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Abstract 

This paper describes a new approach to generic functional 
programming, which allows us to define functions generically 
for all datatypes expressible in Haskell. A generic function 
is one that is defined by induction on the structure of types. 
Typical examples include pretty printers, parsers, and com- 
parison functions. The advanced type system of Haskell 
presents a real challenge: datatypes may be parameterized 
not only by types but also by type constructors, type defi- 
nitions may involve mutual recursion, and recursive calls of 
type constructors can be arbitrarily nested. We show that- 
despite this complexity-a generic function is uniquely de- 
fined by giving cases for primitive types and type construc- 
tors (such as disjoint unions and Cartesian products). Given 
this information a generic function can be specialized to ar- 
bitrary Haskell datatypes. The key idea of the approach is 
to model types by terms of the simply typed X-calculus aug- 
mented by a family of recursion operators. While conceptu- 
ally simple, our approach places high demands on the type 
system: it requires polymorphic recursion, rank-n types, and 
a strong form of type constructor polymorphism. Finally, 
we point out connections to Haskell’s class system and show 
that our approach generalizes type classes in some respects. 

1 Introduction 

Programming is sometimes a challenge and sometimes a nui- 
sance. Recurring routine tasks such as changing the rep- 
resentation of data, converting the internal representation 
into a human readable form (pretty printing) or vice versa 
(parsing) fall into the latter category. This is the domain of 
generic programming, which aims at relieving the program- 
mer from repeatedly writing functions of similar functional- 
ity for different user-defined datatypes. A generic functional 
program is essentially a collection of type-indexed values- 
typically functions-that are defined by induction on the 
structure of types. A generic function such as a pretty 
printer or a parser is written once and for all times; its spe- 
cialization to different instances of datatypes happens with- 
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out further effort from the user. This way generic program- 
ming greatly simplifies the construction and maintenance 
of software systems as it automatically adapts functions to 
changes in the representation of data. 

Different approaches to generic functional programming 
differ in the way the structure of datatypes is modelled. The 
language extension Polyp 1211, for instance, is based on the 
initial algebra semantics of datatypes. An unfortunate con- 
sequence of this choice is that the class of datatypes is re- 
stricted to so-called regular datatypes. A regular datatype is 
a parameterized type whose definition neither contains func- 
tion spaces nor recursive calls which involve a change of the 
type parameter(s). Thus, compared to the class of datatypes 
definable in Haskell98 [37] Polyp covers only a small, though 
important subset. This is a great pity. Especially, because 
the importance of generic programming increases with the 
complexity of types. We will get to know several involved 
datatypes, where even the skilled Haskell programmer will 
experience considerable hardship when trying to implement, 
say, comparison functions for these types. 

Admittedly, Haskell has a very rich type system, which 
presents a real challenge for implementors of generic pro- 
gramming extensions: datatypes may be parameterized not 
only by types but also by type constructors, type definitions 
may involve mutual recursion, and recursive calls of type 
constructors can be arbitrarily nested. If we aim at extend- 
ing generic programming to the full type system of Haskell, 
we are well-advised to model datatypes as closely and as 
faithfully as possible. Now, since Haskell supports both type 
application and (an implicit form of) type abstraction, type 
terms correspond essentially to terms of the simply typed X- 
calculus augmented by a family of recursion operators and 
by additional constants denoting primitive types (such as 
integers) and primitive type constructors (such as disjoint 
unions and Cartesian products). The ‘types’ of type terms 
are described using so-called kinds [28]. 

Though Haskell’s type system is quite involved, defin- 
ing generic values is comparatively easy. We will see that a 
generic value is uniquely defined by giving cases for primitive 
types and primitive type constructors. Given this informa- 
tion a generic value can be specialized to arbitrary Haskell 
datatypes. Interestingly, the process of specialization can be 
seen as an interpretation of simply typed X-terms. 

The main contributions of this paper are the following. 

n We explain how to define values indexed by types or by 
type constructors of first-order kind. 

0 We show how to specialize generic values to concrete 
instances of datatypes. We identify several program- 
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ming language features that are required to make this 
translation work. 

0 We point out connections to Haskell’s type classes [27] 
and show that our approach generalizes type classes in 
some respects. 

The rest of this paper is organized as follows. Sec. 2 in- 
troduces Haskell’s type system by means of some exam- 
ples. Sec. 3 sketches our approach to generic functional pro- 
gramming. Sec. 4 introduces the simply typed X-calculus 
and makes explicit how datatypes are modelled by X-terms. 
Sec. 5 shows how to define type-indexed values and explains 
how to specialize a type-indexed value to concrete instances 
of datatypes. Sec. 6 generalizes the approach to type con- 
structors of first-order kind. Sec. 7 works towards encod- 
ing instances of generic values in Haskell and relates type- 
indexed definitions to type classes. Finally, Sec. 8 reviews 
related work and Sec. 9 concludes. 

2 Haskell’s type system 

This section introduces the main features of Haskell’s type 
system by means of some examples. It is not important 
to understand the examples in full detail. The purpose of 
this section is rather to demonstrate the expressiveness of 
Haskell’s type system and to give evidence that real use has 
been made of these features. 

As first, rather simple examples consider the datatypes 
of lists and rose trees [4]. 

data List a = Nil 1 Cons a (List a) 

data Rose a = Branch a (List (Rose a)) 

The two equations introduce two type constructors, List and 
Rose, of kind * --+ *. The kind system of Haskell speci- 
fies the Itype’ of a type constructor [28]. The ‘*’ kind rep- 
resents nullary constructors like Int. The kind IEI + KZ 
represents type constructors that map type constructors of 
kind nr to those of kind ~2. The kind system is necessary 
since Haskell supports abstraction over type constructors of 
arbitrary kind. The following generalization of rose trees 
illustrates this feature. 

data GRose f a = GBranch a (f (GRose f a)) 

A slight variant of this definition has been used in [34] to 
extend an implementation of priority queues with an effi- 
cient merge operation. The type constructor GRose has 
kind (* + *) + (* + *) and is related to Rose by 
GRose List = Rose. Note that this equation states an iso- 
morphism rather than an equality since Haskell’s type sys- 
tem is based on name equivalence rather than on structural 
equivalence. Furthermore, note that GRose has a second- 
order kind. The order of a kind is given by order(*) = 0 
and order(rcl + ~2) = maz{ 1+ order(Kr), order(KZ)}. 

The following definition introduces a fixpoint operator 
on the level of types. This definition appears, for instance, 
in [32] where it is employed to give a generic definition of 
so-called cata- and anamorphisms. 

data Fix f = In (f (Fix f)) 

data BaseList a b = Nil 1 Cons a b 

The kinds of these types are given by Fix :: (* -+ *) + * 
and BaseList :: * + (* + *). Note that binary type con- 
structors like BaseList are, in fact, curried. Using Fix and 

BaseList the datatype of polymorphic lists can ahernatively 
be defined by List a = Fix (BaseList a). 

The type terms on the right-hand side of datatype defi- 
nitions may be arbitrarily nested. The following equations, 
which implement binary random-access lists [34], exemplify 
nested type terms involving recursion. 

data Fork a = Node a a 

data Sequ a = Empty 
1 Zero (Sequ (Fork a)) 
) One a (Sequ (Fork a)) 

Since the type parameter of Sequ is changed in the recur- 
sive calls, Sequ is termed a nested or non-regular datatype 
[5]. Nested datatypes are practically important since they 
can capture data-structural invariants in a way that regular 
datatypes cannot. For instance, Sequ captures the invari- 
ant that binary random-access lists are sequences of perfect 
binary leaf trees stored in increasing order of height. We 
refer the interested reader to [34, 7, S] for further examples 
of nested types. 

