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Abstract
We present a new sound and complete axiomatization of regular
expression containment. It consists of the conventional axiomatiza-
tion of concatenation, alternation, empty set and (the singleton set
containing) the empty string as an idempotent semiring, the fixed-
point rule E∗ = 1 + E × E∗ for Kleene-star, and a general coin-
duction rule as the only additional rule.

Our axiomatization gives rise to a natural computational inter-
pretation of regular expressions as simple types that represent parse
trees, and of containment proofs as coercions. This gives the axiom-
atization a Curry-Howard-style constructive interpretation: Con-
tainment proofs do not only certify a language-theoretic contain-
ment, but, under our computational interpretation, constructively
transform a membership proof of a string in one regular expres-
sion into a membership proof of the same string in another regular
expression.

We show how to encode regular expression equivalence proofs
in Salomaa’s, Kozen’s and Grabmayer’s axiomatizations into our
containment system, which equips their axiomatizations with a
computational interpretation and implies completeness of our ax-
iomatization. To ensure its soundness, we require that the compu-
tational interpretation of the coinduction rule be a hereditarily total
function. Hereditary totality can be considered the mother of syn-
tactic side conditions: it “explains” their soundness, yet cannot be
used as a conventional side condition in its own right since it turns
out to be undecidable.

We discuss application of regular expressions as types to bit
coding of strings and hint at other applications to the wide-spread
use of regular expressions for substring matching, where classical
automata-theoretic techniques are a priori inapplicable.

Neither regular expressions as types nor subtyping interpreted
coercively are novel per se. Somewhat surprisingly, this seems to
be the first investigation of a general proof-theoretic framework for
the latter in the context of the former, however.

Categories and Subject Descriptors F.4.3 [Formal languages]: Reg-
ular sets; D.1.1 [Applicative (functional) programming]

General Terms Languages, Theory

Keywords axiomatization, coercion, coinduction, computational inter-
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1. Introduction
What is regular expression matching? In classical theoretical
computer science it is the problem of deciding whether a string
belongs to the regular language denoted by a regular expres-
sion; that is, it is membership testing. In this sense, abdabc
matches ((ab)(c|d)|(abc))*, but abdabb does not. This in-
terpretation is used for most theoretical computer science results:
NFA-generation, DFA-generation by subset construction, DFA-
minimization, the Myhill-Nerode Theorem, the Pumping Lemma,
closure properties, the Star Height Problem, Brzozowski deriva-
tives, fast regular expression equivalence algorithms and match-
ing algorithms, coalgebraic characterizations, bisimulation, etc. If
membership testing is all we are interested in, regular expressions
and finite automata denoting the same language are completely
interchangeable. In that case we may as well implement regular ex-
pression matching using a state-minimized DFA and forget about
the original regular expression.

In programming, however, membership testing is rarely good
enough: We do not only want a yes/no answer, we also want to
obtain proper matches of substrings against the constituents of a
regular expression so as to extract parts of the input for process-
ing. In a Perl Compatible Regular Expression (PCRE)1 matcher,
for example, matching abdabc againstE = ((ab)(c|d)|(abc))*
yields a substring match for each of the 4 parenthesized subexpres-
sions: They match abc, ab, c, and ε (the empty string), respectively.
If we use a POSIX matcher (Institute of Electrical and Electron-
ics Engineers (IEEE) 1992) instead, we get abc, ε, ε, abc, however.
How is this possible? The reason is that ((ab)(c|d)|(abc))∗ is am-
biguous: the string abc can match the left or the right alternative of
(ab)(c|d)|(abc), and returning substring matches makes this differ-
ence observable. In a membership testing setting ambiguity is not
observable and thus not much studied.

An oddity and limitation of Perl-style matching is that we only
get one match under Kleene star, the last one. This is why we get a
match of abc above, but not abd. Intuitively, we would like to get
the list of matches under the Kleene star, not just a single one. This
is possible, with regular expression types (Hosoya et al. 2005b):
Each group can be named by a variable, and the output may contain
multiple bindings to the same variable. For a variable under two
Kleene stars, however, we cannot discern the bindings between the
different level-1 Kleene-star groups. An even more refined notion
of matching is thus regular expression parsing: Returning a parse
tree of the input string under the regular expression read as a
grammar.

A little noticed fact is that the parse trees for a regular ex-
pression are isomorphic to the elements of the regular expres-
sion read as a type; e.g. the type interpretation T [[E]] of regular
expression E = ((ab)(c|d)|(abc))∗ is ((a × b) × (c + d) +

1 See http://www.pcre.org.
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a × (b × c)) list with a, b, c, d being singleton types identified
with the respective values a, b, c, d they contain. The values p1 =
[inl ((a, b), inr d), inr (a, (b, c))] and
p2 = [inl ((a, b), inr d), inl ((a, b), inl c)] are elements of ((a ×
b)×(c+d)+a×(b×c)) list, representing two different parse trees
of the same type. Since their flattening (unparsing) yields the same
string abdabc, this shows that ((ab)(c|d)|(abc))∗ is grammatically
ambiguous.

When we have a parsed representation of a string we sometimes
need to transform it into a parsed representation of another regu-
lar expression. Consider for example Ed = (ab(c|d))*, which is
equivalent toE.Ed corresponds to a DFA that can be used to match
a string efficiently. But what if we need a parsed representation of
the string with respect to E? We need a coercion, a function that
maps parse trees under one regular expression (here Ed) into parse
trees under another regular expression (hereE) such that the under-
lying string is preserved. Since E is ambiguous there are different
coercions for doing this. The choice of coercion thus incorporates a
particular ambiguity resolution strategy; in particular, we may need
to make sure that it always returns the greedy left-most parse, as in
PCRE matching, or the longest prefix parse, as in POSIX match-
ing. Also, we will be interested in favoring efficient coercions over
less efficient ones amongst extensionally equivalent ones; e.g., for
coercing E to E, we prefer the constant-time coercion that copies
a reference to its input instead of the linear-time coercion that tra-
verses its input and returns a copy of it. Even if coercions are not
used to transform parse trees, they are useful for regular expres-
sions under their language (membership testing) interpretation: The
existence of a well-typed coercion from L[[E]] to L[[F ]] is a proof
object that logically certifies that E is contained in F . Once it is
constructed, it can be checked efficiently for ascertaining that E is
contained in F instead of embarking on search of a proof of that
each time the containment needs to be checked.2

The purpose of this paper is to develop the basic theory of regu-
lar expressions as types with coercions interpreting containment as
a conceptual and technical framework for regular expression based
programming where the classic language-theoretic view is insuffi-
cient.

1.1 Contributions
Before delving into the details we summarize our contributions.

1.1.1 Regular expressions as types
The interpretation of regular expressions as types built from empty,
unit, singleton, sum, product, and list types was introduced by
Frisch and Cardelli (2004) for the purpose of regular expression
matching. We allow ourselves to observe and point out that the el-
ements of regular expressions as types correspond exactly to the
parse trees of regular expressions understood as grammars. Frisch
and Cardelli refer to types as describing “a concrete structured rep-
resentation of values”, but do not verbalize that those representa-
tions are essentially parse trees. Conversely, Brabrand and Thom-
sen (2010) as well as other works define an inference system for
parse trees, but do not make explicit that that is tantamount to a
type-theoretic interpretation of regular expressions.

1.1.2 Proofs of containment by coercion
We observe that containment can be characterized by finding a
coercion, a function mapping every parse tree under one regular
expression to a parse tree with same underlying string in the other
regular expression.

2 The size of a coercion will necessarily be exponential in the sizes ofE and
F for complexity-theoretic reasons in the worst case, but it may be small in
many cases.

This means that proving a containment amounts to finding a
coercion for the corresponding regular types, allowing us to bring
functional programming intuitions to bear. For example,E×E∗ ≤
E∗×E for all E can be proved by defining the obvious function f

fun f : ’a * ’a list -> ’a list * ’a

that retains the elements in the input.
The idea of a coercion interpretation of an axiomatically given

subtyping relation is not new. Our observation expresses something
more elementary and “syntax-free”, however: The existence of a
coercion between regular types, however specified, implies con-
tainment of the corresponding regular expressions. Note the direc-
tion of reasoning: from existence of coercion to containment.

1.1.3 Coinductive regular expression containment
axiomatization with computational interpretation

We give a general coinductive axiomatization of regular expression
containment and show how to interpret containment proofs compu-
tationally as string-preserving transformations on parse trees. Each
rule in our axiomatization corresponds to a natural functional pro-
gramming construct. Specifically, the coinduction rule corresponds
to the principle of definition by recursion, where the side condition
guarantees that the resulting function is total.

We show that the derivations of the axiomatizations by Salomaa
(1966), Kozen (1994) and Grabmayer (2005) can be coded as co-
ercion judgements in our inference system. This provides a natural
computational interpretation for their axiomatizations.

As far as we know, no previous regular expression axiomatiza-
tion has explicitly been given a sound and complete computational
interpretation, where all derivations are interpreted computation-
ally. Sulzmann and Lu (2007) come close, however. They provide
what can be considered the first coercion synthesis algorithm, im-
plemented in an extension of Haskell. They show how to construct
an explicit coercion for each valid regular expression containment
by providing a computational interpretation of Antimirov’s algo-
rithm (Antimirov 1996; Antimirov and Mosses 1995) for deciding
regular expression containment. They show that their treatment is
sound (Sulzmann and Lu 2007, Lemma A.3), and state that it is
complete. We observe that, being based on the construction of de-
terministic linear forms, their work can be thought of as implement-
ing a proof search using Antimirov’s algorithm in Grabmayer’s ax-
iomatization.

