 8:102–114,
1992.

J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Struc-
tures. In IEEE Logic in Computer Science, Copenhagen, Denmark, July
2002.

Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensible and highly-
modular software model checking framework. In ESEC/SIGSOFT Foun-
dations of Software Engr., pages 267–276, 2003.

99

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

