
Compiler Optimizations for Asynchronous Systolic Array Programs

Monica Lam

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

A programmable systolic array of high-performance cells is
an attractive computation engine if it attains the same utiliza-
tion of dedicated arrays of simple cells. However, typical
implementation techniques used in high-performance proces-
sors, such as pipeliniig and parallel functional units, further
complicate the already difficult task of systolic algorithm
design. This paper shows that high-performance systolic ar-
rays can be used effectively by presenting the machine to the
user as an array of conventional processors communicating
asynchronously. This abstraction allows the user to focus on
the higher level problem of partitioning a computation across
cells in the array. Efficient fine-grain parallelism can be
achieved by code motion of communication operations made
possible by the asynchronous communication model. This
asynchronous communication model is recommended even
for programming algorithms on systolic arrays without
dynamic flow control between cells.

The ideas presented in the paper have been validated in the
compiler for the Warp machine [4]. The compiler has been in
use in various application areas including robot navigation,
low-level vision, signal processing and scientific program-
ming. Near-optimal code has been generated for many
published systolic algorithms.

The research was supported in part by Defense Advanced
Research Projects Agency (DOD) monitored by the Space and
Naval Warfare Systems Command under Contract
N00039-87-C-0251, and in part by the Office of Naval
Research under Contracts NOO014-87-K-0385 and
N00014-87-K-0533.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

1. Introduction

A systolic array of high-performance, programmable

processors with floating-point capability is an attractive ar-

chitecture for numerical processing. Systolic arrays are

known for their high utilization; the meticulous synchroniza-

tion of the flow of data and computation on each cell keeps

every cell busy at,all times. Many important computation-

intensive algorithms in signal processing, image processing,
and scientific computation have been mapped to this architec-

ture successfully. At Carnegie Mellon, together with our

industrial partner General Electric, we have built a high-
performance and programmable systolic array, called

Warp [4]. Warp consists of 10 highly pipelined processors,

each capable of delivering up to a peak rate of 10 million

floating-point operations per second (10 MFLOPS). The peak

computation rate of the entire array is therefore 100

MFLOPS. This paper shows that this machine can indeed be

programmed to execute fine-grain systolic algorithms with the

same utilization typical of special-purpose systolic arrays of

simple cells.

The high computation throughput of systolic arrays is

derived through the fine-grain cooperation between cells,

where computation and the flow of data through the array are

tightly coupled. This complexity in designing a systolic algo-

rithm has motivated a lot of research in systolic array

synthesis [5,6,8, 12, 13, 15, 161. The target machine model

of previous systolic research was a custom hardware im-

plementation of the algorithm in VLSI technology. The main
concerns were in mapping specific aIgorithms onto a regular

layout of simple, identical hardware components. The com-

putation performed by each cell must therefore be regular,

repetitive and data-independent. The state of the art is that

uniform recurrence equations can be mapped onto optimal

systolic designs semi-automatically [8, 161.

To fully use the potential of high-performance systolic ar-

rays, previous results must be extended to allow for realistic

machine characteristics and a more general application

domain. Previous research in automatic synthesis of systolic

Proceedings of the Fifteenth Annual ACM

0 1988 ACM-O-89791-252-7/88/0001/0309 $1.50 309

I

SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages, San Diego,
California (January 1988)

array algorithms focused on the mapping of simple computa-

tions onto simple abstract machine models. Cells in a systolic

array were assumed to take unit time to process each set of

input data; previous systolic array synthesis techniques

depend on this simplification. In reality, however, high-

performance processors themselves can contain a high degree

of pipelining and parallelism. Not only is the internal paral-

lelism of a cell difficult to master, the internal timing of a cell

must also be brought to bear in the systolic program design to

achieve fine-grain parallelism. Furthermore, the previous as-

sumption that the computation across the array is regular and

simple no longer applies. Unlike custom VLSI circuits, a

programmable array can be used for a more general problem

domain. The cells can execute different programs, with ar-

bitrary control flow and data dependent operations.

Compiling general, processor-oblivious programs to ef-
ficient code appears intractable at present. In order that

efficiency and generality can be achieved, we choose to ex-
pose the configuration of the array to the user, while hiding

the internal pipelining and parallelism in each cell in the

array. We propose that the array be presented to the user as
an array of simple conventional processors that communicate

via asynchronous primitives. The proposed abstraction allows

the user, or higher level tools, to concentrate on high-level

systolic algorithm design; the full programmability of each

cell is accessible to the user through high-level language

constructs.

In this paper, we concentrate on the effect of the inter-cell

communication on code optimization. A characteristic that

distinguishes systolic computation from other forms of paral-

lelism is the tight coupling between communication and com-

putation. The high computation rate of a systolic array is

matched by an equally high intercell communication rate.

