
Deciding ML Typability is Complete for
Deterministic Exponential Time

HARRY G. MAIRSON

Department of Computer Science
Brandeis University

Waltham, Massachusetts 02254

Abstract. A well known but incorrect piece of func-
tional programming folklore is that ML expressions
can be efficiently typed in polynomial time. In prob-
ing the truth of that folklore, various researchers, in-
cluding Wand, Buneman, Kanellakis, and Mitchell,
constructed simple counterexamples consisting of ty-
pable ML programs having length n, with principal
types having R(2e”) distinct type variables and length
Q(2”‘“). When the types associated with these ML
constructions were represented as directed acyclic
graphs, their sizes grew as Q(2”‘). The folklore was
even more strongly contradicted by the recent result of
Kanellakis and Mitchell that simply deciding whether
or not an ML expression is typable is PSPACE-hard.

We improve the latter result, showing that decid-
ing ML typability is DEXPTIME-hard. As Kanellakis
and Mitchell have shown containment in DEXPTIME,
the problem is DEXPTIME-complete. The proof of
DEXPTIME-hardness is carried out via a generic re-
duction: it consists of a very straightforward simula-
tion of any deterministic one-tape Turing machine M
with input t running in O(cl’l) time by a polynomial-
sized ML formula CPM,=, such that M accepts x iff @M,=
is typable. The simulation of the transition function
6 of the Turing Machine is realized uniquely through
terms in the lambda calculus zoilhovl the use of the
polymorphic let construct. We use let for two purposes
only: to generate an exponential amount of blank tape
for the Turing Machine simulation to begin, and to

compose an exponential number of applications of the
ML formula simulating state transition.

ML [Mi78][HMM86] is a well known functional
programming language incorporating a variety of
novel features, and prominent in its contributions

to programming language design is its polymor-
phic typing system. A strongly typed language
like Pascal is completely type checked at compile

time, obviating the need for runtime type check-
ing; the penalty is that code which has been writ-
ten in a largely “type independent” style (stacks,
trees, or even the identity function) must be re-
peated with only changes in type declarations. On

the other hand, a naive Lisp compiler will do no

compile time type checking, allowing Lisp code to
be freely reused on different data types, but the Permission to copy without fee all or part of this material is granted pro-

vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

0 1990 ACM 089791-3434/90/0001/0382 $1.50 382

It is purely the expressive power of ML polymor-
phism to succinctly express function composition which
results in a proof of DEXPTIME-hardness. We con-
jecture that lower bounds on deciding typability for
extensions to the typed lambda calculus can be re-
garded precisely in terms of this expressive capacity
for succinct function composition.

To further understand this lower bound, we re-

late it to the problem of proving equality of type vari-

ables in a system of type equations generated from an

ML expression with let-polymorphism. We show that

given an oracle for solving this problem, deciding ty-

pability would be in PSPACE, as would be the actual

computation of the principal type of the expression,

were it indeed typable.

1 Introduction.

price paid is run time type checking.

The ML idea of type polymorphism is a suc-
cessful attempt to get part of the best of both
worlds. Given an ML expression, a precisely de-
fined type discipline automatically infers the func-
tional type of the expression, or rejects the expres-
sion as untypable. The simplest example of this
type polymorphism in action is the identity func-
tion. In the ML expression let I = Xx.x in (body),
the identifier I is thought to have functional type
t + t for any type t, and separate (so-called “let-
bound”) instances of the identifier 1 in the expres-
sion (body} do not further constrain each other in
terms of inferring their types. This contrasts with
“lambda-bound” variables, where each instance in
the body must have identical and not merely iso-
morphic type. A Lisp-like interpretation of the
ML expression let 1 = Xs.a: in II would be as
syntactic sugar for (X1.11)(Ax.2), but the ML in-
terpretation is better thought of as (Xy.y)(Xz.z),
which would infer that Xx.x was of type t + t,

that Xy.y was of type (t + t) + (t --) t), and
that the entire expression was then of type t --f t.

