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Abstract. A well known but incorrect piece of func- 
tional programming folklore is that ML expressions 
can be efficiently typed in polynomial time. In prob- 
ing the truth of that folklore, various researchers, in- 
cluding Wand, Buneman, Kanellakis, and Mitchell, 
constructed simple counterexamples consisting of ty- 
pable ML programs having length n, with principal 
types having R(2e”) distinct type variables and length 
Q(2”‘“). When the types associated with these ML 
constructions were represented as directed acyclic 
graphs, their sizes grew as Q(2”‘). The folklore was 
even more strongly contradicted by the recent result of 
Kanellakis and Mitchell that simply deciding whether 
or not an ML expression is typable is PSPACE-hard. 

We improve the latter result, showing that decid- 
ing ML typability is DEXPTIME-hard. As Kanellakis 
and Mitchell have shown containment in DEXPTIME, 
the problem is DEXPTIME-complete. The proof of 
DEXPTIME-hardness is carried out via a generic re- 
duction: it consists of a very straightforward simula- 
tion of any deterministic one-tape Turing machine M 
with input t running in O(cl’l) time by a polynomial- 
sized ML formula CPM,=, such that M accepts x iff @M,= 
is typable. The simulation of the transition function 
6 of the Turing Machine is realized uniquely through 
terms in the lambda calculus zoilhovl the use of the 
polymorphic let construct. We use let for two purposes 
only: to generate an exponential amount of blank tape 
for the Turing Machine simulation to begin, and to 

compose an exponential number of applications of the 
ML formula simulating state transition. 

ML [Mi78][HMM86] is a well known functional 
programming language incorporating a variety of 
novel features, and prominent in its contributions 

to programming language design is its polymor- 
phic typing system. A strongly typed language 
like Pascal is completely type checked at compile 

time, obviating the need for runtime type check- 
ing; the penalty is that code which has been writ- 
ten in a largely “type independent” style (stacks, 
trees, or even the identity function) must be re- 
peated with only changes in type declarations. On 

the other hand, a naive Lisp compiler will do no 

compile time type checking, allowing Lisp code to 
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vided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the title of the publication and 
its date appear, and notice is given that copying is by permission of the 
Association for Computing Machinery. To copy otherwise, or to republish, 
requires a fee and/or specific permission. 

0 1990 ACM 089791-3434/90/0001/0382 $1.50 382 

It is purely the expressive power of ML polymor- 
phism to succinctly express function composition which 
results in a proof of DEXPTIME-hardness. We con- 
jecture that lower bounds on deciding typability for 
extensions to the typed lambda calculus can be re- 
garded precisely in terms of this expressive capacity 
for succinct function composition. 

To further understand this lower bound, we re- 

late it to the problem of proving equality of type vari- 

ables in a system of type equations generated from an 

ML expression with let-polymorphism. We show that 

given an oracle for solving this problem, deciding ty- 

pability would be in PSPACE, as would be the actual 

computation of the principal type of the expression, 

were it indeed typable. 

1 Introduction. 



price paid is run time type checking. 

The ML idea of type polymorphism is a suc- 
cessful attempt to get part of the best of both 
worlds. Given an ML expression, a precisely de- 
fined type discipline automatically infers the func- 
tional type of the expression, or rejects the expres- 
sion as untypable. The simplest example of this 
type polymorphism in action is the identity func- 
tion. In the ML expression let I = Xx.x in (body), 
the identifier I is thought to have functional type 
t + t for any type t, and separate (so-called “let- 
bound”) instances of the identifier 1 in the expres- 
sion (body} do not further constrain each other in 
terms of inferring their types. This contrasts with 
“lambda-bound” variables, where each instance in 
the body must have identical and not merely iso- 
morphic type. A Lisp-like interpretation of the 
ML expression let 1 = Xs.a: in II would be as 
syntactic sugar for (X1.11)(Ax.2), but the ML in- 
terpretation is better thought of as (Xy.y)(Xz.z), 
which would infer that Xx.x was of type t + t, 

that Xy.y was of type (t + t) + (t --) t), and 
that the entire expression was then of type t --f t. 

The Lisp-like interpretation (XI.II)(XZ.S) would 
be rejected by the ML type discipline, however, 
since the lambda-bound variable 1 is forced to 
have both type t -+ u (in its “function” incar- 
nation in the body) as well as type t in its “ar- 
gument” incarnation. The type discipline insists 
via unification that t = t --$ u, and on the basis of 
this positive occur check, the subexpression X1.11 
is declared untypable. The fact that, of course, 
this example does not cause a type error moti- 
vates the search for more robust type disciplines. 

In embedding such polymorphic type inference 
in a programming language, there are natural con- 
cerns that the inference mechanism be decidable 
so that the compiler can terminate, and efficient 
so that termination is within a reasonable amount 
of time. In his original paper, Milner made it 
clear that the former was true, and straightfor- 
ward termination and correctness proofs (for ex- 
ample, [W87], which is actually a correctness proof 
for typing pure lambda terms, but works for ML 
with trivial changes) have since been published. 

Certainly in practice, the inference system has 
been efficient, which led to the belief that this ef- 
ficiency was a polynomial time one, i.e., that typ- 
ing an ML expression of length n could be done 
in time polynomial in n. Upon closer scrutiny, 
however, this putative folk theorem turned out 
instead to be unsubstantiated folk lore. 

First, it was observed by several researchers, 
including Buneman, Kanellakis, Mitchell, and 
Wand, that there exist pathological ML expres- 
sions whose principal type is of vastly larger size 
than the original expression. 

Example 1.1. 

let 2 0 = x.2.2 
in let 21 = (x0,20) 

in let x2 = (x1,21) 
in . . . 

in let 2, = (xE,,x,) 
in xn 

Example 1.2. 

let x1 = XY.(Y,Y) 
in let x2 = Xy.xl(xl(y)) 

in . . . 
in let 5, = Xy.x,-l(~~-l(y)) 

in xn( Xz.z) 

(We use (t, y) as an abbreviation for AZ.ZZY, the fa- 
miliar lambda calculus implementation of pairing.) 

In Example 1 .l, we have a construction for 
ML expressions of length R. which include Q(2Cnj 
distinct type variables. Even more pa.thological 
is the construction of Example 1.2, based on re- 
peated function composition: it has a principal 
type which is of length s2(22c”) when printed as 
a string, and has a representation as a directed 
acyclic graph with Q(2”“) nodes. The author type 
checked the expression when n = 5 using Stan- 
dard ML running on a Sun 3/160 workstation, 
a computation which consumed over 2 minutes of 
processor time, 60 megabytes of memory, and out- 
put 173 printed pages of the principal type until 
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output summarily aborted. r This experiment 
places many comments about typing and soft- 
ware engineering in a curious light, for instance, 
the (by no means unusual) remark in [Pf88] that 
“[Types]...provide a succinct and formal documen- 
tation and thus help the programmer read, debug, 
and maintain his programs.” 

Secondly, a more sophisticated and more damn- 
ing blow was struck at the folklore of efficiency of 
ML typing by Kanellakis and Mitchell [KM89], 
who showed that simply deciding whether or not 
an ML expression is indeed typable is PSPACE- 
hard, indicating that the difficulty of typing ex- 
pressions is not merely intractible because of the 
size of the output, but because of complexi ties of a 
more intrinsic nature. An upper bound is given by 
them that the typability question (and indeed, the 
actual computation of the principal type) can be 
answered in DEXPTIME. They mention the res- 
olution of the complexity of this decision problem 
as an outstanding open question, leaving specula- 
tion that its difficulty might be greater than that 
computable in polynomial space. 

After all this bad news, some good news is in 
order. Unfortunately, this paper only gives more 
bad news: we show here that deciding ML typabil- 
ity for the “Core ML” language treated by Kanel- 
lakis and Mitchell is actually DEXPTIME-hard. 
As a consequence, deciding ML typability is com- 
plete for deterministic exponential time. We note 
that a simultaneous proof [KTU89a] has been an- 
nounced, using altogether different methods. 