Data transfer between cells incur an extremely low overhead.

Unlike most other architectures where data are transferred

from the memory of a processor to that of the other, results

from the data path of one cell can be fed directly to the data

path of the neighboring cell. While this coupling between

communication and computation makes systolic architectures

uniqueIy supportive of fine-grain parallelism, it poses a dif-

ficult problem to code optimization.

We show that the high-level semantics of asynchronous

communication, apart from providing a high-level abstraction

to the user, is also instrumental in code optimization. The

asynchronous communication semantics allows useful code

motion be applied without elaborate data dependency analysis

across cells. By representing the scheduling constraints of

communication operations in a similar fashion as data depen-

dency in the computation of a cell, general code scheduling

techniques for high-performance processors can be applied.

The machine characteristic assumed by the compilation

technique is that cells in the array communicate via data

queues. By the semantics of asynchronous communication,

cells are blocked on sending to a full queue or receiving from

an empty queue. However, if the programs ‘have data inde-

pendent control flow, as in the case of previously published

systolic array designs, flow control need not be provided in

hardware. The asynchronous communication model is still

recommended in this case because code optimization is

simplified by retaining the semantics of asynchronous com-

munication in the code generation phase. The optimized code

is then skewed to implement static flow conEo1.

For the Warp machine, we have developed a simple Algol-
like language, called W2, that captures the proposed

asynchronous communication model [9]. In #addition to con-

ventional control constructs, the language has two com-
munication primitives: receives and sends. A cell is blocked

whenever it tries to send to a full queue or :receive from an

empty queue until data or space becomes available. We have

implemented an optimizing compiler for the Warp machine,

and the compiler has been in use for two years in applications
in robot navigation, low-level vision, signal processing and

scientific programming [2,3]. Near-optimal code has been

derived for a large number of well-known systolic

algorithms [141.

The organization of the paper is as follows: We first present

the architecture of Warp as an example of a high-performance

systolic array. We then illustrate the effeclt of the internal
timing of the cells on the design of a systolic array program.

Next, we describe the asynchronous communication model
and the code motions permitted by its semantics. We then

show how static flow control can be implemented. Lastly, the

paper concludes with a summary and some closing remarks.

2. The Warp architecture

Warp is a linear array of ten high-performance cells, and it

is integrated as an attached processor into a cm host system.

An overview of the entire system is depicted in Figure 2-l.

Data flow through the array on two data paths (X and Y),

while addresses for local cell memories and systolic control

signals travel on the Adr path, as shown in Figure 2-l. Each
cell can transfer up to 20 million 32bit words (80 Mbytes)

per second to and from its neighboring cells, in addition to 10

million 16-bit addresses. The Y data path is bidirectional,

with the direction configurable statically.

310

1 H;T 1

I WARP PROCESSOR ARRAY I

Figure 2-1: Warp system overview

Each processor in the Warp array is capable of a peak

computation rate of 10 MFLOPS. It is implemented as a

programmable horizontal micro-engine, with its own microse-

quencer and program memory for 8K instructions. The Warp

cell data path, as depicted in Figure 2-2, consists of a 32-bit

floating-point multiplier (Mpy). a 32-bit floating-point adder

(Add), two local memory banks for resident and temporary

data (Mem), a queue for each inter-cell communication chan-

nel (XQ, YQ, and AdrQ), and a register file to buffer data for

each floating-point unit (AReg and MReg). All these com-

ponents are connected through a crossbar. Addresses for

memory access can be computed locally by the address

generation unit (AGU), or taken from the address queue

(AdrQ). Both the adder and multiplier have 5-stage pipelines.
All the units can be programmed to operate concurrently via

wide micro-instructions of over 200 bits.

Figure 2-2: Warp cell data path

Because of the heavy pipelining and parallelism in the data
path of the cells, efficient code generation for cells is itself a

difficult problem. Parallelism in the code must be found

across basic blocks to use the hardware efficiently. This

problem is known as global microcode compaction [7]. We

have extended the scheduling technique of software

pipclining [17, 181 and developed a unified approach to global

compaction called hierarchical reduction [14]. These two

techniques enable us to obtain near-optimal and sometimes

optimal schedules for innermost loops in a large sample of

programs.

There have been two versions of the Warp cell architecture:

a prototype and a production version [l]. One of the major

additions to the final version is dynamic flow control

hardware. In the prototype machine, it is the responsibiility of

the software that a cell does not try to receive data from an

empty queue, or send data to a full queue. In the production

version, a cell is stalled at run-time by hardware to prevent

overflowing or underflowing the data queues. Only a subset

of programs executable on the final machine can be executed

on the prototype; nonetheless, the applicable domain of the

prototype is still quite large, as evident from the large set of

applications developed for the machine [2,3]. The W2 com-

piler can generate code for either machine. In either case,

code is first generated for the individual cells, assuming that

there is dynamic flow control hardware. If the prototype

machine is the target, additional code to implement compile-

time flow control is inserted after the code has been op-

timized.