The Lisp-like interpretation (XI.II)(XZ.S) would
be rejected by the ML type discipline, however,
since the lambda-bound variable 1 is forced to
have both type t -+ u (in its “function” incar-
nation in the body) as well as type t in its “ar-
gument” incarnation. The type discipline insists
via unification that t = t --$ u, and on the basis of
this positive occur check, the subexpression X1.11
is declared untypable. The fact that, of course,
this example does not cause a type error moti-
vates the search for more robust type disciplines.

In embedding such polymorphic type inference
in a programming language, there are natural con-
cerns that the inference mechanism be decidable
so that the compiler can terminate, and efficient
so that termination is within a reasonable amount
of time. In his original paper, Milner made it
clear that the former was true, and straightfor-
ward termination and correctness proofs (for ex-
ample, [W87], which is actually a correctness proof
for typing pure lambda terms, but works for ML
with trivial changes) have since been published.

Certainly in practice, the inference system has
been efficient, which led to the belief that this ef-
ficiency was a polynomial time one, i.e., that typ-
ing an ML expression of length n could be done
in time polynomial in n. Upon closer scrutiny,
however, this putative folk theorem turned out
instead to be unsubstantiated folk lore.

First, it was observed by several researchers,
including Buneman, Kanellakis, Mitchell, and
Wand, that there exist pathological ML expres-
sions whose principal type is of vastly larger size
than the original expression.

Example 1.1.

let 2 0 = x.2.2
in let 21 = (x0,20)

in let x2 = (x1,21)
in . . .

in let 2, = (xE,,x,)
in xn

Example 1.2.

let x1 = XY.(Y,Y)
in let x2 = Xy.xl(xl(y))

in . . .
in let 5, = Xy.x,-l(~~-l(y))

in xn(Xz.z)

(We use (t, y) as an abbreviation for AZ.ZZY, the fa-
miliar lambda calculus implementation of pairing.)

In Example 1 .l, we have a construction for
ML expressions of length R. which include Q(2Cnj
distinct type variables. Even more pa.thological
is the construction of Example 1.2, based on re-
peated function composition: it has a principal
type which is of length s2(22c”) when printed as
a string, and has a representation as a directed
acyclic graph with Q(2”“) nodes. The author type
checked the expression when n = 5 using Stan-
dard ML running on a Sun 3/160 workstation,
a computation which consumed over 2 minutes of
processor time, 60 megabytes of memory, and out-
put 173 printed pages of the principal type until

383
7%;

output summarily aborted. r This experiment
places many comments about typing and soft-
ware engineering in a curious light, for instance,
the (by no means unusual) remark in [Pf88] that
“[Types]...provide a succinct and formal documen-
tation and thus help the programmer read, debug,
and maintain his programs.”

Secondly, a more sophisticated and more damn-
ing blow was struck at the folklore of efficiency of
ML typing by Kanellakis and Mitchell [KM89],
who showed that simply deciding whether or not
an ML expression is indeed typable is PSPACE-
hard, indicating that the difficulty of typing ex-
pressions is not merely intractible because of the
size of the output, but because of complexi ties of a
more intrinsic nature. An upper bound is given by
them that the typability question (and indeed, the
actual computation of the principal type) can be
answered in DEXPTIME. They mention the res-
olution of the complexity of this decision problem
as an outstanding open question, leaving specula-
tion that its difficulty might be greater than that
computable in polynomial space.

After all this bad news, some good news is in
order. Unfortunately, this paper only gives more
bad news: we show here that deciding ML typabil-
ity for the “Core ML” language treated by Kanel-
lakis and Mitchell is actually DEXPTIME-hard.
As a consequence, deciding ML typability is com-
plete for deterministic exponential time. We note
that a simultaneous proof [KTU89a] has been an-
nounced, using altogether different methods.

