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Abstract 

A programmable systolic array of high-performance cells is 
an attractive computation engine if it attains the same utiliza- 
tion of dedicated arrays of simple cells. However, typical 
implementation techniques used in high-performance proces- 
sors, such as pipeliniig and parallel functional units, further 
complicate the already difficult task of systolic algorithm 
design. This paper shows that high-performance systolic ar- 
rays can be used effectively by presenting the machine to the 
user as an array of conventional processors communicating 
asynchronously. This abstraction allows the user to focus on 
the higher level problem of partitioning a computation across 
cells in the array. Efficient fine-grain parallelism can be 
achieved by code motion of communication operations made 
possible by the asynchronous communication model. This 
asynchronous communication model is recommended even 
for programming algorithms on systolic arrays without 
dynamic flow control between cells. 

The ideas presented in the paper have been validated in the 
compiler for the Warp machine [4]. The compiler has been in 
use in various application areas including robot navigation, 
low-level vision, signal processing and scientific program- 
ming. Near-optimal code has been generated for many 
published systolic algorithms. 
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1. Introduction 

A systolic array of high-performance, programmable 

processors with floating-point capability is an attractive ar- 

chitecture for numerical processing. Systolic arrays are 

known for their high utilization; the meticulous synchroniza- 

tion of the flow of data and computation on each cell keeps 

every cell busy at,all times. Many important computation- 

intensive algorithms in signal processing, image processing, 
and scientific computation have been mapped to this architec- 

ture successfully. At Carnegie Mellon, together with our 

industrial partner General Electric, we have built a high- 
performance and programmable systolic array, called 

Warp [4]. Warp consists of 10 highly pipelined processors, 

each capable of delivering up to a peak rate of 10 million 

floating-point operations per second (10 MFLOPS). The peak 

computation rate of the entire array is therefore 100 

MFLOPS. This paper shows that this machine can indeed be 

programmed to execute fine-grain systolic algorithms with the 

same utilization typical of special-purpose systolic arrays of 

simple cells. 

The high computation throughput of systolic arrays is 

derived through the fine-grain cooperation between cells, 

where computation and the flow of data through the array are 

tightly coupled. This complexity in designing a systolic algo- 

rithm has motivated a lot of research in systolic array 

synthesis [5,6,8, 12, 13, 15, 161. The target machine model 

of previous systolic research was a custom hardware im- 

plementation of the algorithm in VLSI technology. The main 
concerns were in mapping specific aIgorithms onto a regular 

layout of simple, identical hardware components. The com- 

putation performed by each cell must therefore be regular, 

repetitive and data-independent. The state of the art is that 

uniform recurrence equations can be mapped onto optimal 

systolic designs semi-automatically [8, 161. 

To fully use the potential of high-performance systolic ar- 

rays, previous results must be extended to allow for realistic 

machine characteristics and a more general application 

domain. Previous research in automatic synthesis of systolic 
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array algorithms focused on the mapping of simple computa- 

tions onto simple abstract machine models. Cells in a systolic 

array were assumed to take unit time to process each set of 

input data; previous systolic array synthesis techniques 

depend on this simplification. In reality, however, high- 

performance processors themselves can contain a high degree 

of pipelining and parallelism. Not only is the internal paral- 

lelism of a cell difficult to master, the internal timing of a cell 

must also be brought to bear in the systolic program design to 

achieve fine-grain parallelism. Furthermore, the previous as- 

sumption that the computation across the array is regular and 

simple no longer applies. Unlike custom VLSI circuits, a 

programmable array can be used for a more general problem 

domain. The cells can execute different programs, with ar- 

bitrary control flow and data dependent operations. 

Compiling general, processor-oblivious programs to ef- 
ficient code appears intractable at present. In order that 

efficiency and generality can be achieved, we choose to ex- 
pose the configuration of the array to the user, while hiding 

the internal pipelining and parallelism in each cell in the 

array. We propose that the array be presented to the user as 
an array of simple conventional processors that communicate 

via asynchronous primitives. The proposed abstraction allows 

the user, or higher level tools, to concentrate on high-level 

systolic algorithm design; the full programmability of each 

cell is accessible to the user through high-level language 

constructs. 