This bound is of obvious relevance to the un- 
derstanding the typing mechanisms of a variety of 
functional languages which have been built in part 
around the ML type discipline, e.g., Miranda, Or- 
well, Haskell, etc. It also provides interesting in- 
sights into problems in software engineering con- 
cerning reusable code, because let-polymorphism 

‘Space limitations naturally restrict a full report on this 
experiment; we include a summary in Appendix A. A seri- 
ous question is motivated by this little test: if a decidable 
type system can output 50 unreadable pages of principal 
type with huge computational overhead, does it really make 
any difference if the type system is decidable? 

is precisely a mechanism for specifying that code, 
and ensuring that its subsequent use will not gen- 
erate run-time type errors. 

1.1 Lower bounds. 

Lower bounds proofs relating to complexity clas- 
ses generally fall into two categories: reductions 
from problems of known and proven difficulty, and 
generic reductions. For example, the PSPACE- 
hardness proof in [KM891 is a reduction from Quan- 
tified Boolean Formulas (QBF), already known to 
be complete for PSPACE. The intuition of Kanel- 
lakis and Mitchell was primarily derived from Ex- 
ample 1.1 above: they realized that the use of ML 
polymorphism essentially described in this exam- 
ple could also be used to simulate truth tables. 
Even though a truth table on n variables is of ex- 
ponential size, their insight was that a short (i.e., 
polynomial in n) ML program could “expand” ex- 
ponentially via let-reduction (the let-equivalent of 
,&reduction) to simulate the table. 

We present in contrast a generic reduction: 
given any deterministic one-tape Turing machine 
M with input z running in 0(&l) time, we show 
how to construct an ML formula @M,=, such that 
M accepts 5 iff @M,z is typable, where the length 
of @)M,~ is polynomial in the length of the de- 
scription of M and 2. Since every language L in 
DEXPTIME has a deterministic Turing Machine 
ML which can decide if 2 E L for input 2 in 0(&l) 
time, this reduction shows that the difficulty of 
deciding typability of ML expressions is (within a 
polynomial factor) as hard as deciding member- 
ship in the “hardest” languages in DEXPTIME. 
We note that there are languages in DEXPTIME 
requiring exponential time and space infinitely of- 
ten, for example, deciding if a semiregular ex- 
pression (regular operators plus intersection) over 
some alphabet C denotes C* [AHU][Hu73]. 

The simple intuition providing the foundation 
of the DEXPTIME-hardness proof presented here 
is motivated by the above Example 1.2. The in- 
tuition is the following: note that the function x, 
in the example is equivalent to the lambda term 
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Xy .zi^-‘(y), namely, a function which applies the 
20 function an exponential number of times to 
its argument. If y was a piece of Turing Ma- 
chine tape, and 20 was a function which added 
a tape square to the tape, 5, would be a good 
function for constructing exponential-sized Tur- 
ing Machine IDS. If y was a Turing Machine ID, 
and 20 was its transition function 6, 2, would be 
a good way to “turn the transition crank” and ap- 
ply 6 an exponential number of times to the initial 
machine ID. Of course, there are many technical 
details to work out, but the inspiration is simply 
that the “exp” in “exponential function compo- 
sition” is the same “exp” in “DEXPTIME.” It 
is uniquely the expressive power of ML polymor- 
phism to succinctly express function composition 
which results in a proof of DEXPTIME-hardness. 
We conjecture that stronger lower bounds on de- 
ciding typability for extensions to the ML typ- 
ing system-or, for that matter, extensions to 
the typed lambda calculus- can be regarded pre- 
cisely in terms of this capacity for succinct func- 
tion composition. 

In our proof, the technical mechanics simulat- 
ing the transition function 6 of the Turing Ma- 
chine are realized purely through terms in the 
lambda calculus luithout the use of the polymor- 
phic let construct. The transition function can 
be represented in a straightforward manner by a 
Boolean circuit, where the inputs are variables Q; 
set to true iff the machine is in state i, and vari- 
ables z and o indicate whether the tape head is 
reading a 0 or a 1. The output of the circuit indi- 
cates the new state, what is written on the tape 
cell, and the head direction. As we will show, 
all of this circuitry can be realized by lambda 
terms, using the Boolean gadgets of Kanellakis 
and Mitchell, originally proposed in their paper on 
the inherent sequentiality of unification [DKM84], 
and recycled most recently as lambda terms in 
their PSPACE-hardness proof. We add a Boolean 
“fanout” gate to their logical menagerie in the in- 
terest of facilitating our proof. 

We present the proof in “bottom up” form, 
showing first how to encode Boolean values as 

lambda terms, adding Boolean logic, Turing ma- 
chine state encoding, tape encoding, proceding 
piece by piece to build up the entire simulation. 
It may come as a shock to some more practi- 
cal functional programming language enthusiasts 
that this rather arcane lower bound is just u com- 
puter program, where we are interested in the type 
produced by the program instead of the value. 
The generic reduction, as one of my colleagues 
with more applied interests put it, is just a com- 
piler: namely, how to compile Turing Machines 
into ML types. Since our “object code” is ML, 
we have endeavored to follow the gospel of [AS851 
wherever possible, using modularization and data 
abstraction to make the program and proof more 
understandable. 

1.2 Polymorphic unification. 

We then proceed from this lower bound to a fur- 
ther understanding why deciding typability is so 
difficult, focusing our attention on the kind of 
type equations which must be solved (using uni- 
fication) to decide whether an ML expression is 
typable. Given such a set of type equations, and 
two type variables chosen from this set, a natu- 
ral question is to ask whether the variables must 
have the same value in the unification solution. 
Were this solvable efficiently (e.g., by an oracle), 
we show that deciding typability, and in addition 
the computation of the actual type, can be done in 
polynomial space. It is, therefore, this particular 
question about unification which is the bottleneck 
in deciding typability. It turns out that there is a 
natural correspondence between this question and 
the encoding of Boolean logic which is integral to 
our Turing Machine simulation. 

2 The DEXPTIME-hardness 
bound. 

We present the ML program constructed from a 
Turing Machine M and input 2 as a series of equa- 
tions which are meant to be nested as a series of 
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let-expressions. The program is written in “Core (i.e., causing a positive occur check), a mistyping 
ML,” i.e. the language defined as: occurs and the entire expression is rejected. 

E ::= x 1 Xx.E 1 EE 1 let x = E in E 

In some instances, we also give the principal type 
of the expression to clarify its significance. In the 
ML “type hacking” which follows, we acknowledge 
an obvious debt to the authors of [KM89], who 
introduced many of the techniques; the contribu- 
tion of this paper is to use them more expressively. 
The coding tricks used here allow types to simu- 
late calculations by exploiting the power of poly- 
morphism to drive the inference engine of unifica- 
tion, in the same spirit that Church showed how 
the values of lambda terms could, via P-reduction, 
simulate computation. 

2.1 Notation. Miscellaneous combina- 
tors. 

I = AZ.% 

Ii = xx.xy.2 

Eq = Xs.Xy.K 5 X2.K (%X) (z y) : 

a-a-a 

(41,427 **.,4n> = 

X%..z~*q52 . . .4, : 

01 ------t t2 - -** - i?, - u) -u 

pair = 

xx.xy.xx’.xy’.x%.r~ .z 

(Ii’ J%(x, 5’) -R!(Y, Y’)) : 

a-6 -a-b-c-c 

The types of true and false are virtually identical. 
If we regard them as functions, the only differ- 
ence is that the first two (curried) arguments of 
true must be of the same type. If true is applied 
to two arguments whose types cannot be unified, 
for example 1 and Eq, then a mistyping occurs; 
on the other hand, false I Eq can be typed. In 
the innermost let in our ML simulation of a Tur- 
ing Machine, then, we produce a Boolean value 
indicating if the machine rejected its input, and 
apply that value to two non-unifiable arguments; 
the whole formula types properly iff the machine 
accepts. (For more details, see Section 2.12.) 