The following equations employ both abstraction over 
type constructors and nested recursion. 

data MapFork m u 
= TrieFork (m (m v)) 

data MapSequ m v 
= %eSequ w 

(MapSequ (MapFor% m) w) 
(m (MapSequ (MapFork m) TJ)) 

The types MapFork, MapSequ::(* + *) + (* + *) represent 
the so-called generalized tries [16] for Fork and Sequ. The 
type constructor MapFork is the type-level counterpart of 
,the function twice f x = f (f x), which applies a given 
function twice to a given value. 

Here is another example for a nested datatype of second- 
order kind. 

type Square a = Square’ Nil a 

data Square’ j a = 27-0 tf (f a)) 
1 Succ (Square’ (Cons f) a) 

data Nil a = Nil 

data Cons f a = Cons a (f a) 

The type constructors have kinds Square, Nil :: k + * and 
Square’, Cons :: (* 3 *) 3 (* + *). The type Square imple- 
ments square n x n matrices [35,18]. In contrast to common 
representations, such as lists of lists, the ‘squareness’ con- 
straint is automatically enforced by the type system. More 
examples of nested types of higher-order kinds can be found 
in [15, 35, 181. 

Now, before going on the reader is invited to consider 
programming, say, comparison functions for the datatypes 
above. This is a non-trivial task especially for the nested 
and for the second-order kinded types. In the sequel we will 
show that defining a generic comparison function that works 
for all datatypes is-perhaps surprisingly-a much simpler 
task. 

3 Generic programming in a nutshell 

This section sketches the main ideas of our approach to 
generic functional programming primarily from the pro- 
grammer’s perspective. A formal treatment of the approach 
is deferred to Sec. 5 and Sec. 6. 
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Before explaining how to define type-indexed values let 
us first take a closer look at datatype definitions. Haskell’s 
data construct combines several features in a single coherent 
form: type abstraction, n-ary disjoint sums, n-ary Cartesian 
products, and type recursion. The following rewritings of 
List and GRose make the structure of the datatype defini- 
tions more explicit. 

List a = 1+ a x List a 

GRose f a = a x f (GRose f a) 

Here, 1 denotes the unit type, and ‘+’ and ‘x’ are more 
conventional notation for binary disjoint sums and binary 
Cartesian products. For simplicity, we assume that nary 
sums are reduced to binary sums and nary products to 
binary products. We treat 1, ‘+‘, and ‘x’ as if they were 
given by the following datatype declarations. 

data 1 = 0 
data al + a2 = In1 al ) Inr a2 

data al x a2 = (al, 1x2) 

Now, to define a type-indexed value it suffices to specify 
cases for the primitive types (say, 1 and Int) and for the 
primitive type constructors (say, ‘+’ and ‘x’). As an ex- 
ample, the following equations define the generic function 
enc(a), which encodes elements of type a as bit strings im- 
plementing a simple form of data compression (231. The type 
argument of enc is written in angle brackets to distinguish 
it from the value argument. 

type Bin = [Bit] 

data Bit = 011 

enc( a :: *) :: a+Bin 
encw 0 
enc(Int) n 1 !Lht n 
enc(al + a2) (Id XI) = 0 : enc{al) xl 
enc(al + a-2) (Jar ~2) = 1: enc(a2) z2 
enc(ai x a2) (x1,x2) = enc(al) x1 -i+ enc(a2) x2 

The type signature of enc makes explicit that the type of 
enc(a) depends on the type parameter a. Each equation is 
more or less inevitable. To encode the single element of the 
unit type no bits are required. Integers are encoded using 
the primitive function enclnt, whose existence we assume. 
To encode an element of a disjoint union we emit one bit for 
the constructor followed by the encoding of its argument. 
Finally, the encoding of a pair is given by the concatenation 
of the component’s encodings.’ 

This simple definition contains all ingredients needed to 
derive specializations for compressing elements of arbitrary 
datatypes. For instance, enc(Sequ Int) of type Sequ Int + 
Bin compresses random-access lists with integer elements 
and enc(GRose List Int) compresses generalized rose trees 
with integer labels. 

Remark 1 Generic values cannot directly be implemented 
in Haskell or Standard ML. The reason is simply that enc(t) 
is a value which depends on the type t. Value-type depen- 
dencies cannot be expressed in current functional languages. 
Even if we circumvented this problem by using encodings into 
a universal datatype [45] or by using dynamic types and a 

‘The definition of enc exhibits @(n2) worst-case behaviour, but 
this is easy to remedy. 

typecase [l], the result would be rather ineficient because 
enc would repeatedly interpret its type argument. By special- 
izing enc(t) for a given t we remove this interpretative layer. 
As an aside, one could argue that value-type dependencies 
are present in the second-order X-calculus [ll] since a poly- 
morphic function depends on the type argument supplied. 
The dependence is, however, quite loose since a polymor- 
phic function uses ‘the same algorithm’ at each type. Note 
that a function of type Va.a + Bit is necessarily a constant 
function-this is a simple consequence of the parametricity 
theorem [44]. 

In order to specialize enc(t) we cannot simply unfold or 
partially evaluate the definition of enc. To see why consider 
specializing enc(Sequ Int): to define enc(Sequ Int) we re- 
quire enc(Sequ (Fork” Int)) for each n 3 1. If we simply 
unfold the definition, we will in general not obtain a finite 
representation of enc(t). 

The key idea of the specialization is to mimic the struc- 
ture of types at the value level. For instance, enc(Sequ Int) 
should be compositionally defined in terms of specializations 
for the constituent types, say, encSequ and en&t. Since 
Sequ is a function on types, encSequ is consequently a func- 
tion on encoders. Then the encoder for the type application 
Sequ Int is given by the application of encSequ to encInt . In 
a nutshell, type abstraction is mapped to value abstraction, 
type application to value application, and type recursion to 
value recursion. To exemplify, for GRose, Fork, and Sequ 
we can automatically derive the following specializations (for 
clarity, we use the original constructor names). 

encGRose :: Vf .(Vb.(b --t Bin) + (f b --+ Bin)) 
+ (Va.(a + Bin) 4 (GRose f a + Bin)) 

encGRose encf enca (GBranch x ts) 
= enca x i+ encf (encGRose encf enca) ts 

encFork :: Va.(a + Bin) + (Fork a + Bin) 
encFork enca (Node x1 x2) 

= enca x1 -I+ enca x2 
encSequ :: Va.(a -+ Bin) + (Sequ a + Bin) 
encSequ enca Empty 

= LOI 
encSequ enca (Zero s) 

= 1: 0 : encSequ (encFork enca) s 
encSequ enca (One 5 s) 

= i : 1: enca x it encSequ (encFork enca) s 

The types of the functions are motivated and explained only 
in Sec. 5.3. 