This bound is of obvious relevance to the un-
derstanding the typing mechanisms of a variety of
functional languages which have been built in part
around the ML type discipline, e.g., Miranda, Or-
well, Haskell, etc. It also provides interesting in-
sights into problems in software engineering con-
cerning reusable code, because let-polymorphism

‘Space limitations naturally restrict a full report on this
experiment; we include a summary in Appendix A. A seri-
ous question is motivated by this little test: if a decidable
type system can output 50 unreadable pages of principal
type with huge computational overhead, does it really make
any difference if the type system is decidable?

is precisely a mechanism for specifying that code,
and ensuring that its subsequent use will not gen-
erate run-time type errors.

1.1 Lower bounds.

Lower bounds proofs relating to complexity clas-
ses generally fall into two categories: reductions
from problems of known and proven difficulty, and
generic reductions. For example, the PSPACE-
hardness proof in [KM891 is a reduction from Quan-
tified Boolean Formulas (QBF), already known to
be complete for PSPACE. The intuition of Kanel-
lakis and Mitchell was primarily derived from Ex-
ample 1.1 above: they realized that the use of ML
polymorphism essentially described in this exam-
ple could also be used to simulate truth tables.
Even though a truth table on n variables is of ex-
ponential size, their insight was that a short (i.e.,
polynomial in n) ML program could “expand” ex-
ponentially via let-reduction (the let-equivalent of
,&reduction) to simulate the table.

We present in contrast a generic reduction:
given any deterministic one-tape Turing machine
M with input z running in 0(&l) time, we show
how to construct an ML formula @M,=, such that
M accepts 5 iff @M,z is typable, where the length
of @)M,~ is polynomial in the length of the de-
scription of M and 2. Since every language L in
DEXPTIME has a deterministic Turing Machine
ML which can decide if 2 E L for input 2 in 0(&l)
time, this reduction shows that the difficulty of
deciding typability of ML expressions is (within a
polynomial factor) as hard as deciding member-
ship in the “hardest” languages in DEXPTIME.
We note that there are languages in DEXPTIME
requiring exponential time and space infinitely of-
ten, for example, deciding if a semiregular ex-
pression (regular operators plus intersection) over
some alphabet C denotes C* [AHU][Hu73].

The simple intuition providing the foundation
of the DEXPTIME-hardness proof presented here
is motivated by the above Example 1.2. The in-
tuition is the following: note that the function x,
in the example is equivalent to the lambda term

384

Xy .zi^-‘(y), namely, a function which applies the
20 function an exponential number of times to
its argument. If y was a piece of Turing Ma-
chine tape, and 20 was a function which added
a tape square to the tape, 5, would be a good
function for constructing exponential-sized Tur-
ing Machine IDS. If y was a Turing Machine ID,
and 20 was its transition function 6, 2, would be
a good way to “turn the transition crank” and ap-
ply 6 an exponential number of times to the initial
machine ID. Of course, there are many technical
details to work out, but the inspiration is simply
that the “exp” in “exponential function compo-
sition” is the same “exp” in “DEXPTIME.” It
is uniquely the expressive power of ML polymor-
phism to succinctly express function composition
which results in a proof of DEXPTIME-hardness.
We conjecture that stronger lower bounds on de-
ciding typability for extensions to the ML typ-
ing system-or, for that matter, extensions to
the typed lambda calculus- can be regarded pre-
cisely in terms of this capacity for succinct func-
tion composition.

In our proof, the technical mechanics simulat-
ing the transition function 6 of the Turing Ma-
chine are realized purely through terms in the
lambda calculus luithout the use of the polymor-
phic let construct. The transition function can
be represented in a straightforward manner by a
Boolean circuit, where the inputs are variables Q;
set to true iff the machine is in state i, and vari-
ables z and o indicate whether the tape head is
reading a 0 or a 1. The output of the circuit indi-
cates the new state, what is written on the tape
cell, and the head direction. As we will show,
all of this circuitry can be realized by lambda
terms, using the Boolean gadgets of Kanellakis
and Mitchell, originally proposed in their paper on
the inherent sequentiality of unification [DKM84],
and recycled most recently as lambda terms in
their PSPACE-hardness proof. We add a Boolean
“fanout” gate to their logical menagerie in the in-
terest of facilitating our proof.