3. Effect of cell timing on systolic designs

The use of parallel and pipelined cells was first studied in

the context of specific algorithms on custom

hardware [lo, 111. The cut theorem introduced by Kung and

myself is an attempt of a general solution [12]. The theorem

states that if the data flow through the array is acyclic,

pipelining can be introduced into the cells while maintaining

the throughput rate in terms of results per clock. This is

achieved by adding delays on selected communication paths

between the cells. In the case of cyclic data flow, however,
the resources in a cell can be fully utilized only by inter-

leaving multiple independent problems.

Let us use polynomial evaluation as an example of fine-

grain parallelism. Suppose we wish to evaluate the polyno-

mial

P(x)=cJ%c,IP-l+. . . +co

for x0.x1,. . . ,xnml. By Homer’s rule, the polynomial can be

reformulated from a sum of product terms into an alternating

sequence of multiplications and additions:

w=((c~~,~,)x+ . . * +q-=q)

The computation can be partitioned among m+l cells by
allocating each pair of multiplication and addition in Homer’s

rule to a cell. A systolic array for solving a polynomial of
degree 9 is illustrated in Figure 3-1.

311

4. Asynchronous communication model

As shown by the example above, timing information on the

internal cell behavior must be used to decide which operations

should be executed concurrently on different cells. That is, if

the machine abstraction hides the internal complexity of the

out X cells from the user, it must also be responsible to synchronize
mu :E xia

oy, Y,, := Y, *x,+c the computations across the cells. Therefore we propose that

the user programs the interaction between cells using

asynchronous communication operations: Cells send and

calculate the polynomial for n sets of data, and m sets of

Figure 3-1: Systolic array for polynomial evaluation

The steady state of the computation is straightforward In

fictitious data must be tagged on at the end of the input data.

each clock cycle, each cell receives a pair of data, performs a

multiplication and an addition, and outputs the results to the

next cell. However, the boundary conditions are more com-

plex: only the first cell is supplied with valid data in the first

clock cycle, the rest of the cells must wait or compute with

invalid data until the first valid one arrives. Since the first

result does not emerge horn the last cell until the end of the

m+lst cycle, the computation must be iterated n+m times to

receive data to and from their neighbors through dedicated

buffers. Only when a cell tries to send data to a full queue or

receive from an empty queue will a cell wait for other cells.

Systolic array algorithms can be easily expressed in this

asynchronous communication model. It is no longer neces-

sary to pad the computation with fictitious data to obtain a

simple steady state specification for the array; we can write

arbitrarily complex cell programs with irregular communica-

tion and computation patterns.

Let us now consider implementing the algorithm in Figure
3-l on processors with a 3-stage multiplier and a 3-stage

adder. The optimal throughput of an array with such proces-

sors is one result every clock cycle. This can be achieved by

pipelining the computation, and inserting a &word buffer into

the x data path between each pair of cells. A snapshot of the

computation is shown in Figure 3-2. In the original algo-

rithm, consecutive cells process consecutive data items con-

currently; in the pipelined implementation, as the second cell

starts to process the ith data item, the first is ready to start the

i+6th item.

efficient array code. Cells in a unidirectional systolic array

can be viewed as stages in a pipeline. The strategy used to

Unidirectional cell programs written using the

maximize the throughput of this pipeline is first to minimize

asynchronous communication model can be compiled into

the execution time of each cell, then insert necessary buffers

between the cells to smooth the flow of data through the

pipeline. The use of buffering to improve the throughput has

been illustrated by the polynomial evaluation example.

This approach of code optimization is supported by the
high-level semantics of the asynchronous communication

model. In asynchronous communication,, buffering between

cells is implicit. This semantics is retained throughout the

cell code optimization phase, thus permitting all code motions

that do not change the semantics of the computation. The
>

necessary buffering is determined after code optimization.

Using the asynchronous communication primitives in the

W2 language, the polynomial evaluation algorithm is

specified by the following cell program:

Figure 3-2: Polynomial evaluation on pipelined processors

Although the cut theorem can be used to transform un-

pipelined designs to pipelined arrays such as the one above, it

/* shift in the coefficients */
C := 0.0;
for i := 0 to m do begin

Sand (R, X, c);
Receive (L, X, c) ;

end;
applies only to simple systolic algorithms, where all cells

repeat the same operation all the time. Any complication

such as time-variant computation, heterogeneous cell

programs, or conditional statements would render this tech-

nique inapplicable.

