
A New Approach to Generic Functional Programming

Ralf Hinze

Institut fiir Informatik III
UniversitAt Bonn

Rijmerstrafie 164, 53117 Bonn, Germany

E-mail: ralf Qinformatik.uni-bonn.de
Homepage: http://www.informatik.uni-bonn.de/”ralf/

Abstract

This paper describes a new approach to generic functional
programming, which allows us to define functions generically
for all datatypes expressible in Haskell. A generic function
is one that is defined by induction on the structure of types.
Typical examples include pretty printers, parsers, and com-
parison functions. The advanced type system of Haskell
presents a real challenge: datatypes may be parameterized
not only by types but also by type constructors, type defi-
nitions may involve mutual recursion, and recursive calls of
type constructors can be arbitrarily nested. We show that-
despite this complexity-a generic function is uniquely de-
fined by giving cases for primitive types and type construc-
tors (such as disjoint unions and Cartesian products). Given
this information a generic function can be specialized to ar-
bitrary Haskell datatypes. The key idea of the approach is
to model types by terms of the simply typed X-calculus aug-
mented by a family of recursion operators. While conceptu-
ally simple, our approach places high demands on the type
system: it requires polymorphic recursion, rank-n types, and
a strong form of type constructor polymorphism. Finally,
we point out connections to Haskell’s class system and show
that our approach generalizes type classes in some respects.

1 Introduction

Programming is sometimes a challenge and sometimes a nui-
sance. Recurring routine tasks such as changing the rep-
resentation of data, converting the internal representation
into a human readable form (pretty printing) or vice versa
(parsing) fall into the latter category. This is the domain of
generic programming, which aims at relieving the program-
mer from repeatedly writing functions of similar functional-
ity for different user-defined datatypes. A generic functional
program is essentially a collection of type-indexed values-
typically functions-that are defined by induction on the
structure of types. A generic function such as a pretty
printer or a parser is written once and for all times; its spe-
cialization to different instances of datatypes happens with-

permissioll to &x digital or hard copies of all or part of this wxk for
personal ur elassrounl use is granted without fee providd that copies
are no, made or dis\ributed fbr prolit DT comrwcial advantage and that
copies bear this llotice and the full citation on the fkt pa& To COPY
otherwise. to republish, to post on servers or to redistribute to lists,
requires prior specific permission andAv a fW.

POPL 2000 Boston MA USA
Copyright ACM 2000 l-581 13-125-9/00/1...$5.00

out further effort from the user. This way generic program-
ming greatly simplifies the construction and maintenance
of software systems as it automatically adapts functions to
changes in the representation of data.

Different approaches to generic functional programming
differ in the way the structure of datatypes is modelled. The
language extension Polyp 1211, for instance, is based on the
initial algebra semantics of datatypes. An unfortunate con-
sequence of this choice is that the class of datatypes is re-
stricted to so-called regular datatypes. A regular datatype is
a parameterized type whose definition neither contains func-
tion spaces nor recursive calls which involve a change of the
type parameter(s). Thus, compared to the class of datatypes
definable in Haskell98 [37] Polyp covers only a small, though
important subset. This is a great pity. Especially, because
the importance of generic programming increases with the
complexity of types. We will get to know several involved
datatypes, where even the skilled Haskell programmer will
experience considerable hardship when trying to implement,
say, comparison functions for these types.

Admittedly, Haskell has a very rich type system, which
presents a real challenge for implementors of generic pro-
gramming extensions: datatypes may be parameterized not
only by types but also by type constructors, type definitions
may involve mutual recursion, and recursive calls of type
constructors can be arbitrarily nested. If we aim at extend-
ing generic programming to the full type system of Haskell,
we are well-advised to model datatypes as closely and as
faithfully as possible. Now, since Haskell supports both type
application and (an implicit form of) type abstraction, type
terms correspond essentially to terms of the simply typed X-
calculus augmented by a family of recursion operators and
by additional constants denoting primitive types (such as
integers) and primitive type constructors (such as disjoint
unions and Cartesian products). The ‘types’ of type terms
are described using so-called kinds [28].

Though Haskell’s type system is quite involved, defin-
ing generic values is comparatively easy. We will see that a
generic value is uniquely defined by giving cases for primitive
types and primitive type constructors. Given this informa-
tion a generic value can be specialized to arbitrary Haskell
datatypes. Interestingly, the process of specialization can be
seen as an interpretation of simply typed X-terms.

The main contributions of this paper are the following.

n We explain how to define values indexed by types or by
type constructors of first-order kind.

0 We show how to specialize generic values to concrete
instances of datatypes. We identify several program-

119

ming language features that are required to make this
translation work.

0 We point out connections to Haskell’s type classes [27]
and show that our approach generalizes type classes in
some respects.

The rest of this paper is organized as follows. Sec. 2 in-
troduces Haskell’s type system by means of some exam-
ples. Sec. 3 sketches our approach to generic functional pro-
gramming. Sec. 4 introduces the simply typed X-calculus
and makes explicit how datatypes are modelled by X-terms.
Sec. 5 shows how to define type-indexed values and explains
how to specialize a type-indexed value to concrete instances
of datatypes. Sec. 6 generalizes the approach to type con-
structors of first-order kind. Sec. 7 works towards encod-
ing instances of generic values in Haskell and relates type-
indexed definitions to type classes. Finally, Sec. 8 reviews
related work and Sec. 9 concludes.

2 Haskell’s type system

This section introduces the main features of Haskell’s type
system by means of some examples. It is not important
to understand the examples in full detail. The purpose of
this section is rather to demonstrate the expressiveness of
Haskell’s type system and to give evidence that real use has
been made of these features.

As first, rather simple examples consider the datatypes
of lists and rose trees [4].

data List a = Nil 1 Cons a (List a)

data Rose a = Branch a (List (Rose a))

The two equations introduce two type constructors, List and
Rose, of kind * --+ *. The kind system of Haskell speci-
fies the Itype’ of a type constructor [28]. The ‘*’ kind rep-
resents nullary constructors like Int. The kind IEI + KZ
represents type constructors that map type constructors of
kind nr to those of kind ~2. The kind system is necessary
since Haskell supports abstraction over type constructors of
arbitrary kind. The following generalization of rose trees
illustrates this feature.

data GRose f a = GBranch a (f (GRose f a))

A slight variant of this definition has been used in [34] to
extend an implementation of priority queues with an effi-
cient merge operation. The type constructor GRose has
kind (* + *) + (* + *) and is related to Rose by
GRose List = Rose. Note that this equation states an iso-
morphism rather than an equality since Haskell’s type sys-
tem is based on name equivalence rather than on structural
equivalence. Furthermore, note that GRose has a second-
order kind. The order of a kind is given by order(*) = 0
and order(rcl + ~2) = maz{ 1+ order(Kr), order(KZ)}.

The following definition introduces a fixpoint operator
on the level of types. This definition appears, for instance,
in [32] where it is employed to give a generic definition of
so-called cata- and anamorphisms.

data Fix f = In (f (Fix f))

data BaseList a b = Nil 1 Cons a b

The kinds of these types are given by Fix :: (* -+ *) + *
and BaseList :: * + (* + *). Note that binary type con-
structors like BaseList are, in fact, curried. Using Fix and

BaseList the datatype of polymorphic lists can ahernatively
be defined by List a = Fix (BaseList a).

The type terms on the right-hand side of datatype defi-
nitions may be arbitrarily nested. The following equations,
which implement binary random-access lists [34], exemplify
nested type terms involving recursion.

data Fork a = Node a a

data Sequ a = Empty
1 Zero (Sequ (Fork a))
) One a (Sequ (Fork a))

Since the type parameter of Sequ is changed in the recur-
sive calls, Sequ is termed a nested or non-regular datatype
[5]. Nested datatypes are practically important since they
can capture data-structural invariants in a way that regular
datatypes cannot. For instance, Sequ captures the invari-
ant that binary random-access lists are sequences of perfect
binary leaf trees stored in increasing order of height. We
refer the interested reader to [34, 7, S] for further examples
of nested types.

The following equations employ both abstraction over
type constructors and nested recursion.

data MapFork m u
= TrieFork (m (m v))

data MapSequ m v
= %eSequ w

(MapSequ (MapFor% m) w)
(m (MapSequ (MapFork m) TJ))

The types MapFork, MapSequ::(* + *) + (* + *) represent
the so-called generalized tries [16] for Fork and Sequ. The
type constructor MapFork is the type-level counterpart of
,the function twice f x = f (f x), which applies a given
function twice to a given value.