We present the proof in “bottom up” form,
showing first how to encode Boolean values as

lambda terms, adding Boolean logic, Turing ma-
chine state encoding, tape encoding, proceding
piece by piece to build up the entire simulation.
It may come as a shock to some more practi-
cal functional programming language enthusiasts
that this rather arcane lower bound is just u com-
puter program, where we are interested in the type
produced by the program instead of the value.
The generic reduction, as one of my colleagues
with more applied interests put it, is just a com-
piler: namely, how to compile Turing Machines
into ML types. Since our “object code” is ML,
we have endeavored to follow the gospel of [AS851
wherever possible, using modularization and data
abstraction to make the program and proof more
understandable.

1.2 Polymorphic unification.

We then proceed from this lower bound to a fur-
ther understanding why deciding typability is so
difficult, focusing our attention on the kind of
type equations which must be solved (using uni-
fication) to decide whether an ML expression is
typable. Given such a set of type equations, and
two type variables chosen from this set, a natu-
ral question is to ask whether the variables must
have the same value in the unification solution.
Were this solvable efficiently (e.g., by an oracle),
we show that deciding typability, and in addition
the computation of the actual type, can be done in
polynomial space. It is, therefore, this particular
question about unification which is the bottleneck
in deciding typability. It turns out that there is a
natural correspondence between this question and
the encoding of Boolean logic which is integral to
our Turing Machine simulation.

2 The DEXPTIME-hardness
bound.

We present the ML program constructed from a
Turing Machine M and input 2 as a series of equa-
tions which are meant to be nested as a series of

385

let-expressions. The program is written in “Core (i.e., causing a positive occur check), a mistyping
ML,” i.e. the language defined as: occurs and the entire expression is rejected.

E ::= x 1 Xx.E 1 EE 1 let x = E in E

In some instances, we also give the principal type
of the expression to clarify its significance. In the
ML “type hacking” which follows, we acknowledge
an obvious debt to the authors of [KM89], who
introduced many of the techniques; the contribu-
tion of this paper is to use them more expressively.
The coding tricks used here allow types to simu-
late calculations by exploiting the power of poly-
morphism to drive the inference engine of unifica-
tion, in the same spirit that Church showed how
the values of lambda terms could, via P-reduction,
simulate computation.

2.1 Notation. Miscellaneous combina-
tors.

I = AZ.%

Ii = xx.xy.2

Eq = Xs.Xy.K 5 X2.K (%X) (z y) :

a-a-a

(41,427 **.,4n> =

X%..z~*q52 . . .4, :

01 ------t t2 - -** - i?, - u) -u

pair =

xx.xy.xx’.xy’.x%.r~ .z

(Ii’ J%(x, 5’) -R!(Y, Y’)) :

a-6 -a-b-c-c

The types of true and false are virtually identical.
If we regard them as functions, the only differ-
ence is that the first two (curried) arguments of
true must be of the same type. If true is applied
to two arguments whose types cannot be unified,
for example 1 and Eq, then a mistyping occurs;
on the other hand, false I Eq can be typed. In
the innermost let in our ML simulation of a Tur-
ing Machine, then, we produce a Boolean value
indicating if the machine rejected its input, and
apply that value to two non-unifiable arguments;
the whole formula types properly iff the machine
accepts. (For more details, see Section 2.12.)

We typically write Eq(x, y) instead of Eq x y. The
importance of the Eq combinator is that for ML to
correctly type Eq($, $), the ML expressions 4 and
+ are constrained to have identical type. When
6 and $ are lambda-bound variables, this con-
straint can affect the types of other expressions:
it is this phenomenon which permits us to carry
out the reduction. If the constraint is impossible

Notice that in the definition of (41,. . , , &),
we imagine the formula 4; to have principal type
ti, and in the entire expression, the types ti do
not necessarily constrain each other. When an
ML formula Xw.Kw(4~, . . . ,bn) is typed, it has
the same principal type as the I combinator, pro-
vided that the type constraints introduced by the
4i can be satisfied. This construct allows a trans-
parent means of introducing constraints on types
of subexpressions.