1.1.4 Parametric completeness
Let us define E[X1, . . . , Xm] ≤ F [X1, . . . , Xm] if the contain-
ment holds for all substitutions of Xi with (closed) regular expres-
sions. Our axiomatization is not only complete, but parametrically
complete for infinite alphabets:
If E[X1, . . . , Xm] ≤ F [X1, . . . , Xm] for all regular expressions
X1, . . . , Xm then there exists c such that ` c : E[X1, . . . , Xm] ≤
F [X1, . . . , Xm]. As a consequence, a schematic axiom such as
E × E∗ ≤ E∗ × E is derivable, not just admissible in our ax-
iomatization: we can prove it once and use the same proof for all
instances of E.

We observe that Kozen’s axiomatization (Kozen 1994) is also
parametrically complete, but neither Salomaa’s (Salomaa 1966)
nor Grabmayer’s (Grabmayer 2005) appear to be so: In Salomaa’s
case we need to make a case distinction as to whether the regular
expression E substituted for X has the empty word property; and
in Grabmayer’s case the proofs use the derivatives of E, which are
syntax dependent.

1.1.5 Application: Bit coding
We believe regular expressions as types with coercions have numer-
ous applications in programming, both conceptually—how to think
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about regular expressions—and technically. We sketch one poten-
tial application: how bit coding can be used to compactly represent
parse trees and thus strings. This can be thought of as a regular ex-
pression specific string representation that often can be compressed
more than the original string. A thorough investigation of this and
other applications requires separate treatment, however.

1.2 Prerequisites
We assume basic knowledge of regular expressions as in Hopcroft
and Ullman (1979), and denotational semantics as in Winskel
(1993).

1.3 Notation and terminology
A denotes an alphabet, a possibly infinite set of symbols {ai}i∈I .
The strings over A is the set of finite sequences {s, t, . . .} with
elements from A. The length of a string s is denoted by |s|. The
n-ary concatenation of s1, . . . , sn is denoted by their juxtaposition
s1 . . . sn; for n = 0 it denotes the empty string ε.

We use inl and inr as the tags distinguishing the elements of a
disjoint sum of two sets such that
X + Y = {inl v | v ∈ X} ∪ {inrw | w ∈ Y }. We treat
recursive types iso-recursively, where (fold−1, fold ) denotes the
isomorphism between a recursive type and its unrolling. In partic-
ular, we define the list type X∗ by µY.1 + X × Y . The empty
list [] is an abbreviation for fold (inl ()); and cons (x, y) stands for
fold (inr (x, y)). The list notation [x1, . . . , xn] is syntactic sugar
for cons (x1, . . . , cons (xn, [])).

We say a unary predicate P universally implies another unary
predicate Q if ∀x.(P (x)⇒ Q(x)).

2. Regular expressions as types and coercions
In this section we show that a regular expression E can be inter-
preted as an ordinary type and regular expression containment as
the existence of a coercion between such types. The elements of
the types correspond to proofs of membership of strings in the reg-
ular language denoted by E, which in turn are the parse trees for E
viewed as a right-regular grammar. A coercion then is any function
that transforms parse trees without changing the underlying string.

DEFINITION 1 (Regular expression). Theregular expressions RegA
is the set of abstract syntax tree defined by the following regular
tree grammar:

E,F,G,H ::= 0 | 1 | a | E + F | E × F | E∗

where a ∈ A.

In anticipation of our interpretation of regular expressions as types
we write × instead of the more customary juxtaposition or · for
concatenation. Our notational convention is that ∗,×,+ bind in
decreasing order; e.g. a+ a× b stands for a+ (a× b).

2.1 Regular expressions as languages
The language interpretation of RegA maps regular expressions to
regular languages (Kleene 1956). This is also called the standard
interpretation of RegA since it is isomorphic to the free Kleene
algebra over A (Kozen 1994).

DEFINITION 2 (Language interpretation). The language L[[E]] is
the set of strings compositionally defined by:

L[[0]] = ∅
L[[1]] = {ε}
L[[a]] = {a}

L[[E + F ]] = L[[E]] ∪ L[[F ]]
L[[E × F ]] = L[[E]] · L[[F ]]
L[[E∗]] =

⋃
i≥0(L[[E]])i

where S · T = {s t | s ∈ S ∧ t ∈ T}, E0 = {ε}, Ei+1 = E · Ei.
We write |= s ∈ E if s ∈ L[[E]]; |= E ≤ F if

L[[E]] ⊆ L[[F ]]; and |= E = F if L[[E]] = L[[F ]].

ε ∈ 1

a ∈ a
s ∈ E

s ∈ E + F
s ∈ F

s ∈ E + F
s ∈ E t ∈ F
s t ∈ E × F

s ∈ 1 + E × E∗
s ∈ E∗

() : 1

a : a
v : E

inl v : E + F
w : F

inrw : E + F
v : E w : F
(v, w) : E × F
v : 1 + E × E∗

fold v : E∗

a) Regular expression matching b) Type inhabitation

Figure 1. Matching relation and type inhabitation

As expected, L[[E∗]] is the set of all finite concatenations of
strings from L[[E]]:

L[[E∗]] = {s1 . . . sn | n ≥ 0 ∧ si ∈ L[[E]] for all 1 ≤ i ≤ n}.

DEFINITION 3 (Constant part). The constant part o(E) of E is
defined as o(E) = 1 if ε ∈ L[[E]] and o(E) = 0 otherwise.

DEFINITION 4 (Matching). We say s matches E and write
` s ∈ E if the statement s ∈ E is derivable in the inference system
in Figure 1a.

Matching is sound and complete for membership testing:

PROPOSITION 5. |= s ∈ E if and only if ` s ∈ E.

The derivation of a matching statement s ∈ E describes a parse
tree for s under E understood as a regular grammar. This paper is
about studying the parse trees, not just the regular language denoted
by E.

2.2 Regular expressions as types
Parse trees are in one-to-one correspondence with regular expres-
sions interpreted as types; that is, all we need to do is interpret the
regular expression constructors as type constructors and we obtain
exactly the parse trees.

DEFINITION 6 (Type interpretation). The type interpretation T [[.]]
compositionally maps a regular expression E to a set of structured
values:
T [[0]] = ∅
T [[1]] = {()}
T [[a]] = {a}

T [[E + F ]] = T [[E]] + T [[F ]]
T [[E × F ]] = T [[E]]× T [[F ]]
T [[E∗]] = {[v1, . . . , vn] | vi ∈ T [[E]]}

We write |= v : E if v ∈ T [[E]].

Note that this is the ordinary interpretation of the regular expression
constructors as type constructors: 0 is the empty type, 1 the unit
type, a (as a type) the singleton type {a}, + the sum type construc-
tor, × the product type constructor, and .∗ the list type constructor.

DEFINITION 7 (Inhabitation). We say v inhabits E and write
` v : E if the statement v : E is derivable in the inference system
in Figure 1b.

Inhabitation is sound and complete for type membership:

PROPOSITION 8. |= v : E if and only if ` v : E.
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By inspection of Figures 1a and 1b we can see that a value v
such that ` v : E corresponds to a unique derivation of s ∈ E for
a string s that is uniquely determined by flattening v.

DEFINITION 9. The flattening function flat(.) from values to
strings is defined as follows:

flat(()) = ε flat(a) = a
flat(inl v) = flat(v) flat(inrw) = flat(w)

flat((v, w)) = flat(v) flat(w) flat(fold v) = flat(v)

In particular we have:

THEOREM 10. L[[E]] = {flat(v) | v ∈ T [[E]]}

2.3 Regular expression containment as type coercion
Since each regular expression can be thought of as an ordinary type
whose elements are all the parse trees for all its strings under the
language interpretation, we can characterize regular language con-
tainment as the problem of transforming parse trees under one reg-
ular expression into parse trees under the other regular expression.

DEFINITION 11 (Coercion). A function f ∈ T [[E]] → T [[F ]]⊥
is a partial coercion from E to F if flat(v) = flat(f(v)) for all
v ∈ T [[E]] whenever f(v) 6= ⊥. It is a total coercion (or just
coercion) if f(v) 6= ⊥ for all v ∈ T [[E]].

We write T [[E ≤ F⊥]] for the set of partial coercions from E to
F ; and T [[E ≤ F ]] for the set of total coercions from E to F .

In other words, a coercion from E to F is a function that
transforms every parse tree under E to a parse tree under F for
the same underlying string. Clearly, if there exists a coercion from
E to F then |= E ≤ F : the coercion takes any membership proof
of a string in L[[E]] to a membership proof for the same string in
L[[F ]]. Conversely, if |= E ≤ F , we can define a coercion from
E to F by mapping any value v : E to a value w : F where
flat(v) = flat(w).

THEOREM 12 (Containment by coercion). |= E ≤ F if and only
if there exists a coercion from E to F .

An immediate corollary is that two regular expressions are
equivalent if and only if there is a pair of coercions between them:

COROLLARY 13 (Equivalence by coercion pairs). |= E = F if
and only if there exists a pair of coercions (f, g) such that f ∈
T [[E ≤ F ]] and g ∈ T [[F ≤ E]].

It may be tempting to expect such pairs to be isomorphisms; that
is, f ◦ g = idT [[F ]] and g ◦ f = idT [[E]]). This is generally not the
case, however: We have |= a = a+ a, but there is no isomorphism
between them, since there are two values for a + a but only one
value for a.

Theorem 12 provides a simple and amazingly useful method for
proving regular expression containments by functional program-
ming: Find a function from E to F (as types!) and make sure that
it terminates, outputs each part of the input exactly once and in the
same left-to-right order. The latter is usually easily checked when
using pattern matching in the definition of the function.