Here is another example for a nested datatype of second-
order kind.

type Square a = Square’ Nil a

data Square’ j a = 27-0 tf (f a))
1 Succ (Square’ (Cons f) a)

data Nil a = Nil

data Cons f a = Cons a (f a)

The type constructors have kinds Square, Nil :: k + * and
Square’, Cons :: (* 3 *) 3 (* + *). The type Square imple-
ments square n x n matrices [35,18]. In contrast to common
representations, such as lists of lists, the ‘squareness’ con-
straint is automatically enforced by the type system. More
examples of nested types of higher-order kinds can be found
in [15, 35, 181.

Now, before going on the reader is invited to consider
programming, say, comparison functions for the datatypes
above. This is a non-trivial task especially for the nested
and for the second-order kinded types. In the sequel we will
show that defining a generic comparison function that works
for all datatypes is-perhaps surprisingly-a much simpler
task.

3 Generic programming in a nutshell

This section sketches the main ideas of our approach to
generic functional programming primarily from the pro-
grammer’s perspective. A formal treatment of the approach
is deferred to Sec. 5 and Sec. 6.

120

Before explaining how to define type-indexed values let
us first take a closer look at datatype definitions. Haskell’s
data construct combines several features in a single coherent
form: type abstraction, n-ary disjoint sums, n-ary Cartesian
products, and type recursion. The following rewritings of
List and GRose make the structure of the datatype defini-
tions more explicit.

List a = 1+ a x List a

GRose f a = a x f (GRose f a)

Here, 1 denotes the unit type, and ‘+’ and ‘x’ are more
conventional notation for binary disjoint sums and binary
Cartesian products. For simplicity, we assume that nary
sums are reduced to binary sums and nary products to
binary products. We treat 1, ‘+‘, and ‘x’ as if they were
given by the following datatype declarations.

data 1 = 0
data al + a2 = In1 al) Inr a2

data al x a2 = (al, 1x2)

Now, to define a type-indexed value it suffices to specify
cases for the primitive types (say, 1 and Int) and for the
primitive type constructors (say, ‘+’ and ‘x’). As an ex-
ample, the following equations define the generic function
enc(a), which encodes elements of type a as bit strings im-
plementing a simple form of data compression (231. The type
argument of enc is written in angle brackets to distinguish
it from the value argument.

type Bin = [Bit]

data Bit = 011

enc(a :: *) :: a+Bin
encw 0
enc(Int) n 1 !Lht n
enc(al + a2) (Id XI) = 0 : enc{al) xl
enc(al + a-2) (Jar ~2) = 1: enc(a2) z2
enc(ai x a2) (x1,x2) = enc(al) x1 -i+ enc(a2) x2

The type signature of enc makes explicit that the type of
enc(a) depends on the type parameter a. Each equation is
more or less inevitable. To encode the single element of the
unit type no bits are required. Integers are encoded using
the primitive function enclnt, whose existence we assume.
To encode an element of a disjoint union we emit one bit for
the constructor followed by the encoding of its argument.
Finally, the encoding of a pair is given by the concatenation
of the component’s encodings.’

This simple definition contains all ingredients needed to
derive specializations for compressing elements of arbitrary
datatypes. For instance, enc(Sequ Int) of type Sequ Int +
Bin compresses random-access lists with integer elements
and enc(GRose List Int) compresses generalized rose trees
with integer labels.

Remark 1 Generic values cannot directly be implemented
in Haskell or Standard ML. The reason is simply that enc(t)
is a value which depends on the type t. Value-type depen-
dencies cannot be expressed in current functional languages.
Even if we circumvented this problem by using encodings into
a universal datatype [45] or by using dynamic types and a

‘The definition of enc exhibits @(n2) worst-case behaviour, but
this is easy to remedy.

typecase [l], the result would be rather ineficient because
enc would repeatedly interpret its type argument. By special-
izing enc(t) for a given t we remove this interpretative layer.
As an aside, one could argue that value-type dependencies
are present in the second-order X-calculus [ll] since a poly-
morphic function depends on the type argument supplied.
The dependence is, however, quite loose since a polymor-
phic function uses ‘the same algorithm’ at each type. Note
that a function of type Va.a + Bit is necessarily a constant
function-this is a simple consequence of the parametricity
theorem [44].

In order to specialize enc(t) we cannot simply unfold or
partially evaluate the definition of enc. To see why consider
specializing enc(Sequ Int): to define enc(Sequ Int) we re-
quire enc(Sequ (Fork” Int)) for each n 3 1. If we simply
unfold the definition, we will in general not obtain a finite
representation of enc(t).

The key idea of the specialization is to mimic the struc-
ture of types at the value level. For instance, enc(Sequ Int)
should be compositionally defined in terms of specializations
for the constituent types, say, encSequ and en&t. Since
Sequ is a function on types, encSequ is consequently a func-
tion on encoders. Then the encoder for the type application
Sequ Int is given by the application of encSequ to encInt . In
a nutshell, type abstraction is mapped to value abstraction,
type application to value application, and type recursion to
value recursion. To exemplify, for GRose, Fork, and Sequ
we can automatically derive the following specializations (for
clarity, we use the original constructor names).

encGRose :: Vf .(Vb.(b --t Bin) + (f b --+ Bin))
+ (Va.(a + Bin) 4 (GRose f a + Bin))

encGRose encf enca (GBranch x ts)
= enca x i+ encf (encGRose encf enca) ts

encFork :: Va.(a + Bin) + (Fork a + Bin)
encFork enca (Node x1 x2)

= enca x1 -I+ enca x2
encSequ :: Va.(a -+ Bin) + (Sequ a + Bin)
encSequ enca Empty

= LOI
encSequ enca (Zero s)

= 1: 0 : encSequ (encFork enca) s
encSequ enca (One 5 s)

= i : 1: enca x it encSequ (encFork enca) s

The types of the functions are motivated and explained only
in Sec. 5.3.

Many list processing functions can be generalized to ar-
bitrary datatypes. Consider, for instance, the polymorphic
function length :: Vx.List x + Int, which computes the
length of a list.’ A length or rather a size function can
also be defined for rose trees, for random-access lists, and
for many other datatypes. The recipe for defining these
functions is simple: in each case we count the number of
elements of type x in a given value of type f x. This sug-
gests that we should be able to program a generic function
sizeu) :: Vz.f z -+ Int, which works for all f. Note that the
type signature of size is more involved than the signature
of enc since size is indexed by a type constructor of kind
-k + -k rather than by a type of kind *. The type of size en-
sures that we can determine the size of a list or a rose tree

‘In Haskell there is no syntax for universal quantification. For
clarity, however, we will always write quantification explicitly when
giving the type of functions.

121

but not the size of a Boolean or an integer. Now, in order
to define si.zeCf) generically for all f we must explicate the
structure of type functions of kind * + *. To this end we
lift the primitive type constructors 1, Int, I+‘, and ‘x’ to a
function level.

la =l

&a = Int

(fi-tf2) a = fi a+f2 a

(fiXf2)a = fiaxfia

Note that ‘+’ has kind * -+ (* + *) whereas the lifted
version has kind (* + *) + ((* + *) + (* + *)). Interest-
ingly, every type constructor of kind * 3 * can be expressed
in terms of 1 Int ‘+‘, -> -, 'X ‘, and the identity type given by
Id a = a-this cla& wxl be justified in Sec. 6.1. Thus,
size(f) is uniquely defined by the following equations.

size(f :: * + *) :: Vx.f x + Int
size(Id) x = I
size(l) 0 = 0
size(&) n = 0
size(fi 492) (In1 xl) = size(h) x1
size(fi i- f2) (Inr z2) = size(f2) x2
size(fi Ir.fi) (21~~2) = size(f1) x:1 + size(fi) $2

Again, each of the equations is more or less inevitable. A
value of type Id x = x contains exactly only one element of
type 2; values of type 1 z = 1 or JnJ 2 = Innt contain no
elements of type 3;. To determine the size of a structure of
type (fi+fi) x we must either calculate the size of a structure
of type fi x or that of a structure of type f2 x depending on
which component of the disjoint sum the argument comes
from. Finally, the size of a structure of type (fi xfs) z is
given by the sum of the size of the two components.

Specializing size to concrete instances of datatypes works
essentially as before. For instance, for List and GRose we
obtain the following specializations.

sizeList :: Va.(Vx.a x + Int) + (Vx.List (a x) + Int)
sizeList sizea Nil

= 0
sizeList sizea (Cons 2 xs)

= sizea x + sizeList sizea 2s
sizeGRose :: Vf.(Vb.(Vx.b x + Int)

+ (Vx.(f x) (b x) + Int))
-4 (Va.(Vx.a x + hat)

+ (Vz.GRose (f x) (a z) + Int))
sizeGRose sizef sizea (GBranch x ts)

= sizea x + sizef (sizeGRose sizef sizea) ts

Again, the definitions rigidly follow the structure of types:
since List is a function on types, sizeList transforms ‘size
functions’ into ‘size functions’. More precisely, if sizea deter-
mines the size of a structure of type a x, then sizeList sizea
determines the size of a structure of type List (a x)-the
typings will be explained more thoroughly in Sec. 6.3. Now,
to obtain the length function for lists we simply pass the size
function for Id, i.e., sizeId x = 1, to sizelist. Likewise, to
determine the size of a structure of type, say, GRose List x
we call sizeGRose sizeList sizeId.