The definition of pairintroduces the type equiv-
alent of the Lisp cons. Instead of pair z y we usu-
ally write [z; y]. When applied to two terms x and
y, the term [z; y] has type a --+ 6 --+ c -+ c,
where a is the type of x and b is the type of y. If
u and v are ML lambda-bound variables and we
need to type the function application [z; y] u U,
then the types of x and u must be the same, as
must be the types of y and V.

2.2 Boolean values: true and false.

true = Xx.Xy.Xz.K z Eq(z, y) :

a--ta-b-b

false = Xxi4y.Az.z :

a-bdc--,c

386

2.3 Zero and One (Tape Symbols).

zero = [true; fake]

= X2.Xy.Xt.K %

(&7(x, true),Q(y, faW>
one = [false; true]

= Xx.Xy.Xt.K %

b%(x, false), My, true))

Now we define predicates telling if a cell holds a
zero or a one:

zero? = Xcell.Xx.Xy.Xz.Kz

%+ell P, P x Y>

Observe that cell p causes p to unify with the

values, we do not need to simulate negation, be-
cause we have encoded whether the tape symbol
is a zero in the type bound to z, and the negation
in the type bound to y.

2.4 Boolean operators and and or.
Fanout.

We implement these monotone Boolean operators
using the gadgets introduced in [DKM84]. We
add yet another gadget to implement multiple
fanout, indicating why such an addition is nec-
essary.

“first” component in the cell, and then p x y “loads”
the right “type bindings” for x and y in the “an-
swer” Xz.Xy.Xz.z, possibly unifying x and Y if p
encodes true.

and =

Xin~.Xin~.Xu.Xv.Az.Kz

xx*.xy*.xx~.xy~.xw.

(hwl, in2x2y2,

XlU, y*w, 22w, yzv)

Observe that if u : a, v : b, and w : c, then the
The definition of zero? also demonstrates a subterms zru, yrw, x220, y2v get typed a

general style for using ML to compute with types.
Note first the declarations of “inputs” and “out- a-f ua xl c-g c Cdh

Yl w 22 WC Y2
b-+k,b

.

puts,” though in the relational calculus of unifi-
cation they are really one and the same-it mat- If the type of x1 equals the type of Yr, then a -

ters only which of the two you choose to con- f = c - 9 and a = c* If the type Of z2 equals
strain! The Xz.Kz marks the end of the inputs the type of ~2, similarly b = c, and a = b follows-

and outputs; next comes the “local declarations,” namely, that the “output” variables u and v are

of which we have only one, for p. In the brackets, forced into having the same type.

we have the “body” of the procedure. It is intu- Now for disjunction:
itively useful for us to think of the instructions
in the body being executed from top to bottom, or =

even if they represent a set of constraints which Xin~.Xin2.Xu.Xv.Xz.Kt
are being realized “simultaneously.” xx*.xyr.xx2.xy2.

one? = XceZl.Xx.Xy.Xz.1S.z XlU, Yl% 52u, YZV)

h.%.(cell m q x Y) In typing this term, we have the constraints

The importance of this encoding scheme for zero a--+fg x1 b---+gvb
Yl

adh a
32 u Y2

b----+kvb
*

and one is that we simulate the Boolean circuitry
in the finite state control of the Turing Machine If the type of xi equals the type of yi, i = 1,2,
using only the monotonefunctions and and or. By then a = b, and the type of u equals the type of
encoding zero and one as these pairs of Boolean V.

387

An anomaly

Note that, however strong the temptation may
be, these logic gates cannot be used in a “free”
functional style if the simulation of Boolean logic
is to be faithful. For example, we find (rather
oddly) that

gate to ensure that no input is used in two differ-
ent Boolean calculations, the simulation will be
faithful.

fanout =

(Xp.Xq.Xr.[or pq; or q r]) true false false

= [true; true]

when we would have expected the answer to be
[true; false]. What happened? Imagine we have
for 1 5 i < 3 pairs of let-bound variables (Xi, yi),
where the type of 51 and yr are constrained to
be identical in simulation of our encoding of the
Boolean “true.” We let (Uj,Vj), 1 5 j 2 2 en-
code the Boolean or of the first two and last two
pairs. The encoding of the or operator enforces
the following constraints:

~in.Xoutl.Xout2.Xz.Kz

xu.xv.xx~.xy~.xx~.xy2.