We typically write Eq( x, y) instead of Eq x y. The 
importance of the Eq combinator is that for ML to 
correctly type Eq($, $), the ML expressions 4 and 
+ are constrained to have identical type. When 
6 and $ are lambda-bound variables, this con- 
straint can affect the types of other expressions: 
it is this phenomenon which permits us to carry 
out the reduction. If the constraint is impossible 

Notice that in the definition of (41,. . , , &), 
we imagine the formula 4; to have principal type 
ti, and in the entire expression, the types ti do 
not necessarily constrain each other. When an 
ML formula Xw.Kw(4~, . . . ,bn) is typed, it has 
the same principal type as the I combinator, pro- 
vided that the type constraints introduced by the 
4i can be satisfied. This construct allows a trans- 
parent means of introducing constraints on types 
of subexpressions. 

The definition of pairintroduces the type equiv- 
alent of the Lisp cons. Instead of pair z y we usu- 
ally write [z; y]. When applied to two terms x and 
y, the term [z; y] has type a --+ 6 --+ c -+ c, 
where a is the type of x and b is the type of y. If 
u and v are ML lambda-bound variables and we 
need to type the function application [z; y] u U, 
then the types of x and u must be the same, as 
must be the types of y and V. 

2.2 Boolean values: true and false. 

true = Xx.Xy.Xz.K z Eq(z, y) : 

a--ta-b-b 

false = Xxi4y.Az.z : 

a-bdc--,c 
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2.3 Zero and One (Tape Symbols). 

zero = [true; fake] 

= X2.Xy.Xt.K % 

(&7(x, true),Q(y, faW> 
one = [false; true] 

= Xx.Xy.Xt.K % 

b%(x, false), My, true)) 

Now we define predicates telling if a cell holds a 
zero or a one: 

zero? = Xcell.Xx.Xy.Xz.Kz 

%+ell P, P x Y> 

Observe that cell p causes p to unify with the 

values, we do not need to simulate negation, be- 
cause we have encoded whether the tape symbol 
is a zero in the type bound to z, and the negation 
in the type bound to y. 

2.4 Boolean operators and and or. 
Fanout. 

We implement these monotone Boolean operators 
using the gadgets introduced in [DKM84]. We 
add yet another gadget to implement multiple 
fanout, indicating why such an addition is nec- 
essary. 

“first” component in the cell, and then p x y “loads” 
the right “type bindings” for x and y in the “an- 
swer” Xz.Xy.Xz.z, possibly unifying x and Y if p 
encodes true. 

and = 

Xin~.Xin~.Xu.Xv.Az.Kz 

xx*.xy*.xx~.xy~.xw. 

(hwl, in2x2y2, 

XlU, y*w, 22w, yzv) 

Observe that if u : a, v : b, and w : c, then the 
The definition of zero? also demonstrates a subterms zru, yrw, x220, y2v get typed a 

general style for using ML to compute with types. 
Note first the declarations of “inputs” and “out- a-f ua xl c-g c Cdh 

Yl w 22 WC Y2 
b-+k,b 

. 

puts,” though in the relational calculus of unifi- 
cation they are really one and the same-it mat- If the type of x1 equals the type of Yr, then a - 

ters only which of the two you choose to con- f = c - 9 and a = c* If the type Of z2 equals 
strain! The Xz.Kz marks the end of the inputs the type of ~2, similarly b = c, and a = b follows- 

and outputs; next comes the “local declarations,” namely, that the “output” variables u and v are 

of which we have only one, for p. In the brackets, forced into having the same type. 

we have the “body” of the procedure. It is intu- Now for disjunction: 
itively useful for us to think of the instructions 
in the body being executed from top to bottom, or = 

even if they represent a set of constraints which Xin~.Xin2.Xu.Xv.Xz.Kt 
are being realized “simultaneously.” xx*.xyr.xx2.xy2. 

one? = XceZl.Xx.Xy.Xz.1S.z XlU, Yl% 52u, YZV) 

h.%.(cell m q x Y) In typing this term, we have the constraints 

The importance of this encoding scheme for zero a--+fg x1 b---+gvb 
Yl 

adh a 
32 u Y2 

b----+kvb 
* 

and one is that we simulate the Boolean circuitry 
in the finite state control of the Turing Machine If the type of xi equals the type of yi, i = 1,2, 
using only the monotonefunctions and and or. By then a = b, and the type of u equals the type of 
encoding zero and one as these pairs of Boolean V. 
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An anomaly 

Note that, however strong the temptation may 
be, these logic gates cannot be used in a “free” 
functional style if the simulation of Boolean logic 
is to be faithful. For example, we find (rather 
oddly) that 

gate to ensure that no input is used in two differ- 
ent Boolean calculations, the simulation will be 
faithful. 

fanout = 

(Xp.Xq.Xr.[or pq; or q r]) true false false 

= [true; true] 

when we would have expected the answer to be 
[true; false]. What happened? Imagine we have 
for 1 5 i < 3 pairs of let-bound variables (Xi, yi), 
where the type of 51 and yr are constrained to 
be identical in simulation of our encoding of the 
Boolean “true.” We let (Uj,Vj), 1 5 j 2 2 en- 
code the Boolean or of the first two and last two 
pairs. The encoding of the or operator enforces 
the following constraints: 

~in.Xoutl.Xout2.Xz.Kz 

xu.xv.xx~.xy~.xx~.xy2. 

( in uv, 

out1 51 yl, Eq(out1, false), 

out2 x2 ~2, Eq(out2, false), 

t/J Xl 22, 

v Yl Y2) 

o--+f a 
51 

Uhf cl 
Ul Yl 

a+g a 
Vl x2 

adh a 
Ul Y2 Vl 

a-g a 
x2 

a-h a 
u2 Y2 

a-k a 
212 x3 

a-4 a 
212 Y3 02 

Note that the type equaIity of x1 and yr naturally 
forces the equality of the types of ur and vr, but 
this forces the “argument” part of the types of 22 
and y2 to be equal. This equality in turn forces 
the equality of the types of u2 and v2. 

What has been ignored in the Boolean simula- 
tion is that the second input has multiple fanout: 
if we introduced constraints by typing the terms 
{X~U~UZ, y~vrv~} instead of typing {QUA, x2212, 
~2211, yzvz}, then everything works out properly: 

a-f a 
Xl 211 

b-v b 
Yl Vl 

a+c--+h 
x2 

a c 21~112 ypddkv; v; 
+--+e c 

x3 u2 ypmv; 

If the types of 22 and y2 are equal in this ex- 
ample, we get a ---+c----+h=b---+d---+k,so 
a = b and c = d-both outputs are true. But if 
only the types of x1 and yr are equal, we derive 
a - f = b - g, hence a = b, but we cannot 
derive c = d, the latter equality necessary to make 
the second output true. 

These examples motivate the introduction of 
another gadget -not to do Boolean logic, but fan- 
out. We observe that as lone: as we use the fanout 

Viewed as a dag in the style of [DKM84] (see Fig- 
ure l(a)), the fanout gate is just an upside-down 
or gate. Do not be misled by the Eq above: its 
use only constrains the types of the out1 (and 
similarly, out2) to have type a - b - c - 
c (“false until proven true”); further constraints 
may force a = b. Figure l(b) shows the type of 
fanout as a type dag. 

By using fanout, we can also replicate the types 
of lambda terms Xxr.Xx2. -.. Xzk.&.z where the 
x; have Boolean types associated with them: 

coPYk = 

Xin.Xoutl.Xoutz.X~.l(t. 

h1.xU2. * ’ ’ Auk. 

xz(1.ii02. - * - xvk. 