4 Kinds and types

This section introduces kind and type terms. Kind terms
are formed according to the following grammar.

K ::= *I (K+K)

We agree upon that ‘4 associates to the right.
Given a fixed set of type variables X and a fixed set

of primitive type constructors C = { 1, Int, (+), (x)} type
terms are formed according to the following grammar.

T ::= x 1 c 1 (T T) 1 (AX :: K + T) 1 (/AT)

Here, tl t2 denotes type application, Ax :: K + t denotes
type abstraction, and p! denotes the fixpoint of t. We agree
upon that type application associates to the left and that
type abstraction extends as far to the right as possible. We
abbreviate Axi :: ~1 + . . . Ax,,, I:&,,, + t by Axi ::IG~ . . . x,,, ::
IE~ + t and write (+) tl t2 as tl + t2 and similarly for
‘x’. Note that in a A-abstraction the bound type variable is
annotated with its kind. For reasons of readability we will
usually omit the kind annotation. Furthermore, note that
the choice of C is more or less arbitrary; we only require
the primitive types to have first-order kinds or kind *, see
Sec. 6.5. For instance, C could additionally include the
function space constructor I-+‘. We have only omitted ‘+’
because most of the generic functions cannot sensibly be
defined for the function space.

The kinds of the primitives are given by

1, Int :: *

(+),(x) :: *3*+*.

The kinds of type terms are determined by the rules depicted
in Fig. 1. The notation r l- t ::)(: means that the statement
t :: K is derivable from the set of kind assumptions r. If
t :: IE1 3 s . . + fiER + * is derivable, we say that t has
arity n. It is worth mentioning that ‘~1’ is polymorphic with
respect to the kinds, i.e., it represents a family of fixpoint
operators.

In essence, Haskell types are represented by terms of the
simply typed &calculus with kinds playing the role of types.
The translation of the datatype declarations given in Sec. 2
into type terms is fairly straightforward. Here are some
examples.

List = ha + p(M + 1 + a X .!)

Fork = Aa 3 a x a

Sequ = ~(As a + 1 + s (Fork a) + a x s (Fork a))

First-order kinded, regular types, such as List and Rose,
can be modelled using a fixpoint operator of kind * + *
while nested types, such as Sequ, require an operator of
kind (* + *) -+ (* -+ *).

Remark 2 Type recursion is expressed using a fixpoint op-
erator. Whilst this is suficient for the datatype definitions
introduced in Sec. 2, it does not generalize easily to handle
mutually recursive types. A viable alternative is to consider
systems of recursion equations:

xl=tl;...;xn=t, ,

where the xi are type variables and the ti are type terms. The
approach to generic programming works equally well if we
use recursion equations instead of a j&point operator. The
development, however, becomes more verbose and provides
no additional insights.

122

(x :: n) E r r I- t1 :: n2 -+ n1 r I- tz :: fi4 r, 2 :: n1 I- t :: IE2 ri-t::n+K
rkxrEK r t- (tl tz) :: 6l r i- (AZ :: IE~ -+ t) :: (IE~ -+ K2) r i- (pt) :: K

Figure 1: Kind rules.

In the following sections we require the notion of Bijhm tree
which we introduce next. Biihm trees can be considered
as a kind of ‘infinite normal form’ for type terms and are
obtained by unwinding type terms ad infinitum.

Definition 1 The convertibility relation on type terms, de-
noted ‘t, ‘, is given by the following axioms

(Ax + t) 21 * t Ix := u] 03)
llx+tx +) t, x not free in t fd

Pt - t b-4 (PI

plus the usual ‘logical’ rules for reflexivity, symmetry, tran-
sitivity, and congruence.

Definition 2 A head normal form (hnf) is 4 type term of
the form 1\x1 . . . x,,, + z u1 . . . u,, with m, n 2 0, z E
C U X, and z has arity n. A type term t has hnf u if t c) u
and u is an hnf.

The definition of hnf is a bit unusual in that we additionally
require hnfs to be v-expanded (in order to guarantee that
Bijhm trees are well-defined). The term (+), for instance,
has hnf Axr xs + xi + x2. Not every type term has an hnf,
consider, for instance p(Aa 4 4). Type terms that have no
hnf are in a sense pointless and can be excluded by a simple
syntactic restriction, which we will adopt in the sequel: t
in pt must have the form Axi . . . xm -+ c ur . . . un with
c E C of arity 72.

Definition 3 The BGhm tree of the type term t, denoted
BT(t), is 4 labelled tree defined as follows: if t has hnf
Axi . . . x,,,+zul . . . u,,, then

BT(t) = Ax1 . . . x, -+ z

/\
BT(w) -me BT(u,) .

For a more formal treatment of BGhm trees we refer the
reader to [2]. Now, from a generic programming point of
view we can identify type terms that have the same Bijhm
trees, i.e., t = u if BT(t) = BT(u). We have, for instance,
Rose = GRose (ha + Fix (BaseList a)). Since generic
values are defined by induction on the structure of types,
the structure is all that matters.

5 Type-indexed values

The framework is developed in three steps: (1) we charac-
terize the set of normal forms of types of kind *, (2) we give
a prototype for generic values indexed by types of this kind,
and (3) we show how to promote a generic value thus defined
to types of arbitrary kind.

5.1 Normal forms of types of kind *

Types of kind * have a very simple normal form. Consider
the Bohm tree of a type of kind *. Clearly, the root of the
tree cannot be labelled with a type abstraction. Instead, it
must be labelled with a primitive type constructor, say, c.
Moreover, if c has arity n, the root must have n direct suc-
cessors. Thus, the normal form of type terms of kind * is
described by the following grammar.

T, ::= 1 I Int 1 (T, + T,) I (T, x T,)

It is understood that T, contains type terms of kind *. The
set of all type trees (finite and infinite) that can be formed
according to this grammar is denoted T,“. We have T,” =
{BT(t) 1 0 l- t :: *).

5.2 Defining *indexed values

The characterization of normal forms motivates the follow-
ing prototype for type-indexed values.

poly(a :: *) :: Fa

PolYW = POlY,
PoldW = POlYr,,
poly(41 + a2) = poly, (poly(ai)) (poly(a2))
poly(41 x a2) = ~01~~ fpoly(al)) Wd42))

Here, poly is the name of the type-indexed value; 4, al, and
42 are type variables of kind *; F, poly, , poly,, , poly+, and
poly, are the ingredients that have to be supplied by the
generic programmer. The type of poly(o) is given by F 4,
where F is a type constructor of kind -k -+ *. Unlike the
type index F may also contain function types, tl + tz, and
universally quantified types, Vx.t. The poly, values must
have the following types:

POlY 1 :: Fl
polyI,,, :: F Int
PolY+ :: Vx1,xz.F x1 + F x2 + F (x1 +z2)

POlY x :: VxI,x2.F x1 + F x2 + F (x, x x2) .

In the latter two cases xi and xz are universally qualified
since poly+ and poly, have to work for all possible argument
types.

It is instructive to see how the example of Sec. 3 maps to
the formalism above: enc(a) has type F a = 4 + Bin and
the functions encl, encmt, enc+, and encx are given by

encl () = [I
encht n = enclnt n

enc+ encal enca2 (Id x1) = 0: encal 21
enc+ encal encaz (Inr x2) = 1: encaz x2

encx encal enc42 (XI, x2) = encal 21 -H- enc42 x2 .

The definition of type-indexed values is inductive on the
structure of T,: we have one equation for each primitive

123

.”

type constructor. Now, a standard result from the theory
of infinite trees [9] guarantees that a generic value like poly
possesses a unique (least) extension in T,“. In that sense,
poly is uniquely defined by its action on primitive type con-
structors, i.e., by poly,, pol~~,,~, poly,, and poly..

Before we proceed let us take a look at further examples
of type-indexed values. The first example, dec, is essentially
the inverse of enc: it takes a bit string, decodes a prefix of
that string, and returns the decoded value coupled with the
unused suffix. Formally, the two functions are related by
dec(a) (enc(a) x +I- 6s) = (2, b~).~

dec(a :: *) :: Bin -k (a,Bin)
dec(1) bs
dec(Int) bs f L!;:) bs
dec(al + ~2) [] = ewor “dec”
dec(al + a2) (0 : bs) = let (21, bs’) = dec(al) bs

in (1nr zi , bs’)
dec(al + a2) (1 : bs) = let (zs, bs’) = dec(az) bs

in (Inr x2, bs’)
dec(al x a2) bs = let (21, bsi) = dec(ar) bs

(x2, bsz) = dec(az) bsl
in ((51,m),bs2)

The functions enc and dec can be seen as very simple print-
ers and parsers. Pretty printers and parsers, which produce
and process a human readable format, can be implemented
if we give the generic programmer additionally access to the
constructor names. In [17] we use such an extension to de-
fine Heskell’s show function in a generic way.