EXAMPLE 14. We prove the denesting rule (Kozen 1997) |= (a +
b)∗ = a∗ × (b × a∗)∗. In one direction, find a function f :
(a + b)∗ → a∗ × (b × a∗)∗ and make sure that it terminates,
uses each part of the input exactly once and outputs them in the
same left-to-right order as in the input.

f([]) = ([], [])

f(inlu :: ~z) = let (~x, ~y) = f(~z) in (u :: ~x, ~y)

f(inr v :: ~z) = let (~x, ~y) = f(~z) in ([], (v, ~x) :: ~y)

We can see that f terminates since it is called recursively with
smaller sized arguments, and the output contains the input com-
ponents in the same left-to-right order. Consequently, f defines a
coercion, and by Theorem 12 this constitutes a proof that the regu-
lar language L[[(a+ b)∗]] is contained in L[[a∗ × (b× a∗)∗]]. The
other direction is similar.

In this example we defined an element of the function space
T [[E]] → T [[F ]]⊥ and then verified manually that it belongs to the
subspace T [[E ≤ F ]]. The following section is about designing a
language of functions each of which is guaranteed to be a coercion
(soundness) and that furthermore is expressive enough so that it
contains a term denoting a coercion fromE to F whenever |= E ≤
F (completeness).

3. Declarative coinductive axiomatization
At the core of all axiomatizations of regular expression equivalence
are the axiomatization of product (×), sum (+), empty (0) and unit
(1) as the free idempotent semiring over A. See Figures 2 and 3.
We add the familiar fold/unfold axiom for Kleene-star in Figure 4,
which models that E∗ is a fixed point of X = 1 + E ×X . Let us
call the resulting inference system weak equivalence. It is a sound,
but incomplete axiomatization of regular expression equivalence.
In particular, we have |= (a + 1)∗ = a∗, but they are not weakly
equivalent (Salomaa 1966, Remark 4).

Intuitively, this is because weak equivalence does not allow
invoking recursively what we want to prove. The basic idea in
our axiomatization is to add recursion by way of a general finitary
coinduction rule

[E = F ]
...

E = F
E = F (*)

Here [E = F ] is a hypothetical assumption: It may be used an
arbitrary number of times in deriving the premise, but is discharged
when applying the inference step.

Since the premise is the same as the conclusion, without a
side condition (∗) restricting its applicability this rule is blatantly
unsound: We could simply satisfy the premise by immediately
concluding E = F from the hypothetical assumption. By the
coinduction rule E = F for arbitrary E,F would be derivable.

The key idea of this paper is to make the side condition not a
property of the premise, but of the derivation of the premise. To
this end we switch from axiomatizing equivalence to axiomatizing
containment and equip our inference system with names for the
rules, arriving at a type-theoretic formulation with explicit proof
terms. These proof terms can be computationally interpreted as
coercions as defined in Section 2.

The coinduction rule then suggestively reads

[f : E ≤ F ]
...

c : E ≤ F
fixf. c : E ≤ F (*)

as in Brandt and Henglein (1998, Section 4.4), where the side con-
dition is a syntactic condition specific to recursive subtyping. The
computational interpretation of fixf. c is the recursively defined
partial coercion f such that f = c where c may contain free oc-
currences of f . For soundness all we need is for the coercion to
be total, that is terminate on all inputs. This leads us to the side
condition in its most general form:

The computational interpretation of fixf. c must be total.
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E + (F +G) = (E + F ) +G (1)
E + F = F + E (2)
E + 0 = E (3)
E + E = E (4)

E × (F ×G) = (E × F )×G (5)
1× E = E (6)
E × 1 = E (7)

E × (F +G) = (E × F ) + (E ×G) (8)
(E + F )×G = (E ×G) + (F ×G) (9)

0× E = 0 (10)
E × 0 = 0 (11)

Figure 2. Axioms for idempotent semirings

E = E
E = F
F = E

E = F F = G
E = G

E = G F = H
E + F = G+H

E = G F = H
E × F = G×H

Figure 3. Rules of equality

E∗ = 1 + E × E∗ (12)

Figure 4. Fold/unfold rule for Kleene-star

Unfortunately, totality turns out to be undecidable, and we present
efficiently checkable syntactic conditions that entail totality and yet
are expressive enough to admit completeness.

3.1 Axiomatization
Consider the coercion inference system in Figure 5. Each axiom
of the form Γ ` p : E = F is a short-hand for two containment
axioms: Γ ` p : E ≤ F and Γ ` p−1 : F ≤ E.

DEFINITION 15 (Coercion judgement). Let Γ be a sequence of
coercion assumptions of the form f : E ≤ F , with no f repeated.
A coercion judgement is a statement of the form Γ ` c : E ≤ F
that is derivable in the inference system of Figure 5.

If Γ is empty we may omit it and write ` c : E ≤ F .

By induction on its derivation, a coercion judgement f1 : E1 ≤
F1, . . . , fn : En ≤ Fn ` c : E ≤ F can be interpreted coherently
as a continuous function F [[Γ ` c : E ≤ F ]] : T [[E1 ≤ F1⊥]] ×
. . . × T [[En ≤ Fn⊥]] → T [[E ≤ F⊥]], which is specified by the
equations in Figure 6. For example, the clauses for retag should be
understood as

F [[Γ ` retag : E + F ≤ F + E]](f1, . . . , fn) =
λx.casexof inl v ⇒ inr v | inr v ⇒ inl v.

The interpretation of fixf.c is defined to be the least fixed point of
a continuous function on T [[E ≤ F⊥]], which always exists since
T [[E ≤ F⊥]] is empty or a cpo with bottom. The interpretation
of abortL, abortR, abortL−1, abortR−1 is the empty function
since the type interpretation of their domain is empty. Formally:

DEFINITION 16 (Computational interpretation).
The computational interpretation

F [[f1 : E1 ≤ F1, . . . , fn : En ≤ Fn ` c : E ≤ F ]]

Γ ` shuffle : E + (F +G) = (E + F ) +G

Γ ` retag : E + F = F + E

Γ ` untagL : 0 + F = F

Γ ` untag : E + E ≤ E

Γ ` tagL : E ≤ E + F

Γ ` assoc : E × (F ×G) = (E × F )×G
Γ ` swap : E × 1 = 1× E
Γ ` proj : 1× E = E

Γ ` abortR : E × 0 = 0

Γ ` abortL : 0× E = 0

Γ ` distL : E × (F +G) = (E × F ) + (E ×G)

Γ ` distR : (E + F )×G = (E ×G) + (F ×G)

Γ ` wrap : 1 + E × E∗ = E∗

Γ ` id : E = E

Γ ` c : E ≤ E′ Γ ` d : E′ ≤ E′′
Γ ` c; d : E ≤ E′′

Γ ` c : E ≤ E′ Γ ` d : F ≤ F ′
Γ ` c+ d : E + F ≤ E′ + F ′

Γ ` c : E ≤ E′ Γ ` d : F ≤ F ′
Γ ` c× d : E × F ≤ E′ × F ′

Γ, f : E ≤ F,Γ′ ` f : E ≤ F

Γ, f : E ≤ F ` c : E ≤ F
Γ ` fixf.c : E ≤ F (coinduction rule)

Figure 5. Declarative coercion inference system for regular ex-
pressions as types. With suitable side conditions for the coinduction
rule this is sound and complete for regular expression containment.
See Sections 3.2 and 3.3 for side conditions.

of a coercion judgement is the (domain-theoretically least) contin-
uous function that maps partial coercions from Ei to Fi bound to
the fi to a partial coercion from E to F satisfying the equations of
Figure 6.

We can interpret all computation judgements, but without a side
condition controlling the use of the coinduction rule, the coercion
inference system is unsound for deducing regular expression con-
tainments. To wit, we can trivially derive ` fixf.f : E ≤ F for
any E,F . We might hope that a simple guarding rule would en-
sure soundness.

DEFINITION 17 (Left-guarded). Let Γ ` fixf.c : E ≤ F be a
coercion judgement. We say an occurrence of f in c is left-guarded
by d if c contains a subterm of the form d × d′ and the particular
occurrence of f is in d′. We call fixf.c left-guarded if for each
occurrence of f there is a d that left-guards f .

Left-guardedness is not sufficient for soundness, however. Con-
sider

` fixf.(proj−1 ; (id1 × f) ; proj) : E ≤ F,
which is derivable for all E and F . (For emphasis, we have an-
notated id with a subscript indicating which regular expression it
operates on.) Computationally, this coercion judgement does not
terminate on any input. This is an instructive case: It contains both
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shuffle(inl v) = inl (inl v)
shuffle(inr (inl v)) = inl (inr v)
shuffle(inr (inr v)) = inr v
shuffle−1(inl (inl v)) = inl v
shuffle−1(inl (inr v)) = inr (inl v)
shuffle−1(inr v) = inr (inr v)
retag(inl v) = inr v
retag(inr v) = inl v
retag−1 = retag
untagL (inr v) = v
untag (inl v) = v
untag (inr v) = v
tagL (v) = inl v
assoc(v, (w, x)) = ((v, w), x)
assoc−1((v, w), x) = (v, (w, x))
swap(v, ()) = ((), v)
swap−1((), v) = (v, ())
proj((), w) = w
proj−1(w) = ((), w)
distL(v, inlw) = inl (v, w)
distL(v, inrx) = inr (v, x)
distL−1(inl (v, w)) = (v, inlw)
distL−1(inr (v, x)) = (v, inrx)
distR(inl v, w) = inl (v, w)
distR(inr v, x) = inr (v, x)
distR−1(inl (v, w)) = (inl v, w)
distR−1(inr (v, x)) = (inr v, x)
wrap (v) = fold v
wrap−1(v) = fold−1 v
id(v) = v
id−1 = id
(c; d)(v) = d(c(v))
(c+ d)(inl v) = inl (c(v))
(c+ d)(inrw) = inr (d(w))
(c× d)(v, w) = (c(v), d(w))
(fixf.c)(v) = c[fixf.c/f ](v)

Figure 6. Computational interpretation of coercions

a proj−1 coercion and an f that is left-guarded “only” by (a co-
ercion operating on) a regular expression,, in this case 1, whose
language contains the empty string.

