
Communicating Reactive Processes*

Abstract

G. Berry

Ecole des Mines, Centre de Math6matiques Appliques

B.P. 207, 06904 Sophia-Antipolis CDX, France

S. Ramesh

Dept. Of Computer Science and Engineering

Indian Institute of Technology

Powai, Bombay 400076, India

R.K. Shyamasundar

Tata Institute of Fundamental Research

Homi Bhabha Road, Bombay 400005, India

We present a new programming paradigm called Com-

municating Reactive Processes or CRP that unifies the

capabilities of asynchronous and synchronous concur-

rent programming languages. Asynchronous languages

such aa G3P, OCCAM, or ADA are well-suited for dis-

tributed algorithms; their processes are loosely coupled

and communication takes time. The ESTEREL syn-

chronous language is dedicated to reactive systems; its

processes are tightly coupled and deterministic, commu-

nication being realized by instantaneous broadcasting.

Complex applications such as process or robot control

require to couple both forms of concurrency, which is

the object of CRP. A CRP program consists of indepen-

dent locally reactive ESTEREL nodes that communicate

with each other by CSP rendezvous. CRP faithfully ex-

tends both ESTEREL and CSP and adds new possibili-

ties such as precise local watchdogs on rendezvous. We

present the design of Cl?P, its semantics, a translation

into classical process calculi for program verification, an

application example, and implementation issues.

*Work supported by the French Coordinated Research
Projects C3 and C2A and by IFCPAR (Ind~Freneh Center for
the Promotion of Advanced Research), New Delhi.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direot commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-20th PoPL-1 /93-S. C., USA
@ 1993 ACM ()-89791 .56~.5/93/0()01 /0085 . ..$l .50

1 Introduction

Existing concurrent programming languages fall into

two quite distinct classes that we shall call the asyn-

chronous class and the synchronous class. The goal

of this paper is to provide a unification between asyn-

chronous and synchronous programming.

The class of asynchronous languages contains classi-

cal concurrent languages such as CSP [13], OCCAM [14],

or ADA, [1]. Concurrent processes are viewed as being

loosely coupled independent execution units, each pro-

cess evolving at its own pace. Inter-process communica-

tion is done by mechanisms such as message passing or

rendezvous. Communication as a whole is asynchronous

in the sense that an arbitrary amount of time can pass

between the desire of communication and its actual com-

pletion (rendezvous communication is sometimes called

synchronous, but we prefer to call it synchronizing since

the actual rendezvous is only the final act of a commu-

nication).

The class of synchronous languages contains mainly

ESTEREL [5], LUSTRE [11], SIGNAL, [10], and STATE-

CHARTS [12]. In synchronous languages, a program is

thought of as reacting instantaneously to its inputs by

producing the required outputs. Concurrent statements

evolve in a tightly coupled input-driven way and com-

munication ia done by inst antaneoua broadcasting, the

receiver receiving a message exactly at the time it is

sent.

Asynchronous and synchronous languages are deeply

different in nature, applications, and implementations.

Asynchronous languagea are relevant for distributed al-

gorithms; they support non-determinism, which is ap-
propriate for the framework. Implementing them on

networks of processors is natural, since the linguistic

85



asynchronous communication mechanisms are close to

actual communication mechanisms in networks. Syn-

chronous languages are specifically designed for reactive

systems [2]; here logical concurrency is required for good

programming style but determinism is a must — think

of embedded controllers. Instantaneous reaction and in-

stantaneous broadcast communication make it possible

to marry concurrency and determinism. Direct imple-

mentation is feasible in hardware [3,4]. In software im-

plement ation, concurrency can be compiled away, for

example by translating programs to straight-line code

or to automata [5,11].

Presently, each language class is unable to handle the

problems to which the other class is tailored. Asyn-

chronous languages are inappropriate for truly reactive

systems that require deterministic synchronous commu-

nication, as argued in [2]. On the other hand, existing

synchronous languages lack suppoit for asynchronous

distributed algorithms. However, complex systems do

require the abilities of the two classes of languages. For

example, a robot driver must use a specific reactive pro-

gram to control each articulation, but the global robot

control may be necessarily asynchronous because of lim-

it at ions of networking capabilities.

The paper develops a new unifying paradigm called

Communicating Reactive Processes, where a set of in-

dividually reactive synchronous processes is linked by

asynchronous communication channels. Technically, we

unify the ESTEREL and CSP languages. This unifica-

tion requires only a minor addition to ESTEREL. It pre

serves the spirit and semantics cf both ESTEREL and

CSP. At the same time, it also provides a rigorous se-

mantics and implementation for constructs such ss pre-

cise local watchdogs on asynchronous communications

that are indispensable in practice but are not properly

supported by existing languages.

Section 2 recalls the ESTEREL language and intro-

duces a new exec asynchronous task execution primi-

tive. In Section 3, we show how to augment ESTEREL

with rendezvous based on asynchronous task execution.

We show that all the constructs of C%P can be im-

plemented by using constructs already existing in Es-

TEREL. We present new possibilities of tine synchronous

control over asynchronous communication, and we give

an application example. Section 4 ‘presents the seman-

tic model and shows that it conservatively extends those

of ESTEREL and CSP. In Section 5, we give a transla-

tion of CRP into the MEIJE process calculus [6]; this
translation gives an operational view of the semantics

and makes it possible to automatically verify properties

of CRP programs using a verification system such as

AUTO [7]. Section 6 discusses implementation issues.

An appendix presents the formal semantics of ESTEREL

with exec.

For simplicity, we only deal formally with PURE Es-

TEREL, which is limited to pure synchronization and

communication [3,4]. The full ESTEREL language [5]

supports data handling and value passing. Extension of

CRP to value passing is easy; it is done infcmnally and

is illustrated in the example.