Comparison functions are typical examples of type-
indexed values. The following program realizes Haskell’s
compare function, which determines the precise ordering of
two elements.

data Ordering

cmvla :: *\
44) 0 ‘0
cmp(Int) m n
cmp(al + a2) (Id x:,) (Id YI)

cmp(al + a2) (Id 21) (Inr y2)

cmp(al -i- a2) (Inr 572) (Id yl)

cmp(al + a2) (Irw z2) (Inr y2)

cmp(al x a2), (XI, x2) (~1, ~2) ._ .

= LTlEQlGT

:: a+a+Ordering
= EQ
= cmpInt m n
= cmp(w) 21 yl
= LT
= GT
= cmp(az) x2 32

= cmp(ar) xi yi ‘lexord’ cmp(az) ~2 ~2

The helper function lexord used in the last equation imple-
ments the lexicographic product of two orderings.

lexord :: Ordering + Ordering + Ordering
lexord LT ord = LT
lexord EQ ord = ord
lexord GT ord = GT

5.3 Specializing +-indexed values

The purpose of a generic value is to be specialized. We have
already discussed the key idea of promoting a generic value
to types of arbitrary kinds: type abstraction is interpreted
by value abstraction, type application by value application,
and type recursion by value recursion. The promoted version
of poZy(-), which we denote poZy((.)), is consequently given by

3We tacitly assume that the predefined functions encInt and
declnt satisfy this relationship.

the following equations.

POlYO :: 4) e :: F((t :: K))
POlYU4 e = POlY,
poly(xc)) e = @X
PolYutl t2>> e = (PolYttll e) (P4xh~ e)
poly((Ax -+ t>> e = xv + poly((t)) (&3(x : = v))
PolYw~ e = fix (poly((tj e)

Here, Q ranges over environments, which map type variables
to value variables, and e(z : = v) is syntax for extending the
environment e by the binding x := 21. The function fix is the
polymorphic fixpoint operator on the value level. The deli-
nition of poly((t)) is inductive on the structure of type terms.
We can, in fact, view the definition as an interpretation of
the simply typed X-calculus. The generic value poZy(.) is
related to poly((.)) by

poly(t :: *) = poly((t :: *)) f) 0)

where E denotes the empty environment. Thus, in order to
specialize poly(t) we simply specialize poly((t)). Note that
Eq. (I) can be seen as the soundness condition of the spe-
cialization.

It remains to specify F((t :: IC)), which is defined by in-
duction on the structure of kinds.

11 :: *))
C{ .

= Fu
u :. n1 + 4) = Vx.F((x :: fir)) -+ F((u x :: ~2))

If u is a type constructor of kind ni + ~2, then poly((u)) is
a function that maps values of type F((x :: ~1)) to values of
type FUu x :: KZ)), for all x. Again, it is important that x
is universally quantified since u may be applied to different
types. The nesting of universal quantifiers is dictated by
the kind: if n has order n, then F((u :: K)) is a rank-n type
[30]-assuming that F a has rank 0. For instance, for F
given by F a = a + Bin we have

F((GRose :: (* + *I + (* + *> j
= Vf.F((f::-k+-k))+F((GRosef ::*+-k))

= Vf.(Vb.F((b :: *)) + F(Cf b :: *>))

+ (Va.F((a :: *) + F((GRose f a :: *)))

= Vf.(Vb.F b + F (f a)) + (Va.F a + F (GRose f a))

= Vf.(Vb.(b + Bin) + (f b + Bin))

+ (Va.(a + Bin) + (GRose f a -+ Bin)) .

Since GRose has an order-2 kind, F((GRose)) is a rank-2
type.

Let us consider some examples. Fig. 2 lists the specializa-
tions of enc to the datatypes introduced in Sec. 2. For clar-
ity, the definitions use the original constructor names and
functions are written in an equational style. The special-
izations illustrate several interesting points. For instance,
the function encSequ makes use of polymorphic recursion
[33]: the recursive call has type Va.(Fork a + Bin) +
(Sequ (Fork a) + Bin), which is a substitution instance
of the declared type. In general, polymorphic recursion
is required whenever the type recursion is nested. Several
functions have rank-2 type signatures; encMapFork shows
in a nutshell why this is necessary: the argument encm is
applied at two different instances: the inner call has type
Va.(a + Bin) 3 (m a + Bin) while the outer call has
type Va.(m a + Bin) + (m (m a) + Bin). The functions
encMapSequ and encsquare’ even combine polymorphic re-
cursion and the specialized use of a polymorphic argument.

124

encList
encList enca

where end Nil
end (Cons x 2s)

encRose
encRose enca

where encr (Branch x ts)

encGRose

encGRose encf enca
where encg (GBranch x ts)

encFix
encFix encf

where encr (In x)

encBaseList
encBaseList enca encb Nil
encBaseList enca encb (Cons x y)

encFork
encFork enca (Node x1 x2)

encSequ
encSequ enca Empty
encSequ enca (Zero s)
encSequ enca (One x 5)

encMapFork

encMapFork encm encv (DieFoTk tf)

encMapSequ

:: Va.(a + Bin) + (List a + Bin)
= end
= LOI
= 1 : enca x -I+ end xs

:: Va.(a + Bin) + (Rose a + Bin)
= encr
= enca x -I+ encList encr ts

:: Vf.(Vb.(b + Bin) + (f b + Bin))
+ (Va.(a -t Bin) + (GRose f a + Bin))

= encg
= enca x -H- encf encg ts

:: Vj.(Va.(a + Bin) + (f a -+ Bin)) + (Fix f + Bin)
= encr
= encf encr x

:: Va.(a -+ Bin) + (Vb.(b + Bin) + (BaseList a b --t Bin))

= [Ol
= 1: enca x it encb y

:: Va.(a + Bin) + (Fork a + Bin)
= enca 21 it enca x2
:: Va.(a -+ Bin) + (Sequ a + Bin)

= IO1
= 1 : 0 : encSequ (encFork enca) s
= I : 1 : enca x -H encSequ (encFork enca) s

:: Vm.(Vw.(w + Bin) + (m w + Bin))
+ (Vv.(v + Bin) + (MapFork m v -+ Bin))

= encm (encm encv) tf

:: Vm.(Vw.(w + Bin) + (m w -+ Bin))
+ (Vu.(v + Bin) + (MapSequ m v + Bin))

encMapSequ encm encv (XeSequ te tz to) = encv te
+I- encMapSequ (encMapFork encm) encv tz
i-t encm (encMapSequ (encMapFork encm) encv) to

encSquare :: Va.(a + Bin) -+ (Square a + Bin)
encSquare enca m = encsquare’ encNi1 enca m

encsquare :: Vf.(Vb.(b + Bin) + (f b + Bin))
+ (Va.(a + Bin) + (Square’ f a + Bin))

encsquare encf enca (Zero m) = 0 : encf (encf enca) m
encsquare’ encf enca (Succ m) = 1 : encsquare’ (enccons encf) enca m

encNi1 :: Va.(a + Bin) + (Nil a -+ Bin)
encNi1 enca Nil = [I
encCons :: Vf.(Vb.(b + Bin) -+ (f b -+ Bin))

+ (Va.(a -+ Bin) + (Cons f a + Bin))
encCons encf enca (Cons 2 2s) = enca x it encf enca 2s

Figure 2: Specializing enc to the types of Sec. 2.

125

6 Values indexed by first-order kinded types

In the previous section we have considered values indexed
by types of kind *. For values that are indexed by type
constructors, such as size, some additional machinery is
needed. We will develop the main ideas for type indices
of kind * + *. The straightforward extension to first-order
kinds is explained in Sec. 6.4. Sec. 6.5 discusses the diili-
culties in extending the approach to higher-order kinds. We
proceed as in the previous section: (1) we characterize the
set of normal forms of types of kind * + *, (2) we give a
prototype for generic values indexed by types of this kind,
and (3) we show how to promote a generic value to types of
arbitrary kind.

6.1 Normal forms of types of kind * + *

Recall that a type constructor of kind * + * is a function
on types of kind *. Consequently, when defining (* + *)-
indexed values we have to use type patterns that range over
functions. It appears that these functions can be most con-
veniently expressed if we lift types to a function level. For-
mally, lifting maps a type t :: IC to a type tt :: TK where TK
is defined as follows.

t* = *-+*
sm + m = @l) -+ (t&z)

The lifted version +! of type t is given by (we assume that
for each type variable 2 of kind K there is a lifted variable
named 3 of kind TK)

j-c =c
TX =g
tt1 t2 = WI) W2)
tnx+t = ng-ktt
tclt = Att) .