3.2 Soundness
We have seen that, without a side condition on the coinduction
rule, the coercion inference system is unsound for deducing regular
expression containments. The key idea now is this: Impose a side
condition that guarantees that the coercion in the conclusion of the
coinduction rule is total. Since all other rules preserve totality of
coercions, this yields a sound axiomatization of regular expression
containment by Theorem 12. Since our coercions may contain free
variables, we need to generalize totality to second-order coercions:

DEFINITION 18 (Hereditary totality). We say coercion judgement
Γ ` c : E ≤ F for Γ = f1 : E1 ≤ F1, . . . , fn : En ≤
Fn is hereditarily total if F [[Γ ` c : E ≤ F ]](f1, . . . , fn) is total
whenever fi is a total coercion from Ei to Fi for all i = 1, . . . , n.

We are now ready to define sound restrictions of the coercion
inference system. Instead of formulating a specific side condition,
we parameterize over side conditions for the coinduction rule to
express, generally, what is necessary for such a side condition to
guarantee soundness.

DEFINITION 19 (Coercion inference system with side condition).
Consider the coercion inference system of Figure 5 where the coin-
duction rule is equipped with a side condition P , a predicate on
the coercion judgement in the conclusion:

Γ, f : E ≤ F ` c : E ≤ F
Γ ` fixf.c : E ≤ F (P (Γ ` fixf.c : E ≤ F )).

We write Γ `P c : E ≤ F , if each application of the
coinduction rule in the derivation of Γ ` c : E ≤ F satisfies
P .

We arrive at the Master Soundness Theorem, which provides a
general criterion for sound side conditions:

THEOREM 20 (Soundness). Let P be any predicate on coercion
judgements that universally implies hereditary totality.

Then `P d : E ≤ F implies |= E ≤ F for all d,E, F .

This theorem shows that hereditary totality is an “upper bound”
for how liberal the side condition can be without the risk of losing
sound computational interpretation of a regular expression contain-
ment proof as a coercion. Interestingly, allowing partial coercions
does not necessarily make the resulting inference system unsound
for proving regular expression containment. If we define the side
condition

P t(Γ ` fixf.c : E ≤ F ) ⇐⇒ |= E ≤ F,
the resulting inference system is trivially sound and complete since
` fixf.f : E ≤ F is derivable for those E,F such that |= E ≤
F . Clearly, F [[` fixf.f : E ≤ F ]] is computationally completely
useless, however: it never terminates.

Unfortunately, hereditary totality itself is undecidable even for
the restricted language of coercions denotable by coercion judge-
ments:3

THEOREM 21. Whether or not Γ ` c : E ≤ F is hereditarily total
is undecidable.

PROOF Even totality of ` c : 1 ≤ 1 is undecidable. This
follows from the undecidability of ` c : 1∗ × 1∗ ≤ 1∗ × 1∗,
which in turn follows from encoding Minsky machines (2-register
machines) as closed coercion judgements, using a unary coding of
natural numbers. 2

This makes hereditary totality inapplicable as a conventional
side condition in an axiomatization, where valid instances of an
inference rule are expected to be decidable. Below we provide
polynomial-time decidable side conditions that are sufficient to
encode existing derivations in previous axiomatizations (see Sec-
tion 3.3). In each case their soundness follows from application of
Theorem 20. In this sense, hereditary totality can be considered the
“mother of all side conditions”, even though it itself is “too exten-
sional” to be used as a conventional side condition.

DEFINITION 22 (Syntactic side conditions Si). Define predicates
S1, S2, S3 and S4 on coercion judgements of the form
Γ ` fixf.c : E ≤ F as follows:

• S1(Γ ` fixf.c : E ≤ F ) if and only if each occurrence of
f in c is left-guarded by a d where Γ, . . . ` d : E′ ≤ F ′

is the coercion judgement for d occurring in the derivation of
Γ ` fixf.c : E ≤ F and o(E′) = 0 (from Definition 3).

• S2(Γ ` fixf.c : E ≤ F ) if and only if each occurrence of f in
c is left-guarded and for each subterm of the form c1; c2 in c at
least one of the following conditions is satisfied:

3 Proved by Eijiro Sumii, Yasuhiko Minamide, Naoki Kobayashi, Atsushi
Igarashi and Fritz Henglein at the IFIP TC 2 Working Group 2.8 meeting at
Shirahama, Japan, April 11-16, 2010
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c1 is closed and proj−1-free;
c2 is closed.

• S3(Γ ` fixf.c : E ≤ F ) if c is of the form wrap−1; (id + id×
f); d where d is closed.

• S4 = S1 ∨ S3.

It is easy to see that S1, S2, S3 and S4 are polynomial-time check-
able. They furthermore imply hereditary totality:

LEMMA 23 (Hereditary totality for Si). Let Γ ` fixf.c : E ≤ F
such that Si(Γ ` fixf.c : E ≤ F ) with i ∈ {1, 2, 3, 4}.

Then Γ ` fixf.c : E ≤ F is hereditarily total.

PROOF (Sketch) Side condition S3 is a special case of S2. The
case of S4 follows from S1 and S3. We have formulated S3 sepa-
rately since S4 is sufficient to code all derivations in Salomaa’s and
Grabmayer’s axiomatizations. S2 by itself, without S1, is sufficient
for Kozen’s axiomatization.

The general idea behind the side conditions S1, S2 is that they
ensure that every recursive call f in the body c of a recursively
defined coercion fixf.c is called with an argument whose size is
properly smaller than the size of the original call. The difference
between the two conditions is the definition of size in each case.

Consider S1. Define the 0-size |v|0 of a value by |v|0 =
|flat(v)|; that is, it is the length of the underlying string. Values
containing () may be of 0-size 0, e.g. |((), ())|0 = 0, and the size
of a component of a pair may be the same as the size of the pair:
|((), v)|0 = |v|0. Consider a call of fixf.c to a value v of 0-size
n. The predicate S1 ensures that all recursive calls to f in c are
only applied to a value constructed from the second component
of some pair, where the first component has size at least 1. Since
coercions never increase the size this guarantees that the recursive
call is applied to a value of 0-size at most n− 1.

Now consider S2. Define the 1-size |v|1 of v as follows:

|()|1 = 1 |a|1 = 1
|inl v|1 = |v|1 |inr v|1 = |v|1
|fold v|1 = |v|1 |(v, w)|1 = |v|1 + |w|1

Note that if we had defined |()|1 to be 0 then this would be just the
0-size (hence our terminology).

The idea for ensuring termination of a recursively defined co-
ercion is the same as before, but for 1-size instead of 0-size. With
1-size we have the important property that each component of a
pair is properly smaller than the pair, in particular |w|1 < |(v, w)|1
for all v. We say a coercion c is nonexpansive if |c(v)|1 ≤ |v|1.
All primitive coercions except for proj−1 are nonexpansive, and
the inference rules preserve nonexpansiveness. Side condition S2

guarantees that each recursive call is applied to an argument of size
properly smaller than the original call. Informally, this is because
S2 guarantees that a recursive call of f is never applied to a value
(constructed from) the output (return value) of a proj−1-call. 2

From Theorem 20, Lemma 23 and Theorem 12 we obtain:

COROLLARY 24 (Soundness for side conditions Si). Let S1, S2,
S3, S4 as in Definition 22, i ∈ {1, 2, 3, 4}.

Then `Si d : E ≤ F implies |= E ≤ F .

3.3 Completeness
We show now how to code derivations in Salomaa’s, Kozen’s and
Grabmayer’s axiomatizations of regular expression equivalence in
our coercion inference system (Figure 5) with side condition S4

(Salomaa, Grabmayer) or S2 (Kozen). This provides a computa-
tional interpretation for each of these systems. Furthermore, it im-
plies that coercion axiomatization with either S2 or S4 is complete.
More precisely, we encode every derivation of ` E = F as a pair

E = F
E∗ = F ∗

E∗ = (1 + E)∗

E = F × E +G
E = F ∗ ×G (if o(F ) = 0)

Figure 7. Salomaa’s rules for axiomatization F1

of coercion judgements ` c : E ≤ F and ` d : F ≤ E, which pro-
vides a computational interpretation of a regular expression equiv-
alence as a pair of coercions that witness ` E = F according to
Corollary 13.

Even though they are for regular expression equivalence, these
codings also provide completeness of our coercion axiomatization
for regular expression containment. Assume |= E ≤ F . This holds
if and only if |= E + F = F . By completeness of the regular
expression equivalence axiomatizations, E + F = F is derivable,
and we can construct a coercion judgement of ` c : E + F ≤ F .
Composed with tagL this yields ` tagL ; c : E ≤ F , and we are
done.

THEOREM 25 (Completeness). Let P be either S2 or S4.
If |= E ≤ F then there exists c such that `P c : E ≤ F .

It follows that any side condition logically “between” S2 or S4

on the one hand and hereditary totality on the other hand yields a
sound and complete coercion axiomatization of regular expression
containment.

COROLLARY 26 (Soundness and completeness). Let P be such
that either S2 or S4 universally implies P , and P universally
implies hereditary totality. Then `P c : E ≤ F if and only if
|= E ≤ F .