In this paper, we concentrate on the effect of the inter-cell 

communication on code optimization. A characteristic that 

distinguishes systolic computation from other forms of paral- 

lelism is the tight coupling between communication and com- 

putation. The high computation rate of a systolic array is 

matched by an equally high intercell communication rate. 

Data transfer between cells incur an extremely low overhead. 

Unlike most other architectures where data are transferred 

from the memory of a processor to that of the other, results 

from the data path of one cell can be fed directly to the data 

path of the neighboring cell. While this coupling between 

communication and computation makes systolic architectures 

uniqueIy supportive of fine-grain parallelism, it poses a dif- 

ficult problem to code optimization. 

We show that the high-level semantics of asynchronous 

communication, apart from providing a high-level abstraction 

to the user, is also instrumental in code optimization. The 

asynchronous communication semantics allows useful code 

motion be applied without elaborate data dependency analysis 

across cells. By representing the scheduling constraints of 

communication operations in a similar fashion as data depen- 

dency in the computation of a cell, general code scheduling 

techniques for high-performance processors can be applied. 

The machine characteristic assumed by the compilation 

technique is that cells in the array communicate via data 

queues. By the semantics of asynchronous communication, 

cells are blocked on sending to a full queue or receiving from 

an empty queue. However, if the programs ‘have data inde- 

pendent control flow, as in the case of previously published 

systolic array designs, flow control need not be provided in 

hardware. The asynchronous communication model is still 

recommended in this case because code optimization is 

simplified by retaining the semantics of asynchronous com- 

munication in the code generation phase. The optimized code 

is then skewed to implement static flow conEo1. 

For the Warp machine, we have developed a simple Algol- 
like language, called W2, that captures the proposed 

asynchronous communication model [9]. In #addition to con- 

ventional control constructs, the language has two com- 
munication primitives: receives and sends. A cell is blocked 

whenever it tries to send to a full queue or :receive from an 

empty queue until data or space becomes available. We have 

implemented an optimizing compiler for the Warp machine, 

and the compiler has been in use for two years in applications 
in robot navigation, low-level vision, signal processing and 

scientific programming [2,3]. Near-optimal code has been 

derived for a large number of well-known systolic 

algorithms [ 141. 

The organization of the paper is as follows: We first present 

the architecture of Warp as an example of a high-performance 

systolic array. We then illustrate the effeclt of the internal 
timing of the cells on the design of a systolic array program. 

Next, we describe the asynchronous communication model 
and the code motions permitted by its semantics. We then 

show how static flow control can be implemented. Lastly, the 

paper concludes with a summary and some closing remarks. 

2. The Warp architecture 

Warp is a linear array of ten high-performance cells, and it 

is integrated as an attached processor into a cm host system. 

An overview of the entire system is depicted in Figure 2-l. 

Data flow through the array on two data paths (X and Y), 

while addresses for local cell memories and systolic control 

signals travel on the Adr path, as shown in Figure 2-l. Each 
cell can transfer up to 20 million 32bit words (80 Mbytes) 

per second to and from its neighboring cells, in addition to 10 

million 16-bit addresses. The Y data path is bidirectional, 

with the direction configurable statically. 
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Figure 2-1: Warp system overview 

Each processor in the Warp array is capable of a peak 

computation rate of 10 MFLOPS. It is implemented as a 

programmable horizontal micro-engine, with its own microse- 

quencer and program memory for 8K instructions. The Warp 

cell data path, as depicted in Figure 2-2, consists of a 32-bit 

floating-point multiplier (Mpy). a 32-bit floating-point adder 

(Add), two local memory banks for resident and temporary 

data (Mem), a queue for each inter-cell communication chan- 

nel (XQ, YQ, and AdrQ), and a register file to buffer data for 

each floating-point unit (AReg and MReg). All these com- 

ponents are connected through a crossbar. Addresses for 

memory access can be computed locally by the address 

generation unit (AGU), or taken from the address queue 

(AdrQ). Both the adder and multiplier have 5-stage pipelines. 
All the units can be programmed to operate concurrently via 

wide micro-instructions of over 200 bits. 