/* compute the polynomials */
for i := 0 to n-l do begin

Receive (L, X, xdata);
Receive (L, Y, yin);
Send (R, X, xdata);
Send (R, Y, xdata * yin + c);

end:

312

The receive and send operations take three arguments:

direction, channel used, and a variable name. In a mand

operation, the thiid parameter can also be an expression. The

direction, L (left) or R (right), and the name of the channel, X

or Y, specify the hardware communication link to be used. In

a receive operation, the third argument is the variable to

which the received value is assigned; in a send operation, the

third argument is the value sent.

The above cell program is executed by all the cells in the

array. The first loop shifts in the coefficients; the second loop

computes the polynomials. In the second loop, each cell picks

up a pair of xdata and yin, updates yin, and forwards both

values to the next cell. By the definition of asynchronous

communication, the computation of the second cell is blocked

until the first cell sends it the first result. Figure 4-l shows

the first few cycles of computation of the two cells. This
description is simpler and more intuitive, as the asynchronous

communication model relieves the user from the task of

specifying the exact operations executed concurrently on the

cells.

Cell 1 Cell 2

c9

x0 (
0
Xl g

TIME 0
x2 --(
0

Figure 4-1: Polynomial evaluation using
asynchronous communication

Let us consider the compilation of the second loop in the

program again for cells with a 3-stage multiplier and a 3-stage

adder. In a straightforward implementation of the program, a

single iteration of the polynomial evaluation loop takes 8

cycles, as illustrated in Figure 4-2.

The figure contains the microcode for one iteration of the

loop, and an illustration of the interaction between cells. The

communication activity of each cell is captured by two time

lines, one for each neighbor. The data items received or sent

are marked on these lines. The solid lines connecting the time

lines of neighboring cells represent data transfers on the X

channel, whereas the dashed lines represent data transfers on

the Y channel.

As shown in the figure, the second cell cannot start its

computation until the first result is deposited into the Y queue.

However, once a cell starts, it will not stall again, because of

the equal and constant input/output rates of each cell. Tbere-

313

fore, the throughput of the array is one polynomial evaluation

every eight cycles.

1 iteration on 1 cell
I

1 RecY,RecX xilYi
2 Mul,SendX
3

n

xi

2 Add

;
8 SendY Yi

Time

Cells

Figure 4-2: Unoptimized Polynomial evaluation

However, the hardware is capable of delivering a through-

put of one result every cycle. This maximum throughput can

be achieved as follows: We notice that the semantics of the

computation remains unchanged if we reorder communication

operations on different queue buffers. This observation al-

lows us to perform extensive code motion among the com-

munication operations, and hence the computational opera-

tions, to achieve the compact schedule of Figure 4-3.

RecY,RecX
Mul,SendX

Add

SendY

RecY, RecX
Mul, SendX

Add

SendY

RecY,RecX
Mul, Se&X

Add

SendY

Figure 4-3: Three iterations of polynomial evaluation

The figure shows only three iterations, but this optimal

throughput of one iteration per cycle can be kept up for the

entire loop using the scheduling technique of software

pipelining [14, 17, 181. The computation of the loop is

depicted in Figure 4-4. The only cost of this eight-times

speed up is a longer queue between cells. While the original

schedule needs a one-word queue between cells, the op-

timized schedule needs a six-word queue.

Time

Cells

XOYO
XlYl
XzrY2
x3 PY3
x4 Y4
x5 J5
XSYS

Figure 4-4: Efficient polynomial evaluation

5. Scheduling constraints between
communication operations

To use the internal resources of high-performance proces-

sors effectively, the original sequential ordering of execution

must be relaxed. The approach used in the W2 compiler is to

translate the data dependencies within the computation into

scheduling constraints, and allow the scheduler to rearrange

the code freely so long as the scheduling constraints are

satisfied. This approach supports the extensive code motion

necessary to use the parallel hardware resources effectively.

As shown in the example above, communication operations

in systolic programs must also be reordered to achieve ef-

ficient fine-grain parallelism. Fortunately, efficient code can

be generated for unidirectional systolic programs by simply

analyzing each cell independentIy and constraining only the

ordering of communication operations within each cell.

These sequencing constraints are represented similarly as data

dependency between computational operations. The uniform

representation allows general scheduling techniques to be ap-

plied to both communication and computational operations.