Many list processing functions can be generalized to ar- 
bitrary datatypes. Consider, for instance, the polymorphic 
function length :: Vx.List x + Int, which computes the 
length of a list.’ A length or rather a size function can 
also be defined for rose trees, for random-access lists, and 
for many other datatypes. The recipe for defining these 
functions is simple: in each case we count the number of 
elements of type x in a given value of type f x. This sug- 
gests that we should be able to program a generic function 
sizeu) :: Vz.f z -+ Int, which works for all f. Note that the 
type signature of size is more involved than the signature 
of enc since size is indexed by a type constructor of kind 
-k + -k rather than by a type of kind *. The type of size en- 
sures that we can determine the size of a list or a rose tree 

‘In Haskell there is no syntax for universal quantification. For 
clarity, however, we will always write quantification explicitly when 
giving the type of functions. 
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but not the size of a Boolean or an integer. Now, in order 
to define si.zeCf) generically for all f we must explicate the 
structure of type functions of kind * + *. To this end we 
lift the primitive type constructors 1, Int, I+‘, and ‘x’ to a 
function level. 

la =l 

&a = Int 

(fi-tf2) a = fi a+f2 a 

(fiXf2)a = fiaxfia 

Note that ‘+’ has kind * -+ (* + *) whereas the lifted 
version has kind (* + *) + ((* + *) + (* + *)). Interest- 
ingly, every type constructor of kind * 3 * can be expressed 
in terms of 1 Int ‘+‘, -> -, 'X ‘, and the identity type given by 
Id a = a-this cla& wxl be justified in Sec. 6.1. Thus, 
size(f) is uniquely defined by the following equations. 

size(f :: * + *) :: Vx.f x + Int 
size(Id) x = I 
size(l) 0 = 0 
size(&) n = 0 
size(fi 492) (In1 xl) = size(h) x1 
size(fi i- f2) (Inr z2) = size(f2) x2 
size(fi Ir.fi) (21~~2) = size(f1) x:1 + size(fi) $2 

Again, each of the equations is more or less inevitable. A 
value of type Id x = x contains exactly only one element of 
type 2; values of type 1 z = 1 or JnJ 2 = Innt contain no 
elements of type 3;. To determine the size of a structure of 
type (fi+fi) x we must either calculate the size of a structure 
of type fi x or that of a structure of type f2 x depending on 
which component of the disjoint sum the argument comes 
from. Finally, the size of a structure of type (fi xfs) z is 
given by the sum of the size of the two components. 

Specializing size to concrete instances of datatypes works 
essentially as before. For instance, for List and GRose we 
obtain the following specializations. 

sizeList :: Va.(Vx.a x + Int) + (Vx.List (a x) + Int) 
sizeList sizea Nil 

= 0 
sizeList sizea (Cons 2 xs) 

= sizea x + sizeList sizea 2s 
sizeGRose :: Vf.(Vb.(Vx.b x + Int) 

+ (Vx.(f x) (b x) + Int)) 
-4 (Va.(Vx.a x + hat) 

+ (Vz.GRose (f x) (a z) + Int)) 
sizeGRose sizef sizea (GBranch x ts) 

= sizea x + sizef (sizeGRose sizef sizea) ts 

Again, the definitions rigidly follow the structure of types: 
since List is a function on types, sizeList transforms ‘size 
functions’ into ‘size functions’. More precisely, if sizea deter- 
mines the size of a structure of type a x, then sizeList sizea 
determines the size of a structure of type List (a x)-the 
typings will be explained more thoroughly in Sec. 6.3. Now, 
to obtain the length function for lists we simply pass the size 
function for Id, i.e., sizeId x = 1, to sizelist. Likewise, to 
determine the size of a structure of type, say, GRose List x 
we call sizeGRose sizeList sizeId. 

4 Kinds and types 

This section introduces kind and type terms. Kind terms 
are formed according to the following grammar. 

K ::= *I (K+K) 

We agree upon that ‘4 associates to the right. 
Given a fixed set of type variables X and a fixed set 

of primitive type constructors C = { 1, Int, (+), (x)} type 
terms are formed according to the following grammar. 

T ::= x 1 c 1 (T T) 1 (AX :: K + T) 1 (/AT) 

Here, tl t2 denotes type application, Ax :: K + t denotes 
type abstraction, and p! denotes the fixpoint of t. We agree 
upon that type application associates to the left and that 
type abstraction extends as far to the right as possible. We 
abbreviate Axi :: ~1 + . . . Ax,,, I:&,,, + t by Axi ::IG~ . . . x,,, :: 
IE~ + t and write (+) tl t2 as tl + t2 and similarly for 
‘x’. Note that in a A-abstraction the bound type variable is 
annotated with its kind. For reasons of readability we will 
usually omit the kind annotation. Furthermore, note that 
the choice of C is more or less arbitrary; we only require 
the primitive types to have first-order kinds or kind *, see 
Sec. 6.5. For instance, C could additionally include the 
function space constructor I-+‘. We have only omitted ‘+’ 
because most of the generic functions cannot sensibly be 
defined for the function space. 

The kinds of the primitives are given by 

1, Int :: * 

(+),(x) :: *3*+*. 

The kinds of type terms are determined by the rules depicted 
in Fig. 1. The notation r l- t :: )(: means that the statement 
t :: K is derivable from the set of kind assumptions r. If 
t :: IE1 3 s . . + fiER + * is derivable, we say that t has 
arity n. It is worth mentioning that ‘~1’ is polymorphic with 
respect to the kinds, i.e., it represents a family of fixpoint 
operators. 

In essence, Haskell types are represented by terms of the 
simply typed &calculus with kinds playing the role of types. 
The translation of the datatype declarations given in Sec. 2 
into type terms is fairly straightforward. Here are some 
examples. 

List = ha + p(M + 1 + a X .!) 

Fork = Aa 3 a x a 

Sequ = ~(As a + 1 + s (Fork a) + a x s (Fork a)) 

First-order kinded, regular types, such as List and Rose, 
can be modelled using a fixpoint operator of kind * + * 
while nested types, such as Sequ, require an operator of 
kind (* + *) -+ (* -+ *). 

Remark 2 Type recursion is expressed using a fixpoint op- 
erator. Whilst this is suficient for the datatype definitions 
introduced in Sec. 2, it does not generalize easily to handle 
mutually recursive types. A viable alternative is to consider 
systems of recursion equations: 

xl=tl;...;xn=t, , 

where the xi are type variables and the ti are type terms. The 
approach to generic programming works equally well if we 
use recursion equations instead of a j&point operator. The 
development, however, becomes more verbose and provides 
no additional insights. 
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(x :: n) E r r I- t1 :: n2 -+ n1 r I- tz :: fi4 r, 2 :: n1 I- t :: IE2 ri-t::n+K 
rkxrEK r t- (tl tz) :: 6l r i- (AZ :: IE~ -+ t) :: (IE~ -+ K2) r i- (pt) :: K 

Figure 1: Kind rules. 

In the following sections we require the notion of Bijhm tree 
which we introduce next. Biihm trees can be considered 
as a kind of ‘infinite normal form’ for type terms and are 
obtained by unwinding type terms ad infinitum. 

Definition 1 The convertibility relation on type terms, de- 
noted ‘t, ‘, is given by the following axioms 

(Ax + t) 21 * t Ix := u] 03) 
llx+tx +) t, x not free in t fd 

Pt - t b-4 (PI 

plus the usual ‘logical’ rules for reflexivity, symmetry, tran- 
sitivity, and congruence. 

Definition 2 A head normal form (hnf) is 4 type term of 
the form 1\x1 . . . x,,, + z u1 . . . u,, with m, n 2 0, z E 
C U X, and z has arity n. A type term t has hnf u if t c) u 
and u is an hnf. 

The definition of hnf is a bit unusual in that we additionally 
require hnfs to be v-expanded (in order to guarantee that 
Bijhm trees are well-defined). The term (+), for instance, 
has hnf Axr xs + xi + x2. Not every type term has an hnf, 
consider, for instance p(Aa 4 4). Type terms that have no 
hnf are in a sense pointless and can be excluded by a simple 
syntactic restriction, which we will adopt in the sequel: t 
in pt must have the form Axi . . . xm -+ c ur . . . un with 
c E C of arity 72. 

Definition 3 The BGhm tree of the type term t, denoted 
BT(t), is 4 labelled tree defined as follows: if t has hnf 
Axi . . . x,,,+zul . . . u,,, then 

BT(t) = Ax1 . . . x, -+ z 

/\ 
BT(w) -me BT(u,) . 