The lifted versions, c, of the primitive type constructors
have already been defined in Sec. 3. The lifted version of
List, for instance, reads

&i& = Ag-kp(h~+~+ax~) .

Expanding the lifted primitives we obtain

J&t = A~-+p(A~z+1+~zx~z).

The lifted and the unlifted version of a type are closely re-
lated: if t has kind * + *, then

t = (f-t) Id (‘4
This relation will be employed later when we define poZy(-)
in terms of poly((.)).

Using the notion of lifting we can easily characterize the
set of normal forms of types of kind * + *. Assume that
we are given a type t of kind * + *. Applying q-expansion
we have t = Aa + t a. The body of the abstraction has
kind * and we know from the previous section the shape
of its normal form. The free variable, a, is treated as an
additional constant of kind *. Now, to make the passing
of a explicit we abstract a out. The abstraction process
replaces the primitive type constructors by their lifted ver-
sions and a by Id = Aa + a. This motivates the following
characterization.

T l +* ::= Id I 1 I Int I (T+,* 2 T*-w) I (T+,* x T+,*)

We can, in fact, view Id, 1, I& ‘+‘, and ‘x1 as a tiny
combinator language for defining type constructors of kind
* + f.

6.2 Defining (* + *)-indexed values

The characterization of normal forms suggests the following
prototype for values indexed by types of kind * + *.

poly(f::*+*) :: Hf
poW4 = POlYId
POlY (U
POlY (mt)

= POlY&

POlY (fl kf2)
= POlYl,t
= POlY+ (POlY(fl)) (POlYV2))

PolYcfl &.A) = POlYi (POlY(f1)) (POlY(f2))

The type of poly (f) is given by H f , where H is a type
constructor of kind (* --t *) + *. The prototype for * + *-
indexed values is nearly identical to the prototype for +
indexed values: the primitive type constructors are merely
replaced by their lifted versions and we have one additional
case for the identity type.

Let us consider how the example of Sec. 3 fits into this
scheme: size(f) has type H f = Vz.f x + Int and the
functions sizeId, sizel, sizeM, size+, and sazex are given by

sizeId x = 1

si.zeL () = 0

size& n = 0

size+ sizeal sizea (In1 x1) = sizeal x1
size; sizeal sizea (Inr x2) = sizea q

sizelL sizeal sizea (21,x2) = sizeal x1 $ sizea x2 .

Note that size(f) is not only a generic, but also a polymor-
phic function. This combination is, however, not cogent: the
generic function sum(f), which sums a structure of integers,
has the monomorphic type f Int + Int.

In the rest of this section we present two further exam-
ples of generic values. The most paradigmatic example of
a (* + *)-indexed value is probably map, which applies a
given function to each element of type x in a given structure
Gftype f 2.

mapCf :: * -i *) ::
map(W cp x =

mw(K t) cp x =
map(fi +A) ‘p (In1 xl) =
map& zf2) cp (Inr x2) =

map(fi xf2) ‘p (21, x2) =

Id (madfi) cp 21)

Inr (mwCf2) 9 x2>

(mdfd ‘P 51, map(f2) cp $2)

Note that the ‘type pattern’ K t = Aa + t covers both
1 and J&. Furthermore, note that Haskell provides a class
Functor for mapping functions. Alas, the user must program
instances of Functor by hand-which is for the most part
tedious but sometimes quite involving.

The function size is an instance of a more general concept
termed reduction or crush [31]. A reduction is a function
of type f x + x, which collapses a structure of values of
type x into a single value of type x. To define a reduction we
require two ingredients: a value e :: x and a binary operation
op :: z + x + x. Usually but not necessarily e is the neutral
element of op.

reduce(f :: * + *) :: Vz.x + (x + z + x) + (f x + z)

reduce (Id) e op z =X
reduce(K t) e op x = e
reduce(f1 + f2) e op (InZ xl) = reduce(f1) e op x1
reduce(f1 + f2) e op (Inr x2) = reduce(f2) e op x2
reduceCf1 :A) e OP (XI, x2)

= reduce(f1) e op x1 ‘op‘ reduce(f2) e op x2

126

A number of useful functions can be defined in terms of
reduce(f) and map(f), see, for instance, [31, 22, 191.

6.3 Specializing (* + *)-indexed values

Promoting poly(.) to types of arbitrary kind proceeds ex-
actly as before except that we are now working on a func-
tion level, i.e., we work with lifted kinds and types. To
begin with, the type of the promoted version is given by
II((.)), which is inductively defined as follows.

H((u :: j-k)
H((u :: trcl + ICZ)) 1 fx:H(x :: tKl)) + H((u x :: $cz))

The promoted version of poly (-) reads

POlY@ :: 4 e :: H((t :: K))
POlYtx+ e = POlY,
PO~YUd e = ec
PolYttl t21 e = (POlYtth~ e) (PolYtt21 e)
POlYUb + 0 e = xv + POlYllO Mc: = VI) .
Po~Yulltn e = fix (POlYUO e>

Note that poly((.)) depends only on poly, but not on poly[,.
The latter value is used when defining poly(.) in terms of
POlY u.n.

poly(t :: * -+ *) = pozy((tt :: t* + *)) e poly, (3)

Thus, in order to specialize poly(t) we specialize poly ((tt)),
which is defined by induction on the structure of lifted types.
The resulting function has type Vx.H x + H ((tt) x). Sup-
plying polyld as the first argument we obtain a value of type
H ((tt) Id), which is equal to H t. Again, we can view
Eq. (3) as the soundness condition of the specialization.

One practical problem remains: the type of poZy((.)) uses
lifted types. Consider, for instance, the type signature of
site ((List)).

size ((List)) :: Vg.(Vx.g x -+ Int) + (Vx.List a 2 + Int)

If we intend to present the specialized program to a Haskell
compiler, we must find a way of expressing && in terms
of List. For type constructors of kind * + * the relation-
ship is quite simple: we have, for instance List a = AZ + ,--
List (a z), i.e., List a equals the type composition List . a.
Given this relation we can rewrite the type signature above.

size((&)) :: Vg.(Vx.a x -+ Int) + (Vx.List (a x) 3 Int)

For the general case we must delve a bit into the theory of
combinators. To begin with we require type-level counter-
parts of the combinators K and S.

Kt = hz:+t

s t1 t2 = Ax + (t1 x) (t2 x)

Next, we relate types of kind t& to types of kind * + n.

Definition 4 The relation (No) C (@,) x (* + K) is defined
by induction on the structure of kinds.

t N* t’ e t=t’

t- Kl’fi2 t’ a Vx,x’.(x -fil 2’ ==s. t x Nn2 s t’ 2’)

In the base case ‘N*’ relates types of the same kind, so we
require them to be equal. ‘Type functions’ are related if
related arguments are mapped to related results.

Proposition 1 Let t be a type of kind TV, then

tt -fi K t

For types of kind * we have tt = K t, i.e., the lifted ver-
sion simply ignores its additional argument-which comes
as little surprise. For types of kind * + * Prop. 1 implies
(ft) x = S (K t) x = t x. Setting x = Id we obtain
(tt) Id = t, which shows that Eq. (2) is a direct conse-
quence of Prop. 1. Now, let us apply Prop. 1 to rewrite the
type signature of, say, size@&)):

size((&)) :: Vi.(Vg.(Vz.g x -i Int)
+ (Vx.f g x -k Int))

+ (Vx.&f 2 + Int)

For the second-order type Fix Prop. 1 reads

fg=Ax--+(fx)(gx) a Fixf=hx-+Fix(fz). --

Given this relationship we can replace j& f and f a in
size((&))‘s type signature.

size ((&) :: Vf.(Vg.(Vz.a x -+ Int)
+ (Vx.(f x) (g x) 4 Int))

+ (Vz.Fix (f x) + Int)

Note that the rewrite involves the change of a bound vari-
able: f of kind (* -+ *) + (* --f *) is replaced by f of kind
* + (*-+ *). This change is, however, perfectly fine since f
is only instantiated to lifted types (by construction) and we
know by Prop. 1 that lifted types of this kind can be ex-
pressed in terms of the original types. In other words, if we
consistently change the types of the poly((.)) functions, the
resulting program is well-typed.

It is high time to consider some examples. Fig. 3 lists
the specializations of size to the datatypes of Sec. 2. The
code looks pretty similar to the code generated for enc, see
Fig. 2. This is not surprising since the ‘code generation’ is
completely independent of the kind of the type index. Only
the types are more involved: since size has already a rank-l
type, size((F)) is assigned a rank-(n + 1) type if F has an
order-n kind.