2 The Esterel Language

We first briefly present the original PURE ESTEREL lan-

guage of [3,4]. We then present the new exec sync-

hronous task execution primitive that is now supported

by the ESTEREL compilers. We explain the language by

giving a purely intuitive and non-systematic semantics

based on examples.

2.1 Modules and Interfaces

The basic object of PURE ESTEREL is the signal. Signals

are used for communication with the environment as

well as for internal communication.

The programming unit is the module. A module has

an interface that defines its input and output signals

and a body that is an executable statement:

nodule M:

input 11, 12;

output 01, 02;

input relations

statement

end raodule

Input relations can be used to restrict input events [5].

We shall only use exclusions, written in the interface

part as

relation 11 # 12;

Such a relation means that input events cannot contain

11 and 12 together. It is therefore an assertion on the

behavior of the asynchronous environment.

At execution time, a module is activated by repeat-

edly giving it an input event consisting of a possibly

empty set of input signals assumed to be present and

satisfying the input relations. The module reacts by

executing its body and outputs the emitted output sig-

nals. We assume that the reaction is instantaneous or

perfectly synchronous in the sense that the outputs are

produced in no time. Hence, all necessary computa-

tions are also done in no time. In PURE ESTEREL,

these computations are either signal emissions or con-

trol transmissions between statements; in full ESTEREL,
they can be value computations and variable updates as

well. The only statements that consume time are the

ones explicitly requested to do so. The reaction is also

required to be deterministic: for any state of the pro-

gram and any input event, there is exactly one possible

output event. Perfect synchrony is discussed at length

in [5,2,11,10,12]. In perfectly synchronous languages, a

reaction is also called an instant.

86



2.2 Statements

ESTEREL has two kinds of statements: the primitive or

kernel statements, and the derived statements that can

be expanded into primitive ones by macro-expansion

and make the language more user-friendly. Derived

statements are not semantically meaningful and will not

be presented here. The list of kernel statements is:

nothing

halt

emit S

stat~; statz

loop stat end

present S then statl else statz end

do stat uat thing S

stail I I statz

trap T in stat end

exi% T

signal S in stat end

The kernel statements are imperative in nature, and

most of them are classical in appearance. The trap

exit constructs form an exception mechanism fully

compatible with parallelism. Traps are lexically scoped.

The local signal declaration “signal S in stat end” de-

clares a lexically scoped signal S that can be used for in-

ternal broadcast communication within stat. The then

and else parts are optional in a present statement. If

omitted, they are supposed to be nothing.

2.3 Intuitive Semantics

At each instant, each interface or local signal is con-
sistently seen as present or absent by all statements,

ensuring determinism. By default, signals are absent; a

signal is present if and only if it is an input signal emit-

ted by the environment or a signal internally broadcast

by executing an emit statement.

To explain how control propagates, it is better to first

give examples using the simplest derived statement that

takes time: the waiting statement “await S“, whose ker-

nel expansion “do halt vat thing S“ will be explained

in a moment. When it starts executing, this statement

simply retains the control up to the first future instant

where S is present. If such an instant exists, the await

statement terminates immediately; that is, the control

is released instantaneously; If no such instant exists,

then the await statements waits forever and never ter-

minates. If two await statements are put in sequence,

as in “await S1; await S2”, one just waits for S1 and

S2 in sequence: control transmission by the sequencing

operator ‘;’ takes no time by itself. In the parallel con-

struct “await S1 I I await s2”, both await statements

are started simultaneotisly right away when the parallel
construct is started. The parallel statement terminates

exactly when its two branches are terminated, i.e. when

the last of SI and S2 occurs. Again, the ‘ I I‘ operator

takes no time by itself.

Instantaneous control transmission appears every-

where, The nothing statement is purely transparent:

it terminates immediately when started. An “emit S“

statement is instantaneous: it broadcasts S and ter-

minates right away, making the emission of S tran-

sient. In “emit S1; emit S2”, the signals S1 and S2

are emitted simultaneously. In a signal-presence test

such as “present S . ..”. the presence of S is tested for

right away and the then or else branch is immediately

started accordingly. In a “loop stat end” statement,

the body stat starts immediately when the loop state-

ment starts, and whenever stat terminates it is instanta-

neously restarted afresh (to avoid infinite instantaneous

looping, the body of a loop is required not to terminate

instantaneously when started).

The wat thing and trapexit statements deal with

behavior preemption, which is the most important fea-

ture of ESTEREL.

In the watchdog statement “do siat wat thing S“, the

statement stat is executed normally up to proper termi-

nation or up to future occurrence of the signal S, which

is called the guard. If stat terminates strictly before

S occurs, so does the whole wat thing statement; then

the guard has no action. Otherwise, the occurrence of S

provokes immediate preemption of the body stat and im-

mediate termination of the whole wat thing statement.

Consider for example the statement

do

do

await 11; emit 01

watching 12;

emit 02

wat thing 13

If 11 occurs strictly before 12 and 13, then the inter-

nal await statement terminates normally, 01 is emitted,

the internal wat thing terminates since its body termi-

nates, 02 is emitted, and the external wat thing also

terminates since its body does. If 12 occurs before 11

or at the same time as it, but strictly before 13, then

the internal wat thing preempts the await statement

that should otherwise terminate, 01 is not emitted, 02

is emitted, and the external wat thing instantaneously

terminates. If 13 occurs before 11 and 12 or at the same

time se them, then the external wat thing preempts its

body and terminates instantaneously, no signal being

emitted. Notice how nesting watching statements pro-

vides for priorities.

We can now explain why “await S“ is defined as “do

halt wat thing S“. The semantics of halt is simple: it

keeps the control forever and never terminates. When

S occurs, halt is preempted and the whole construct
terminates just as expected. Notice that halt is the

only kernel statement that takes time by itself.