For a more formal treatment of BGhm trees we refer the 
reader to [2]. Now, from a generic programming point of 
view we can identify type terms that have the same Bijhm 
trees, i.e., t = u if BT(t) = BT(u). We have, for instance, 
Rose = GRose (ha + Fix (BaseList a)). Since generic 
values are defined by induction on the structure of types, 
the structure is all that matters. 

5 Type-indexed values 

The framework is developed in three steps: (1) we charac- 
terize the set of normal forms of types of kind *, (2) we give 
a prototype for generic values indexed by types of this kind, 
and (3) we show how to promote a generic value thus defined 
to types of arbitrary kind. 

5.1 Normal forms of types of kind * 

Types of kind * have a very simple normal form. Consider 
the Bohm tree of a type of kind *. Clearly, the root of the 
tree cannot be labelled with a type abstraction. Instead, it 
must be labelled with a primitive type constructor, say, c. 
Moreover, if c has arity n, the root must have n direct suc- 
cessors. Thus, the normal form of type terms of kind * is 
described by the following grammar. 

T, ::= 1 I Int 1 (T, + T,) I (T, x T,) 

It is understood that T, contains type terms of kind *. The 
set of all type trees (finite and infinite) that can be formed 
according to this grammar is denoted T,“. We have T,” = 
{BT(t) 1 0 l- t :: *). 

5.2 Defining *indexed values 

The characterization of normal forms motivates the follow- 
ing prototype for type-indexed values. 

poly(a :: *) :: Fa 

PolYW = POlY, 
PoldW = POlYr,, 
poly(41 + a2) = poly, (poly(ai)) (poly(a2)) 
poly(41 x a2) = ~01~~ fpoly(al)) Wd42)) 

Here, poly is the name of the type-indexed value; 4, al, and 
42 are type variables of kind *; F, poly, , poly,, , poly+, and 
poly, are the ingredients that have to be supplied by the 
generic programmer. The type of poly(o) is given by F 4, 
where F is a type constructor of kind -k -+ *. Unlike the 
type index F may also contain function types, tl + tz, and 
universally quantified types, Vx.t. The poly, values must 
have the following types: 

POlY 1 :: Fl 
polyI,,, :: F Int 
PolY+ :: Vx1,xz.F x1 + F x2 + F (x1 +z2) 

POlY x :: VxI,x2.F x1 + F x2 + F (x, x x2) . 

In the latter two cases xi and xz are universally qualified 
since poly+ and poly, have to work for all possible argument 
types. 

It is instructive to see how the example of Sec. 3 maps to 
the formalism above: enc(a) has type F a = 4 + Bin and 
the functions encl, encmt, enc+, and encx are given by 

encl () = [I 
encht n = enclnt n 

enc+ encal enca2 (Id x1) = 0: encal 21 
enc+ encal encaz (Inr x2) = 1: encaz x2 

encx encal enc42 (XI, x2) = encal 21 -H- enc42 x2 . 

The definition of type-indexed values is inductive on the 
structure of T,: we have one equation for each primitive 
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type constructor. Now, a standard result from the theory 
of infinite trees [9] guarantees that a generic value like poly 
possesses a unique (least) extension in T,“. In that sense, 
poly is uniquely defined by its action on primitive type con- 
structors, i.e., by poly,, pol~~,,~, poly,, and poly.. 

Before we proceed let us take a look at further examples 
of type-indexed values. The first example, dec, is essentially 
the inverse of enc: it takes a bit string, decodes a prefix of 
that string, and returns the decoded value coupled with the 
unused suffix. Formally, the two functions are related by 
dec(a) (enc(a) x +I- 6s) = (2, b~).~ 

dec(a :: *) :: Bin -k (a,Bin) 
dec(1) bs 
dec(Int) bs f L!;:) bs 
dec(al + ~2) [] = ewor “dec” 
dec(al + a2) (0 : bs) = let (21, bs’) = dec(al) bs 

in (1nr zi , bs’) 
dec(al + a2) (1 : bs) = let (zs, bs’) = dec(az) bs 

in (Inr x2, bs’) 
dec(al x a2) bs = let (21, bsi) = dec(ar) bs 

(x2, bsz) = dec(az) bsl 
in ((51,m),bs2) 

The functions enc and dec can be seen as very simple print- 
ers and parsers. Pretty printers and parsers, which produce 
and process a human readable format, can be implemented 
if we give the generic programmer additionally access to the 
constructor names. In [17] we use such an extension to de- 
fine Heskell’s show function in a generic way. 

Comparison functions are typical examples of type- 
indexed values. The following program realizes Haskell’s 
compare function, which determines the precise ordering of 
two elements. 

data Ordering 

cmvla :: *\ 
44) 0 ‘0 
cmp(Int) m n 
cmp(al + a2) (Id x:,) (Id YI) 

cmp(al + a2) (Id 21) (Inr y2) 

cmp(al -i- a2) (Inr 572) (Id yl) 

cmp(al + a2) (Irw z2) (Inr y2) 

cmp(al x a2), (XI, x2) (~1, ~2) ._ . 

= LTlEQlGT 

:: a+a+Ordering 
= EQ 
= cmpInt m n 
= cmp(w) 21 yl 
= LT 
= GT 
= cmp(az) x2 32 

= cmp(ar) xi yi ‘lexord’ cmp(az) ~2 ~2 

The helper function lexord used in the last equation imple- 
ments the lexicographic product of two orderings. 

lexord :: Ordering + Ordering + Ordering 
lexord LT ord = LT 
lexord EQ ord = ord 
lexord GT ord = GT 

5.3 Specializing +-indexed values 

The purpose of a generic value is to be specialized. We have 
already discussed the key idea of promoting a generic value 
to types of arbitrary kinds: type abstraction is interpreted 
by value abstraction, type application by value application, 
and type recursion by value recursion. The promoted version 
of poZy(-), which we denote poZy((.)), is consequently given by 

3We tacitly assume that the predefined functions encInt and 
declnt satisfy this relationship. 

the following equations. 

POlYO :: 4) e :: F((t :: K)) 
POlYU4 e = POlY, 
poly(xc)) e = @X 
PolYutl t2>> e = (PolYttll e) (P4xh~ e) 
poly((Ax -+ t>> e = xv + poly((t)) (&3(x : = v)) 
PolYw~ e = fix (poly((tj e) 

Here, Q ranges over environments, which map type variables 
to value variables, and e(z : = v) is syntax for extending the 
environment e by the binding x := 21. The function fix is the 
polymorphic fixpoint operator on the value level. The deli- 
nition of poly((t)) is inductive on the structure of type terms. 
We can, in fact, view the definition as an interpretation of 
the simply typed X-calculus. The generic value poZy(.) is 
related to poly((.)) by 

poly(t :: *) = poly((t :: *)) f ) 0) 

where E denotes the empty environment. Thus, in order to 
specialize poly(t) we simply specialize poly((t)). Note that 
Eq. (I) can be seen as the soundness condition of the spe- 
cialization. 

It remains to specify F((t :: IC)), which is defined by in- 
duction on the structure of kinds. 

11 :: *)) 
C{ . 