Figure 2-2: Warp cell data path 

Because of the heavy pipelining and parallelism in the data 
path of the cells, efficient code generation for cells is itself a 

difficult problem. Parallelism in the code must be found 

across basic blocks to use the hardware efficiently. This 

problem is known as global microcode compaction [7]. We 

have extended the scheduling technique of software 

pipclining [17, 181 and developed a unified approach to global 

compaction called hierarchical reduction [14]. These two 

techniques enable us to obtain near-optimal and sometimes 

optimal schedules for innermost loops in a large sample of 

programs. 

There have been two versions of the Warp cell architecture: 

a prototype and a production version [l]. One of the major 

additions to the final version is dynamic flow control 

hardware. In the prototype machine, it is the responsibiility of 

the software that a cell does not try to receive data from an 

empty queue, or send data to a full queue. In the production 

version, a cell is stalled at run-time by hardware to prevent 

overflowing or underflowing the data queues. Only a subset 

of programs executable on the final machine can be executed 

on the prototype; nonetheless, the applicable domain of the 

prototype is still quite large, as evident from the large set of 

applications developed for the machine [2,3]. The W2 com- 

piler can generate code for either machine. In either case, 

code is first generated for the individual cells, assuming that 

there is dynamic flow control hardware. If the prototype 

machine is the target, additional code to implement compile- 

time flow control is inserted after the code has been op- 

timized. 

3. Effect of cell timing on systolic designs 

The use of parallel and pipelined cells was first studied in 

the context of specific algorithms on custom 

hardware [lo, 111. The cut theorem introduced by Kung and 

myself is an attempt of a general solution [12]. The theorem 

states that if the data flow through the array is acyclic, 

pipelining can be introduced into the cells while maintaining 

the throughput rate in terms of results per clock. This is 

achieved by adding delays on selected communication paths 

between the cells. In the case of cyclic data flow, however, 
the resources in a cell can be fully utilized only by inter- 

leaving multiple independent problems. 

Let us use polynomial evaluation as an example of fine- 

grain parallelism. Suppose we wish to evaluate the polyno- 

mial 

P(x)=cJ%c,IP-l+. . . +co 

for x0.x1,. . . ,xnml. By Homer’s rule, the polynomial can be 

reformulated from a sum of product terms into an alternating 

sequence of multiplications and additions: 

w=((c~~,~,)x+ . . * +q-=q) 

The computation can be partitioned among m+l cells by 
allocating each pair of multiplication and addition in Homer’s 

rule to a cell. A systolic array for solving a polynomial of 
degree 9 is illustrated in Figure 3-1. 
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4. Asynchronous communication model 

As shown by the example above, timing information on the 

internal cell behavior must be used to decide which operations 

should be executed concurrently on different cells. That is, if 

the machine abstraction hides the internal complexity of the 

out X cells from the user, it must also be responsible to synchronize 
mu :E xia 

oy, Y,, := Y, *x,+c the computations across the cells. Therefore we propose that 

the user programs the interaction between cells using 

asynchronous communication operations: Cells send and 

calculate the polynomial for n sets of data, and m sets of 

Figure 3-1: Systolic array for polynomial evaluation 

The steady state of the computation is straightforward In 

fictitious data must be tagged on at the end of the input data. 

each clock cycle, each cell receives a pair of data, performs a 

multiplication and an addition, and outputs the results to the 

next cell. However, the boundary conditions are more com- 

plex: only the first cell is supplied with valid data in the first 

clock cycle, the rest of the cells must wait or compute with 

invalid data until the first valid one arrives. Since the first 

result does not emerge horn the last cell until the end of the 

m+lst cycle, the computation must be iterated n+m times to 

receive data to and from their neighbors through dedicated 

buffers. Only when a cell tries to send data to a full queue or 

receive from an empty queue will a cell wait for other cells. 

Systolic array algorithms can be easily expressed in this 

asynchronous communication model. It is no longer neces- 

sary to pad the computation with fictitious data to obtain a 

simple steady state specification for the array; we can write 

arbitrarily complex cell programs with irregular communica- 

tion and computation patterns. 