~w~.~?&j. * * * hk. 

(in ul u2 - ’ ’ uk, 

fanout u1 2112~1, 

fanout u2 02 ~2, 

. . . 

fanout Uk Vk Wk, 

&(outl, ki&b2. ’ * ’ /\xk.&/), 

&(out2, hI.h2. - ” hk&.y), 

out1 01 212 -” vk, 

out1 Wl w2 * - * Wk) 

This definition can be used to copy tape symbols: 

copy-cell = copy2 
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In addition, we can use the definition of copyk 
to construct more than two copies of some type 
structure: 

coPYk,j = 

Xin.Xoutl.Xout~. a * * XOUtjeXZsKZ 

AU~.AUz.**‘AUj. 

( copyk in ul out1 , 

copy!, 111212 Out2, 

copyk 212 u3 Out3, 

I.. 

Note that in a type faithfully encoding a machine 
state, only one of the qi has the type of true, and 
the rest have the type of false. We now define 
a predicate giving the type output of true when 
applied to a state coding acceptance: 

accept? = 

Xstate.Xx.Xy.Az.Kz 

Xql .Xqa. - . - Aq,.Xacc. 

(state qi q2 * * * Qn, 

Eq(acc,or qe+l(or qe+2(or- - - 

copyk y-1 uj outj) (Or Qm-1 Qm) ” ‘)>)T 

act x y) 

Notice that copying or fanning-out a type tends 
to “corrupt” it via unification, so that using it 
again as an input can cause problems with the 
simulation of the logic. To avoid this complica- 
tion in the above definition, we use the “tempo- 
rary” types u;, so that copyk zli u&l OUti+ uses 

u; to copy the type structure into out;+1 as well 
as u;+r; the latter uncorrupted type is then used 
to continue copying. 

The type of the “answer,” i.e., the functional ap- 
plication acceptlstate, is the type of the ML term 
Xz.Xy.Xz.Kz, subject to the constraints that fol- 
low. The expression state ql q2 - +a q,., forces the 
types of the 9; to unify with Boolean values en- 
coded in the type of state. The type of act is then 
constrained to be that of true or false, depending 
on the type of the Boolean expression. The final 
constraint act 2 y forces x and y in the “answer” 
to unify if the Boolean formula typed as true. 

2.5 Machine states. Testing for accep- 
tance or rejection. 

A predicate reject? is defined similarly. 

Now we commence in earnest the coding of a Tur- 2.6 Generating an exponential amount 

ing Machine. Let its states be of blank tape. 

Q = h,qz,---,qnl In coding up an initial ID of the Turing Machine 
in ML, we need to generate the exponential space 

where q1 is the initial state, and the accepting and 
rejecting states are (respectively): 

in which the exponential tinie machine can run. 
Here’s how: first, for lack of anything better, we 

A = {qe+l,qe+z, - - . , qm) define 

R = {Qm+l~Qrn+29~~~~!Zn) nil = xz*z 

We now code up the ML simulation of the initial 
state, and how states can be replicated: 

Now we use function composition to generate an 
exponential amount of tape using a polynomial- 

initial-state = 

XQ~.XQ~. * - - XqwXz.K% 

(Eq(qi,true),Eq(q2,false), 

JMqdaW,. . . , JMq,, false)) 
copy-state = copyn 

the following, we explicitly include the let syntax 
sized expression. 

to emphasize the power of polymorphism needed. 

Let c be a positive integer; in 
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let zera = Xtape.[zero; tape] 

in let zero1 = Xtape.zero0(zer@ tape) 

in let zero.2 = Xtape.zerol(zerol tape) 

in . . . 

in let zero, = Xtape.zero,,-I(zero,,-1 tape) 

In zerocn m ‘I 

The nested let-expression then let-reduces to the 
ML term 

[zero; [zero; (zero; [zero; . = . [zero; nil] s . a]]]] 

where we have 2cn zeroes. By composing the zero; 
functions, we can code up a list (i.e., tape) of k 
zeroes for 0 < k < 2cn using an ML expression of 
size polynomial in n. We can then “hand code” 
more symbols at the end of the tape, e.g., a binary 
encoding for tape endmarkers. 

2.7 State transition function. 

Computing the next state of the Turing Machine 
is simply a Boolean function 

fl(!71,42, - - * , QnJ,O) = (W2Y'4rl), 

where exactly one of the q; is true, indicating that 
the machine is in state q;, and either z or o is true, 
indicating what value is being read. A circuit to 
compute u would form all the conjuncts q; A z, 
q; A o, partition the Boolean outputs of these 2n 
and gates into disjoint sets S;, 1 5 i 5 n, and 
disjoin each 5’i to generate the value of ti. Viewed 
as a circuit, each input qi has outdegree 2, the 
outdegree of t and o is n, and the outdegree of 
each conjunct is 1. Our simulation of u thus uses 
the fanout gate to generate that many copies of 
each variable to realize the circuit faithfully. 

next-state = 

Astate.Acell. 

At, A,. * * * Xt,.Aw.li’w 

Astute1 .Xstatez. 

(copy-state state state1 statez, 

copy2,, cell cell* cell2 --a cell,, 

state1 qil) qp) * * * q(l) n 7 

state2 412) qp) . . . q(l) n 1 
cell1 ~101, 

cell2 z2 02, 
. . . 

cell, 2, on, 

&7(h,h), JQ(t2,42),..., 

Jwrl, 4%>> 

The formula 4; computes whether state qi is 
reached at the next transition: it is just a Boolean 
expression using or and and gates, where we write 
the conjunction of the Boolean variables qi and .Z 
(respectively, o) as and qi*) zi (respectively, and 

(2) . 
Qi 0,). Note that just the right number of copies 
of each input have been provided via state and cell 
copying, and that state and cell are only used for 
replication, and not Boolean calculation. 

2.8 Computing the new value of the 
tape cell being read. 

The construction of the ML expression giving the 
new value written on the currently-read tape cell 
is virtually identical to the expression for giving 
the next state, detailed above. The only difference 
is that we have fewer Boolean outputs. 

new-cell = 

Xstate.Xcell. 

Xf.Xg.Xh.Kh 

Xstatel .Xstate2. 

Xcell~.Acell2.- - - hell,. 
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xqp .xqf). . . . xqw n - 
X%1 .xz2. - * - At,. 
x01 ilo3 * ‘. x0,. 

(copy-state state state1 state2, 

copy2,n cell cell1 cell2 s *. cell,, 

state1 qi’) q!$) . . . q(l) n 9 

state2 qi2) qf) . . . qt2) n 9 
cell1 z1 01, 

cell2 22 02, 
. . . 

cell, z, o,, 

edf, hm?)~ ed!h Axle?>> 

The expressions &ro? and c&,? are Boolean for- 
mulas indicating whether a zero or a one is written 
in the tape cell. Again, care must be taken to use 
each input “copy” once. 

2.9 Turing Machine IDS. 

We represent a Turing Machine ID by a type 

state --t left --$ right --) a -+ a, 

2.10 Some notes on the simulation. 

Let M be a Turing Machine which accepts or re- 
jects an input 5 E (0, l}* in 2+l state transitions, 
for some positive integer c. We have already con- 
sidered how to simulate M’s state changes and 
its writing on the tape, but not its head move- 
ments. The reason is that it does not seem ob- 
vious (at least to this author!) how to simulate 
the head movements if at every state transition, 
the machine might move left or right. Instead, we 
simulate an equivalent machine having uniform 
movement of the tape head. We now clarify what 
the term “uniform” precisely means. 

Instead of simulating M on input 5, we simu- 
late an M’ which sweeps its tape head right 2’lzl 
times and then sweeps its tape head left 2clzl times 
in order to simulate one transition of M. It re- 
peats this loop 2 +I times to simulate M’s com- 
putation on z. The running time of M* is then 
slower than M by an exponential factor, but is 
still running in exponential time. 