= Fu 
u :. n1 + 4) = Vx.F((x :: fir)) -+ F((u x :: ~2)) 

If u is a type constructor of kind ni + ~2, then poly((u)) is 
a function that maps values of type F((x :: ~1)) to values of 
type FUu x :: KZ)), for all x. Again, it is important that x 
is universally quantified since u may be applied to different 
types. The nesting of universal quantifiers is dictated by 
the kind: if n has order n, then F((u :: K)) is a rank-n type 
[30]-assuming that F a has rank 0. For instance, for F 
given by F a = a + Bin we have 

F((GRose :: (* + *I + (* + *> j 
= Vf.F((f::-k+-k))+F((GRosef ::*+-k)) 

= Vf.(Vb.F((b :: *)) + F(Cf b :: *>)) 

+ (Va.F((a :: *) + F((GRose f a :: *))) 

= Vf.(Vb.F b + F (f a)) + (Va.F a + F (GRose f a)) 

= Vf.(Vb.(b + Bin) + (f b + Bin)) 

+ (Va.(a + Bin) + ( GRose f a -+ Bin)) . 

Since GRose has an order-2 kind, F((GRose)) is a rank-2 
type. 

Let us consider some examples. Fig. 2 lists the specializa- 
tions of enc to the datatypes introduced in Sec. 2. For clar- 
ity, the definitions use the original constructor names and 
functions are written in an equational style. The special- 
izations illustrate several interesting points. For instance, 
the function encSequ makes use of polymorphic recursion 
[33]: the recursive call has type Va.(Fork a + Bin) + 
(Sequ (Fork a) + Bin), which is a substitution instance 
of the declared type. In general, polymorphic recursion 
is required whenever the type recursion is nested. Several 
functions have rank-2 type signatures; encMapFork shows 
in a nutshell why this is necessary: the argument encm is 
applied at two different instances: the inner call has type 
Va.(a + Bin) 3 (m a + Bin) while the outer call has 
type Va.(m a + Bin) + (m (m a) + Bin). The functions 
encMapSequ and encsquare’ even combine polymorphic re- 
cursion and the specialized use of a polymorphic argument. 
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encList 
encList enca 

where end Nil 
end (Cons x 2s) 

encRose 
encRose enca 

where encr (Branch x ts) 

encGRose 

encGRose encf enca 
where encg (GBranch x ts) 

encFix 
encFix encf 

where encr (In x) 

encBaseList 
encBaseList enca encb Nil 
encBaseList enca encb (Cons x y) 

encFork 
encFork enca (Node x1 x2) 

encSequ 
encSequ enca Empty 
encSequ enca (Zero s) 
encSequ enca (One x 5) 

encMapFork 

encMapFork encm encv ( DieFoTk tf) 

encMapSequ 

:: Va.(a + Bin) + (List a + Bin) 
= end 
= LOI 
= 1 : enca x -I+ end xs 

:: Va.(a + Bin) + (Rose a + Bin) 
= encr 
= enca x -I+ encList encr ts 

:: Vf.(Vb.(b + Bin) + (f b + Bin)) 
+ (Va.(a -t Bin) + (GRose f a + Bin)) 

= encg 
= enca x -H- encf encg ts 

:: Vj.(Va.(a + Bin) + (f a -+ Bin)) + (Fix f + Bin) 
= encr 
= encf encr x 

:: Va.(a -+ Bin) + (Vb.(b + Bin) + (BaseList a b --t Bin)) 

= [Ol 
= 1: enca x it encb y 

:: Va.(a + Bin) + (Fork a + Bin) 
= enca 21 it enca x2 
:: Va.(a -+ Bin) + (Sequ a + Bin) 

= IO1 
= 1 : 0 : encSequ (encFork enca) s 
= I : 1 : enca x -H encSequ (encFork enca) s 

:: Vm.(Vw.(w + Bin) + (m w + Bin)) 
+ (Vv.(v + Bin) + (MapFork m v -+ Bin)) 

= encm (encm encv) tf 

:: Vm.(Vw.(w + Bin) + (m w -+ Bin)) 
+ (Vu.(v + Bin) + (MapSequ m v + Bin)) 

encMapSequ encm encv (XeSequ te tz to) = encv te 
+I- encMapSequ (encMapFork encm) encv tz 
i-t encm (encMapSequ (encMapFork encm) encv) to 

encSquare :: Va.(a + Bin) -+ (Square a + Bin) 
encSquare enca m = encsquare’ encNi1 enca m 

encsquare :: Vf.(Vb.(b + Bin) + (f b + Bin)) 
+ (Va.(a + Bin) + (Square’ f a + Bin)) 

encsquare encf enca (Zero m) = 0 : encf (encf enca) m 
encsquare’ encf enca (Succ m) = 1 : encsquare’ (enccons encf) enca m 

encNi1 :: Va.(a + Bin) + (Nil a -+ Bin) 
encNi1 enca Nil = [I 
encCons :: Vf.(Vb.(b + Bin) -+ (f b -+ Bin)) 

+ (Va.(a -+ Bin) + (Cons f a + Bin)) 
encCons encf enca (Cons 2 2s) = enca x it encf enca 2s 

Figure 2: Specializing enc to the types of Sec. 2. 
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6 Values indexed by first-order kinded types 

In the previous section we have considered values indexed 
by types of kind *. For values that are indexed by type 
constructors, such as size, some additional machinery is 
needed. We will develop the main ideas for type indices 
of kind * + *. The straightforward extension to first-order 
kinds is explained in Sec. 6.4. Sec. 6.5 discusses the diili- 
culties in extending the approach to higher-order kinds. We 
proceed as in the previous section: (1) we characterize the 
set of normal forms of types of kind * + *, (2) we give a 
prototype for generic values indexed by types of this kind, 
and (3) we show how to promote a generic value to types of 
arbitrary kind. 

6.1 Normal forms of types of kind * + * 

Recall that a type constructor of kind * + * is a function 
on types of kind *. Consequently, when defining (* + *)- 
indexed values we have to use type patterns that range over 
functions. It appears that these functions can be most con- 
veniently expressed if we lift types to a function level. For- 
mally, lifting maps a type t :: IC to a type tt :: TK where TK 
is defined as follows. 

t* = *-+* 
sm + m = @l) -+ (t&z) 

The lifted version +! of type t is given by (we assume that 
for each type variable 2 of kind K there is a lifted variable 
named 3 of kind TK) 

j-c =c 
TX =g 
tt1 t2 = WI) W2) 
tnx+t = ng-ktt 
tclt = Att) . 

The lifted versions, c, of the primitive type constructors 
have already been defined in Sec. 3. The lifted version of 
List, for instance, reads 

&i& = Ag-kp(h~+~+ax~) . 

Expanding the lifted primitives we obtain 

J&t = A~-+p(A~z+1+~zx~z). 

The lifted and the unlifted version of a type are closely re- 
lated: if t has kind * + *, then 

t = (f-t) Id (‘4 
This relation will be employed later when we define poZy(-) 
in terms of poly((.)). 

Using the notion of lifting we can easily characterize the 
set of normal forms of types of kind * + *. Assume that 
we are given a type t of kind * + *. Applying q-expansion 
we have t = Aa + t a. The body of the abstraction has 
kind * and we know from the previous section the shape 
of its normal form. The free variable, a, is treated as an 
additional constant of kind *. Now, to make the passing 
of a explicit we abstract a out. The abstraction process 
replaces the primitive type constructors by their lifted ver- 
sions and a by Id = Aa + a. This motivates the following 
characterization. 

T l +* ::= Id I 1 I Int I (T+,* 2 T*-w) I (T+,* x T+,*) 

We can, in fact, view Id, 1, I& ‘+‘, and ‘x1 as a tiny 
combinator language for defining type constructors of kind 
* + f. 