Let us now consider implementing the algorithm in Figure 
3-l on processors with a 3-stage multiplier and a 3-stage 

adder. The optimal throughput of an array with such proces- 

sors is one result every clock cycle. This can be achieved by 

pipelining the computation, and inserting a &word buffer into 

the x data path between each pair of cells. A snapshot of the 

computation is shown in Figure 3-2. In the original algo- 

rithm, consecutive cells process consecutive data items con- 

currently; in the pipelined implementation, as the second cell 

starts to process the ith data item, the first is ready to start the 

i+6th item. 

efficient array code. Cells in a unidirectional systolic array 

can be viewed as stages in a pipeline. The strategy used to 

Unidirectional cell programs written using the 

maximize the throughput of this pipeline is first to minimize 

asynchronous communication model can be compiled into 

the execution time of each cell, then insert necessary buffers 

between the cells to smooth the flow of data through the 

pipeline. The use of buffering to improve the throughput has 

been illustrated by the polynomial evaluation example. 

This approach of code optimization is supported by the 
high-level semantics of the asynchronous communication 

model. In asynchronous communication,, buffering between 

cells is implicit. This semantics is retained throughout the 

cell code optimization phase, thus permitting all code motions 

that do not change the semantics of the computation. The 
> 

necessary buffering is determined after code optimization. 

Using the asynchronous communication primitives in the 

W2 language, the polynomial evaluation algorithm is 

specified by the following cell program: 

Figure 3-2: Polynomial evaluation on pipelined processors 

Although the cut theorem can be used to transform un- 

pipelined designs to pipelined arrays such as the one above, it 

/* shift in the coefficients */ 
C := 0.0; 
for i := 0 to m do begin 

Sand (R, X, c); 
Receive (L, X, c) ; 

end; 
applies only to simple systolic algorithms, where all cells 

repeat the same operation all the time. Any complication 

such as time-variant computation, heterogeneous cell 

programs, or conditional statements would render this tech- 

nique inapplicable. 

/* compute the polynomials */ 
for i := 0 to n-l do begin 

Receive (L, X, xdata); 
Receive (L, Y, yin); 
Send (R, X, xdata); 
Send (R, Y, xdata * yin + c); 

end: 
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The receive and send operations take three arguments: 

direction, channel used, and a variable name. In a mand 

operation, the thiid parameter can also be an expression. The 

direction, L (left) or R (right), and the name of the channel, X 

or Y, specify the hardware communication link to be used. In 

a receive operation, the third argument is the variable to 

which the received value is assigned; in a send operation, the 

third argument is the value sent. 

The above cell program is executed by all the cells in the 

array. The first loop shifts in the coefficients; the second loop 

computes the polynomials. In the second loop, each cell picks 

up a pair of xdata and yin, updates yin, and forwards both 

values to the next cell. By the definition of asynchronous 

communication, the computation of the second cell is blocked 

until the first cell sends it the first result. Figure 4-l shows 

the first few cycles of computation of the two cells. This 
description is simpler and more intuitive, as the asynchronous 

communication model relieves the user from the task of 

specifying the exact operations executed concurrently on the 

cells. 

Cell 1 Cell 2 

c9 

x0 ( 
0 
Xl g 

TIME 0 
x2 --( 
0 

Figure 4-1: Polynomial evaluation using 
asynchronous communication 

Let us consider the compilation of the second loop in the 

program again for cells with a 3-stage multiplier and a 3-stage 

adder. In a straightforward implementation of the program, a 

single iteration of the polynomial evaluation loop takes 8 

cycles, as illustrated in Figure 4-2. 

The figure contains the microcode for one iteration of the 

loop, and an illustration of the interaction between cells. The 

communication activity of each cell is captured by two time 

lines, one for each neighbor. The data items received or sent 

are marked on these lines. The solid lines connecting the time 

lines of neighboring cells represent data transfers on the X 

channel, whereas the dashed lines represent data transfers on 

the Y channel. 

As shown in the figure, the second cell cannot start its 

computation until the first result is deposited into the Y queue. 

However, once a cell starts, it will not stall again, because of 

the equal and constant input/output rates of each cell. Tbere- 
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fore, the throughput of the array is one polynomial evaluation 

every eight cycles. 

1 iteration on 1 cell 
I 

1 RecY,RecX xilYi 
2 Mul,SendX 
3 

n 

xi 

2 Add 

; 
8 SendY Yi 

Time 

Cells 

Figure 4-2: Unoptimized Polynomial evaluation 

However, the hardware is capable of delivering a through- 

put of one result every cycle. This maximum throughput can 

be achieved as follows: We notice that the semantics of the 

computation remains unchanged if we reorder communication 

operations on different queue buffers. This observation al- 

lows us to perform extensive code motion among the com- 

munication operations, and hence the computational opera- 

tions, to achieve the compact schedule of Figure 4-3. 