5.1. The probIem
When communication operations are permuted, it is pos-

sible to introduce deadlock into a program. Consider the

following examples:

(a) First cell Second cell
Send(R,X,a); Receive(L,X,c);
Receive(R,X,b); Send(L,X,d);

(b) First cell Second cell
Receive (R,X,b); Receivsr(L,X,c);
Send(R,X,a); Send(L,X,d) ;

(c) Fist cd Second cell
Send (R, X, a) ; Send (L,. X, d) ;
Receive (R,X, b) ; Receivts (L, X, cf ;

The original program (a) is deadlock-free. Reordering the
communication operations as in program N(b) is illegal, be-

cause the two cells will be blocked forever waiting for each

other’s input. While program (b) deadlocks regardless of the

size in the communication buffer, program (c) deadlocks only

if there is not enough buffering within the channels. In this
particular example, the cells must have at least a word of

buffer on each channel.

We say that the semantics of a program is preserved only if

an originally deadlock-free program remains deadlock-free.

and that the program computes the same results. Here we

answer the following question: given that no data dependency

analysis is performed across cells, what are the necessary and

sufficient scheduling constraints that must lbe enforced within

each cell to preserve the semantics of the program?

Theoretically, it is possible to allow more code motion by

analyzing the data dependency across c~ells and imposing

scheduling constraints between computations of different

cells. However, since receive and send operations correspond

by the order in which they are executed, any conditionally

executed receive or send operations would make it impossible

to analyze subsequent cell interaction. Furthermore, the

scheduling procedure would be greatly complicated if

scheduling constraints relate computaticlns from different

cells. In the following, we fist study the extent by which cell

programs can be optimized if compiled independently. Dis-

cussions on the scope of the approach are given later.

5.2. The analysis
We separate the preservation of semantics of an

aSytN&onOUS Systolic program intO tW0 iSSUeS: the Corn&-

ness of the computation (if the program completes), and the

avoidance of introducing deadlock into a program. Here we

only concentrate on the interaction between cells; the correct-

ness of the rest of the computation in each cell is assumed.

First, to ensure correctness, the ordering of operations on

the same communication channel must be preserved. That is,

we cannot change the order in which the data are sent to a

queue, or received from a queue. Sincse receive and send

operations correspond by the OTdeT in which they are ex-
ecuted, a pair of receives on the same queue can be permuted

314

only if the corresponding sends on the sender cell are per-

muted similarly, and vice versa. Therefore, if code motions

on the different cells are not coordinated, the data on each
queue must be sent or received in the same order as the

original. Conversely. if the ordering of operations on each

communication channel is preserved, provided that the

program completes, the computation is correct.

On the second issue, let us fist analyze the occurrence of a

deadlock under a general systolic array model. (Important

special cases, such as linear or unidirectional arrays, are given

below.) A systolic array is assumed to consist of locally

connected cells, where each cell can only communicate with

its neighbors. In a deadlock, there must be two or more

connected cells that are involved in a circular wait. Each cell

involved is waiting for some action by one of the other cells.

If the deadlock does not occur in the original program, then

the code scheduler must have moved an operation that could

have prevented the deadlock past the operation on which the

cell is blocked. In other words, the operation on which the

cell is blocked depends on the execution of some preceding

operation, which must be directed at one of the cells involved

in the circular wait. Therefore, the key is to identify all such

dependency relationships, and insert necessary scheduling

constraints to ensure that operations sharing a dependency

relationship are not permuted.

If there is no knowledge on the topology of the array or the

direction of data flow, the scheduling constraints are quite

strict. If the communication buffers are infinite in length,

then cells block only on receiving from an empty queue. The

only operation that could have unblocked a neighboring cell is

a send operation. Without any further knowledge of the

systolic program, the unblocking of a receive operation may

depend on any of the send operations that precede it. There-

fore, we cannot move a send operation below any receive

operations. If the communication buffers are finite in length,

however, a cell can block either on a send or a receive

operation. Any preceding send or receive operation to or

from any neighbor may be necessary to unblock the operation,

Therefore, the original sequential ordering of all communica-

tion operations must be observed.

The scheduling constraints can be relaxed in a linear sys-

tolic array, provided that there is no feedback from the last

cell to the first cell. In a linear array, two and only two cells

can be involved in a circular wait; since a cell can only wait

for a neighbor one at a time, it is impossible to form a cycle

with more than two cells in a linear array. Therefore the

unblocking of a communication operation can only dcpcnd on
receive or send operations from or to the same cell. The

scheduling constraints above can thus be relaxed as follows:

if the queues are infinite in length, send operations to a cell

must not be moved below receive operations from the same

cell. If the queues are finite, all the sends and receives to and

from the same cell must be ordered as before. That is. receive

and send operations with the right neighbor are not related to

the receive and send operations with the left neighbor.