Suppose then that M has states Q, alphabet 
C = (0, l}, and is running on input CC. We con- 
struct another Turing Machine Mk with states Q’ 
and alphabet 

where state, left, and right are type metavariables 
representing more complicated type structures en- 
coding, respectively, the state of the machine (as 
described in Section 2.5), and left and right are 
lists constructed with pair representing the con- 
tents of the tape to the left and right of the tape 
head of the machine. We imagine that the tape 
head is currently reading the first cell on the list 
right (see Figure 2). 

C’ = (0, 1, $, blank}U 

W,q, mode) I 0 E C, q E Q, 
mode E {lejt,OK)}. 

ML simulates M on input x as follows: 

initial-ID = 

Xstate.Xlejt.Xright.Xz.Kz 

(Eq(state,initial-state), 

Eqcleft, nil), 

&(right, W 

1. ML writes a $ on the tape, moves 2”lz1 tape 
cells to the right, and writes another $. It 
then returns to the left $ mark, writing 
blanks as it moves left, writes x in the left 
of the marked out region, again returning to 
the leftmost $. We assume without loss of 
generality that M never moves to the left 
of its input z = 21x2 e..xt. Mi now re- 
places x1 by the symbol (x1 ,ql,OK), indi- 
cating M to be in its initial state reading 
the tape square with 51 in it. 

where Cp is an exponential tape formula as de- 2. Mi now begins the simulation of M’s compu- 
scribed in Section 2.6. tation on 2. 
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(i) ML advances its head towards the right 
until it encounters a tape cell labelled 

kw70~~). 
(ii) If SM(a,q) = (q’,o’,R), then A4: re- 

places (a,q,OK) by CT’, moves 1 cell to 
the right, replaces the next tape sym- 
bol r by (T., q’, OK), and moves its read 
head all the way to the rightmost $ on 
the tape. 

(iii) 

(9 

If M wants to move left, on the other 
hand, i.e., SM(~, q) = (q’,o’,L), then 
A!: replaces (a, q, OK) by (a’,~‘, left), 
and moves to the rightmost $. 

Now for the return journey: Mi moves 
its tape head left until it sees a $ or a 
(o,q, left}. If it sees a (b,q, left) sym- 
bol, let 7 be the contents of the neigh- 
boring cell to the left: MA replaces 
(a, q, Zeft) by u, moves one tape cell 
left, replaces T by (r,q,OK), and then 
moves to the leftmost $. 

By executing (i)-(iv), Mi simulates one state tran- 
sition of M. A4: codes accepting states of M 
by remembering in its finite state memory, when 
sweeping left from the cell labelled (a, q, OK} to 
$, if q is an accepting state of M, and stays in an 
accepting state itself during this tape traversal. 

Finally, we simulate Ml by another Turing 
Machine h1*, where the alphabet of M* is just 
(0, l}, coding up tape symbols in C’ by log2 IC’( 
bits. Deriving M’ from A4: is tedious but straight- 
forward; see any decent book on automata theory 
(e.g., [HU79]) for details. It is clear that M* runs 
in exponential time and space, and reaches an ac- 
cepting state iff Mi does. 

It should be noticed that the tape endmarkers 
$ are really not needed, but the price paid is a 
complication of the ML simulation. In presenting 
the proof, we have taken care to present the ML 
code so that it looks as much as possible like a 
Turing Machine. An alternative is to reconfigure 
the code so that it computes a function mapping 
IDS to IDS; in this case the endmarkers could be 
removed. 

2.11 Transition function for a “uniform” 
Turing Machine. 

First, we code a transition of M’ moving right: 

delta-right = 

Xold-ID. 

Anew-state.Xnew-Zeft.Xnew-right.Xr.K z 

Xstate.Aleft.Xright.Xcell. 

Xstatel .Xstate~.Acelll.Xcell~. 

(old-ID state left right, 

right cell new-right, 

copy-state state state1 state2, 

copy-cell cell cell1 cells, 

Eq( new-state, 

next-state state1 cellI), 

Eq( new-left, 

[new-cell state2 celZ2; left])) 

Notice that the term right cell new-right simulates 
the breaking of the right hand side of the tape 
into the cell being read (cell> and the rest of the 
tape to the right (new-right). We now generate an 
exponential number of “move right” transitions: 

let iif = delta-right 

in let bp = XID.@(@ ID) 

in let 6r = MD.S;R( s,R ID) 

in . . . 

The functions delta-left and 6& can be defined 
similarly. Note carefully how the rightward move- 
ment of the tape head is coded into delta-right: 
the left list representing the tape to the left of the 
read head grows, and the right list decreases. 
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2.12 The simulation: Finale. 

The innermost sequence of let expressions brings 
the simulation to its conclusion: 

let loop, = XID&(bP, ID) 

in let loop, = xID.loop~( loop0 ID) 

in let loop2 = XID.loopl (loop, ID) 

in . . . 

in let Ioopcn = XID.Zoop,,-,(hop,,-, 10) 

in 

Xstute.Xz. Ii’ 2 

(( loopm initial-ID) state, 

(reject? state) Eq I) 

In the above expression, we note that while 
initial-ID is indeed the initial instantaneous de- 
scription of the simuletion, it is not the initial 
configuration of the Turing Machine. The latter 
begins its computation by marking off an expo- 
nential amount of tape, writing the input, and re- 
turning to the leftmost endmarker; it is this state 
of the computation where we begin our simula- 
tion. 

Remember that (reject? state) returns true : 
a -+ a - b - b or false : a - 6 - c -+ c; 
in the case of the former, Eq : a - a - a and 
I : a -+ a will be forced to be unified, causing a 
mistyping. 

Theorem 2.1, Deciding whether an ML expres- 
sion is typable is DEXPTIME-hard, 

2.13 Some comments on the lower 
bound. 

The only place in the above construction where 
ML polymorphism is absolutely necessary is where 
we use exponential function composition: in con- 
structing the exponential tape of zeroes, and in 
the construction of the transition function, de- 
tailed in Sections 2.6, 2.11, and 2.12. The other 
uses of let are mere notational conveniences: we 
could remove them by jet-reduction (i.e., reinstan- 
tiating several copies of the code) without the re- 

sulting ML formula blowing up exponentially, so 
that we no longer have a polynomial reduction- 

Observe that since the transition function can 
be polynomially realized by typed lambda terms, 
generic reductions showing PTIME-hardness and 
PSPACE-hardness follow easily by relaxing our 
use of let polymorphism. The simple reason that 
we get merely DEXPTIME-hardness (and DEXP- 
TIME-completeness, via the upper bound in [KM89 
has nothing to do directly with Turing Machines; 
rather, is that we cannot compose function appli- 
cation any more succinctly. Since Church numer- 
als are just function composition, we are tempted 
to say that ML typability is DEXPTIME-complete 
because we cannot count high enough, fast enough. 

Because of the generic reduction detailed here, 
lower bounds on typability of extensions to the 
ML type discipline-or extensions to the expres- 
sive power of the typed lambda calculus-can prob- 
ably be established merely by considering how 
succinctly functions can be composed. Since the 
lambda-calculus part of the proof encodes Tur- 
ing Machines as well as simpler computing media 
(automata, for instance), it may well be general- 
izable in other ways, e.g., automata- or regular 
expression-based lower bounds for Girard’s Sys- 
tem F [GLT89], for example. Of course at the 
moment this is wishful thinking. 

3 Polymorphic unification. 

We have now seen that deciding typability is 
DEXPTIME-complete. What is it about decid- 
ing typability, however, that makes the problem 
so difficult? We now identify a certain problem 
concerning unification to be the root cause of the 
intractability of the decision problem. 