RecY,RecX 
Mul,SendX 

Add 

SendY 

RecY, RecX 
Mul, SendX 

Add 

SendY 

RecY,RecX 
Mul, Se&X 

Add 

SendY 

Figure 4-3: Three iterations of polynomial evaluation 



The figure shows only three iterations, but this optimal 

throughput of one iteration per cycle can be kept up for the 

entire loop using the scheduling technique of software 

pipelining [14, 17, 181. The computation of the loop is 

depicted in Figure 4-4. The only cost of this eight-times 

speed up is a longer queue between cells. While the original 

schedule needs a one-word queue between cells, the op- 

timized schedule needs a six-word queue. 

Time 

Cells 

XOYO 
XlYl 
XzrY2 
x3 PY3 
x4 Y4 
x5 J5 
XSYS 

Figure 4-4: Efficient polynomial evaluation 

5. Scheduling constraints between 
communication operations 

To use the internal resources of high-performance proces- 

sors effectively, the original sequential ordering of execution 

must be relaxed. The approach used in the W2 compiler is to 

translate the data dependencies within the computation into 

scheduling constraints, and allow the scheduler to rearrange 

the code freely so long as the scheduling constraints are 

satisfied. This approach supports the extensive code motion 

necessary to use the parallel hardware resources effectively. 

As shown in the example above, communication operations 

in systolic programs must also be reordered to achieve ef- 

ficient fine-grain parallelism. Fortunately, efficient code can 

be generated for unidirectional systolic programs by simply 

analyzing each cell independentIy and constraining only the 

ordering of communication operations within each cell. 

These sequencing constraints are represented similarly as data 

dependency between computational operations. The uniform 

representation allows general scheduling techniques to be ap- 

plied to both communication and computational operations. 

5.1. The probIem 
When communication operations are permuted, it is pos- 

sible to introduce deadlock into a program. Consider the 

following examples: 

(a) First cell Second cell 
Send(R,X,a); Receive(L,X,c); 
Receive(R,X,b); Send(L,X,d); 

(b) First cell Second cell 
Receive (R,X,b); Receivsr(L,X,c); 
Send(R,X,a); Send(L,X,d) ; 

(c) Fist cd Second cell 
Send (R, X, a) ; Send (L,. X, d) ; 
Receive (R,X, b) ; Receivts (L, X, cf ; 

The original program (a) is deadlock-free. Reordering the 
communication operations as in program N(b) is illegal, be- 

cause the two cells will be blocked forever waiting for each 

other’s input. While program (b) deadlocks regardless of the 

size in the communication buffer, program (c) deadlocks only 

if there is not enough buffering within the channels. In this 
particular example, the cells must have at least a word of 

buffer on each channel. 

We say that the semantics of a program is preserved only if 

an originally deadlock-free program remains deadlock-free. 

and that the program computes the same results. Here we 

answer the following question: given that no data dependency 

analysis is performed across cells, what are the necessary and 

sufficient scheduling constraints that must lbe enforced within 

each cell to preserve the semantics of the program? 

Theoretically, it is possible to allow more code motion by 

analyzing the data dependency across c~ells and imposing 

scheduling constraints between computations of different 

cells. However, since receive and send operations correspond 

by the order in which they are executed, any conditionally 

executed receive or send operations would make it impossible 

to analyze subsequent cell interaction. Furthermore, the 

scheduling procedure would be greatly complicated if 

scheduling constraints relate computaticlns from different 

cells. In the following, we fist study the extent by which cell 

programs can be optimized if compiled independently. Dis- 

cussions on the scope of the approach are given later. 

5.2. The analysis 
We separate the preservation of semantics of an 

aSytN&onOUS Systolic program intO tW0 iSSUeS: the Corn&- 

ness of the computation (if the program completes), and the 

avoidance of introducing deadlock into a program. Here we 

only concentrate on the interaction between cells; the correct- 

ness of the rest of the computation in each cell is assumed. 