If the data flow through the array is acyclic, and if the

qucucs are infinite, then no scheduling constraints need to be

imposed between communication operations on different

channels. This is true for any array topology. The reason is

that cells cannot be mutually blocked, and thus there is no

possibility of a deadlock. However, if the queues are finite, a

cyclic dependency can be formed between the cell and any

two of its neighbors. Therefore, as in the general systolic

array model. all send and receive operations on every cell

must be ordered as in the original program.

The constraints that must be inserted between communica-

tion operations to preserve the semantics of systolic programs

are summarized as follows:
1. The ordering of all sends to the same queue, or

receives from the same queue, must be preserved.

2. FOT arrays of acyclic data flow, if the queues are
infinite, then no other scheduling constraints between
communication operations are necessary.

3. Additional scheduling constraints necessary to ensure
that no deadlock is introduced are:

TOPOLOGY INRNlTEQUEUES FNTE QUEUES

Linear Sends before receives Receives and sends
from same cell with same cell

General Sends before receives All receives and
from any celI sends

5.3. Practical implications
Both the finite and infinite queue models permit extensive

code motion in the compilation of unidirectional, linear sys-

tolic array programs. Since receive operations are not con-

strained to execute after any send operations, the scheduler

can simply schedule these operations whenever the data are

needed, or whenever the results are computed. As in the

polynomial evaluation example, the second data set can be

received and computed upon in parallel with the first set. It is

not necessary to wait for the completion of the first set before

starting the second. The send and receive operations are

arranged to minimize the computation time on each cell.

Provided that sufficient buffering is available between cells,

the interaction between cells may only increase the latency for

each data set, but not the throughput of the system.

The major difference between the finite and infinite queue

models is that in the former, data buffering must be imple-

mcntcd explicitly in memory or in the register file on the cell.

In the finite queue model. because we cannot increase the

minimum queue size requiremen& the receive operations from

different queues must be ordered, and so must the send opera-

315

tions. In the polynomial evaluation example, the result of an
iteration must be sent out before passing the data (xdata) of
the next iteration to the next cell. To overlap different itera-
tions, the values of xdata from previous iterations must be

‘buffered internally within the cell. The number of data that
needs to be buffered exactly equals the increase in minimum
queue size in the infinite queue model. Therefore, while the
infinite queue model automatically uses the existing com-
munication channel for buffering, the finite queue model re-
quires the buffering to be implemented explicitly. This buf-
fering may be costly especially when the number of opera-
tions executed per data item is small.

The infinite queue model has been used successively in the
W2 compiler for the Warp machine, and it is likely to be an
important model for other systolic architectures. First, as
discussed above, for any non-linear systolic array, the infinite
queue model can support more code motions than the finite
queue model if the data flow is acyclic.

Second, data buffering is an important part of fine-grain
systolic algorithms. It has been used in systolic algorithms to
alter the relative speeds of data streams so that data of an
operation arrive at the same ceil at the same time. Examples
include l-dimensional and 2-dimensional convolutions. We
have also shown that buffering is useful in streamlining the
computation on machines with parallel and pipelined units.
Moreover, a large queue is useful in minimizing the coupling
between computations on different cells; this is especially
important if the execution time for each data set is data
dependent. Therefore, data buffering is likely to be well
supported on systolic processors. For example, hardware
queues of 512 words are implemented on the Warp cells.
This queue size has not posed any problem in our application
experience. The infinite queue model uses the data buffering
capability of systolic arrays effectively.

Lastly, the increase in queue size can be controlled. In the
current implementation of W2, only communication opera-
tions in the same innermost loop are reordered. Code motion
is generally performed within a small window of iterations in
the loop; the size of the window increases with the degree of
internal pipelining and parallelism of the cell It is possible to
further control the increase in buffer size by limiting the code
motion of communication operations to within a fixed number
of iterations. The analysis and the manipulation of the
scheduling constraints are no different from those of computa-
tional operations involving references to array variables.

5.4. Discussion
The optimization of systoIic algorithms by exploiting the

semantics of asynchronous communication is simple and
powerful. In this approach, each cell is individually compiled
and optimized, and then the necessary buffers are inserted

between cells. Results similar to those of the cut theorem can
be obtained. One important difference is that while the cut
theorem is applicable only to simple, regular computations,
the proposed approach applies to general programs.

This approach allows us to obtain efficient code when the
following properties are satisfied: large queue size (with
respect to the grain size of parallelism), the performance
criterion is throughput rather than latency, ;md unidirectional
data flow. If any of these properties is violated, more ef-
ficient code can probably be achieved if the internal timing of
the cells is considered in the computation partitioning phase,
or if all the cells in the array are scheduled together.