Whereas hereditary totality is the natural “upper” bound we suspect
that there are natural weaker “lower” bounds than S2 and S4.

3.3.1 Salomaa
Salomaa’s System F1 (Salomaa 1966) arises from adding the rules
of Figure 7 to the axiomatization of weak equivalence (Figures 2,
3 and 4).4 The side condition of the inference rule in Figure 7 is
called the “no empty word property”.

To be precise, we prove by induction on derivations ofE = F in
SystemF1 that there exist coercion judgements `S4 c : E ≤ F and
`S4 d : F ≤ E. This is straightforward for the weak equivalence
rules. We thus concentrate on the rules in Figure 7.

Consider
E = F
E∗ = F ∗

. By induction hypothesis there exist

`S4 c : E ≤ F and `S4 d : F ≤ E. We reason as follows:
Assume E∗ ≤ F ∗ and call this assumption f .

E∗ ≤ (1 + E × E∗) by wrap−1

≤ (1 + F × F ∗) by id + c× f
≤ F ∗ by wrap

This shows that

f : E∗ ≤ F ∗ `S4 (wrap−1; id + c× f ; wrap ) : E∗ ≤ F ∗.
Note that ` fixf.(wrap−1; id + c × f ; wrap ) : E∗ ≤ F ∗ sat-
isfies side condition S3 and thus S4. Its computational interpre-
tation is the map-function on lists. With S4 satisfied we can ap-

4 Technically, this is the “left-handed” dual due to Grabmayer (2005) to
Salomaa’s original “right-handed” formulation, where the fold-unfold rule
for Kleene star is axiomatized as E∗ = 1 + E∗ × E.
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ply the coinduction rule to conclude `S4 fixf.(wrap−1; id + c ×
f ; wrap ) : E∗ ≤ F ∗. Similarly, we get `S4 fix g.(wrap−1; id +
d× g; wrap ) : F ∗ ≤ E∗.

Consider E∗ = (1 + E)∗. The case E∗ ≤ (1 + E)∗ follows
from the rule above sinceE ≤ 1+E. For the converse containment
assume f : (1 + E)∗ ≤ E∗. We have:

(1 + E)∗ ≤ 1 + (1 + E)× (1 + E)∗ by wrap−1

≤ 1 + (1 + E)× E∗ by f
≤ 1 + 1× E∗ + E × E∗ by distR
≤ 1 + E∗ + E × E∗ by proj
≤ 1 + E × E∗ + E∗ by retag
≤ E∗ + E∗ by wrap
≤ E∗ by untag

We are a bit informal here: We have left associativity, congruence
and identity steps implicit. Let us consider ` fixf.c : (1 + E)∗ ≤
E∗ now. Without displaying c in full detail, from the derivation
above we can see that f satisfies side condition S3 and thus S4, and
we can conclude `S4 fixf.c : (1 + E)∗ ≤ E∗ by the coinduction
rule. Operationally, F [[` fixf.c : (1 + E)∗ ≤ E∗]] traverses its in-
put list of type T [[(1 + E)∗]], removes all occurrences of inl () and
returns the v’s for each inr v in the input.

Finally, consider
E = F × E +G
E = F ∗ ×G (if o(F ) = 0).

Our induction hypothesis is `S4 c1 : E ≤ F × E + G and
`S4 d1 : F × E + G ≤ E. Let us consider F ∗ × G ≤ E first.
Assume f : F ∗ ×G ≤ E, and we can calculate d2 : F ∗ ×G ≤ E
as follows:

F ∗ ×G ≤ (1 + F × F ∗)×G by wrap−1

≤ 1×G+ F × F ∗ ×G by distR
≤ G+ F × F ∗ ×G by proj
≤ G+ F × E by f
≤ F × E +G by retag
≤ E by d1

We can see that ` fixf.d2 : F ∗ × G ≤ E satisfies S2 and,
since o(F ) = 0, also S1 and thus S4. We can thus conclude
`S4 fixf.d2 : F ∗ × G ≤ E by the coinduction rule. Observe
that ` fixf.d2 : F ∗ × G ≤ E is hereditarily total, whether or not
o(F ) = 0, since S2 is also satisfied.

For the other direction, assume `S4 g : E ≤ F ∗ × G, and we
can calculate c2 : E ≤ F ∗ ×G essentially in the reverse direction
to the above calculation.

E ≤ F × E +G by c1
≤ G+ F × E by retag
≤ G+ F × F ∗ ×G by g
≤ 1×G+ F × F ∗ ×G by proj−1

≤ (1 + F × F ∗)×G by distR−1

≤ F ∗ ×G by wrap

Here, the coercion judgement ` fixg.c2 : E ≤ F ∗ ×G may com-
putationally be nonterminating: Choose, e.g., c1 = proj−1; tagL :
E ≤ 1×E+ 0. For o(F ) = 0, however, ` fixg.c2 : E ≤ F ∗×G
satisfies side condition S1 and thus S4; in particular, it always ter-
minates. We can conclude `S4 fixg.c2 : E ≤ F × E + G by the
coinduction rule.

3.3.2 Kozen
Kozen (1994) has shown that adding the rules in Figure 8 to weak
equivalence is sound and complete for regular expression equiva-
lence. Formally, a containment E ≤ F in his axiomatization is an
abbreviation for E + F = F . We show now that all derivations in
his system can be coded as coercion judgements with side condition
S2.

1 + (E∗ × E) ≤ E∗

E × F ≤ F
E∗ × F ≤ F

E × F ≤ E
E × F ∗ ≤ E

Figure 8. Kozen’s rules for axiomatization of Kleene Algebras

0ai = 0
1ai = 0

(ai)ai = 1
(aj)ai = 0 (i 6= j)

(E + F )ai = Eai + Fai
(E × F )ai = Eai × F (o(E) = 0)
(E × F )ai = Eai × F + Fai (o(E) = 1)

(E∗)ai = Eai × E∗

Figure 9. Definition of Brzozowski-derivative

Consider 1 + (E∗ × E) ≤ E∗. It is sufficient to construct a
coercion judgement `S2 c : E∗ × E ≤ E × E∗, since we then
have `S2 id + c; wrap : 1× E∗ × E ≤ E∗, as desired.

Assume f : E∗×E ≤ E×E∗. We can calculate c : E∗×E ≤
E × E∗ as follows:

E∗ × E ≤ (1 + E × E∗)× E by wrap−1

≤ 1× E + E × E∗ × E by distR
≤ 1× E + E × E × E∗ by f
≤ E × 1 + E × E × E∗ by swap
≤ E × (1 + E × E∗) by distL−1

≤ E × E∗ by wrap

Writing c explicitly, we have

c = (wrap−1 × id); distR;
swap + (assoc−1; id× f);
distL−1; id× wrap

Observe that ` fixf.c : E∗ ×E ≤ E ×E∗ satisfies side condition
S2, and we can conclude `S2 fixf.c : E∗ × E ≤ E × E∗ by the
coinduction rule.

Consider the rule
E × F ≤ F
E∗ × F ≤ F . Our induction hypothesis

is that there exists `S2 d : E×F ≤ F . Assume f : E∗×F ≤ F ,
and we calculate c : E∗ × F ≤ F as follows:

E∗ × F ≤ (1 + E × E∗)× F by wrap−1

≤ 1× F + E × E∗ × F by distR
≤ 1× F + E × F by f
≤ F + E × F by proj
≤ F + F by d
≤ F by untag

Note that ` fixf.c : E∗ × F ≤ F satisfies side condition S2,
and we can apply the coinduction rule to conclude `S2 fixf.c :
E∗ × F ≤ F .

The rule
E × F ≤ E
E × F ∗ ≤ E is similar to the previous rule, with

an additional step involving E∗ × E ≤ E × E∗.

3.3.3 Grabmayer
The following results hold for all alphabets, but for convenience we
assume that A is finite in this section.

The Brzozowski-derivative Ea (Antimirov 1996; Brzozowski
1964; Conway 1971; Rutten 1998; Salomaa 1966) for regular ex-
pression E and a ∈ A is defined in Figure 9.
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[E = F ]
...

Ea1 = Fa1

. . .

[E = F ]
...

Ean = Fan
E = F (o(E) = o(F ))

Figure 10. Grabmayer’s coinduction rule COMP/FIX

Grabmayer (2005) recognized that Brzozowski-derivatives can
be combined with the ACI-properties of + and the coinductive
fixed point rule for recursive types of Brandt and Henglein (1998)
to give a coinductive axiomatization of regular expression equiv-
alence. His rule COMP/FIX is given in Figure 10. Indeed, it can
be seen that in the presence of a transitivity rule of equational
logic, the compatibility-with-context-rules, and ACI-axioms, only
the rule COMP/FIX is needed to obtain a complete system for
regular expression equivalence, without the other rules of Grab-
mayer’s inference system cREG0(Σ). A sequent style presenta-
tion of COMP/FIX is as follows:

Γ, E = F `G Ea = Fa for all a ∈ A, o(E) = o(F )
Γ `G E = F

Let us write Γ≤ and Γ≥ for Γ where all occurrences of = in Γ
are replaced by ≤, respectively ≥. We can show by rule induction
that for each derivation of Γ `G E = F there exist coercion
judgements Γ≤ `S4 c : E ≤ F and Γ≥ `S4 d : F ≤ E.