First, to ensure correctness, the ordering of operations on 

the same communication channel must be preserved. That is, 

we cannot change the order in which the data are sent to a 

queue, or received from a queue. Sincse receive and send 

operations correspond by the OTdeT in which they are ex- 
ecuted, a pair of receives on the same queue can be permuted 
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only if the corresponding sends on the sender cell are per- 

muted similarly, and vice versa. Therefore, if code motions 

on the different cells are not coordinated, the data on each 
queue must be sent or received in the same order as the 

original. Conversely. if the ordering of operations on each 

communication channel is preserved, provided that the 

program completes, the computation is correct. 

On the second issue, let us fist analyze the occurrence of a 

deadlock under a general systolic array model. (Important 

special cases, such as linear or unidirectional arrays, are given 

below.) A systolic array is assumed to consist of locally 

connected cells, where each cell can only communicate with 

its neighbors. In a deadlock, there must be two or more 

connected cells that are involved in a circular wait. Each cell 

involved is waiting for some action by one of the other cells. 

If the deadlock does not occur in the original program, then 

the code scheduler must have moved an operation that could 

have prevented the deadlock past the operation on which the 

cell is blocked. In other words, the operation on which the 

cell is blocked depends on the execution of some preceding 

operation, which must be directed at one of the cells involved 

in the circular wait. Therefore, the key is to identify all such 

dependency relationships, and insert necessary scheduling 

constraints to ensure that operations sharing a dependency 

relationship are not permuted. 

If there is no knowledge on the topology of the array or the 

direction of data flow, the scheduling constraints are quite 

strict. If the communication buffers are infinite in length, 

then cells block only on receiving from an empty queue. The 

only operation that could have unblocked a neighboring cell is 

a send operation. Without any further knowledge of the 

systolic program, the unblocking of a receive operation may 

depend on any of the send operations that precede it. There- 

fore, we cannot move a send operation below any receive 

operations. If the communication buffers are finite in length, 

however, a cell can block either on a send or a receive 

operation. Any preceding send or receive operation to or 

from any neighbor may be necessary to unblock the operation, 

Therefore, the original sequential ordering of all communica- 

tion operations must be observed. 

The scheduling constraints can be relaxed in a linear sys- 

tolic array, provided that there is no feedback from the last 

cell to the first cell. In a linear array, two and only two cells 

can be involved in a circular wait; since a cell can only wait 

for a neighbor one at a time, it is impossible to form a cycle 

with more than two cells in a linear array. Therefore the 

unblocking of a communication operation can only dcpcnd on 
receive or send operations from or to the same cell. The 

scheduling constraints above can thus be relaxed as follows: 

if the queues are infinite in length, send operations to a cell 

must not be moved below receive operations from the same 

cell. If the queues are finite, all the sends and receives to and 

from the same cell must be ordered as before. That is. receive 

and send operations with the right neighbor are not related to 

the receive and send operations with the left neighbor. 

If the data flow through the array is acyclic, and if the 

qucucs are infinite, then no scheduling constraints need to be 

imposed between communication operations on different 

channels. This is true for any array topology. The reason is 

that cells cannot be mutually blocked, and thus there is no 

possibility of a deadlock. However, if the queues are finite, a 

cyclic dependency can be formed between the cell and any 

two of its neighbors. Therefore, as in the general systolic 

array model. all send and receive operations on every cell 

must be ordered as in the original program. 

The constraints that must be inserted between communica- 

tion operations to preserve the semantics of systolic programs 

are summarized as follows: 
1. The ordering of all sends to the same queue, or 

receives from the same queue, must be preserved. 

2. FOT arrays of acyclic data flow, if the queues are 
infinite, then no other scheduling constraints between 
communication operations are necessary. 

3. Additional scheduling constraints necessary to ensure 
that no deadlock is introduced are: 

TOPOLOGY INRNlTEQUEUES FNTE QUEUES 

Linear Sends before receives Receives and sends 
from same cell with same cell 

General Sends before receives All receives and 
from any celI sends 

5.3. Practical implications 
Both the finite and infinite queue models permit extensive 

code motion in the compilation of unidirectional, linear sys- 

tolic array programs. Since receive operations are not con- 

strained to execute after any send operations, the scheduler 

can simply schedule these operations whenever the data are 

needed, or whenever the results are computed. As in the 

polynomial evaluation example, the second data set can be 

received and computed upon in parallel with the first set. It is 

not necessary to wait for the completion of the first set before 

starting the second. The send and receive operations are 

arranged to minimize the computation time on each cell. 