(in uv,

out1 51 yl, Eq(out1, false),

out2 x2 ~2, Eq(out2, false),

t/J Xl 22,

v Yl Y2)

o--+f a
51

Uhf cl
Ul Yl

a+g a
Vl x2

adh a
Ul Y2 Vl

a-g a
x2

a-h a
u2 Y2

a-k a
212 x3

a-4 a
212 Y3 02

Note that the type equaIity of x1 and yr naturally
forces the equality of the types of ur and vr, but
this forces the “argument” part of the types of 22
and y2 to be equal. This equality in turn forces
the equality of the types of u2 and v2.

What has been ignored in the Boolean simula-
tion is that the second input has multiple fanout:
if we introduced constraints by typing the terms
{X~U~UZ, y~vrv~} instead of typing {QUA, x2212,
~2211, yzvz}, then everything works out properly:

a-f a
Xl 211

b-v b
Yl Vl

a+c--+h
x2

a c 21~112 ypddkv; v;
+--+e c

x3 u2 ypmv;

If the types of 22 and y2 are equal in this ex-
ample, we get a ---+c----+h=b---+d---+k,so
a = b and c = d-both outputs are true. But if
only the types of x1 and yr are equal, we derive
a - f = b - g, hence a = b, but we cannot
derive c = d, the latter equality necessary to make
the second output true.

These examples motivate the introduction of
another gadget -not to do Boolean logic, but fan-
out. We observe that as lone: as we use the fanout

Viewed as a dag in the style of [DKM84] (see Fig-
ure l(a)), the fanout gate is just an upside-down
or gate. Do not be misled by the Eq above: its
use only constrains the types of the out1 (and
similarly, out2) to have type a - b - c -
c (“false until proven true”); further constraints
may force a = b. Figure l(b) shows the type of
fanout as a type dag.

By using fanout, we can also replicate the types
of lambda terms Xxr.Xx2. -.. Xzk.&.z where the
x; have Boolean types associated with them:

coPYk =

Xin.Xoutl.Xoutz.X~.l(t.

h1.xU2. * ’ ’ Auk.

xz(1.ii02. - * - xvk.

~w~.~?&j. * * * hk.

(in ul u2 - ’ ’ uk,

fanout u1 2112~1,

fanout u2 02 ~2,

. . .

fanout Uk Vk Wk,

&(outl, ki&b2. ’ * ’ /\xk.&/),

&(out2, hI.h2. - ” hk&.y),

out1 01 212 -” vk,

out1 Wl w2 * - * Wk)

This definition can be used to copy tape symbols:

copy-cell = copy2

388

In addition, we can use the definition of copyk
to construct more than two copies of some type
structure:

coPYk,j =

Xin.Xoutl.Xout~. a * * XOUtjeXZsKZ

AU~.AUz.**‘AUj.

(copyk in ul out1 ,

copy!, 111212 Out2,

copyk 212 u3 Out3,

I..

Note that in a type faithfully encoding a machine
state, only one of the qi has the type of true, and
the rest have the type of false. We now define
a predicate giving the type output of true when
applied to a state coding acceptance:

accept? =

Xstate.Xx.Xy.Az.Kz

Xql .Xqa. - . - Aq,.Xacc.

(state qi q2 * * * Qn,

Eq(acc,or qe+l(or qe+2(or- - -

copyk y-1 uj outj) (Or Qm-1 Qm) ” ‘)>)T

act x y)

Notice that copying or fanning-out a type tends
to “corrupt” it via unification, so that using it
again as an input can cause problems with the
simulation of the logic. To avoid this complica-
tion in the above definition, we use the “tempo-
rary” types u;, so that copyk zli u&l OUti+ uses

u; to copy the type structure into out;+1 as well
as u;+r; the latter uncorrupted type is then used
to continue copying.