A standard algorithm (whose correctness has 
been succinctly proven in [Wsi’]) to decide if a 
lambda calcuIus term is typable is to use the term 
to generate a series of type equations over a set 
of type variables with a binary function symbol 
I. The equations are of the form U = V or 
U = V ---+ W. This set of equations, whose size 
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is linear in the size of the original lambda term, is 
then given to a unification algorithm, which closes 
the set of equations over a simple unification logic. 
The closure groups type variables having the same 
solution into equivalence classes. These equiva- 
lence classes then can be thought of as the nodes 
of a special kind of directed graph, where the out- 
degree of every node is either 0 or 2; in the latter 
case, an equation U = V - W can be inter- 
preted as (U] = [V] - [WI, namely that [U] is 
an equivalence class (node) with two labelled chil- 
dren nodes [V] and [WI. A certain subgraph of 
this structure can be identified with the putative 
type of the original lambda term, and this term 
is typable iff the subgraph is acyclic. 

The problem of typing Core ML expressions 
is virtually identical, except for the let polymor- 
phism. In this case, certain subsets of type equa- 
tions can be thought of as being polymorphically 
reinstantiated in the set of equations to be unified. 
For example, in typing let 2 = E in B, where E 
is a closed lambda term, the set of type equations 
to be unified contains a “copy” of the type equa- 
tions associated with E (reinstantiated with new 
type variables) for each free occurance of 2 in B. 
As in the case of lambda terms, the expression is 
typable if the graph induced by the equivalence 
classes created by unification is acyclic. 

Given a set of type equations generated by a 
Core ML expression E, and two type variables 
U and V from the system, we may ask: in the 
unification solution of the system, do U and V 
have the same value? That is, are they in the 
same equivalence class ? If this question can be 
answered, say, by an oracle requiring no comput- 
ing resources, then the typability of E can be de- 
cided in PSPACE. Furthermore, if E is indeed ty- 
pable, then its principal type can be output as a 
directed acyclic graph in polynomial space. (The 
careful reader will note that at this point, an ear- 
lier, faiIed proof that typability is in PSPACE is 
being recycled.) While the details of our DEXP- 
TIME-hardness bound have been spelled out in 
fuH, we limit ourselves to a sketch of the impor- 
tant features of this analysis. 

3.1 A canonical-form transformation. 

We begin by showing how an arbitrary Core ML 
expression E can be transformed into another ex- 
pression E’ in a certain canonical form which pre- 
serves the principal type iff there is one. We write 
I,?31 to refer to the length of an ML expression E, 
defined without loss of generality as the size of its 
parse tree. The length of a type is defined simi- 
larly as the size of its tree (or where relevant, dag) 
representation. 

The canonical form we compute has the following 
structure: 

c, z 

. . . 
let xn = (Xel.Xe2. . . . xe;,.E,) X~,l X'n,2 . . . 16,i, 
in 

Xn 

The salient features of the canonical form are: 

Its length is polynomial in the length of the 
original expression. 

All the let-expressions are nested in a sizlgle 
chain. 

& and each Xel.X&. a q - Xe;, .Ej are all let- 
free and are closed lambda terms. 

We now describe how this transformation can 
be made in polynomial time. First, we a-convert 
all X- and let-bindings to be unique identifiers, so 
that subsequent transformation of the expression 
does not result in any unwanted name clashes. 
The initial ML expression E is then transformed 
using the following rule we call let-lifting, since 
each let is “lifted” as far “outside” of the expres- 
sion as possible: 

AxJet y = F in M ==s 

let y’ = Xx.F in Xx.M[y’x/y] 
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Repeatedly applying the above transformation 
to E results in an expression where no let-binding 
occurs in a lambda body, and preserves the prin- 
cipal type. The resulting expression has length at 
most quadratic in IEl. 

Next, we arrange the let-bindings so that they 
form a uniform chain. To do so, we use the follow- 
ing simple type-preserving transformations until 
they can no longer be applied: 

for each zj, j < k, and merging them modulo a 
small (i.e., polynomial) set of constraints. This 
set of constraints is defined from the type of the 
closed lambda term A!r.Ae,. . . . A&,.Ek. 

We use Example 1.2 in the Introduction to 
illustrate this point: bindings to each zk can be 
written as 

Cp (let 2 = E in B) ==+ 

let x = E in Cp I3 

(let x = E in B) G _ 

let z = E in B @ 

and we may type the closed X-term as 

xe~‘c.Ae;‘b .Xya.(C;-c(e;-bya)b)c : 

(b + c) + (a + b) + a + c. 

Jet z = (let y = F in N) in A4 

let y = F 

in let x = N 

in M 

==+ Suppose zk-1 has a principal type 7, and separate 
copies of r are bound to Lr and &: the constraint 
that the definition of zk places on these types is 
that the “output” of the type of !z must equal the 
“input” of the type of ei. 

The result of applying all these transformations is Definition 3.2. The type tree 7, of the canonical 

an expression having a single chain of let-bindings, expression C, is tree, where the mot contains type 

each of which is let-free. equations derived from the closed lambda term 

Theorem 3.1. An arbitrary ML expression can 
be reduced to canonical form with only a quadmtic 
increase in expression size. 

3.2 Deciding typability: the type tree. 

We now use the canonical form to define an exp- 
onential-sized data structure called the type tree. 
We can then essentially dispense with the original 
ML expression E as well as its canonical form, and 
use a compact representation of the type tree to 
derive whether or not E is typable. 

with a particular type variable X, in the mot de- 
noting the type of xn. The children of the mot 
are also type trees, one for each free occumnce 
of a let-bound variable xj appearing in the def;- 
nition of 2,. The root also contains an equation 
X,,j = Ys,j where Ys,j is a type variable in the 
subtree associated with the type of the sth free oc- 
cumnce of xj in the definition of x,,, and X,,j is 
the type variable associated with that free occu- 
mnce in the root. 

3.3 The type tree. 
The type tree enjoys the following friendly prop- 
erties: 

Notice that in the canonical form, each expression 
bound to 5k is defined in terms of two polymor- 
phic copies of some set of xj, j < k, imitating the 
structure of a tree where the nodes have different 
branching factors (outdegree). If the expression is 
typable, each Xk has a principal type derived from 
taking polymorphic copies of the principal types 

l While the type tree has size exponential in 
the size of the canonical ML expression, each 
node in the type tree takes only polynomial 
space to store. Furthermore, the variables 
appearing in a constraint equation always 
appear in adjacent type tree nodes. 
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l Variables can be uniquely identified as to 
what tree node they come from, where the 
variable names have polynomial length en- 
coding the path to the node, and which vari- 
able in the node is being referenced. 

l The unification solution of the constraints in 
the tree contains the solution for the princi- 
pal type of the canonical expression, if there 
is such a type. 

The idea of the type tree is very similar to a vari- 
ety of other representation schemes for describing 
the exponential number of type equations gener- 
ated by let polymorphism, in particular Kanel- 
lakis’ pointer dags [Ka] and Kfoury’s acyclic semi- 
unification[ Kf]. 

An important consequence of the above prop- 
erties on which the PSPACE result (with oracle) 
rests is the following: even though the type tree 
has exponential size, it can be virtually repre- 
sented in polynomial space by simply storing type 
equation representations of the closed 
lambda terms. The type equations at any node 
can be regenerated in polynomial time by taking 
the virtual “master copy” of the node, and simply 
renaming variables based on the path to the node. 

The last point above-that the solution S of 
the constraints determines the principal type- 
provides insight into the core of our polynomial 
space algorithm. Given two variables U and V 
from the type tree, we want to determine in poly- 
nomial space if U = V in S, a relation we will 
write as U = V to distinguish it from the = con- 
straints in the type tree. The solution S defines 
an obvious equivalence relation among the vari- 
ables which is given by E, but we may further 
associate a relation + among these equivalence 
classes as [U] * [V] if A = B -+ C is a constraint 
in the type tree, A E [VI, and B E [V] or C E [VI. 
The type tree 7n then induces a graph f&, where 
the nodes are the equivalence classes, and the di- 
rected edges are the 3 relation. The relation + 
naturally encodes the idea of “type substructure,” 
from which we have the following lemma, stating 
that a core ML expression is untypable iff an occur 

check returns positive. 