In Sec. 5.3 we have already discussed two of the features
the type system of the host language must support: rank-
n types and polymorphic recursion. Here, we require an
additional feature: a strong form of type constructor poly-
morphism [6]. Consider the call sizeSeqv (siteFork sizea)
in the definition of sizesequ: sa’zesequ requires an argu-
ment of type Vx.a x 3 Int while sizeFork sizea has type
Vx.Fo& (a’ z) + Int. To determine whether the call is
well-typed we must solve the equation a x = Fork (a’ x).
Setting a = AZ + Fork (a’ z) the call and the definition of
sizeSequ can be type-checked. Clearly, some kind of higher-
order unification is required here. Unfortunately, we know
of no practical language that supports this feature. Haskell,
for instance, uses a kinded first-order unification [28], which
reduces a x = Fork (a’ x) to a = Fork and x = a’ x.
The latter equation is, however, not solvable. The lack of
type constructor polymorphism is also noted in [6], which
suggests that generalizing Haskell’s type system might be
worthwhile. Let us remark that this problem disappears if
we switch to a language with explicit type annotations. Suit-
able candidates are the intermediate language of the Glas-
gow Haskell Compiler [38], which is based on the second-
order X-calculus [ll], or the language Henk [39], which is
based on Barendregt’s X-cube [3].

127

sizelist :: Va.(Vx.a x --t Int) + (Vx.List (a x) + Int)
sizeList sizea = size1

where size1 Nil = 0
size1 (Cons x xs) = sitea x + size1 xs

sizeRose :: Va.(Vx.a x + Int) + (Vx.Rose (a x) + Int)
sizeRose sizea = sizer

where sizer (Branch x ts) = sizea x + sizeList sizer ts

sizeGRose :: Vf .(Vb.(Vx.b x -+ Int) -+ (Vx.(f x) (b x) 3 ht))
+ (Va.(Vx.a x + Int) + (Vx.GRose (f x) (a x) -+ I&))

sizeGRose sizef sizea = sizeg
where sizeg (GBranch x ts) = sizea 2 + sizef sizeg ts

sizeFix :: Vf .(Vb.((Vx.b x + Int) + (Vx.(f x) (b x) + Id)))
-+ (Vx.Fix (f x) + Int)

sizeFix sizef = sizer
where sizer (In x) = sizef sizer x

sizeBaseList :: Va.(Vx.a x + Int) + (Vb.(Vx.b x + Int) 3 (Vx.BaseList (a: ?) (b x) + Int))
sizeBaseList sizea sizeb Nil = 0
sizeBaseList sizea sizeb (Cons x y) = sizea x + sizeb y

sizeFork :: Va.(Vx.a x + Int) + (Vx.Fork (a x) + Int)
sizeFork sizea (Node x1 x2) = sizea x1 + sizea x2
sizesequ :: Va.(Vx.a x + Int) + (Vx.Sequ (a x) + Int)
sizeSequ sizea Empty = 0
sizeSequ sizea (Zero s) = sizeSequ (sizeFork sizea) s
sizesequ sizea (One x s) = sizea x + sizesequ (sizeFork sizea) s

sizeMapFork :: Vm.(Vu.(Vx.w x --t Int) + (Vx.(m x) (w x) + Int))
-+ (Vv.(Vx.v x -+ Int) -+ (Vx.MapFork (m x) (v x) + Id))

sizeMapFork sizem sizev (TrieFork tf)
= sizem (sizem sizew) tf

sizeMapSequ :: Vm.(Vw.(Vx.w x -+ Int) + (Vx.(m x) (20 2) -+ Id))
+ (Vv.(Vx.v x + Int) + (Vx.MapSequ (m x) (v x) + Id))

sizeMapSequ sizem sizev (DieSequ te tz to)
= sizev te
+ sizeMapSequ (sizeMapFork sizem) sizev tz
+ sizem (sizeMapSequ (sizeMapFork sizem) sizew) to

sizesquare :: Va.(Vx.a x + Int) + (Vx.Square (a x) + Int)
sizesquare sizea m = sizesquare’ sizeNil sizea m

sizeSquare’ :: Vf.(Vb.(Vx.b x + Int) + (Vx.(f x) (b x) -+ Int))
+ (Va.(Vx.a x + Int) -k (Vx.Square’ (f x) (a x) + Int))

sizesquare’ sizef sizea (Zero m) = sizef (sizef sizea) m
sizesquare’ sizef sizea (Succ m) = sizesquare’ (sizeCon. sizef) sizea m

sizeNil :: Va.(Vx.a x + ht) + (Vx.Nil (a x) + Int)
sizeNil sizea Nil = 0

sizecons :: Vf.(Vb.(Vx.b x + Int) + (Vx.(f x) (b x) -+ Id))
+ (Va.(Vx.a x + hit) --t (Vx.Cons (f x) (a x) + Id))

sizecons sizef sizea (Cons x xs) = sizea x + sizef sizea xs

Figure 3: Specializing size to the types of Sec. 2.

128

6.4 Generalizing to first-order kinds

So far we have considered generic values indexed by type
constructors of kind * -+ *. The generalization to type
indices of first-order kind is straightforward. Assume
that the tvoe index has kind kn + *. which abbrevi-
ates ,* + . ’ . + *, + *. We now redefine lifting and put

n times

t* = -kn 4 *; the case n = 1 specializes to the preceding
treatment. The lifted version of a primitive type constructor
c of arity m is given by

Cfl . . . fm
= Aai . . . an+c(flal . . . a,) . . . (fmal **. an).

To define a value indexed by a type of kind *n + * the pro-
grammer must provide cases for each of the lifted primitive
type constructors and additionally for n ‘projection types’:
?rr=Aal . . . a, + a; with 1 < i < n (for n = 1 we have
xi = bar + al = Id). Specializing a generic value works ex-
actly as before except that the ‘initial call’ now uses poly,; ,

“., POlY CT: ’

poZy(t::*” -+*)
= pozy((tt :: t*‘*” + *)) e poly,iI . . . poly,:

6.5 Limitations of the approach

Let us briefly discuss the difficulties in extending generic
programming to higher-order kinds. Interestingly, the ap-
proach still works for type indices of second-order kind. As
an example, consider a generic value indexed by a type con-
structor of kind (* + *) --P * + -k. To characterize the set
of normal forms we proceed as before: q-expanding a given
type t of that kind we obtain t = bar az + t al az. The
body of the abstraction has kind * and its normal form can
be characterized in the usual way-the variables al :: * 4 *
and a2 :: * are simply treated as additional constants. Ab-
stracting al and a2 out yields the following grammar

T(*+*)+*+* ::=
I

7rg
~2 T(w)-,-

I 1

where rr; = Aar a2 + al, 7~; fi = Aal az + a2 (fi al a~),
and the lifted type constructors are defined as in Sec. 6.4.
Thus, the type patterns for ((* + *) + * + *)-indexed
values are similar to the ones in the first-order case except
that the ‘projection types’ are slightly more complicated.

Unfortunately, this scheme breaks down at the third
level. To illustrate, consider a type t = Aa + t a of kind
n + * with K. = (* + *) -+ *. The normal form of t a is
described by the following grammar.

T, ::= a T,,, (1 1 Int 1 T, + T, 1 T, x T,

Note that T, refers to T,,,. This means that a generic
value, which is indexed by a type constructor of kind PC -+ *,
cannot be inductively defined on the structure of types.

For similar reasons the set C of primitive type construc-
tors must not contain types of second-order kind or higher.
To see why assume that Fix :: (* + *) + * is primitive.

Since Fix’s argument is a type constructor, we can no longer
define generic values inductively: enc(Fix f), for instance,
cannot fall back on enc(f) since f has not kind *. To sum-
marize: our approach is limited to type indices up to second-
order kinds and to primitive types up to first-order kinds.
Whether these restrictions are severe in practice remains to
be seen. We suspect that this is not the case. Finally, let
us stress that these restrictions do not affect the ability to
specialize generic values, which works for types of arbitrary
kinds.

7 Towards Haskell

The specialization of generic values ss described in Sec. 5.3
and 6.3 places high demands on the type system: it re-
quires polymorphic recursion, rank-n types, and a strong
form of type constructor polymorphism. Haskell 98 [37], for
instance, only supports polymorphic recursion. In this sec-
tion we show that the requirement for rank-n types can be
alleviated since they can be encoded using so-called dictio-
naries. This encoding also provides an interesting link to
Haskell’s type classes.