The type of the “answer,” i.e., the functional ap-
plication acceptlstate, is the type of the ML term
Xz.Xy.Xz.Kz, subject to the constraints that fol-
low. The expression state ql q2 - +a q,., forces the
types of the 9; to unify with Boolean values en-
coded in the type of state. The type of act is then
constrained to be that of true or false, depending
on the type of the Boolean expression. The final
constraint act 2 y forces x and y in the “answer”
to unify if the Boolean formula typed as true.

2.5 Machine states. Testing for accep-
tance or rejection.

A predicate reject? is defined similarly.

Now we commence in earnest the coding of a Tur- 2.6 Generating an exponential amount

ing Machine. Let its states be of blank tape.

Q = h,qz,---,qnl In coding up an initial ID of the Turing Machine
in ML, we need to generate the exponential space

where q1 is the initial state, and the accepting and
rejecting states are (respectively):

in which the exponential tinie machine can run.
Here’s how: first, for lack of anything better, we

A = {qe+l,qe+z, - - . , qm) define

R = {Qm+l~Qrn+29~~~~!Zn) nil = xz*z

We now code up the ML simulation of the initial
state, and how states can be replicated:

Now we use function composition to generate an
exponential amount of tape using a polynomial-

initial-state =

XQ~.XQ~. * - - XqwXz.K%

(Eq(qi,true),Eq(q2,false),

JMqdaW,. . . , JMq,, false))
copy-state = copyn

the following, we explicitly include the let syntax
sized expression.

to emphasize the power of polymorphism needed.

Let c be a positive integer; in

389

let zera = Xtape.[zero; tape]

in let zero1 = Xtape.zero0(zer@ tape)

in let zero.2 = Xtape.zerol(zerol tape)

in . . .

in let zero, = Xtape.zero,,-I(zero,,-1 tape)

In zerocn m ‘I

The nested let-expression then let-reduces to the
ML term

[zero; [zero; (zero; [zero; . = . [zero; nil] s . a]]]]

where we have 2cn zeroes. By composing the zero;
functions, we can code up a list (i.e., tape) of k
zeroes for 0 < k < 2cn using an ML expression of
size polynomial in n. We can then “hand code”
more symbols at the end of the tape, e.g., a binary
encoding for tape endmarkers.

2.7 State transition function.

Computing the next state of the Turing Machine
is simply a Boolean function

fl(!71,42, - - * , QnJ,O) = (W2Y'4rl),

where exactly one of the q; is true, indicating that
the machine is in state q;, and either z or o is true,
indicating what value is being read. A circuit to
compute u would form all the conjuncts q; A z,
q; A o, partition the Boolean outputs of these 2n
and gates into disjoint sets S;, 1 5 i 5 n, and
disjoin each 5’i to generate the value of ti. Viewed
as a circuit, each input qi has outdegree 2, the
outdegree of t and o is n, and the outdegree of
each conjunct is 1. Our simulation of u thus uses
the fanout gate to generate that many copies of
each variable to realize the circuit faithfully.

next-state =

Astate.Acell.

At, A,. * * * Xt,.Aw.li’w

Astute1 .Xstatez.

(copy-state state state1 statez,

copy2,, cell cell* cell2 --a cell,,

state1 qil) qp) * * * q(l) n 7

state2 412) qp) . . . q(l) n 1
cell1 ~101,

cell2 z2 02,
. . .

cell, 2, on,

&7(h,h), JQ(t2,42),...,

Jwrl, 4%>>

The formula 4; computes whether state qi is
reached at the next transition: it is just a Boolean
expression using or and and gates, where we write
the conjunction of the Boolean variables qi and .Z
(respectively, o) as and qi*) zi (respectively, and

(2) .
Qi 0,). Note that just the right number of copies
of each input have been provided via state and cell
copying, and that state and cell are only used for
replication, and not Boolean calculation.

2.8 Computing the new value of the
tape cell being read.

The construction of the ML expression giving the
new value written on the currently-read tape cell
is virtually identical to the expression for giving
the next state, detailed above. The only difference
is that we have fewer Boolean outputs.

new-cell =

Xstate.Xcell.