87



The trap-exit construct is similar to an exception

handling mechanism, but with purely static scoping and

concurrency handling. In “trap T i-n stat end”, the

body stat. is run normally until it executes an “exit

T“ statement. Then execution of stat is preempted and

the whole trap construct terminates. The body of a

trap statement can contain pimallel components; the

trap is exited as soon as one of the components ex-

ecutes an “exit T“ statement, the other components

being preempted. However, exit preemption is weaker

than wat thing preemption, in t he sense that concurrent

components execute for a last time when exit occurs.

Consider for example the statement

trap T in

await 11; emit 01

II
await 12; exit T

end

If 11 occurs before 12, then 01 is emitted and one waits

for 12 to terminate. If 12 occurs before 11, then the

first branch is preempted, the whole statement termi-

nates instant aneously, and 01 will never be emitted. If

11 and 12 occur simultaneously, then both branches do

execute and 01 is emitted. Preemption occurs only after

execution at the concerned instant: by exiting a trap, a

statement can preempt a concurrent statement, but it

does leave it its “last wills”.

Since we accept simultaneity, we must define what it

means to exit several traps simultaneously, i.e. define

priorities between traps. The rule is simple: only the

outermost trap matters, the other ones being discarded.

For example, in

trap T1 in

trap T2 in

exit T1

II
exit T2

end;

emit O

end

the traps T1 and T2 are exited simultaneously, the in-

ternal trap T2 is discarded and O is not emitted.

Traps also provide a way of breaking loops, which

would otherwise never terminate:

trap T in

loop ... exit T ... end

end

2.4 Value Handling

Since full ESTEREL will be informally used in the sequel,

we briefly describe the way in which values are handled.

Types can be either predefine like integer or be

abstract like Time; abstract types are meant to be im-

plemented in the host language in which a program is

compiled, C or ADA for example.

A signal can carry a value of a type declared in the

signal declaration. A valued signal has a unique value

at each instant. A signal value may change only when

the signal is received from the environment or locally

emitted with a new value, by executing “emit S( exp)”.

The current value of a signal S is accessed at any time

by the expression ‘? S’.

One can declare local variables by the statement

vsx X in stat end

Variables deeply differ from signals by the fact that they

cannot be shared by concurrent statements. Variables

are updated by instantaneous assignments “X:= exp” or

by instantaneous side-effecting procedure calls “call

P(.. .)”, where a procedure P is an external host-

language piece of code that receives both value and ref-

erence arguments.

Expressions may involve variables, signal values ‘? S’,

and external host-language function calls (external func-

tions must not perform side effects). The computation

of an expression is instantaneous. The “if exp then

stat 1 else stat z end” statement instantaneously tests

for the truth of erp.

Finally, occurrence counters can be added to preemp-

tion statements, as in “do stat wat thing 5 S“.

2.5 The “exec” Statement

We mentioned that full ESTEREL external procedure

calls are assumed to be instantaneous. This is not ap-

propriate for long numerical computations or for dealing

with external actions such as “move the robot arm to

position (a, y)” [9]. The new exec statement [15] reme-

dies this defect of the original ESTEREL language and

is our gateway to asynchrony. It handles external asyn-

chronous tasks homogeneous to procedures. In PURE

ESTEREL, we only handle argumentless side-effecting

tasks. An asynchronous task is declared by “task P“,

and task execution is controlled from ESTEREL by the

statement

exec P

that starts P and waits for its completion to terminate.

Since there can be several occurrences of “ exec P“ in

a module for the same task P, several simultaneously

active tasks having the same name can coexist. To avoid

confusion among them, one can assign an explicit label

to each exec statement:

exec L : P

The label name must be distinct from all other labels
and input signal names. An implicit distinct label is

given to unlabeled exec statements.

88



Given an exec statement labeled L, the asynchronous

task execution is controled from ESTEREL by three im-

plicit signals eL, L, and kL. The output startsignal

SL is sent to the environment when the exec statement

starts. It requests to start an asynchronous incarna-

tion of the task (paesing values in full ESTEREL). The

input return signal L, is sent by the environment when

the task incarnation is terminated; it provokes instanta-

neous termination of the ESTEREL exec statement (and

update of reference parameters in full ESTEREL). The

output kill signal kL is emitted by ESTEREL if the exec

statement is preempted before termination, either by

an enclosing watching statement or by concurrent exit

from an enclosing trap. For example, this is the case if

S occurs before termination of P in

do

exec L : P

wat thing S

It is assumed that the asynchronous environment can-

not provide instantaneous feedback, so that an exec

statement cannot terminate instantaneously when it is

started. If one forgets about kL, “exec L : P“ is simply

emit SL; await L

But the generation of kL is non-local since it depends on

external preemption. This is why we must have exec

as a primitive. In practice, the kL signal is essential

to garbage-collect preempted computations or to stop

external actions. In our implementation of CSP, it will

play a central role to monitor communication.

Notice that a task may be restarted instantaneously

at termination time, as in

loop

exec L : P

end

or restarted insta~t aneously when killed, as in

loop

do

exec L : P

vat thing S

end

In that case, the signals kL and SL are emitted simulta-

neously. Of course, kL kills the currently existing incar-

nation and SL starts a new incarnation.

There are also situations where a task should be

started but killed immediately. For example, consider

trap T in

exec L : P

II
exit T

end

The exec statement starts in the first parallel branch,

but it is instantaneously preempted by the exit state-

ment. In this case neither the start signal SL nor the

kill signal kL are emitted and no asynchronous task is

started.

An exec return signal can be declared to incompatible

with an input signal or with another return signal by

writing an incompatibility input relation using the exec

label

3

to refer to the return signal name,

Communicant ing Reactive Pro-

cesses

Let us now present the Communicating Reactive Pro-

cesses or CRP model. It consists of a network

a4~//M2// . . . //Mn of ESTEREL reactive programs or

nodes, each having its own input 1 output reactive sig-

nals and its own notion of an instant. The network is

asynchronous and the nodes Mi communicate via asyn-

chronous channels. Intuitively, each Mi is locally reac-

tively driving a part of a complex process that is handled

globally by the network.