Lemma 3.3. The ML expression E is typable i# 
6, is acyclic, equivalently, if the tmnsitive clo- 
sure of j is irreflexive. 

We now sketch some of the important features 
of our polynomial space solution. We are assum- 
ing that the = relation is computed by an oracle 
at no cost, from which we can compute the * 
relation in polynomial space. A consequence of 
these assumptions is that deciding typability can 
also be computed in polynomial space by a sim- 
ple nondeterministic algorithm. Let R be a type 
tree variable associated with the putative princi- 
pal type of the ML expression E. Beginning with 
R, our algorithm simply guesses a path, i.e., a 
set of relations VO = R 3 VI + - * * + Vj, and 
guesses as well to remember some K where i < j; 
it then checks if Vt: E Vj. If the answer is “yes,” 
the ML expression is not typable, because a cycle 
was discovered. The ML expression is clearly not 
typable if it is possible to make a series of correct 
guesses leading to a “yes.” A crucial reason why 
this computation is in PSPACE is that the num- 
ber of Vj which must be guessed along the path is 
merely exponential, and thus in polynomial space 
we may maintain a sort of clock initialized to a 
value exponential in ],!?I, and decreased by one af- 
ter each Vk is guessed; if there is a path leading to 
an acyclicity, it must be guessed before the clock 
runs to zero. By Savitch’s Theorem [Sa70], we 
know that this algorithm can be simulated by a 
deterministic one with only a quadratic blowup in 
space, resulting in a polynomial-space algorithm. 

Bow can the lower bound presented in Sec- 
tion 2 and this oracular PSPACE upper bound 
be understood together? First, they indicate that 
the bottleneck in deciding typability can be un- 
derstood in terms of proving equality of type vari- 
ables in the context we have detailed above. Sec- 
ondly, given the oracle, deciding if our Turing Ma- 
chine simulation codes an accepting computation 
can be decided in constant time: observe that ac- 
ceptance or rejection is expressed by a Boolean 
variable coded as (reject? state). The Boolean 
simulation of true and false each use two type vari- 
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ables which may or may not be constrained to be 
equal; being able to test in constant time this type 
variable equality is analogous to examining the ex- 
ponential sized Boolean “circuits” defined by ML 
let-polymorphism, and being allowed to test any 
“output wire” in constant time to see if it is a 0 or 
1. In other words, the lower bound, in its simula- 
tion of Boolean values via pairs of type variables, 
exploits precisely the computational intractability 
of proving equivalence of type variables, the prob- 
lem which the oracle was specifically intended to‘ 
solve. 

3.4 How to output the principal type 
as a directed acyclic graph 

Given that we can decide if an ML expression is 
typable, how can we indeed output its type, and 
assuming that we have a E-oracle, can this be 
done in polynomial space? Since the principal 
type can have exponential size, we clearly can- 
not compute and store the entire type in polyno- 
mial space; instead we ask if we can construct an 
output device having polynomial space which will 
output the principal type into an external file. We 
begin with the following simple observation: 

Lemma 3.4. The principal type of an ML ex- 
pression E cannot be output as a string in space 
polynomial in ) E I. 

Proof. Let IEl = n. If the output device is al- 
lowed some polynomial p(n) space, it can only en- 
code &‘tn) states. By a simple counting argument 
just like the pumping lemma for finite automata, 
if the output device is required to generate a prin- 
cipal type represented as a string of length 22c”, 
it must either abort prematurely or loop. w 

Instead, we show how to output the principal 
type as a directed acyclic graph, and in this case, 
such counting arguments will not work, since the 
dag size is at most a single exponential in IEI. 

Definition 3.5. A type tree variabEe V has struc- 
ture if V = P --, Q is a constmint in the type 
tree. 

Definition 3.6. Type tree variable P is a parent 

of Q if W = R ---f S is a constmint in the type 
tree, P - W, and either Q E R or Q s S. P is 
an ancestor of R if either P is a parent of R, or 
P is a parent of Q and Q is an ancestor of R. 

Definition 3.7. A path is a sequence (Ul, . . . , Uk) 
of type variables where U; is a parent of U;+l, 
1 5 i < k. A path Pr = (Ur, . . . , Uk) appears 
to the left of a path 7’2 = (VI,. . . ,Ve), written 
PI 4 P2, if VI = VI, and either l.Jl E U2 - Vz, 
or U;! = VZ and Pl = (Uz, . . . , Uk) appears to 
the left of P2 = (Vz, . . . , V’). A type tree vari- 
able U appears to the left of type tree variable 
V, written U 4 V, if there exist leftmost paths 
P, = (Ul,..., uk) and I& = (VI, . . . , Ve) where 
PI 4 P2, U 5 Uk and V z Ve. 

Lemma 3.8. Given type tree variables P and Q, 
we can determine if P 4 Q in polynomial space. 

Definition 3.9. We associate with every type tree 
variable V a canonical type tree variable x(V) de- 
fined as follows: let E(V) = { W 1 W z V}. The 
W f E(V) have a lexicogmphic ordering. De- 
fine E,(V) = {W E E(V) I W has structure). If 
E,(V) # 0, we define x(V) to be the Zexicograph- 
ically minimal element of Es(V). Otherwise, we 
define x(V) to be the lexicographically minimal el- 
ement of E(V). 

Lemma 3.10. For any type tree variable V, we 
can compute x(V) in polynomial space. 

If an ML expression E is typable, then the 
solution to its associated set of equational con- 
straints contains no positive occur checks. This 
means precisely that the “graph encoding” of the 
solution (modulo =-equivalence of variables) is 
acyclic. Hence we follow the following strategy: 
beginning with the root variable R, we depth-first 
search the graph following children in left to right 
order: if V = P = Q -+ R, we visit the node 
(equivalence class) associated with V, then in turn 
output the structures associated with Q and R. 
When we are about to explore such a structure, 
we first compute whether it has already been out- 
put, this the intent of the definition of 4. Since 
the node of every output structure has a unique 
parent via the use of depth-first search, we do not 
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need a stack to implement the tree recursion, al- 
though the space savings is at a rather prohibitive 
time cost. To compute the address pointers asso- 
ciated with nodes is easy: since each node in the 
graph corresponds to an equivalence class of type 
variables in T,, we choose as node pointer the 
canonical representative of the class (see Defini- 
tion 3.9 above). 

procedure outdag (V : type variable) : 
{ only called on structures that have 

not yet been output } 
u := x(V); 
if U has structure --) 

{ say, U = A -+ B } 
output internal node U; 
if 3 W 4 U where W =S A - 

output pointer x(A); 
if 3 W 4 U where W + B - 

output pointer x(B); 
imckup( U) 

0 else - out&g(B) 
fi 

0 else - out&g(A) 

0 tise- 
{ U doesn’t have structure; 

we’ve reached a leaf } 
output leaf U; 
buckup( U) 

fi 
erudecorp; 

Remark. When outdag(V) is only called on “new” 
structures, the leftmost parent of V is unique up 
to r-isomorphism. 

procedure backup (V : type variable) : 
if V = R - return 
0 else - 

u := x(V); 
if 3 leftmost parent P = A + B where 

ArB=U- 
( The second “copy” of U should 

be generated by a dag pointer } 
output pointer x(U); 

backup(P) 
0 3 leftmost parent P = A + B where 

AdJ,BfU- 
if 3 W -t B where W E B -----) 

{ B already generated } 
output pointer x(B); 
backup(P) 

0 else --t outdag(B) 
fi 

0 3 leftmost parent P = A + B where 
AfU,BdL+ 

backup(P) 
fi 

fi 
erudecorp; 

4 Conclusions. 

In this paper, we have provided a simple proof 
that deciding ML typability is DEXPTIME-com- 
plete. The proof was just a computer program 
written in ML, whose principal type simulated an 
exponential number of moves by an arbitrary Tur- 
ing Machine; by changing the program slightly, we 
could force a mistyping precisely when the Turing 
Machine rejected its input. We identified a closely 
related problem in the logic of unification, namely 
deciding the equality of two type variables in an 
exponential set of type equations derived from a 
Core ML expression, and showed that the lower 
bound comes precisely from this problem. Were 
it solvable in polynomial space, deciding typabil- 
ity would be in PSPACE, and computation of the 
principal type would also be possible in polyno- 
mial space. 