Recent extensions of Haskell as implemented in GHC
[36] and in Hugs 98 [29] provide rank-2 type signatures and
local universal quantification in datatypes. Using the latter
feature we can circumvent rank-n types. The idea is very
simple: instead of passing a polymorphic value directly as
an argument we pass a dictionary that contains the value
as the single component. Of course, we require not only a
single dictionary but a kind-indexed family of dictionaries.
The following definitions introduce suitable dictionaries for
the enc function.

type Bnc(*) a = a + Bin
type Enc(lcr + ~2) a = Vx.EncD(Kr) 2 + Enc(fiz) (a x)

data L7ncD(~) a = EndIn{ encn :: Enc(~) a}

The promoted function enc((t :: 6)) now has type Enc(&) t.
Fig. 4 displays the specializations of enc for some types.
The dictionary translation is interesting in at least two re-
spects. First, it suggests an easy way of dealing with mutu-
ally recursive generic definitions, see [17] for examples. We
simply use dictionaries with multiple entries, one for each
recursive function. Second, it relates generic definitions to
Haskell’s type classes [13], which use a similar implementa-
tion. Recall that an overloaded function is translated into
a non-overloaded function that takes as an additional argu-
ment the dictionary containing the operations of the c1a.s~.
For instance, the class definition

class Eq a where (==), (/=> :: a -+ a + Boo1

gives rise to the following dictionary type.

data EqD a = EqD{(==), (/=) :: a + a + Bool}

Each instance declaration of the form instance Eq T de-
fines an element of EqD T and each declaration of the form
instance (Eq a) + Eq (T a) defines a function of type
Va.EqD a + EqD (T a). Thus, generic definitions and
type classes use the same mechanism on the implementa-
tion level. Using the deriving construct instance declara-
tions can even be automatically generated for user-defined,
first-order kinded datatypes. However, instance declarations
are too limited to handle types of higher-order kinds. For

129

instance, deriving Eq for MapFork or MapSequ fails with
a compile-time error in Haskell 98. Thus, generic defini-
tions generalize type classes in some respects: they allow
us to define values generically for all types-while class
instances must be programmed by hand, except for some
predefined classes like Eq-and the specialization is not re-
stricted to first-order kinded types. Note that instance dec-
larations can be mimicked in our framework by so-called
ad-hoc definitions, see [17]. For instance, an ad-hoc com-
pression scheme for lists, which yields better compression
rates than the generic scheme, can be defined by

enc(List u) 2s = enclnt (length xs)
St concat (map (enc(a)) xs) .

This equation extends the definition of enc given in Sec. 3
and specifies an exception to the general scheme.

8 Related work

Generic programming The concept of generic functional
programming trades under a variety of names: F. Ruehr
refers to this concept as structural polymorphism [41, 401,
T. Sheard calls generic functions type parametric [43],
C.B. Jay and J.R.B. Cocket use the term shape polymor-
phism [25], R. Harper and G. Morrisett [14] coined the
phrase intensional polymorphism, and J. Jeuring invented
the word polytypism [26].

The mainstream of generic programming is based on
the initial algebra semantics of datatypes, see, for instance
[12], and puts emphasis on general recursion operators like
map and catamorphisms (folds). In [42] several varia-
tions of these operators are informally defined and algo-
rithms are given that specialize these functions for given
datatypes. The programming language Charity [B] automat-
ically provides map and catamorphisms for each user-defined
datatype. Since general recursion is not available, Charity
is strongly normalizing. FhctoriaJ ML [24] has a similar
functionality, but a different background. It is based on the
theory of shape polymorphism, in which values are sepa-
rated into shape and contents. The polytypic programming
language extension Polyp [21]-already mentioned in the
introduction-offers a special construct for defining generic
functions. The generic definitions are similar to ours (mod-
ulo notation) except that the generic programmer must ad-
ditionally consider cases for type composition and for type
recursion (see [20] for a more detailed comparison).

All the approaches are restricted to first-order kinded,
reguiar datatypes (or even subsets of this class). One no-
table exception is the work of F. Ruehr [41], who presents
a higher-order language based on a type system related to
ours (only type recursion is missing). Genericity is achieved
through the use of type patterns which are interpreted at
run-time. By contrast, the technique presented here does
not require the passing of types or representations of types
at run-time. This also distinguishes our approach from the
work on intensional polymorphism [14, lo] where a type-
case is used for defining type-dependent operations.

This paper can be regarded as a successor to [20], where
a similar approach restricted to first-order kinded types is
presented. A companion paper [17] contains a concrete pro-
posal for a generic programming extension of Haskell, which
is based on the theoretical framework developed here.

Type systems Several variations of the type system given
in Sec. 4 have been described in the literature, see 131 for
a good survey article. For instance, if we drop the fixpoint
operator from the type language, we obtain the system Xc,
which forms one corner of Barendregt’s X-cube. Dropping
type application and abstraction yields the system Xp, which
supports structural equivalence of types. This system is,
however, restricted to types of kind * and cannot handle
parametric types. To the best of the author’s knowledge
the combination of Xw_ and Xc1 (with a polymorphic fixpoint
operator) is original.

Type inference algorithms for languages with generic
constructs have been developed by F. Ruehr [41], C.B. Jay
et.al. [24], and P. Jansson and J. Jeuring [21]. Note that
our system does not permit type reconstruction in gen-
eral. Consider the expression size IS where xs has type
List (Rose Int). Should size count the number of integers
or the number of rose trees in the list?

9 Conclusion

We have presented a new approach to generic functional
programming, which is both simpler-from the generic pro-
grammer’s point of view-and considerably more general
than previous work--the complete type system of Haskell
is covered (previous approaches were limited to first-order
kinded, regular types). The basic idea is to model types by
terms of the simply typed X-calculus augmented by a family
of recursion operators. Specializing a generic value can be
seen as an interpretation of simply typed X-terms. The gen-
erated code places high demands on the type system of the
underlying language: polymorphic recursion, rank-n types,
and a strong form of type constructor polymorphism are
required. We have shown that rank-n types can be circum-
vented using a dictionary translation, which provides an in-
teresting link to Haskell’s type classes. In particular, generic
definitions generalize Haskell’s deriving construct.

Acknowledgements

I am grateful to Ian Bayley, Johan Jeuring, Lambert
Meertens, and Fritz Ruehr for suggesting dozens of improve-
ments regarding contents and presentation. Thanks are also
due to four anonymous referees for their detailed and helpful
comments.

References

PI

PI

131

VI

M. Abadi, L. Cardelli, B. Pierce, and D. R&my. Dy-
namic typing in polymorphic languages. Journal of
Functional Programming, 5(1):111-130, January 1995.

H. P. Barendregt. The Lambda Calculus - Its Syntax
and Semantics. North-Holland, Amsterdam New York
Oxford, revised edition, 1984.

H.P. Barendregt. Lambda calculi with types. In
S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum,
editors, Handbook of Logic in Computer Science, Vol-
ume 2, Background: Computational Structures, pages
118-309. Clarendon Press, Oxford, 1992.

Richard Bird. Introduction to Functional Programming
using Haskell. Prentice Hall Europe, London, 2nd edi-
tion, 1998.

130

data EncD, t = EncD*(enc* :: t + Bin)

data EncD+,* t = EncD,+,(enc ++* :: Vx.EncD, x + (t x + Bin)}

encGRose :: Vf, a.EncD,+ f + EncD, a + (GRose f a + Bin)
encGRose df da = encg

where encg (GBranch x ts) = enc* da x +- enc*+* df (EncD*(enc* = encg}) ts

encFork :: Va.EncD, a + (Fork a + Bin)
encFork da (Node x1 x2) = enc* da x1 St enc* da x2

encSequ :: Va.EncD, a + (Sequ a --) Bin)
encSequ da Empty = 101
encSequ da (Zero s) = i : 0 : encSequ (EncD*{ enc* = encFork da}) s
encSequ da (One x s) = 1: 1: enc* da x +- encSequ (EncD,{ enc, = encFork da}) s

Figure 4: Dictionary implementation of enc.

[5] Richard Bird and Lambert Meertens. Nested
datatypes. In J. Jeuring, editor, Fourth International
Conference on Mathematics of Program Construction,
MPC’g8, Marstrand, Sweden, volume 1422 of Lecture
Notes in Computer Science, pages 52-67. Springer-
Verlag, June 1998.

[6] Richard Bird and Ross Paterson. De Bruijn notation es
a nested datatype. Journal of Functional Programming,
9(1):77-91, January 1999.

[7] Richard Bird and Ross Paterson. Generalised folds
for nested datatypes. Formal Aspects of Computing,
11(2):200-222, 1999.

[8] Robin Cockett and Tom Fukushima. About Charity.
Yellow Series Report 92/480/18, Dept. of Computer
Science, Univ. of Calgary, June 1992.

[9] Bruno Courcelle. Fundamental properties of infinite
trees. Theoretical Computer Science, 25(2):95-169,
March 1983.