To establish asynchronous communication between

the nodes, the central idea is to extend the basic exec

primitive into a communication primitive. The usual

send and receive asynchronous operations can be rep-

resented by particular tasks that handle the communi-

cation. Several send / receive interactions are possible

according to various types of asynchronous communica-

tion. For instance, send can be non-blocking for full

asynchrony, or send and receive can synchronize for

CSP-like rendezvous communication. All choices can

be implemented through ESTEREL. We choose the lat-

ter as that is the most subtle.

In the sequel, we first introduce a rendezvous prim-

itive in ESTEREL. We then show that this is enough to

capture the full communication power of CSP. We show

that synchronous and asynchronous constructs can be

combined to realize fine communication control in a way

that cannot be handled by conventional asynchronous

languages, and we give an application example.

3.1 Rendezvous

CRP nodes are linked by channels. We start by describ-

ing the pure synchronization case, where channels are

symmetric. Pure channels are declared in CRP nodes

by the declaration

channel C;

A channel must be shared by exactly two nodes. Chan-

nels are handled in ESTEREL by the new statement

rendezvous L : C

The label L is optional, an implicit distinct label being

created if it is absent. Except in the example below, we
shall always use explicit channel names for more clarity.

89



The rendezvous stptement is a particular instance of
exec statement; as such, it defines three implicit reac­
tive signals at a node : sL, L, and kL. The output signal
sL requests for a rendezvous on C. Rendezvous comple­
tion is signaled to the node by the signal L. The signal
kL signals abandoning the rendezvous request.

A given channel can only perform one rendezvous at
a time. Hence, in each node, the return signals of all
rendezvous statements on the same channel are implic­
itly assumed to be incompatible.

In full CRP, one can pass values through unidirec­
tional channels. For example, one can declare:

input channel C1 : type;
output channel C2 : type;

To send and receive values, one writes

rendezvous L1 : C1(exp)
rendezvous L2 : C2

The value sent in the first rendezvous is simply handled
as the value of the start signal sL1. The value received
in the second rendezvous is simply the current value
'?L2' of the return signal L2.

As far as implementation goes, one can think of an
implicit asynchronous layer that handles rendezvous by
providing the link between asynchronous network events
and node reactive events. This is also implicit in CSP.
The ESTEREL program remains fully deterministic. If
there are several active rendezvous statements for the
same channel, it is the role of the asynchronous layer
to choose which one is performed. If one rendezvous is
chosen, the other ones remain active until completion or
preemption. To serialize all rendezvous as in CSP, one
simply declares all rendezvous labels to be incompatible;
this is not necessary in the general CRP language.

3.2 Implementing CSP

We briefly show how to translate CSP nodes into CRP
ones. We restrict ourselves to the communication part
of CSP, forbidding pure boolean guards; such guards
are usually used for non-deterministic sequential pro­
gramming, which is definitely not a major issue in our
application field. We also ignore distributed termina­
tion issues. We assume knowledge of the CSP syntax
[13].

First, channels are declared, and labels are assigned
to each CSP rendezvous command. All labels are de­
clared incompatible to model CSP rendezvous serializa­
tion. The variables used in a CSP node are declared at
toplevel in the translated module. The translation of
statements is structural and mostly trivial. The skip
CSP statement is translated into nothing. Assign­
ments and expressions are kept unchanged. Boolean
tests in guards are translated using if ESTEREL state­
ments. Iteration is translated into a loop statement.

90

The only other thing that is left is guard selection. We
explain the translation on an example and leave its easy
formal definition to the reader. Consider the CSP state­
ment

[ C1?1 -+statl
[) C2! exp -+stat2 ]

If the respective labels are L1 and L2, the CRP trans­
lation is:

trap TO in
trap T1 in

trap T2 in
rendezvous L1 : C1;
exit T1

II
rendezvous L2 : C2(exp);
exit T2

end;
[stat2];
exit TO

end;
1 := ?L1;
[statl]

end

where [stati] is the translation of stat"
The two communications are requested simultane­

ously when the rendezvous statements are started. As­
sume C1 is done first. Rendezvous provokes instanta­
neous termination of "rendezvous C1", instantaneous
exit of T1, hence abortion of the other pending request
"rendezvous C2" that immediately sends the kL2 sig­
nal to cancel the other rendezvous, and selection of the
appropriate continuation [statl] after assignment of the
received value to I. Conversely, if C1 is done first, then
T2 is exited, kL1 is sent, and [stat2] starts as expected.
The exit TO statement is necessary to avoid executing
[stat1].

The reader familiar with ESTEREL will recognize sim­
ilarity of this translation with the expansion of the Es­
TEREL "await-case" derived statement. This state­
ment has the form

await
case 81 do statl
case 82 do stat2

end

It waits for the first occurrence of 81 or 82 to start stat 1

or stat2' One can use a similar concrete syntax for guard
selection in CRP:

rendezvous
case L1 : C1 do statl
case L2 : C2 (exp) do stat2

end

Notice that there is no need for a variable to refer to
the value received on L1 since this value is simply '?C1'.



3.3 General CRP

esp processes were translated into eRP modules that
are interfaced only through incompatible channels and
have no proper ESTEREL signals. In general eRP, sig­
nals and channels can be freely mixed with the only
restriction that no more than one rendezvous can be
performed at a time on a given channel. In particular,
several concurrent rendezvous on distinct channels can
be performed simultaneously.