6.2 Defining (* + *)-indexed values 

The characterization of normal forms suggests the following 
prototype for values indexed by types of kind * + *. 

poly(f::*+*) :: Hf 
poW4 = POlYId 
POlY (U 
POlY (mt) 

= POlY& 

POlY (fl kf2) 
= POlYl,t 
= POlY+ (POlY(fl)) (POlYV2)) 

PolYcfl &.A) = POlYi (POlY(f1)) (POlY(f2)) 

The type of poly (f) is given by H f , where H is a type 
constructor of kind (* --t *) + *. The prototype for * + *- 
indexed values is nearly identical to the prototype for + 
indexed values: the primitive type constructors are merely 
replaced by their lifted versions and we have one additional 
case for the identity type. 

Let us consider how the example of Sec. 3 fits into this 
scheme: size(f) has type H f = Vz.f x + Int and the 
functions sizeId, sizel, sizeM, size+, and sazex are given by 

sizeId x = 1 

si.zeL () = 0 

size& n = 0 

size+ sizeal sizea (In1 x1) = sizeal x1 
size; sizeal sizea (Inr x2) = sizea q 

sizelL sizeal sizea (21,x2) = sizeal x1 $ sizea x2 . 

Note that size(f) is not only a generic, but also a polymor- 
phic function. This combination is, however, not cogent: the 
generic function sum(f), which sums a structure of integers, 
has the monomorphic type f Int + Int. 

In the rest of this section we present two further exam- 
ples of generic values. The most paradigmatic example of 
a (* + *)-indexed value is probably map, which applies a 
given function to each element of type x in a given structure 
Gftype f 2. 

mapCf :: * -i *) :: 
map(W cp x = 

mw(K t) cp x = 
map(fi +A) ‘p (In1 xl) = 
map& zf2) cp (Inr x2) = 

map(fi xf2) ‘p (21, x2) = 

Id (madfi) cp 21) 

Inr (mwCf2) 9 x2> 

(mdfd ‘P 51, map(f2) cp $2) 

Note that the ‘type pattern’ K t = Aa + t covers both 
1 and J&. Furthermore, note that Haskell provides a class 
Functor for mapping functions. Alas, the user must program 
instances of Functor by hand-which is for the most part 
tedious but sometimes quite involving. 

The function size is an instance of a more general concept 
termed reduction or crush [31]. A reduction is a function 
of type f x + x, which collapses a structure of values of 
type x into a single value of type x. To define a reduction we 
require two ingredients: a value e :: x and a binary operation 
op :: z + x + x. Usually but not necessarily e is the neutral 
element of op. 

reduce(f :: * + *) :: Vz.x + (x + z + x) + (f x + z) 

reduce (Id) e op z =X 
reduce(K t) e op x = e 
reduce(f1 + f2) e op (InZ xl) = reduce(f1) e op x1 
reduce(f1 + f2) e op (Inr x2) = reduce(f2) e op x2 
reduceCf1 :A) e OP (XI, x2) 

= reduce(f1) e op x1 ‘op‘ reduce(f2) e op x2 
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A number of useful functions can be defined in terms of 
reduce(f) and map(f), see, for instance, [31, 22, 191. 

6.3 Specializing (* + *)-indexed values 

Promoting poly(.) to types of arbitrary kind proceeds ex- 
actly as before except that we are now working on a func- 
tion level, i.e., we work with lifted kinds and types. To 
begin with, the type of the promoted version is given by 
II((.)), which is inductively defined as follows. 

H((u :: j-k) 
H((u :: trcl + ICZ)) 1 fx:H(x :: tKl)) + H((u x :: $cz)) 

The promoted version of poly (-) reads 

POlY@ :: 4 e :: H((t :: K)) 
POlYtx+ e = POlY, 
PO~YUd e = ec 
PolYttl t21 e = (POlYtth~ e) (PolYtt21 e) 
POlYUb + 0 e = xv + POlYllO Mc: = VI) . 
Po~Yulltn e = fix (POlYUO e> 

Note that poly((.)) depends only on poly, but not on poly[,. 
The latter value is used when defining poly(.) in terms of 
POlY u.n. 

poly(t :: * -+ *) = pozy((tt :: t* + *)) e poly, (3) 

Thus, in order to specialize poly( t) we specialize poly ((tt)), 
which is defined by induction on the structure of lifted types. 
The resulting function has type Vx.H x + H ((tt) x). Sup- 
plying polyld as the first argument we obtain a value of type 
H ((tt) Id), which is equal to H t. Again, we can view 
Eq. (3) as the soundness condition of the specialization. 

One practical problem remains: the type of poZy((.)) uses 
lifted types. Consider, for instance, the type signature of 
site ((List)). 

size ((List)) :: Vg.(Vx.g x -+ Int) + (Vx.List a 2 + Int) 

If we intend to present the specialized program to a Haskell 
compiler, we must find a way of expressing && in terms 
of List. For type constructors of kind * + * the relation- 
ship is quite simple: we have, for instance List a = AZ + ,-- 
List (a z), i.e., List a equals the type composition List . a. 
Given this relation we can rewrite the type signature above. 

size((&)) :: Vg.(Vx.a x -+ Int) + (Vx.List (a x) 3 Int) 

For the general case we must delve a bit into the theory of 
combinators. To begin with we require type-level counter- 
parts of the combinators K and S. 

Kt = hz:+t 

s t1 t2 = Ax + (t1 x) (t2 x) 

Next, we relate types of kind t& to types of kind * + n. 

Definition 4 The relation (No) C (@,) x (* + K) is defined 
by induction on the structure of kinds. 

t N* t’ e t=t’ 

t- Kl’fi2 t’ a Vx,x’.(x -fil 2’ ==s. t x Nn2 s t’ 2’) 

In the base case ‘N*’ relates types of the same kind, so we 
require them to be equal. ‘Type functions’ are related if 
related arguments are mapped to related results. 

Proposition 1 Let t be a type of kind TV, then 

tt -fi K t 

For types of kind * we have tt = K t, i.e., the lifted ver- 
sion simply ignores its additional argument-which comes 
as little surprise. For types of kind * + * Prop. 1 implies 
(ft) x = S (K t) x = t x. Setting x = Id we obtain 
(tt) Id = t, which shows that Eq. (2) is a direct conse- 
quence of Prop. 1. Now, let us apply Prop. 1 to rewrite the 
type signature of, say, size@&)): 

size((&)) :: Vi.(Vg.(Vz.g x -i Int) 
+ (Vx.f g x -k Int)) 

+ (Vx.&f 2 + Int) 

For the second-order type Fix Prop. 1 reads 

fg=Ax--+(fx)(gx) a Fixf=hx-+Fix(fz). -- 

Given this relationship we can replace j& f and f a in 
size((&))‘s type signature. 

size ((&) :: Vf.(Vg.(Vz.a x -+ Int) 
+ (Vx.(f x) (g x) 4 Int)) 

+ (Vz.Fix (f x) + Int) 

Note that the rewrite involves the change of a bound vari- 
able: f of kind (* -+ *) + (* --f *) is replaced by f of kind 
* + (*-+ *). This change is, however, perfectly fine since f 
is only instantiated to lifted types (by construction) and we 
know by Prop. 1 that lifted types of this kind can be ex- 
pressed in terms of the original types. In other words, if we 
consistently change the types of the poly((.)) functions, the 
resulting program is well-typed. 

It is high time to consider some examples. Fig. 3 lists 
the specializations of size to the datatypes of Sec. 2. The 
code looks pretty similar to the code generated for enc, see 
Fig. 2. This is not surprising since the ‘code generation’ is 
completely independent of the kind of the type index. Only 
the types are more involved: since size has already a rank-l 
type, size((F)) is assigned a rank-(n + 1) type if F has an 
order-n kind. 