One question immediately comes to mind: given 
the oracle we have postulated for solving the type 
variable equality problem described above, is de- 
ciding typability PSPACE-hard? We conjecture 
this is the case: an argument based on transi- 
tive closure will probably bear this out. Can the 
DEXPTIME-hardness proof be reworked to get 
an undecidability result for the Milner/ Mycroft 
type system? We conjecture that it should be 
possible to use their FIX rule to code up an un- 

398 



bounded amount of blank tape, as well as an ML 
simulation of a Turing Machine which generates 
an unbounded number of IDS. This might pro- 
vide some alternative intuitions to the proof of 
(KTU89b]. Finally, we propose using the basic 
Turing Machine simulation in typed lambda cal- 
culus as a tool for studying other more complex 
type systems. 

The significance of the lower bound present- 
ed in this paper is not at all mitigated by the fact 
that programmers do not typically code up Turing 
Machines in their types. The importance of the 
result is that a priori one cannot set a reasonable 
upper bound on the amount of computation that 
goes on during polymorphic type checking. The 
Turing Machine simulation is merely an example 
of a particular kind of huge computation. 

The question remains why everyone has be- 
lieved ML polymorphic type checking to be effi- 
cient, when in the worst case it is clearly not so. 
Bounding the amount of nested uses of let, the 
notion of let depth as proposed in [KM89], is one 
syntactic means of assuring polynomial-time type 
inference, but this restriction seems arbitrary; in- 
deed, its main virtue is that it facilitates an induc- 
tive argument in proving the upper bound. Some 
sort of average-case analysis would be very nice, 
but it is not at all clear what probabilistic distri- 
bution on programs would be convincing or realis- 
tic. Certainly distributions on trees (e.g., branch- 

the lower bound, and checked many of its details 
by implementing them in Standard ML. I am in- 
deed fortunate to have benefited from their ad- 
vice and scrutiny, but even more fortunate to have 
written a proof that could practically have been 
checked by a computer! 

I would also like to thank Dennis Kfoury for 
his patience and invaluable role as sounding board 
and critic during a feverish period in April and 
May of 1989, when I began thinking that the 
work described in [KM891 was worthy of a se- 
quel. The opportunity to present that paper at 
the BU/Northeastern type theory seminar moti- 
vated my interest in this s.ubject. 
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A A pathological example 

Standard ML of New Jersey, 
Version 0.24, 22 November 1988 
val it = () : unit 
- fun pair x y=fn z=> z x y; 
val pair = fn : 

‘a -> ‘b -> (‘a -> ‘b -> ‘c) -> ‘c 
- let val xl=fn y=> pair y y 

in let val x2=fn y=> x1(x1(y)) 
in let val x3=fn y=> x2(x2(y)) 

in let val x4=fn y=> x3(x3(y)) 
in let val x5=fn y=> x4(x4(y)) 

in x5(fn z=> z) end end end end end; 
Major collection. . . 

97% used (375228/385108), 1280 msecl 

[Increasing heap to 1104kl 
[Major collection.. . 

88% used (504800/568000), 1940 msecl 
[Increasing heap to 1480k] 

[Major collection. . . 
[Increasing heap to 2288k] 
99% used (824308/825248), 3200 msec] 
[Increasing heap to 2416k] 

[Major collection.. . 
[Increasing heap to 3816k] 
99% used (1313348/1314312), 5140 msec] 
[Xncreasing heap to 3848k] 

[Major collection.. . 
99% used (2057024/2058152), 8400 msec] 
[Increasing heap to 6032k] 

[Major collection.. . 
99% used (3185268/3186408), 12680 msecl 

[Increasing heap to 9336kl 
[Major collection.. . 

99% used (4887136/4888160), 20540 msecl 

[Increasing heap to 1432Ok] 
[Major collection.. . 

99% used (7394828/7395948), 31020 msec] 
[Increasing heap to 21672k] 

[Major collection.. . 
[Increasing heap to 35016k] 
99% used (12274372/12351328). 49780 msecl 

[Increasing heap to 35968N 
[Major collection. . . 

99% used (19176936/19179460). 79040 msecl 

[Increasing heap to 56184ti 
[Major collection. . . 

-48% used (28902440/28906544), 119580 msecl 

[Increasing heap to 5796Ok] 
[Major collection.. . 

[Increasing heap to 58936k] 
[Increasing heap to 59192k] 
[Increasing heap to 5932Ok] 
-35% used (31712940/31713380), 129880 msec] 
[Increasing heap to 59352131 

val it = fn : (((((((((((((((((((((((((((((( 
((‘a -> ‘a) -> (‘a -> ‘a) -> ‘b) -> ‘b) -> 

(((‘a -> ‘a) -> (‘a -> ‘a) -> ‘b) -> ‘b) -> 

Jc) -> Jc) -> (((((‘a -> ‘a) -> (‘a -> ‘a) -> 
lb) -> ‘b) -> (((‘a -> ‘a) -> (‘a -> ‘a) -> 

‘b) -> ‘b) -> ‘c) -> ‘c) -> ‘d) -1 ‘d) -1 (( 
(((((‘a -> ‘a) -> (‘a -> ‘a) -> ‘b) -> ‘b) -> 

(((‘a -> ‘a) -> (‘a -> ‘a) -> ‘b) -> ‘b) -> 

‘c) -> ‘c) -> (((((‘a -> ‘a) -> (‘a -> ‘a) -> 

‘b) -> Jb) -> (((‘a -> ‘a) -> (‘a -> ‘a) -> 
Jb) -> Jb) -> ‘c) -> ‘c) -> ‘d) -> ‘d) -> ‘e) 
-> ‘e) -> (((((((((‘a -> ‘a) -> (‘a -> ‘a> -> 
Jb) -) lb) -> (((‘a -> ‘a) -> (‘a -> ‘a) -> 

‘b) -> ‘b) -> ‘c) -> ‘c) -> (((((‘a -> ‘a) -> 
(‘a -> ‘a) -> ‘b) -> ‘b) -> (((‘a -> ‘a) -> 
(‘a -> ‘a) -> ‘b) -> ‘b) -> ‘c) -> ‘c) -> ‘d) 
-> ‘d) -> (((((((‘a -> ‘a) -> (‘a -> ‘a> -> 
‘b) -> ‘b) -> (((‘a -> ‘a) -> (‘a -> ‘a) -> 
lb) -> ‘b) -> ‘c) -> ‘c) -> (((((‘a -> ‘a) -> 
(‘a -> ‘a) -> ‘b) -> ‘b) -> (((‘a -> ‘a) -> 
(‘a -> ‘a) -> ‘b) -> ‘b) -> ‘c) -> ‘c) -> ‘d) 
-> . . . and so on for hundreds of pages! . . . 
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/ \ 

left - 

/ \ 
right - 

0 

Xl + Yl 4 

/ \ / \ 
x2 Y2 

Wl, 
4 

/ \ 
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Figure 1: Implementing fa.nout as (a) a dag; (b) a type. 

Figure 2: Turing Machine IDS. 
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