Watchdogs can be imposed on asynchronous commu­
nication, which cannot be done properly in the usual
eSP-like languages. For instance, if S is an input reac­
tive signal of a node Mj (say "second" or "cancel key"),
we can require a rendezvous request of M j to be satisfied
before S occurs, or else to be aborted. This is written

do
rendezvous C

watching S

If S and the rendezvous return signal are simultaneous
for the node, the rendezvous is considered to be com­
pleted by both parties, but its local effect is canceled
by the watching statement. To avoid such tricky situa­
tions, it is often convenient to serialize rendezvous and
reactive events, writing the input relation

relation S # L;

3.4 Example

To illustrate the CRP programming style, and in par­
ticular the respective use of local reactivity and asyn­
chronous rendezvous, we present the example of a
(simple-minded) banker teller machine in Figure 1. The
machine is a CRP node assumed to be connected to an­
other node, the bank. The machine reads a card, checks
the code locally, and communicate by rendezvous with
the bank to perform the actual transaction. During the
whole process, the user can cancel the transaction by
pressing a Cancel key.

The reactive interface is self-explanatory. The ren­
dezvous interface consists of three valued channels.
The output channels CardToBa.nk and AmountToBank
are used to send the card information and transaction
amount. The input channel Authorization is used to
receive a boolean telling whether the transaction is au­
thorized. No rendezvous label is necessary here since
there is exactly one rendezvous statement per channel.

The body repeatedly waits for a card and performs
the transaction. The client-code checking section is
purely local and reactive. When the valid code is read,
one does two things in parallel: waiting locally for the
amount typed by the client, and sending the card in­
formation to the bank using a rendezvous. When both
these independent operations are completed, one sends
the amount to the bank and waits for the authorization.

91

If the return boolean is true, one instantaneously deliv­
ers the money and returns the card exactly when the au­
thorization rendezvous is completed, to ensure transac­
tion atomicity. During the full transaction, the user can
press the Cancel key, in which case the transaction is
gracefully abandoned, including the various rendezvous,
and the card is returned. Since the bank considers the
transaction to be performed when the Authorization
rendezvous is completed, one must declare an exclusion
relation between Authorization and Cancel to prevent
these two events to happen simultaneously. The outer
trap handles the abnormal cases of the transaction: the
card is kept if the code is typed in incorrectly three
times or if the transaction is not authorized. We use a
full ESTEREL extension of the trap statement, in which
one can write a trap handler to be activated when the
trap is exited. This extension is easily derivable from
kernel statements.

4 Semantics

The mathematical semantics is given in two steps. First,
the semantics of each node is individually defined using
the classical ESTEREL semantics. Then, cooperation be­
tween nodes is defined as in the standard esp ready
trace semantics.

4.1 Node Semantics

There are several formal semantics for ESTEREL [5].
The one we consider here is the behavioral semantics,
extended to handle exec statements. It defines the re­
action of a module M to an input event I satisfying the

o
input relations as a transition M - M' where 0 is the

1
generated output event and M' is a new module whose
body will perform the further reaction. The behavioral
semantics rules are given in appendix.

An history is a sequence 10 .00 , •.. , In . On, ... of
input-output event pairs where all input events Ii satisfy
the declared exclusion relations and where there is no
unexpected return signal: if L E In' then there exists
i < n such that sL E OJ and kL (/. OJ for i < j < n.

4.2 Cooperation Semantics

To define how nodes cooperate, we use the well-known
esp ready trace technique, with the slight complication
that several concurrent communications can take place
simultaneously at a node. We need to work with sets of
channels rather than just channel names.

Given the set e of channels declared in a node, the
projection lie of an inptit event I on e is defined as
the set of channels in e having a return signal in I
(notice that there is at most one return signal for a given
channel in I because of the implicit label exclusions).

t



type of card information
(Cardlnfo, integer) : boolean;

Cardlnfo;
Code integer, Amount: integer;

input Cancel; Y. user cancel key

output GiveCode, EnterAmount;
output DeliverMoney : integer;
output KeepCard, ReturnCard;

output channel CardToBank : Cardinfo;
output channel AmountToBank integer;
input channel Authorization : boolean;

relation Cancel # Authorization;

loop
trap KeepCard in

await Card;
Y. read and check code, at most three times
do Y. watching Cancel

trap CodeOk in
repeat 3 times

emit GiveCode;
await Code;
if CorrectCode(?Card, ?Code) then exit CodeOk end

end repeat;
exit KeepCard Y. failed 3 times !

end trap;

[

II
rendezvous CardToBank(?Card);

emit EnterAmount;
await Amount;

Y. send card to bank

Y. local dialogue

] ;
rendezvous AmountToBank(?Amount);
rendezvous Authorization;
if ?Authorization then

emit DeliverMoney (?Amount)
else

exit KeepCard
end if

Y. send amount to bank
Y. receive authorization boolean

watching Cancel;
emit ReturnCard

handle KeepCard do
emit KeepCard

end trap
end loop

Y. user explicit cancel at any time

Figure 1: The Banker Teller program

92
t



The projection on C of an history 10.0., ..., In. On, . . .

is the sequence on nonempty Ii/C that represents the

communication history over C; formally, using ‘.’ to add

an element at the head of a list:

(I ~O ● H)/C = I/C ● H/C ifI/C # 0

== H/C otherwise

An ezecution of a set of nodes {Mi I i 6 I} is a set

of valid ESTEREL histories Hi, one for each node Mi,

satisfying the consist ency condition that expresses that

events must match for each channel between any two

nodes. Formally, for any distinct i and j, if Cij is the

set of all common channels between Mi and Mj, then

one must have Hi/Cij = Hj /Cij .

Value passing can be handled just as in CSP (not

detailed here). Ready sets can also be extracted from

the histories to detect deadlocks as in CSP.

CRP obviously extends ESTEREL since nodes can be

arbitrary ESTEREL programs. That CRP extends CSP

results from the following theorem:

Theorem 1 Let P be a CSP program and P! be its

translation into CRP. Then the CSP ready trace se-

mantics of P coincides with the CRP semantics of P’.