The only interesting rule to consider is COMP/FIX. By induc-
tion hypothesis, we have Γ≤, f : E ≤ F ` ca : Ea ≤ Fa
and Γ≥, g : F ≤ E ` da : Fa ≤ Ea for all a ∈ A, where
o(E) = o(F ). Note that |= E = o(E) +

∑
a∈A a × Ea. Salo-

maa (1966) shows that E = o(E) +
∑
a∈A a × Ea is derivable

from the rules for weak equivalence (Figures 2, 3 and 4), extended
with Salomaa’s AxiomA11: F ∗ = (1 +F )∗. (See also Grabmayer
(2005, Lemma 5, p. 189).) A11 is only required for what Frisch
and Cardelli (2004) call problematic regular expressions, regular
expressions of the form G∗ where o(G) = 1.

By applying the derivation coding of Salomaa’s axiomatization
from Subsection 3.3.1 to the derivation of E = o(E) +

∑
a∈A a×

Ea, we know that there exist `S4 cE : o(E)+
∑
a∈A a×Ea ≤ E

and `S4 dE : E ≤ o(E) +
∑
a∈A a × Ea. This gives us the

following derivable coercion judgements:

Γ≤, f : E ≤ F `S4 dE ; (ido(E) +
∑
a∈A ida × ca); cF : E ≤ F

Γ≥, g : F ≤ E `S4 dF ; (ido(F ) +
∑
a∈A ida × da); cE : F ≤ E

We can observe that they satisfy side condition S1 and thus S4. By
the coinduction rule we can thus conclude:

Γ≤ `S4 fixf.dE ; (ido(E) +
∑
a∈A ida × ca); cF : E ≤ F

Γ≥ `S4 fixg.dF ; (ido(F ) +
∑
a∈A ida × da); cE : F ≤ E

This provides an alternative proof to the one based on coding
Salomaa’s System F1 for concluding that |= E ≤ F implies
`S4 E ≤ F .

3.4 Examples
We give examples of coercion judgements for regular expression
containments.

EXAMPLE 27 (Denesting as coercion). We continue Example 14
by implementing the function proving (a + b)∗ ≤ a∗ × (b × a∗)∗
in the coercion language.

Abbreviate E = (a + b)∗ and F = a∗ × (b × a∗)∗. We can
calculate (a+ b)∗ ≤ a∗ × (b× a∗)∗ as follows.

E ≤ 1 + (a+ b)× E by wrap−1

≤ 1 + (a+ b)× F by f
≤ 1 + (b+ a)× F by retag
≤ 1 + ((b× F ) + (a× F )) by distR
≤ 1 + (((b× a∗)× (b× a∗)∗) + (a× F )) by assoc
≤ (1 + (b× a∗)× (b× a∗)∗) + ((a× F )) by shuffle
≤ (b× a∗)∗ + (a× F ) by wrap
≤ (b× a∗)∗ + ((a× a∗)× (b× a∗)∗) by assoc
≤ (b× a∗)∗ + ((1 + a× a∗)× (b× a∗)∗) by tagR
≤ (b× a∗)∗ + F by wrap
≤ 1× (b× a∗)∗ + F by proj−1

≤ (1 + a× a∗)× (b× a∗)∗ + F by tagL
≤ F + F by wrap
≤ F by untag

Writing it out in full, the coercion coercion judgement is

` fixf. wrap−1; id + retag × f ; id + distR;
id + (assoc + assoc); shuffle; wrap + id;
id + (tagR ; wrap )× id; proj−1 + id;
(tagL ; wrap )× id + id; untag :

(a+ b)∗ ≤ a∗ × (b× a∗)∗

In the above example, the coercion is, operationally, basically
the function f defined in Example 14: It folds a constant-time
computable function over its input list and therefore runs in linear
time. Kozen (1994, Proposition 2.7) gives a proof of the same
inclusion in his axiomatization of Kleene algebra. When encoding
it as in Section 3.3.2 we obtain a similar, linear-time coercion.
This raises the question whether computational interpretation of all
proofs of the same containment in the axiomatizations of Salomaa,
Kozen and Grabmayer yield coercions of the same, linear-time
complexity. Remarkably, this is not the case, as illustrated by the
next example.

EXAMPLE 28 (Coercion efficiency). Consider a∗ × a∗∗ ≤ a∗.
The simplest way to prove this with Kozen’s rules is to start from
a × a∗ ≤ a∗ proved by tagR ; wrap . By the left inference rule in
Figure 8 we then get a∗ × a∗ ≤ a∗. By the right inference rule in
Figure 8 we finally obtain a∗ × a∗∗ ≤ a∗.

Let us consider the computational interpretation of this proof.
We have two (nested) applications of the (left and right, respec-
tively) inference rule from Figure 8. This gives quadratic runtime.
It is unclear to us whether there exists a proof using Kozen’s rules
whose computational interpretation as a functional program runs
in linear time. It is possible to construct a linear-time coercion for
a∗ × a∗∗ ≤ a∗ in our coercion inference system, however. This
can be systematically obtained by encoding the (minimal) proof in
Grabmayer’s axiomatization. In fact, the encoding of any proof in
Grabmayer’s axiomatization will have linear run time. This is be-
cause the only admissible application of recursion in Grabmayer’s
axiomatization is of the form fixf.dE ; (id + Σa∈Aida × ca); cF ,
where f does not occur in dE and cF , which entails that only con-
stant amount of processing occurs for each constant part of the
input.

3.5 Parametric completeness
Let us extend regular expressions by adding variables that can be
bound to arbitrary regular sets. Formally,

E,F,G,H ::= 0 | 1 | a | X | E + F | E × F | E∗

where X ranges over a denumerable set of (formal) variables
{Xi}i∈N. Such a regular expression is closed if it contains no
formal variables. We define |= ∀X1, . . . , Xm.E[X1, . . . , Xm] ≤
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F [X1, . . . , Xm] if the containment holds for all substitutions ofXi
with (closed) regular expressions.

Our axiomatization is immediately applicable to regular expres-
sions with free variables. Without change, it is not only complete,
but parametrically complete for infinite alphabets:

THEOREM 29 (Parametric completeness). Let A be infinite. Let
the side condition P for the coinduction rule in Figure 5 be either
total hereditariness or S2. Then: |= ∀X1, . . . , Xm. E ≤ F if and
only if `P c : E ≤ F .

PROOF Only if: By rule induction, coercion axiomatization is
closed under substitution, with total hereditariness or S2 as side
condition. Note that this is not the case for S4. (Technically, S1 is
not even defined for regular expressions with variables, since o(X)
is undefined.)

If: Assume |= ∀X1, . . . , Xn. E ≤ F . Let b1, . . . , bn be n dis-
tinct alphabet symbols not occurring inE or F . (SinceA is infinite,
they exist.) By definition of |= ∀X1, . . . , Xn. E ≤ F , we have
|= E{X1 7→ b1, . . . , Xn 7→ bn} ≤ F{X1 7→ b1, . . . , Xn 7→
bn}. By Theorem 25 (completeness), there is a derivable coercion
judgement `P c : E{X1 7→ b1, . . . , Xn 7→ bn} ≤ F{X1 7→
b1, . . . , Xn 7→ bn}. Since coercion axiomatization with heredi-
tary totality or S2 as side condition is closed under substitution,
the b1, . . . , bn can be replaced by arbitrary regular expressions
E1, . . . , En, respectively, such that ` c : E{b1 7→ E1, . . . , bn 7→
En} ≤ F{b1 7→ E1, . . . , bn 7→ En}. In particular, we can choose
X1, . . . , Xn for E1, . . . , En and thus obtain ` c : E ≤ F . 2

As a consequence of Theorem 29, a schematic containment
such as E × E∗ ≤ E∗ × E is derivable, not just admissible in
our axiomatization: we can synthesize a single coercion judgement
for it and use it for all instances of E. For finite alphabets our
axiomatization is incomplete, however: |= ∀X. (X ≤ (a + b)∗)
holds for A = {a, b}, but X ≤ (a+ b)∗ is not derivable.

We observe that Kozen’s axiomatization (Kozen 1994) is also
parametrically complete for infinite alphabets, but not for finite
alphabets. Neither Salomaa’s (Salomaa 1966) nor Grabmayer’s
(Grabmayer 2005) appear to be parametrically complete: In Salo-
maa’s case we need to make a case distinction as to whether the reg-
ular expression E substituted for X has the empty word property;
and in Grabmayer’s case E needs to be differentiated, the proof of
which depends on the syntax of E.

4. Application: Compact bit representations of
parse trees

If the regular expressions are statically known in a program we can
code their elements, more precisely their parse trees, compactly as
bit strings.

4.1 Bit coded strings
Intuitively, a bit coding of a parse tree p factors p into its static part,
the regular expression E it is a member of, and its dynamic part, a
bit sequence that uniquely identifies p as a particular element of E.

Consider for example the string s = abaab as an element of
H1 = (a+ b)∗. It has the unique parse tree corresponding to

ps = [inl a, inr b, inl a, inl a, inr b]

with ` ps : H1, which shows that flat(ps) = abaab is an element
of L[[H1]].

Figures 11 and 12 define regular-expression directed coding and
decoding functions from parse trees to their (canonical) bit codings
and back. Informally, the bit coding of a parse tree consists of
listing the inl - and inr -constructors in preorder traversal, where
inl is mapped to 0 and inr is mapped to 1. No bits are generated

code(() : 1) = ε
code(a : a) = ε
code(inl v : E + F ) = 0 code(v : E)
code(inrw : E + F ) = 1 code(w : F )
code((v, w) : E × F ) = code(v : E) code(w : F )
code(fold v : E∗) = code(v : 1 + E × E∗)

Figure 11. Type-directed encoding function from parse trees (val-
ues) to bit sequences

decode′(d : 1) = ((), d)
decode′(d : a) = (a, d)
decode′(0d : E + E′) = let (v, d′) = decode′(d : E)

in (inl v, d′)
decode′(1d : E + E′) = let (w, d′) = decode′(d : E)

in (inrw, d′)
decode′(d : E × E′) = let (v, d′) = decode′(d : E)

(w, d′′) = decode′(d′ : E′)
in ((v, w), d′′)

decode′(d : E∗) = let (v, d′) = decode′(d : 1 + E × E∗)
in (fold v, d′)

decode(d : E) = = let (w, d′) = decode′(d : E)
in if d′ = ε thenw else error

Figure 12. Type-directed decoding function from bit sequences to
parse trees (values)

for the other constructors. For example, the bit coding bs for ps is
10 11 10 10 11 0.