[lo] Karl Crary, Stephanie Weirich, and Greg Morrisett.
Intensional polymorphism in type-erasure semantics.
ACM SIGPLAN Notices, 34(1):301-312, 1999.

[ll) Jean-Yves Girard. Interpretation fonctionelle et
e’limination des coupures dans l’arithbtique d’ordre
supe’rieur. PhD thesis, Universite Paris VII, 1972.

[12] T. Hagino. Category Theoretic Approach to Data Types.
PhD thesis, University of Edinburgh, 1987.

[13] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton
Jones, and Philip L. Wadler. Type classes in Haskell.
ACM Transactions on Programming Languages and
Systems, 18(2):109-138, March 1996.

[14] Robert Harper and Greg Morrisett. Compiling poly-
morphism using intensional type analysis. In ACM,
editor, Conference record of the ,%?nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, POPL’95, San &an&co, California, pages
130-141. ACM-Press, 1995.

[15] Ralf Hinze. Numerical representations as higher-order
nested datatypes. Technical Report IAI-TR-98-12, In-
stitut fiir Informatik III, Universitat Bonn, December
1998.

[16] Ralf Hinze. Generalizing generalized tries. Journal of
Functional Programming, 1999. Accepted for publica-
tion.

[17] Ralf Hinze. A generic programming extension for
Haskell. In Erik Meijer, editor, Proceedings of the 3rd
Haskell Workshop, Paris, fiance, September 1999. The
proceedings appear as a technical report of Universiteit
Utrecht, UU-CS-1999-28.

[18] Ralf Hinze. Manufacturing datatypes. In Chris
Okasaki, editor, Proceedings of the Workshop on Algo-
rithmic Aspects of Advanced Programming Languages,
WAAAPL’99, Paris, fiance, pages 1-16, September
1999. The proceedings appear as a technical report of
Columbia University, CUCS-023-99, also available from
http://uww.cs.columbia.edu/‘cdo/uaaapl.html.

[19] Ralf Hinze. Polytypic functions over nested datatypes.
Discrete Mathematics and Theoretical Computer Sci-
ence, 3(4):159-180, 1999.

[ZO] Ralf Hinze. Polytypic programming with ease (ex-
tended abstract). In 4th Fuji International Symposium
on Functional and Logic Programming (FLOPS’99),
Tsukuba, Japan, Lecture Notes in Computer Science.
Springer-Verlag, November 1999. To appear.

[21] Patrik Jansson and Johan Jeuring. Polyp-a polytypic
programming language extension. In Conference Record
2&h ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL’97, Paris,
fiance, pages 470-482. ACM-Press, January 1997.

[22] Patrik Jansson and Johan Jeuring. PolyLib-A li-
brary of polytypic functions. In Roland Backhouse and
Tim Sheard, editors, Informal Proceedings Workshop
on Generic Programming, WGP’98, Marstrand, Swe-
den. Department of Computing Science, Chalmers Uni-
versity of Technology and Goteborg University, June
1998.

[23] Patrik Jansson and Johan Jeuring. Polytypic com-
pact printing and parsing. In S. Doaitse Swierstra,
editor, Proceedings European Symposium on Program-
ming, ESOP’99, volume 1576 of Lecture Notes in Com-
puter Science, pages 273-287, Berlin, 1999. Springer-
Verlag.

131

1241

P51

WI

[271

PI

WI

[301

I311

[321

P31

WI

C.B. Jay, G. Belle, and E. Moggi. Punctorial ML. Jour-
nal of Functional Programming, 8(6):573-619, Novem-
ber 1998.

C.B. Jay and J.R.B. Cocket. Shapely types and shape
polymorphism. In D. Sanella, editor, Programming
Languages and Systems - ESOP’94: 5th European
Symposium on Programming, Edinburgh, UK, Proceed-
ings, volume 788 of Lecture Notes in Computer Science,
pages 302-316, Berlin, 11-13 April 1994. Springer-
Verlag.

Johan Jeuring and Patrik Jansson. Polytypic program-
ming. In J. Launchbury, E. Meijer, and T. Sheard,
editors, Tutorial Text 2nd International School on Ad-
vanced Functional Programming, Olympia, WA, USA,
volume 1129 of Lecture Notes in Computer Science,
pages 68-114. Springer-Verlag, 1996.

Mark P. Jones. A system of constructor classes: over-
loading and implicit higher-order polymorphism. Jour-
nal of Functional Programming, 5(1):1-35, January
1995.

Mark P. Jones. Functional programming with overload-
ing and higher-order polymorphism. In First Interna-
tional Spring School on Advanced Functional Program-
ming Techniques, volume 925 of Lecture Notes in Com-
puter Science, pages 97-136. Springer-Verlag, 1995.

M.P. Jones and J.C. Peterson. Hugs 98 User Manual,
May 1999. Available from http: //uww. haskell. erg/
hugs.

Nancy Jean McCracken. The typechecking of programs
with implicit type structure. In Gilles Kahn, David B.
MacQueen, and Gordon D. Plotkin, editors, Seman-
tics of Data Types: International Symposium, Sophia-
Antipolis, fiance, volume 173 of Lecture Notes in Com-
puter Science, pages 301-315. Springer-Verlag, 1984.

Lambert Meertens. Calculate polytypically! In
H. Kuchen and S.D. Swierstra, editors, Proceedings 8th
International Symposium on Programming Languages:
Implementations, Logics, and Programs, PLILP’96,
Aachen, Germany, volume 1140 of Lecture Notes
in Computer Science, pages l-16. Springer-Verlag,
September 1996.

Erik Meijer and Graham Hutton. Bananas in space:
Extending fold and unfold to exponential types. In
Conference Record 7th ACM SIGPLAN/SIGARCH
and IFIP WG 2.8 International Conference on Func-
tional Programming Languages and Computer Architec-
ture, FPCA’95, La Jolla, San Diego, CA, USA, pages
324-333. ACM-Press, June 1995.

Alan Mycroft. Polymorphic type schemes and recursive
definitions. In M. Paul and B. Robinet, editors, Pro-
ceedings of the International Symposium on Program-
ming, 6th Colloquium, Toulouse, fiance, volume 167
of Lecture Notes in Computer Science, pages 217-228,
1984.

Chris Okasaki. Purely Functional Data Structures.
Cambridge University Press, 1998.

[351

[361

[371

[381

1391

WI

[411

[421

[431

I441

I451

Chris Okasaki. Prom fast exponentiation to square ma-
trices: An adventure in types. In Peter Lee, editor,
Proceedings of the 1999 ACM SIGPLAN International
Conference on Functional Programming, Paris, fiance,
pages 28-35, September 1999.

Simon Peyton Jones. Explicit quantification in Haskell,
1998. Available from http://research.microsoft.
com/Users/simonpj/Haskell/quantification.html.

Simon Peyton Jones and John Hughes, edi-
tors. Haskell 98 - A Non-strict, Purely Func-
tional Language, February 1999. Available from
http://uuv.haskell.org/definition/.

Simon L. Peyton Jones. Compiling Haskell by pro-
gram transformation: A report from the trenches. In
Hanne Riis Nielson, editor, Programming Languages
and Systems-ESOP’96, 6th European Symposium on
Programming, Linkiiping, Sweden, 22-24 April, volume
1058 of Lecture Notes in Computer Science, pages 18-
44. Springer-Verlag, 1996.

Simon L. Peyton Jones and Erik Mkijer. Henk: A typed
intermediate language. In Proceedings of the Types in
Compilation Workshop, Amsterdam, June, 1997. Avail-
ablefromhttp://uuu.cs.bc.edu/“muller/TIC97/.

Fritz Ruehr. Structural polymorphism. In Roland
Backhouse and Tim Sheard, editors, Informal Pro-
ceedings Workshop on Generic Programming, WGP’98,
Marstrand, Sweden, 18 June 1998. Dept. of Computing
Science, Chalmers Univ. of Techn. and GGteborg Univ.,
June 1998.

Karl Fritz Ruehr. Analytical and Structural Polymor-
phism Expressed using Patterns over Types. PhD thesis,
University of Michigan, 1992.

Tim Sheard. Automatic generation and use of abstract
structure operators. ACM Transactions on Program-
ming Languages and Systems, 13(4):531-557, October
1991.

Tim Sheard. Type parametric programming. Technical
report CS/E 93-018, Oregon Graduate Institute of Sci-
ence and Technology, Department of Computer Science
and Engineering, Portland, OR, USA, November 1993.

Philip Wadler. Theorems for free! In The Fourth Inter-
national Conference on Functional Programming Lan-
guages and Computer Architecture (FPCA’89), Lon-
don, UK, pages 347-359. Addison-Wesley Publishing
Company, September 1989.

Zhe Yang. Encoding types in ML-like languages. SIG-
PLAN Notices, 34(1):289-300, January 1999.

132