The proof will be given in an extended version of this

paper.

5 Translation into the Meije

Process Calculus

The cooperation semantics is not really constructive, in

the sense that it does not tell how to execute programs.

We now give an implementation of PURE CRP into

Boudol’s process calculus MEIJE [6,8]. We choose this

calculus because it is able to handle together synchrony

and asynchrony, which is not possible in less powerful

calculi such as CCS. In addition to an implementation of

CRP in a classical process calculus, the MEIJE transla-

tion provides us with an automatic program verification

environment since MEIJE is accepted as input by verifi-

cation systems such as AUTO [7,16]. For full CRP pro-

grams dealing with values, an approximate translation

into MEIJE is feasible by ignoring value handling and

only retaining the synchronization skeleton. This can

still be useful for proving synchronization properties.

In the sequel, we assume that the reader is familiar

with the definition of automata in process calculi using

tail-recursive processes.

MEIJE actions consist of the free commutative group

over a set of elementary signals s. Its elements are

products of positive or negative elementary actions s!

and s? with s ! . s? = 1 (these notations point out the

ESTEREL reactive input / output directionality better

than the more usual s and ~). Prefixing in MEIJE is

k?

11.c?.s?

k?.s?

l!.C?

Figure 2: The label automaton L

written ‘:’, the symbol ‘.’ being reserved for instan-

taneous action product. The only other things one

should know about MEIJE is the behavior of the par-

allel and restriction operators. If p~q and qlq’,

then p//q ~ p’//q, p//q ~p//q’, and p//q ~ p’//q’.

If p ~ p’, then p \ s ~ p’ \ s provided that neither s !

nor s? appear in (the reduced form of) a.

We start by translating each node Mi. Since ESTERE~

programs are finite-state, the ESTEREL code at Mi can

be readily translated into a MEIJE automaton Ai. This

is actually done by the standard ESTEREL compiler. All

exclusion relations are taken care of in the following

way: only input events that satisfy the relations appear

in the automaton. Since all rendezvous return signals

for a given channel are exclusive, any MEIJE action ap-

pearing in Ai contains at most one return signal for each

channel, even if there may be several simultaneously ac-

tive rendezvous on this channel in the source code.

To compute the ready sets at Mi, we use an auxiliary

automaton for each rendezvous label L of a channel C.

Assume C links the considered node Mi with another

node Mj, and call Li the automaton defined as a copy

of the automaton L of Figure 2 where the following re-

namings are performed:

Li = L[sL/s, kL/k, L/l, c!/c] if i < j

Li = L[sL/s, kL/k, L/l, C?/C] if i > j

To finish the node translation, we put all the Li au-

tomata of channel labels used by Mi in parallel with

the Ai automaton and hide all the sL, kL, and L sig-

nals. Let [Mi] denote the translation of the node Mi.

The sort of [Mill contains the ESTEREL reactive input

/ output signals of Mi and the channels. If a channel C

links Mi and Mj, i < j, then the MEIJE signal C appears

positively in [Mi] and negatively in ~M~].

To translate the full CRP network we put all the CRP

nodes translations in parallel and hide all the channels.

In the final translation, the nodes evolve asynchronously
of each other except on rendezvous where they share an

instant, in the sense that perform a single compound

MEIJE transition.

93



As an example, consider a rendezvous between Ml

and M2 on a channel C, with labels L1 for Ml and L2

for Mz. The node automaton Al performs a compound

action of the form al .Ll?, where al may itself be some

compound action of Ml involving its reactive signals or

other rendezvous; the label automaton L1 performs the

action LI ! oC!; hence the node automaton [Ml] must

perform al . C! = al . Ll? . Ll! . C! since LI is hidden.

Symmetrically, at node M2, A2 performs an action az .

L2?, Lz performs L2!. C!, and [Mz] performs az *C?. Since

C is hidden in the global network, Ml and Mz must

perform their actions synchronously and the resulting

action is the synchronous product al. az = al. C!. az. C?

of the local actions of Ml and M2.

Of course, such a rendezvous can occur only when

both Ml and M2 are ready for it. This is just what is

computed by the auxiliary label automata. In general

CRP, several rendezvous can happen at the same time

in the network, and even between the same two nodes

on different channels; this is correctly modeled in MEIJE

by instantaneous action products.

That the MEIJE translation implements correctly

CRP according to the semantics of Section 4 will be

precisely stated and proved in an extended version of

this paper.

6 Implementation

Using the ESTEREL compiler, each CRP node can be in-

dependently compiled into a deterministic target code,

written for example in C, that exactly realizes the reac-

tive behavior. In the current ESTEREL compiling pro-

cess, the target code has the form of a tabulated de-

terministic automaton where ESTEREL concurrency is

compiled awayl, see [5].

Once the nodes are compiled, we are simply left with

a set of sequential programs communicating by ren-

dezvous, and we can use all the known implementa-

tion techniques for such classical objects: schedulers,

network implementation, etc. Compared to CSP or

OCCAM, there are two complications. First, the asyn-

chronous layer at each node must take care of the de-

clared exclusion relations by appropriate serialization

of events. Second, a rendezvous request can be locally

canceled by both parties: we need more elaborate ren-

dezvous protocols. We developed a protocol that uses

a pair of asynchronous fifo queues for each channel. It

is itself written itself in ESTEREL and we proved its
correctness using AUTO. Its description is outside the

scope of this paper.

I Tra~lating ~rog~s into automata has the adv~tage of ‘x-

cellent execution speed; however, there is a risk of size explosion.
New compilation techniques based on the translation of ESTEREL
into circuits [4,3] produce slightly slower run-time code but avoid

size explosion.