In Sec. 5.3 we have already discussed two of the features 
the type system of the host language must support: rank- 
n types and polymorphic recursion. Here, we require an 
additional feature: a strong form of type constructor poly- 
morphism [6]. Consider the call sizeSeqv (siteFork sizea) 
in the definition of sizesequ: sa’zesequ requires an argu- 
ment of type Vx.a x 3 Int while sizeFork sizea has type 
Vx.Fo& (a’ z) + Int. To determine whether the call is 
well-typed we must solve the equation a x = Fork (a’ x). 
Setting a = AZ + Fork (a’ z) the call and the definition of 
sizeSequ can be type-checked. Clearly, some kind of higher- 
order unification is required here. Unfortunately, we know 
of no practical language that supports this feature. Haskell, 
for instance, uses a kinded first-order unification [28], which 
reduces a x = Fork (a’ x) to a = Fork and x = a’ x. 
The latter equation is, however, not solvable. The lack of 
type constructor polymorphism is also noted in [6], which 
suggests that generalizing Haskell’s type system might be 
worthwhile. Let us remark that this problem disappears if 
we switch to a language with explicit type annotations. Suit- 
able candidates are the intermediate language of the Glas- 
gow Haskell Compiler [38], which is based on the second- 
order X-calculus [ll], or the language Henk [39], which is 
based on Barendregt’s X-cube [3]. 
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sizelist :: Va.(Vx.a x --t Int) + (Vx.List (a x) + Int) 
sizeList sizea = size1 

where size1 Nil = 0 
size1 (Cons x xs) = sitea x + size1 xs 

sizeRose :: Va.(Vx.a x + Int) + (Vx.Rose (a x) + Int) 
sizeRose sizea = sizer 

where sizer (Branch x ts) = sizea x + sizeList sizer ts 

sizeGRose :: Vf .(Vb.(Vx.b x -+ Int) -+ (Vx.(f x) (b x) 3 ht)) 
+ (Va.(Vx.a x + Int) + (Vx.GRose (f x) (a x) -+ I&)) 

sizeGRose sizef sizea = sizeg 
where sizeg (GBranch x ts) = sizea 2 + sizef sizeg ts 

sizeFix :: Vf .(Vb.((Vx.b x + Int) + (Vx.(f x) (b x) + Id))) 
-+ (Vx.Fix (f x) + Int) 

sizeFix sizef = sizer 
where sizer (In x) = sizef sizer x 

sizeBaseList :: Va.(Vx.a x + Int) + (Vb.(Vx.b x + Int) 3 (Vx.BaseList (a: ?) (b x) + Int)) 
sizeBaseList sizea sizeb Nil = 0 
sizeBaseList sizea sizeb (Cons x y) = sizea x + sizeb y 

sizeFork :: Va.(Vx.a x + Int) + (Vx.Fork (a x) + Int) 
sizeFork sizea (Node x1 x2) = sizea x1 + sizea x2 
sizesequ :: Va.(Vx.a x + Int) + (Vx.Sequ (a x) + Int) 
sizeSequ sizea Empty = 0 
sizeSequ sizea (Zero s) = sizeSequ (sizeFork sizea) s 
sizesequ sizea (One x s) = sizea x + sizesequ (sizeFork sizea) s 

sizeMapFork :: Vm.(Vu.(Vx.w x --t Int) + (Vx.(m x) (w x) + Int)) 
-+ (Vv.(Vx.v x -+ Int) -+ (Vx.MapFork (m x) (v x) + Id)) 

sizeMapFork sizem sizev (TrieFork tf) 
= sizem (sizem sizew) tf 

sizeMapSequ :: Vm.(Vw.(Vx.w x -+ Int) + (Vx.(m x) (20 2) -+ Id)) 
+ (Vv.(Vx.v x + Int) + (Vx.MapSequ (m x) (v x) + Id)) 

sizeMapSequ sizem sizev (DieSequ te tz to) 
= sizev te 
+ sizeMapSequ (sizeMapFork sizem) sizev tz 
+ sizem (sizeMapSequ (sizeMapFork sizem) sizew) to 

sizesquare :: Va.(Vx.a x + Int) + (Vx.Square (a x) + Int) 
sizesquare sizea m = sizesquare’ sizeNil sizea m 

sizeSquare’ :: Vf.(Vb.(Vx.b x + Int) + (Vx.(f x) (b x) -+ Int)) 
+ (Va.(Vx.a x + Int) -k (Vx.Square’ (f x) (a x) + Int)) 

sizesquare’ sizef sizea (Zero m) = sizef (sizef sizea) m 
sizesquare’ sizef sizea (Succ m) = sizesquare’ (sizeCon. sizef) sizea m 

sizeNil :: Va.(Vx.a x + ht) + (Vx.Nil (a x) + Int) 
sizeNil sizea Nil = 0 

sizecons :: Vf.(Vb.(Vx.b x + Int) + (Vx.(f x) (b x) -+ Id)) 
+ (Va.(Vx.a x + hit) --t (Vx.Cons (f x) (a x) + Id)) 

sizecons sizef sizea (Cons x xs) = sizea x + sizef sizea xs 

Figure 3: Specializing size to the types of Sec. 2. 
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6.4 Generalizing to first-order kinds 

So far we have considered generic values indexed by type 
constructors of kind * -+ *. The generalization to type 
indices of first-order kind is straightforward. Assume 
that the tvoe index has kind kn + *. which abbrevi- 
ates ,* + . ’ . + *, + *. We now redefine lifting and put 

n times 

t* = -kn 4 *; the case n = 1 specializes to the preceding 
treatment. The lifted version of a primitive type constructor 
c of arity m is given by 

Cfl . . . fm 
= Aai . . . an+c(flal . . . a,) . . . (fmal **. an). 

To define a value indexed by a type of kind *n + * the pro- 
grammer must provide cases for each of the lifted primitive 
type constructors and additionally for n ‘projection types’: 
?rr=Aal . . . a, + a; with 1 < i < n (for n = 1 we have 
xi = bar + al = Id). Specializing a generic value works ex- 
actly as before except that the ‘initial call’ now uses poly,; , 

“., POlY CT: ’ 

poZy(t::*” -+*) 
= pozy((tt :: t*‘*” + *)) e poly,iI . . . poly,: 

6.5 Limitations of the approach 

Let us briefly discuss the difficulties in extending generic 
programming to higher-order kinds. Interestingly, the ap- 
proach still works for type indices of second-order kind. As 
an example, consider a generic value indexed by a type con- 
structor of kind (* + *) --P * + -k. To characterize the set 
of normal forms we proceed as before: q-expanding a given 
type t of that kind we obtain t = bar az + t al az. The 
body of the abstraction has kind * and its normal form can 
be characterized in the usual way-the variables al :: * 4 * 
and a2 :: * are simply treated as additional constants. Ab- 
stracting al and a2 out yields the following grammar 

T( *+*)+*+* ::= 
I 

7rg 
~2 T(w)-,- 

I 1 

where rr; = Aar a2 + al, 7~; fi = Aal az + a2 (fi al a~), 
and the lifted type constructors are defined as in Sec. 6.4. 
Thus, the type patterns for ((* + *) + * + *)-indexed 
values are similar to the ones in the first-order case except 
that the ‘projection types’ are slightly more complicated. 

Unfortunately, this scheme breaks down at the third 
level. To illustrate, consider a type t = Aa + t a of kind 
n + * with K. = (* + *) -+ *. The normal form of t a is 
described by the following grammar. 

T, ::= a T,,, ( 1 1 Int 1 T, + T, 1 T, x T, 

Note that T, refers to T,,,. This means that a generic 
value, which is indexed by a type constructor of kind PC -+ *, 
cannot be inductively defined on the structure of types. 