Provided that sufficient buffering is available between cells, 

the interaction between cells may only increase the latency for 

each data set, but not the throughput of the system. 

The major difference between the finite and infinite queue 

models is that in the former, data buffering must be imple- 

mcntcd explicitly in memory or in the register file on the cell. 

In the finite queue model. because we cannot increase the 

minimum queue size requiremen& the receive operations from 

different queues must be ordered, and so must the send opera- 
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tions. In the polynomial evaluation example, the result of an 
iteration must be sent out before passing the data (xdata) of 
the next iteration to the next cell. To overlap different itera- 
tions, the values of xdata from previous iterations must be 

‘buffered internally within the cell. The number of data that 
needs to be buffered exactly equals the increase in minimum 
queue size in the infinite queue model. Therefore, while the 
infinite queue model automatically uses the existing com- 
munication channel for buffering, the finite queue model re- 
quires the buffering to be implemented explicitly. This buf- 
fering may be costly especially when the number of opera- 
tions executed per data item is small. 

The infinite queue model has been used successively in the 
W2 compiler for the Warp machine, and it is likely to be an 
important model for other systolic architectures. First, as 
discussed above, for any non-linear systolic array, the infinite 
queue model can support more code motions than the finite 
queue model if the data flow is acyclic. 

Second, data buffering is an important part of fine-grain 
systolic algorithms. It has been used in systolic algorithms to 
alter the relative speeds of data streams so that data of an 
operation arrive at the same ceil at the same time. Examples 
include l-dimensional and 2-dimensional convolutions. We 
have also shown that buffering is useful in streamlining the 
computation on machines with parallel and pipelined units. 
Moreover, a large queue is useful in minimizing the coupling 
between computations on different cells; this is especially 
important if the execution time for each data set is data 
dependent. Therefore, data buffering is likely to be well 
supported on systolic processors. For example, hardware 
queues of 512 words are implemented on the Warp cells. 
This queue size has not posed any problem in our application 
experience. The infinite queue model uses the data buffering 
capability of systolic arrays effectively. 

Lastly, the increase in queue size can be controlled. In the 
current implementation of W2, only communication opera- 
tions in the same innermost loop are reordered. Code motion 
is generally performed within a small window of iterations in 
the loop; the size of the window increases with the degree of 
internal pipelining and parallelism of the cell It is possible to 
further control the increase in buffer size by limiting the code 
motion of communication operations to within a fixed number 
of iterations. The analysis and the manipulation of the 
scheduling constraints are no different from those of computa- 
tional operations involving references to array variables. 

5.4. Discussion 
The optimization of systoIic algorithms by exploiting the 

semantics of asynchronous communication is simple and 
powerful. In this approach, each cell is individually compiled 
and optimized, and then the necessary buffers are inserted 

between cells. Results similar to those of the cut theorem can 
be obtained. One important difference is that while the cut 
theorem is applicable only to simple, regular computations, 
the proposed approach applies to general programs. 

This approach allows us to obtain efficient code when the 
following properties are satisfied: large queue size (with 
respect to the grain size of parallelism), the performance 
criterion is throughput rather than latency, ;md unidirectional 
data flow. If any of these properties is violated, more ef- 
ficient code can probably be achieved if the internal timing of 
the cells is considered in the computation partitioning phase, 
or if all the cells in the array are scheduled together. 

The effect of cyclic data flow on efficierrcy depends on the 
grain size of parallelism. Cyclic data flow has little negative 
effect on computation with large-grain para:Uelism. but it may 
induce a significant performance loss in computation with 
fine-grain parallelism. A common example of the former is 
domain decomposition. where data is exchanged between 
neighboring 41s at the end of some Iong c:omputation. This 
communication phase is relatively short compared to the com- 
putation phase, and optimality is not crucial. In cyclic arrays 
of fine-grain parallelism, data sent to other cells are constantly 
fed back into the same cell. To minimize the time a cell is 
blocked, we must analyze the dependency across cells to 
determine the processing time required between each pair of 
send and receive operations. Moreover, Kung and I showed 
that the internal pipelining and parallelism within a cell can- 
not be used effectively for a single problem in arrays of cyclic 
flow [12]. Multiple problems must be interleaved to use the 
resources in a cell effectively. In the pape,r, we also showed 
that many of the problems, for which cyclic algorithms have 
been proposed, can be solved by a ring or torus architecture. 
Rings and tori are amenable to similar optimization tech- 
niques as arrays of unidirectional data flow. 