From the software engineering point of view, the CRP

system under development will realize a fully autc)matic

implementation of CRP under Unix. In addition to the

reactive nodes, the user will provide the system ‘with a

network configuration description in which he will de-

scribe where the nodes will be placed. Channels will be

realized using sockets and the aforementioned prc)tocol.

7 Conclusion

The CRP framework unifies ESTEREL and CSP. It

should bring a new way of handling complex parallel sys-

tems, using synchronous and asynchronous approaches

where they are most appropriate. We strongly believe

that the CRP paradigm will prove useful in applica-

tion domains such as process control, communication

protocols, or robotics, but only actual real-size experi-

mentation will confirm that view. We are currently in
the process of implementing CRP on top of the existing

ESTEREL system.

Since the semantical aspects of synchrony and sync-

hrony are kept independent, other asynchronouz com-

munication policies between synchronous nodes could

be studied in the same way. They could also be trans-

lated into MEIJE since this calculus is universal among

process calculi [8].

The CRP paradigm relies on a careful separation be-

tween the synchronous and asynchronous layers. Deeper

unifications of synchrony and asynchrony should be in-

vestigated. For the time being, we have no idea of which

programming concepts could be appropriate for that

purpose.

References

[1]

[2]

[3]

[4]

[5]

The Programming Language ADA Reference Man-

ual. ANSI / MIL-STD-1815A, also Lecture Notes

in Computer Science 155, Springer Verlag, 1.983.

G. Berry. Real-time programming: General pur-

pose or special-purpose languages. In G. Ritter, ed-

itor, Information Processing 89, pages 11–17. Else-

vier Science Publishers B.V. (North Holland), 1989.

G. Berry. Esterel on hardware. Philosophical

Transaction Royal Society of London A, 339:87-

104, 1992.

G. Berry. A hardware implementation a,f pure

Esterel. Sadhana, Academy Proceedings in En-

gineering Sciences, Indian Academy of Sciences,

17(1):95-130, 1992.

G. Berry and G. Gonthier. The Esterel syn-
chronous programming language: Design, :Seman-

tics, implementation. Rapport de Recherche 842,

94

REFERENCES



INRIA, 1988. To appear in Science of Computer

Programming.

[6] G. Boudol. Notes on algebraic calculi of processes.

In K. Apt, editor, Logic and Models of Concurrent

Systems. NATO ASI Series F13, 1985.

[7] G. Boudol, V. Roy, R. de Simone, and

D. Vergamini. Process calculi, from theory to prac-

tice: Verification tools. In Automatic Verifica-

tion Methods for Finite State Systems, LNCS J07,

pages 1–10. Springer-Verlag, 1990.

[8] R. de Simone. Higher-level synchronizing devices

in Meije-SCCS. Theoretical Computer Science,
37:347-360, 1985.

[9] B. Espiau and E. Coste-Mani&e. A synchronous

approach for control sequencing in robotics appli-

cations. In Proc. IEEE International Workshop on

Intelligent Motion, Istambul, pages 503-508, 1990.

[10] P. Le Guernic, M. Le Borgne, T. Gauthier, and

C. Le Maire. Programming real time applications
with Signal. Another Look at Real Time Program-

ming, Proceedings of the IEEE, Special Issue, Sept.

1991.

[11] N. Halbwachs, P. Caspi, and D. Pilaud. The syn-

chronous dataflow programming language Lustre.

Another Look at Real Time Programming, Proceed-

ings of the IEEE, Special Issue, Sept. 1991.

[12] D. Harel. Statecharts: a visual approach to com-

plex systems. Science of Computer Programming,

8:231-274, 1987.

[13] C. A. R. Hoare. Communicating Sequential Pro-

cesses. Prentice Hall, 1985.

[14] G. Jones and M. Goldsmith. Programming in Oc-

cam 2. C.A. R. Hoare Series in Computer Science.

Prentice Hall International.

[15] J-P. Paris. Ex+cution de tiiches asynchrones depuis

Esterel. Th&e d’informatique, University de Nice,

1992.

[16] V. Roy and R. de Simone. Auto and Autograph.

In R. Kurshan, editor, proceedings of Workshop

on Computer Aided Verification, New-Brunswick,

June 1990.

Appendix

The Behavioral Semantics of Esterel

The behavioral semantics of ESTEREL is the reference

semantical definition of the language [5,4]. We present

the extension needed to handle the exec statement (or

equivalently the rendezvous statement ).

Given a module M and an input event I, the behav-
0

ioral semantics determines a transition M + M’ where
r

O is the generated output event and where’ the deriva-

tive M’ is another module suited to perform further re-

actions. The derivative Mf has the same interface as M

and differs by its body. The reaction to a sequence of

input events is computed by chaining such elementary

transit ions.

Inductive Rules

The relation M ~ M’ is defined using an auxiliary in-

E’, L,~
ductive relation stat _ stat) on statements, where

R
E is the current event ~o which stat reacts, E’ is the

event emitted by stat in response to E, L is the set of

labels of exec statements currently active in sfat, and

k is a termination level explained below. The start and

kill signals of exec’s appear in E’, the return signals

appear in E. Since signals are broadcast, stat receives

the signals it emits and E’ will always be contained in

E.

The relation between both transitions systems is as
O,L, k

follows: one has M ~ M’ if and only if stat — stat)
IuO

where stat and statt are the bodies of M and M); we

assume the harmless restriction that stat cannot inter-

nally emit input signals.