The effect of cyclic data flow on efficierrcy depends on the
grain size of parallelism. Cyclic data flow has little negative
effect on computation with large-grain para:Uelism. but it may
induce a significant performance loss in computation with
fine-grain parallelism. A common example of the former is
domain decomposition. where data is exchanged between
neighboring 41s at the end of some Iong c:omputation. This
communication phase is relatively short compared to the com-
putation phase, and optimality is not crucial. In cyclic arrays
of fine-grain parallelism, data sent to other cells are constantly
fed back into the same cell. To minimize the time a cell is
blocked, we must analyze the dependency across cells to
determine the processing time required between each pair of
send and receive operations. Moreover, Kung and I showed
that the internal pipelining and parallelism within a cell can-
not be used effectively for a single problem in arrays of cyclic
flow [12]. Multiple problems must be interleaved to use the
resources in a cell effectively. In the pape,r, we also showed
that many of the problems, for which cyclic algorithms have
been proposed, can be solved by a ring or torus architecture.
Rings and tori are amenable to similar optimization tech-
niques as arrays of unidirectional data flow.

6. Compile-time flow control

Many systolic algorithms can be, and have been, imple-
mented without dynamic flow control hardware. Constructs
that are supported on such hardware include iterative state-
ments with compile-time loop bounds, and conditional state-
ments for which the execution time of each branch can be
bounded and which contain no receive and send operations.
The asynchronous communication model does not preclude
such programs from being implemented on cells without
dynamic flow control support. Static flow control can be
implemented after the cells have been optimized.

To implement static flow control, we adopt a simple com-
putation model, called the skewed computation model. In this
model, the computation on a cell is delayed by the necessary

316

amount of time to guarantee that it would not execute a
receive before the corresponding send is executed. The delay

a cell needs to wait after the preceding cell has started its

computation is called the skew. Code generated using this

model executes as fast, and requires as much buffer, as a

program executing full speed on a machine with dynamic

flow control. The algorithm for finding the skew has been

discussed in another paper [9]. The main ideas are presented
here for completeness.

The problem of finding the skew can be formulated as

follows, Let r,(n) and z,(n) be the time the nth receive or

send operation is executed with respect to the beginning of the

program, respectively. The minimum skew is given by:

max (t,(n)-@)), 0 In c number of receives/sends

Identifying all the matching pairs of receives and sends in

programs containing non-sequential control constructs can be

difficult. The key observation is that it is not necessary to

match all pairs of receives and sends in the calculation of the

minimum skew. A bound can be obtained by the following

formulation of the problem: A receive/send statement in a

loop corresponds to multiple receive/send operations. Each

receive/send statement is characterized by its own timing

function, 2r, or 7s.’ and an execution set E
‘i

or Es,. The

execution dt is thiset of ordinal numbers of the recei:e/send

operations for which the statement is responsible for. The

timing function maps the ordinal number of a receive or send

operation to the cycle it is executed. This is an exact value if

the ordinal number of the operation belongs to the execution

set; otherwise, it gives a value extrapolated from the values of

those that are. The problem of calculating the skew computa-

tion is reduced to the following: For each pair of timing

functions, T,, and 7s ,, we would like to find ~s,/c
‘i

for all n

that is in th: interse/ction of the execution sets’of both func-

tions. The maximum of the differences is the minimum skew.

When the intersection of the execution set is difficult to com-

pute, instead of using the constraints defining the sets to solve

for the intersection completely, we simply use the constraints

to bound the difference between the two timing functions.

This formulation of the problem allows us to cheaply cal-
culate the minimum skew in the simple cases and its upper

bound in the complex ones.

7. Concluding remarks

Asynchronous communication is proposed here as the

machine abstraction for systolic arrays, not only for its

programmability and, perhaps surprlslngly, for its efficiency

as well. The high-level semantics of the asynchronous com-
munication model allows us to relax the sequencing con-

straints between the communication operations within a cell.

Representing only those constraints that must be satisfied in a

similar manner as data dependency constraints within a corn-
putation, general scheduling techniques can be used to min-

imize the execution time on each cell. This approach allows

us to generate highly efficient code from complex systolic

programs; the experience with the compiler indicates that the

efficiency obtained is comparable to hand-crafted systolic

programs.

The asynchronous communication model is also useful for

hardware implementations without direct support for dynamic

flow control. Computation admissible of compile-time flow

control includes all programs with unidirectional data flow

and data independent control flow. Programs written using

asynchronous communication primitives can be mapped to

the skewed computation model where the computation on

each cell is delayed with respect to its preceding cell by some

predetermined amount of time. The delay, or the skew. can

be calculated accurately and quickly for most cases; ap-

proximations can be obtained for pathological cases cheaply.

The compile-time flow control algorithm may be used in

silicon compilers where custom hardware is built for specific

applications.