We can think of the bit coding of a parse tree p as a bit coding
of the underlying string flat(p). Note that the bit coding of a string
is not unique. It depends on

• which regular expression it is parsed under; and
• if the regular expression is ambiguous, which parse tree is

chosen for it.

As an illustration of the first effect, the bit representation b′s of s
underH2 = 1 + (a+ b)∗× (a+ b) is 1 10 11 10 10 0 1. Since both
H1 and H2 are unambiguous there are no other bit representations
of s under either H1 or H2.

4.2 Bit code coercions
So what if we have a bit representation of a run-time string under
one regular expression and we need to transform it into a bit
representation under another regular expression? This arises if the
branches of a conditional expression each return a bit-coded string,
but under different regular expressions E1, E2, and we need to
ensure that the result of the conditional is a bit coding in a common
regular expression F that contains the E1 and E2.

Let us consider s again and how to transform bs into b′s. As we
have seen in Section 3.3, E∗ is contained in 1 + (E∗ × E) for all
E and there is a parametric polymorphic coercion c1 : ∀X.X∗ ≤
1 + (X∗ × X) mapping any value ` p : E∗ representing a parse
tree for string s′ = flat(p) to a parse tree ` p′ : 1 + E∗ × E for
s′. In particular applying c1 to ps yields p′s.

We can compose c1 with code and decode from Figures 11
and 12 to compute a function ĉ1 operating on bit codings:

ĉ1 = code · c1 · decode.

Instead of converting to and from values we can define a bit
coding coercion by providing a computational interpretation of
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retag(0d) = 1d
retag(1d) = 0d
retag−1 = retag
tagL (d) = 0d
untag (bd) = d
shuffle(0d) = 00d
shuffle(10d) = 01d
shuffle(11d) = 1d
shuffle−1(00d) = 0d
shuffle−1(01d) = 10d
shuffle−1(1d) = 11d
swap(d) = d
swap−1 = swap
proj(d) = d
proj−1(d) = d
assoc(d) = d
assoc−1(d) = d
distL(d : E × (F +G))

= let (d1, bd2) = split(d : E)
in bd1d2

distL−1(bd : (E × F ) + (E ×G))
= let (d1, d2) = split(d : E)

in d1bd2

distR(d) = d
distR−1(d) = d
wrap (d) = d
wrap−1(d) = d
(c+ c′)(0d) = 0 c(d)
(c+ c′)(1d′) = 1 c′(d′))
(c× c′)(d : E × F ) = let (d1, d2) = split(d : E)

in c(d1) c′(d2)
(c; c′)(d) = c′(c(d))
id(d) = d
(fix f.c)(d) = c[fix f.c/f ](d)

Figure 13. Coercions operating on typed bit sequence representa-
tions instead of values

split(d : 1) = (ε, d)
split(d : a) = (ε, d)
split(0d : E + E′) = let (d1, d2) = split(d : E)

in (0d1, d2)
split(1d′ : E + E′) = let (d1, d2) = split(d′ : E′)

in (1d1, d2)
split(d : E∗) = split(d : 1 + E × E∗)
split(d : E × E′) = let (d1, d2) = split(d : E)

(d3, d4) = split(d2 : E′)
in (d1d3, d4)

Figure 14. Type-directed function for splitting bit sequence into
subsequences corresponding to components of product type

v : α[µX.α/X]
fold v : µX.α

Figure 15. Inhabitation rule for µ

coercion judgements that operates directly on bit coded strings. See
Figure 13. It uses the type-directed function split from Figure 14
for splitting a bit sequence into a pair of bit sequences.

Consider for example the coercion ` c0 : E∗ × E to E ×
E∗ from Section 3.3. By interpreting c0 according to Figure 13
we arrive at the following highly efficient function gE , which
transforms bit codings of values of E∗ × E into corresponding bit
representations for E × E∗.

gE(0d) = 0d
gE(1d) = 1 fE(d)
fE(0d) = d0
fE(1d) = let (d1, d2) = splitE(d)in d1 1 fE(d2)

The bit coded version of c1 : E∗ ≤ 1 + E∗ × E gives us
a linear-time function hE that operates directly on bit codings of
(parse trees) of strings in E∗ and transforms them to bit codings in
1 + E∗ × E:

hE(0d) = 0d

hE(1d) = 1 gE(d)

Note that h(a+b) is the bit coding coercion fromH1 toH2. It trans-
forms 10 11 10 10 11 0 into 1 10 11 10 10 0 1 without ever materi-
alizing a string or value.

4.3 Tail-recursive µ-types
The presented bit sequences are compact, but their sizes depend
on the regular expression used. Thus it is necessary to use reason-
able regular expressions to obtain compact bit sequences. In fact
the most compact representations can be found only by generaliz-
ing regular expressions to tail-recursive µ-types. We will use the
remainder of this section to study this extension and the compres-
sion it allows.

A common representation of strings over an alphabet
Σ = {a1, . . . , a255} of 255 characters from the Latin-1 (ISO/IEC
8859-1:1998) alphabet employs a sequence of 8-bit bytes repre-
senting each of the 255 different characters and uses the remain-
ing byte to indicate the end of the string. This gives a total size of
8 · (n+ 1) bits to represent a string of length n.

Consider now the size of the bit sequence from Section 4.1 of a
string under regular expressionE∗Σ whereEΣ is a sum type holding
all the 255 characters in Σ. This can be written in many ways using
permutations and associations of the characters. For example, if we
define EΣ as a1 + (a2 + (a3 + . . .+ a255) . . .) this means that the
size of the bit coding of ak is k bits long. This can be improved by
ensuring that the type is balanced such that each path to a character
has the same length. As there are 255 characters this means we will
use 8 bits to represent each characters, leaving one path unused
(so one character only uses 7 bits). Now we can look at the space
required for the bit coding of a string under type E∗Σ. Since E∗Σ is
unfolded to 1 + EΣ × E∗Σ the representation of the empty string
requires 1 bit, while the representation of other strings is 1 bit plus
8 bits for representing the first character, plus the bits to represent
the rest of the string for the type E∗Σ. Thus up to 9 · n + 1 bits are
used to represent a string of length n.

The reason why bit codings for regular types use one bit more
per character is due to the very restrictive recursion in regular
expressions. The extra bit is used to say for each character that we
do not want to end the string yet. This is because we can only use
the .∗ constructor to define recursive types, and a regular expression
E∗ always unfolds to 1 + E × E∗. Therefore we use one bit for
each character to choose the right hand side after the unfold. This
is equivalent to using a unary integer representation to state how
many times the E inside the .∗ is used, which leaves room for
optimization.
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We now generalize the recursion to tail-recursive µ-types in
order to obtain more compact bit codings. Consider the language
of expressions UnRegµΣ over a finite alphabet Σ = {a1, . . . , an}:

α ::= 0 | 1 | a | α1 + α2 | α1 × α2 | µX.α | X
We define the free variables of α to be the set of variables X that
occur in α without a binder µX . If there are no free variables in α
then we say that α is closed. We call α tail-recursive if α1 is closed
in all subterms of the form α1 × α2.

We can now define the language RegµΣ as the closed, tail-
recursive expressions from UnRegµΣ.

We need to define semantics, type-interpretation and inhabita-
tion for the new expressions, but we can reuse the definitions from
regular expressions (L[[]], T [[]], v : E), simply by adding new rules
for the new µ and X constructs.

We can extend the type-interpretation from Definition 6 with an
environment σ, and replace the definition of T [[E∗]] with

T [[X]]σ = σ(X) and T [[µX.α]]σ =
⋃
i≥0 T [[α]]σ(i) where

σ(0) = σ[X 7→ ∅] and σ(n+1) = σ[X 7→ T [[α]]σ(n) ].

Similarly, L[[.]] can be extended to RegµΣ.
Finally, we can use the inhabitation rules from Figure 1, except

the fold rule is replaced with the rule for µ in Figure 15.
We can now prove that RegµΣ expresses exactly the same lan-

guages as RegΣ:

THEOREM 30 (Conservativity of tail-recursive µ-types).

1. For all E ∈ RegΣ there is α ∈ RegµΣ
such that {flat(v) | ` v : E} = {flat(v) | ` v : α}.

2. For all α ∈ RegµΣ there is E ∈ RegΣ

such that {flat(v) | ` v : α} = {flat(v) | ` v : E}.

PROOF (Sketch) The first statement is proved by encoding E∗

as µX.1 + α × X where α is the encoding of E. The second
statement is proved by first rewriting µ-types to the form µX.(α×
X + β), where X is not free in α or β. Now it can be seen
that L[[µX.(α×X + β)]] = L[[E∗ × F ]] where E is a regular
expression encoding of α and F is an encoding of β. 2

The equivalence of regular expressions with right-regular gram-
mars is well known (Chomsky 1959). Tail-recursive µ-types are
like right-regular grammars, but do not exactly correspond to
them: tail-recursive µ-types lack mutual recursion, but offer lo-
cally scoped recursion, where grammars only provide top-level
recursion. 5

Even though RegµΣ expresses exactly the same languages as
RegΣ, the new expressions allow us to define (a + b + c)∗ as
µX.(1 + a × X) + (b × X + c × X) and thus saving us one
bit per character we need to express.