For similar reasons the set C of primitive type construc- 
tors must not contain types of second-order kind or higher. 
To see why assume that Fix :: (* + *) + * is primitive. 

Since Fix’s argument is a type constructor, we can no longer 
define generic values inductively: enc(Fix f), for instance, 
cannot fall back on enc(f) since f has not kind *. To sum- 
marize: our approach is limited to type indices up to second- 
order kinds and to primitive types up to first-order kinds. 
Whether these restrictions are severe in practice remains to 
be seen. We suspect that this is not the case. Finally, let 
us stress that these restrictions do not affect the ability to 
specialize generic values, which works for types of arbitrary 
kinds. 

7 Towards Haskell 

The specialization of generic values ss described in Sec. 5.3 
and 6.3 places high demands on the type system: it re- 
quires polymorphic recursion, rank-n types, and a strong 
form of type constructor polymorphism. Haskell 98 [37], for 
instance, only supports polymorphic recursion. In this sec- 
tion we show that the requirement for rank-n types can be 
alleviated since they can be encoded using so-called dictio- 
naries. This encoding also provides an interesting link to 
Haskell’s type classes. 

Recent extensions of Haskell as implemented in GHC 
[36] and in Hugs 98 [29] provide rank-2 type signatures and 
local universal quantification in datatypes. Using the latter 
feature we can circumvent rank-n types. The idea is very 
simple: instead of passing a polymorphic value directly as 
an argument we pass a dictionary that contains the value 
as the single component. Of course, we require not only a 
single dictionary but a kind-indexed family of dictionaries. 
The following definitions introduce suitable dictionaries for 
the enc function. 

type Bnc(*) a = a + Bin 
type Enc(lcr + ~2) a = Vx.EncD(Kr) 2 + Enc(fiz) (a x) 

data L7ncD(~) a = EndIn{ encn :: Enc(~) a} 

The promoted function enc((t :: 6)) now has type Enc(&) t. 
Fig. 4 displays the specializations of enc for some types. 
The dictionary translation is interesting in at least two re- 
spects. First, it suggests an easy way of dealing with mutu- 
ally recursive generic definitions, see [17] for examples. We 
simply use dictionaries with multiple entries, one for each 
recursive function. Second, it relates generic definitions to 
Haskell’s type classes [13], which use a similar implementa- 
tion. Recall that an overloaded function is translated into 
a non-overloaded function that takes as an additional argu- 
ment the dictionary containing the operations of the c1a.s~. 
For instance, the class definition 

class Eq a where (==), (/=> :: a -+ a + Boo1 

gives rise to the following dictionary type. 

data EqD a = EqD{(==), (/=) :: a + a + Bool} 

Each instance declaration of the form instance Eq T de- 
fines an element of EqD T and each declaration of the form 
instance (Eq a) + Eq (T a) defines a function of type 
Va.EqD a + EqD ( T a). Thus, generic definitions and 
type classes use the same mechanism on the implementa- 
tion level. Using the deriving construct instance declara- 
tions can even be automatically generated for user-defined, 
first-order kinded datatypes. However, instance declarations 
are too limited to handle types of higher-order kinds. For 
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instance, deriving Eq for MapFork or MapSequ fails with 
a compile-time error in Haskell 98. Thus, generic defini- 
tions generalize type classes in some respects: they allow 
us to define values generically for all types-while class 
instances must be programmed by hand, except for some 
predefined classes like Eq-and the specialization is not re- 
stricted to first-order kinded types. Note that instance dec- 
larations can be mimicked in our framework by so-called 
ad-hoc definitions, see [17]. For instance, an ad-hoc com- 
pression scheme for lists, which yields better compression 
rates than the generic scheme, can be defined by 

enc(List u) 2s = enclnt (length xs) 
St concat (map (enc( a)) xs) . 

This equation extends the definition of enc given in Sec. 3 
and specifies an exception to the general scheme. 

8 Related work 

Generic programming The concept of generic functional 
programming trades under a variety of names: F. Ruehr 
refers to this concept as structural polymorphism [41, 401, 
T. Sheard calls generic functions type parametric [43], 
C.B. Jay and J.R.B. Cocket use the term shape polymor- 
phism [25], R. Harper and G. Morrisett [14] coined the 
phrase intensional polymorphism, and J. Jeuring invented 
the word polytypism [26]. 

The mainstream of generic programming is based on 
the initial algebra semantics of datatypes, see, for instance 
[12], and puts emphasis on general recursion operators like 
map and catamorphisms (folds). In [42] several varia- 
tions of these operators are informally defined and algo- 
rithms are given that specialize these functions for given 
datatypes. The programming language Charity [B] automat- 
ically provides map and catamorphisms for each user-defined 
datatype. Since general recursion is not available, Charity 
is strongly normalizing. FhctoriaJ ML [24] has a similar 
functionality, but a different background. It is based on the 
theory of shape polymorphism, in which values are sepa- 
rated into shape and contents. The polytypic programming 
language extension Polyp [21]-already mentioned in the 
introduction-offers a special construct for defining generic 
functions. The generic definitions are similar to ours (mod- 
ulo notation) except that the generic programmer must ad- 
ditionally consider cases for type composition and for type 
recursion (see [20] for a more detailed comparison). 

All the approaches are restricted to first-order kinded, 
reguiar datatypes (or even subsets of this class). One no- 
table exception is the work of F. Ruehr [41], who presents 
a higher-order language based on a type system related to 
ours (only type recursion is missing). Genericity is achieved 
through the use of type patterns which are interpreted at 
run-time. By contrast, the technique presented here does 
not require the passing of types or representations of types 
at run-time. This also distinguishes our approach from the 
work on intensional polymorphism [14, lo] where a type- 
case is used for defining type-dependent operations. 

This paper can be regarded as a successor to [20], where 
a similar approach restricted to first-order kinded types is 
presented. A companion paper [17] contains a concrete pro- 
posal for a generic programming extension of Haskell, which 
is based on the theoretical framework developed here. 

Type systems Several variations of the type system given 
in Sec. 4 have been described in the literature, see 131 for 
a good survey article. For instance, if we drop the fixpoint 
operator from the type language, we obtain the system Xc, 
which forms one corner of Barendregt’s X-cube. Dropping 
type application and abstraction yields the system Xp, which 
supports structural equivalence of types. This system is, 
however, restricted to types of kind * and cannot handle 
parametric types. To the best of the author’s knowledge 
the combination of Xw_ and Xc1 (with a polymorphic fixpoint 
operator) is original. 

Type inference algorithms for languages with generic 
constructs have been developed by F. Ruehr [41], C.B. Jay 
et.al. [24], and P. Jansson and J. Jeuring [21]. Note that 
our system does not permit type reconstruction in gen- 
eral. Consider the expression size IS where xs has type 
List (Rose Int). Should size count the number of integers 
or the number of rose trees in the list? 

9 Conclusion 

We have presented a new approach to generic functional 
programming, which is both simpler-from the generic pro- 
grammer’s point of view-and considerably more general 
than previous work--the complete type system of Haskell 
is covered (previous approaches were limited to first-order 
kinded, regular types). The basic idea is to model types by 
terms of the simply typed X-calculus augmented by a family 
of recursion operators. Specializing a generic value can be 
seen as an interpretation of simply typed X-terms. The gen- 
erated code places high demands on the type system of the 
underlying language: polymorphic recursion, rank-n types, 
and a strong form of type constructor polymorphism are 
required. We have shown that rank-n types can be circum- 
vented using a dictionary translation, which provides an in- 
teresting link to Haskell’s type classes. In particular, generic 
definitions generalize Haskell’s deriving construct. 
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