6. Compile-time flow control 

Many systolic algorithms can be, and have been, imple- 
mented without dynamic flow control hardware. Constructs 
that are supported on such hardware include iterative state- 
ments with compile-time loop bounds, and conditional state- 
ments for which the execution time of each branch can be 
bounded and which contain no receive and send operations. 
The asynchronous communication model does not preclude 
such programs from being implemented on cells without 
dynamic flow control support. Static flow control can be 
implemented after the cells have been optimized. 

To implement static flow control, we adopt a simple com- 
putation model, called the skewed computation model. In this 
model, the computation on a cell is delayed by the necessary 
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amount of time to guarantee that it would not execute a 
receive before the corresponding send is executed. The delay 

a cell needs to wait after the preceding cell has started its 

computation is called the skew. Code generated using this 

model executes as fast, and requires as much buffer, as a 

program executing full speed on a machine with dynamic 

flow control. The algorithm for finding the skew has been 

discussed in another paper [9]. The main ideas are presented 
here for completeness. 

The problem of finding the skew can be formulated as 

follows, Let r,(n) and z,(n) be the time the nth receive or 

send operation is executed with respect to the beginning of the 

program, respectively. The minimum skew is given by: 

max (t,(n)-@)), 0 In c number of receives/sends 

Identifying all the matching pairs of receives and sends in 

programs containing non-sequential control constructs can be 

difficult. The key observation is that it is not necessary to 

match all pairs of receives and sends in the calculation of the 

minimum skew. A bound can be obtained by the following 

formulation of the problem: A receive/send statement in a 

loop corresponds to multiple receive/send operations. Each 

receive/send statement is characterized by its own timing 

function, 2r, or 7s.’ and an execution set E 
‘i 

or Es,. The 

execution dt is thiset of ordinal numbers of the recei:e/send 

operations for which the statement is responsible for. The 

timing function maps the ordinal number of a receive or send 

operation to the cycle it is executed. This is an exact value if 

the ordinal number of the operation belongs to the execution 

set; otherwise, it gives a value extrapolated from the values of 

those that are. The problem of calculating the skew computa- 

tion is reduced to the following: For each pair of timing 

functions, T,, and 7s ,, we would like to find ~s,/c 
‘i 

for all n 

that is in th: interse/ction of the execution sets’of both func- 

tions. The maximum of the differences is the minimum skew. 

When the intersection of the execution set is difficult to com- 

pute, instead of using the constraints defining the sets to solve 

for the intersection completely, we simply use the constraints 

to bound the difference between the two timing functions. 

This formulation of the problem allows us to cheaply cal- 
culate the minimum skew in the simple cases and its upper 

bound in the complex ones. 

7. Concluding remarks 

Asynchronous communication is proposed here as the 

machine abstraction for systolic arrays, not only for its 

programmability and, perhaps surprlslngly, for its efficiency 

as well. The high-level semantics of the asynchronous com- 
munication model allows us to relax the sequencing con- 

straints between the communication operations within a cell. 

Representing only those constraints that must be satisfied in a 

similar manner as data dependency constraints within a corn- 
putation, general scheduling techniques can be used to min- 

imize the execution time on each cell. This approach allows 

us to generate highly efficient code from complex systolic 

programs; the experience with the compiler indicates that the 

efficiency obtained is comparable to hand-crafted systolic 

programs. 

The asynchronous communication model is also useful for 

hardware implementations without direct support for dynamic 

flow control. Computation admissible of compile-time flow 

control includes all programs with unidirectional data flow 

and data independent control flow. Programs written using 

asynchronous communication primitives can be mapped to 

the skewed computation model where the computation on 

each cell is delayed with respect to its preceding cell by some 

predetermined amount of time. The delay, or the skew. can 

be calculated accurately and quickly for most cases; ap- 

proximations can be obtained for pathological cases cheaply. 

The compile-time flow control algorithm may be used in 

silicon compilers where custom hardware is built for specific 

applications. 
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