The integer termination level k determines how con-

trol is handled. In each reaction, any statement can
behave in three ways: it can terminate and release the

control, it can retain the control and wait for further

events, or it can exit a trap. We set k = O for proper

termination, k = 1 for waiting, and k = 1 + 2 for an

exit T, where 1 is the number of traps declarations one

must traverse from stat to reach the declaration of T. In

the following example, the first “exit T“ and the “exit

U“ statements has level 2 since they concern the closest

trap statement, while the second “exit T“ has level 3
since one must traverse the declaration of U to reach

that of T:

REFERENCES 95



trap T in

exit T2

!1
trap U in

exit U2

II

exit T3

end

end

The exit levels can be determined statically; we assume

that all exit statements are labeled by their level. With

this coding, the synchronization performed by a ‘ I I‘

statement amounts to compute the max of the levels re

turned by its branches: a parallel terminates only when

all branches have terminated, an exit preempts waiting,

and only the outermost exit matters if several exits are

done concurrently.

With respect to the set L of active exec labels, we

use the notation

E#L = EU{kLILe LandsL@E}

–{sLILGL andsL6E}

Then E#L differs from E by the facts that exec’s

started before current instant E are killed and that

exec’s started at the current instant are simply ignored

if killed right away.

Comments on the Rules

Rules (nothing), (halt), (emit), and (exit) are obvious.

Rule (execstart) is used to start an exec statement.

The label is put in the set of started exec’s and the

statement is rewritten into an auxiliary execwait state-

ment that does not exist in the language proper but is

convenient in defining the semantics. Rule (execwaitl)

expresses exec termination upon task return. In rule

(execwait2), the exec label is put in L in case of non-

termination to correctly handle exec preemption by en-

closing statements. Rules (seql) and (seg2) handle se-

quencing. In (seq2), notice that both statements receive

the same current event E because of broadcasting, and

that there is a single result transition with a merge of

E; and EL to model instantaneous control transmission

and broadcast. Rule (loop) unfolds instant aneously a

loop. In rule (parallel), both branches evolve in the

same current event E, the sets Et and L generated

by both branches are merged because of perfect syn-

chrony, and the termination level k is rnaz(kl, kz) as

explained before. In rule (wat thing), a wat thing state-

ment is rewritten using a present statement that will

behave as the required guard at future instants. To

remember which exec’s should be killed if preemption

occurs because of the presence of the signal S at some fu-

ture instant, we decorate the generated present state-

ment with the set L. This decoration is used in rule

(presentl) togenerate the appropriate kill signals when

the then branch is taken, i.e. at preemption time. Of

course, a source present statement has an empty an-

notation. Rule (trapl) expresses that a trap terminates

if its body terminates (k = O) or exits the trap (k= 2).

Rule (irap2) expresses that a trap has no effect if its

body waits (k = 1, k’ = 1) and that an exit of an en-

closing trap must be propagated by subtracting 1 to k

(k>2, k’= k – l)). Rules (signail) and (signa12) ex-

press the coherence requirement on local signals: either

a local signal is both received and emitted as in (sig-

nall), or it is not received and not emitted as in (sig-

na12); notice how lexical scoping is properly handled.

Remarks

The resulting statement siai’ is unused and therefore

immaterial for any rule returning k > 1; it is discarded

by the exited trap. If a rule returns k = O, then it also

returns L = @and its resulting term is worth nothing.

Because of the intrinsic circular character of the local

signal rules that wind up E and E’, our set of rules

does not yield a straightforward algorithm to compute

a transition, unlike in classical structural operational

semantics. Given any input I one must guess the right

current event E and use the rules to check that there is

a correct transition. Moreover, solutions are not always

unique. In the statement

signal S in

present S then emit S end

end

one may consistent y consider sa present or absent,

while in the statement

signal S in

present S else emit S end

end

There is no way to consider consistently S as present or

absent. We require a correct program to have a unique

semantics. Correctness is studied in details in [5], where

other more constructive but more intricate semantics

are presented. The introduction of exec adds no par-

ticular complication with respect to correctness.

REFERENCES 96



$,0,0
nothing ~ nothing

E

0,0,1
halt _ halt

E

{s},0,0
emit S _ nothing

E

{SL}, {L}) I
exec L:P _ execwait L : P

E

LEE

0,0,0
execwait L : P _ nothing

E

L$!E

6,{L], I
execwait L: P _ execuait L: P

E

E{, @,O E~,La,k2
statl _ stat; statz _ stat~

E E

E~,Ll,kl
stat 1 _ stat; k>O

E

E’, L,k
stat _ stat’ k>O

E

E’, L,k
loop stat end _ stat’; Ioop stat end

E

E;, k,h E~,La,k2
statl _ stat; statz _ stat;

E E

.EjUEj, LIULZ, maz(kl,k~)
statl I I statz - + stat~ I I stat~

E

(nothing)

(halt)

(emit)

(execstart)

(execwadl )

(ezecwait2)

(seql )

(seq2)

(loop)

(parallel)

Figure 3: ESTEREL semantic rules

REFERENCES 97



E’, L,k
stat — stat’

E

E’, L,k
do stat wat thing S —presentL S else dosiai’watching S

E

Ej,Ll,kl
SEE statl _ stat;

E

E:#L, L1, ki
presentL S then statl else statz end — stat;

E

E;,LZ,ka
s$E statz ~ stat;

E

E~,LZ,kZ
presentL S then statl else statz end — stat;

E

E’, L,k
stat — statt k= Oork=2

E

E’#L, @,O
trap T in stat end _ nothing

E

E’, L,k
stat —stat’ (k=land k’=l)or (k>2andk’=k-1)

E

E’, L,k’
trap T in stat end — trap T in stat’ end

E

@,$,k
exit Tk _ halt

E

E’u{S}, L,k
stat m stat~ s~E’

Eu{S}

E’, L,k
signal S in stat end — signal S in statt end

E

E’, L,k
stat _ stat! s@E’

E-{S}

E’, L,k
signal S in stat end — signal S in stat’ end

E

(watching)

(presemtl )

(present2)

(trapl)

(trap2)

(signall )

(signa12)

Figure 4: ESTEREL semantic rules (continued)

REFERENCES 98