Acknowledgments

The research reported in this paper is part of my Ph.D.
thesis. I especially want to thank my thesis advisor,

H. T. Kung, for his support and advice in the past many years.

I would like to thank all the members in the Warp project, and

in particular, Thomas Gross for his effort in the W2 compiler.

I also want to thank Mosur Ravishankar for his helpful com-

ments on my thesis drafts, and for the many hours of discus-
sions and arguments.

References

1. Annaratone, M.. Arnould, E.. Cohn, R.. Gross, T.. Kung,
H. T., Lam, M.. Menzilcioglu, O., Sarocky. K., Senko. J., and
Webb, J. Warp Architecture: From Prototype to Production,
Proc. 1987 National Computer Conference, AFlPS, Chicago,
June, 1987.

2. Annaratone, M.. Bitz. F., Clune E., Kung H. T.. Maul&,
P.. Ribas. H., Tseng, P., and Webb, J. Applications of Warp.
Proc. Compcon Spring 87. San Francisco, Feb., 1987.

3. Annaratone, M.. Bitz, F., Deutch. J.. Hamey, L.. Kung.
H. T., Maulik P. C., Tseng, P., and Webb, J. A. Applications
Experience on Warp. Proc. 1987 National Computer Con-
ference, AFIPS. Chicago, June. 1987.

4. Annaratone. M.. Amould, E., Gross, T.. Kung, H. T.. Lam.
M.. Menzilcioglu, 0. and Webb, J. A. ‘The Warp Computer:
Architecture, Implementation and Performance”. IEEE
Transuctions on Computers C-36,12 (December 1987).

317

5. Chen, Marina C. A Parallel Language and Its Compilation
to Multiprocessor Machines or VLSI. Proc. 13th Annual
ACM Symposium on Principles of Programming Languages,
Jan., 1986.

6. Delosme, J.-M., Ipsen, I.C.F. Design Methodology for
Systolic Arrays. Proc. SPIE Symp., 1986, pp. 245-259.

7. Fisher, J. A., Landskov, D. and Shriver, B. D. Microcode
Compaction: Looking Backward and Looking Forward. Proc.
1981 National Computer Conference, 1981, pp. 95-102.

8. Fortes, J.A.B.. Moldovan, D.I. “Parallelism Detection and
Transformation Techniques Useful for VLSI Algorithms”.
Journal of Parallel and Distributed Computing 2 (1985).
277-301.

9. Gross, T. and Lam, M. Compilation for a High-
performance Systolic Array. Proc. ACM SIGPLAN 86 Sym-
posium on Compiler Construction, June, 1986.

10. Kung. H.T., Ruane, L.M., and Yen, D.W.L. ‘Two-Level
Pipelined Systolic Array for Multidimensional Convolution”,
Image and Vision Computing I, 1 (Feb. 1983). 30-36. An
improved version appears as a CMU Computer Science
Department technical report, November 1982.

11. Kung, H.T. Two-Level Pipelined Systolic Arrays for
Matrix Multiplication, Polynomial Evaluation and Discrete
Fourier Transform. Proc. Workshop on Dynamical Behavior
of Automata: Theory and Applications, Sep., 1983.

12. Kung, H.T. and Lam, M. “Wafer-Scale Integration and
Two-Level Pipelined Implementations of Systolic Arrays “.
Journal of Parallel and Distributed Computing 1,l (1984),
32-63. A preliminary version appears in Proc. Conference on
Advanced Research in VLSI, MIT, January 1984, pp. 74-83.

13. Lam, Monica and Mostow. Jack. “A Transformational
Model of VLSI Systolic Design”. Computer 18.2 (Feb.
1985). An earlier version appears in Proc. 6th International
Symposium on Computer Hardware Description Languages
and their Applications. May, 1983.

14. Lam, Monica. A Systolic Array Optimizing Compiler.
Ph.D. Th., Carnegie Mellon University, May 1987.

15. Leiserson, C.E. and Saxe, J.B. “Optimizing Synchronous
Systems”. Journal of VLSI and Computer Systems I, 1
(1983), 41-68.

16. Quinton, Patrice. Automatic Synthesis of Systolic Arrays
from Uniform Recurrent Equations. Proc. 11th Annual Sym-
posium on Computer Architecture, 1984.

17. Rau, B. R. and Glaeser, C. D. Some Scheduling Tech-
niques and an Easily Schedulable Horizontal Architecture for
High Performance Scientific Computing. Proc. 14th Annual
Workshop on Microprogramming, Oct., 1981.

18. Touzeau, R. F. A Fortran Compiler for the FPS-164
Scientific Computer. Proc. ACM SIGPLAN ‘84 Symp. on
Compiler Construction, June, 1984, pp. 48-57.