Using this optimization the representation of any string with
respect to the generalized regular expression type αΣ will use eight
bits per Latin-1 character plus eight bits to terminate the string.
This is exactly the same size as the standard Latin1-representation.
In fact the bit-representations for this type will be exactly the same
as the bit-representations for the standard Latin-1 representation if
the same permutation of characters is chosen in αΣ.

It may not seem very impressive to reinvent the Latin-1 rep-
resentation this way, but it can guarantee that bit coding uses at
most as much space as the Latin-1 representation. The benefit of
bit coding comes when we no longer consider all Latin-1 strings,

5 Milner (1984) presents a sound and complete axiomatization of behav-
ioral equivalence of µ-terms denoting labeled transition systems. Behav-
ioral equivalence is properly weaker than regular expression equivalence,
however. Crucially, distributivity E × (F +G) = E × F + E ×G does
not hold.

but a subset specified by a regular expression. In this case the bit
codings will generally be more compact. The ultimate example of
this is when the regular expression allows exactly one string. For
example the bit sequence of ’abcbcba’ under regular expression
a× b× c× b× c× b× a uses zero bits since its value contains no
inl /inr -choices. Of course the program needs to know the regular
expression in order to interpret the bit sequences, but that can be
shared across interpretation of multiple bit sequences.

We end this section with two examples showing the bit sizes of
strings under different regular expressions.

EXAMPLE 31. In the table below Z denotes a designated end-of-
string character; and characters a, b, c their 8-bit Latin-1 codings.

Regular expression Representation Size
Latin1 abcbcbaZ 64
Σ∗ 1a1b1c1b1c1b1a0 64
((a+ b) + (c+ d))∗ 1001011101011101011000 22
((a+ b) + c)∗ 10010111101111011000 20
a× (b+ c)∗ × a 10111011100 11
a× b× c× b× c× b× a 0

The following is a more realistic example, where we also con-
sider the data size before and after text compression.

EXAMPLE 32 (Sizes for XML record collection string). Consider
the following regular expression, corresponding to a regular XML
schema (× and associativity have been omitted for simplicity).
<CATALOG>
(<CD><TITLE>Σ∗</TITLE><ARTIST>Σ∗</ARTIST>

<COUNTRY>Σ∗</COUNTRY><COMPANY>Σ∗</COMPANY>
<PRICE>Σ∗</PRICE><YEAR>Σ∗</YEAR>

</CD>)*
</CATALOG>
This regular expression describes an XML-format for representing
a list of CDs. We have found the sizes for representing a specific list
containing 26 CDs to be as follows:

Uncompressed Compressed
Latin-1 32760 7248
bit representation using EΣ 11187 6654
bit representation using αΣ 9947 6552

As we can see, there is almost a factor 3 reduction in the space
requirement when using the regular expression specific bit codings.
The benefit is reduced by compression of the bit codes with bzip
(Seward) but an 8% space reduction is still obtained.

5. Discussion
Regular expressions are fundamental to computer science with
numerous applications in semi-structured text processing, natural
language processing, program analysis, graph querying, shortest
path computation, compilers, program verification, bioinformatics
and more.

Salomaa (1966) and, independently, Aanderaa provided the first
sound and complete axiomatizations of regular expression equiva-
lence , based on a unique fixed point rule, with Krob (1990), Pratt
(1990) (for extended regular expressions), and Kozen (1994) pro-
viding alternatives in the 90s.

Recently, coinductive axiomatizations based on finitary cases
of Rutten’s coinduction principle (Rutten 1998) for simulation re-
lations have become popular: Grabmayer (2005) for regular expres-
sions; Chen and Pucella (2004) and Kozen (2008) for Kleene Alge-
bra with Tests. Silva, Bonsangue and Rutten show how to special-
ize their coalgebraic framework to regular languages and how to
translate regular languages into so-called deterministic expressions
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(Silva et al. 2010, Example 3.4). Such expressions appear to corre-
spond to (nondeterministic) linear forms (Antimirov 1996), which
in turn represent ε-free nondeterministic automata. (Their particu-
lar translation may generate exponentially bigger expressions than
the original regular expressions, however, which may limit practi-
cal applicability.)

Grabmayer’s axiomatization (Grabmayer 2005) is based on Br-
zozowski derivatives (Antimirov 1996; Brzozowski 1964), which
allow automata constructions and pairwise regular expression
rewriting (Antimirov 1995; Ginzburg 1967; Lu and Sulzmann
2004) to be understood as proof search.

In this paper we present a declarative coinductive axioma-
tization of regular expression containment, generalizing Grab-
mayer’s algorithmic coinductive axiomatization of regular expres-
sion equality.6 Ours is the first axiomatization of regular expression
containment with a Curry-Howard-style computational interpreta-
tion of containment proofs as functions (coercions) operating on
regular expressions read as regular types. Like Kozen’s (noncoin-
ductive) axiomatization, but unlike Salomaa’s (noncoinductive) and
Grabmayer’s (coinductive) it is parametrically complete for infinite
alphabets: If E[X] ≤ F [X] for all X , then there is a parametric
polymorphic coercion c : ∀X.E[X] ≤ F [X].

Frisch and Cardelli (2004) were, as far we know, the first to state
the precise connection between regular expressions as languages
and regular expressions as types (Section 2.2 in this paper).

Coinductive axiomatizations with a Curry-Howard style com-
putational interpretation have been introduced by Brandt and Hen-
glein (1998) for recursive type equivalence and subtyping, ex-
pounded on by Gapeyev et al. (2002), as an alternative to the ax-
iomatization of Amadio and Cardelli (1993), which uses the unique
fixed point principle. In this fashion, classical unification closure
can be understood as proof search for a type isomorphism, and the
product automaton construction of Kozen et al. (1995) as search
for the coercion embedding a subtype into another type. Di Cosmo
et al. (2005) provide a coinductive characterization of recursive
subtyping with associative-commutative products, but it is not a
proper axiomatization since it appeals directly to bisimilarity.7 Re-
cursive type isomorphisms have also been studied by Abadi and
Fiore (1996); Fiore (2004, 1996) and have been used for stub gen-
eration (Auerbach et al. 1999).

The (finitary) coinduction rule in its most general form is

Γ, P ` P
Γ ` P

It requires a side condition for soundness, which is usually specific
to the syntax of the formulae P and the particular logical system
at hand. Numerous syntactic variations may be possible, and care
must be applied to retain soundness; e.g. by not allowing a transi-
tivity rule (Gapeyev et al. 2002). This work represents the end of
a quest for a general semantic side condition, at least for contain-
ment formulae: Interpret a proof of containment computationally
as a function, and let the side condition be that the conclusion (now
with explicit proof object) under this interpretation be (hereditarily)
total. For regular expression containment, hereditary totality turns
out to be undecidable, but it justifies the soundness of our side con-
ditions S2 and S4, which each yield sound and complete axiom-
atizations of regular expression containment. Their disjunction is
expressive enough to facilitate a compositional encoding of deriva-
tions in Salomaa’s, Kozen’s and Grabmayer’s axiomatizations.

6 Here, “declarative” and “algorithmic” are used in the same sense as in
Benjamin Pierce’s book Types and Programming Languages, MIT Press.
7 Bisimilarity is coinductively defined (that is, as a greatest fixed point), but
not necessarily finitarily as required in an ordinary (recursive) axiomatiza-
tion.

Brandt and Henglein (1998, Section 4.3) discuss how the fini-
tary coinduction rule can be understood as a rule for finding a finite
set of formulae that are intrinsically consistent. Intuitively this cor-
responds to constructing proofs of such formulae that are finite,
but may be circular: they may contain occurrences of formulae
to be proved as assumptions. This is also the essence of circular
coinduction for behavioral equivalences (Rosu and Goguen 2000).
Rosu and Lucanu (2009) provide a general proof-theoretic frame-
work for applying circular coinduction soundly. It allows marking
certain equations as frozen to prevent them from being applied pre-
maturely, which would lead to unsound conclusions. Our approach
is fundamentally different in the following sense: We allow circu-
lar equations without any restriction. An equation is interpreted as
a pair of potentially partial functions, whose definition depends on
the particular (circular) proof of the equation. An equation is valid
(sound), however, only if the two functions making up its compu-
tational interpretation are total.

Our regular-expression specific bit representation of (parse trees
of) strings corresponds to composing regular expression parsing
with the flattening function of Jansson and Jeuring (1997), who
attribute the technique to work in the 80s on text compression
with syntactic source information models (see references in their
paper). Bit coding captures the idea that only choices made—the
tags of sum types—need to be encoded, which is also the key
idea of oracle-based coding in proof-carrying code (Necula and
Rahul 2001). Our direct compilation of containment proofs to bit
manipulation functions appears to be novel, however. It should be
noted that compaction by bit coding is orthogonal to statistical text
data compression. As we have illustrated, combining them may
yield significantly shorter bit strings than either technique by itself.

Type- and coercion-theoretic techniques appear to be applica-
ble to regular expression types (Hosoya et al. 2005a,b; Nielsen
2008; Sulzmann and Lu 2007) and other nonregular extensions, no-
tably context-free languages.8 This remains to be investigated thor-
oughly, however. Note that regular expression types are a proper
extension of regular expressions as types.

There are also numerous practically motivated topics to inves-
tigate: Inference of regular type containments and search for prac-
tically efficient coercions implementing them; disambiguation of
regular expressions by annotating them; instrumenting automata
constructions for fast input processing that yields parse trees; and
more. We hope that this may lead the way to putting logic and com-
puter science into a new generation of expressive, generally appli-
cable high-performance regular expression processing tools.
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