Xf.Xg.Xh.Kh

Xstatel .Xstate2.

Xcell~.Acell2.- - - hell,.

390

xqp .xqf). . . . xqw n -
X%1 .xz2. - * - At,.
x01 ilo3 * ‘. x0,.

(copy-state state state1 state2,

copy2,n cell cell1 cell2 s *. cell,,

state1 qi’) q!$) . . . q(l) n 9

state2 qi2) qf) . . . qt2) n 9
cell1 z1 01,

cell2 22 02,
. . .

cell, z, o,,

edf, hm?)~ ed!h Axle?>>

The expressions &ro? and c&,? are Boolean for-
mulas indicating whether a zero or a one is written
in the tape cell. Again, care must be taken to use
each input “copy” once.

2.9 Turing Machine IDS.

We represent a Turing Machine ID by a type

state --t left --$ right --) a -+ a,

2.10 Some notes on the simulation.

Let M be a Turing Machine which accepts or re-
jects an input 5 E (0, l}* in 2+l state transitions,
for some positive integer c. We have already con-
sidered how to simulate M’s state changes and
its writing on the tape, but not its head move-
ments. The reason is that it does not seem ob-
vious (at least to this author!) how to simulate
the head movements if at every state transition,
the machine might move left or right. Instead, we
simulate an equivalent machine having uniform
movement of the tape head. We now clarify what
the term “uniform” precisely means.

Instead of simulating M on input 5, we simu-
late an M’ which sweeps its tape head right 2’lzl
times and then sweeps its tape head left 2clzl times
in order to simulate one transition of M. It re-
peats this loop 2 +I times to simulate M’s com-
putation on z. The running time of M* is then
slower than M by an exponential factor, but is
still running in exponential time.

Suppose then that M has states Q, alphabet
C = (0, l}, and is running on input CC. We con-
struct another Turing Machine Mk with states Q’
and alphabet

where state, left, and right are type metavariables
representing more complicated type structures en-
coding, respectively, the state of the machine (as
described in Section 2.5), and left and right are
lists constructed with pair representing the con-
tents of the tape to the left and right of the tape
head of the machine. We imagine that the tape
head is currently reading the first cell on the list
right (see Figure 2).

C’ = (0, 1, $, blank}U

W,q, mode) I 0 E C, q E Q,
mode E {lejt,OK)}.

ML simulates M on input x as follows:

initial-ID =

Xstate.Xlejt.Xright.Xz.Kz

(Eq(state,initial-state),

Eqcleft, nil),

&(right, W

1. ML writes a $ on the tape, moves 2”lz1 tape
cells to the right, and writes another $. It
then returns to the left $ mark, writing
blanks as it moves left, writes x in the left
of the marked out region, again returning to
the leftmost $. We assume without loss of
generality that M never moves to the left
of its input z = 21x2 e..xt. Mi now re-
places x1 by the symbol (x1 ,ql,OK), indi-
cating M to be in its initial state reading
the tape square with 51 in it.

where Cp is an exponential tape formula as de- 2. Mi now begins the simulation of M’s compu-
scribed in Section 2.6. tation on 2.

391

(i) ML advances its head towards the right
until it encounters a tape cell labelled

kw70~~).
(ii) If SM(a,q) = (q’,o’,R), then A4: re-

places (a,q,OK) by CT’, moves 1 cell to
the right, replaces the next tape sym-
bol r by (T., q’, OK), and moves its read
head all the way to the rightmost $ on
the tape.

(iii)

(9

If M wants to move left, on the other
hand, i.e., SM(~, q) = (q’,o’,L), then
A!: replaces (a, q, OK) by (a’,~‘, left),
and moves to the rightmost $.

Now for the return journey: Mi moves
its tape head left until it sees a $ or a
(o,q, left}. If it sees a (b,q, left) sym-
bol, let 7 be the contents of the neigh-
boring cell to the left: MA replaces
(a, q, Zeft) by u, moves one tape cell
left, replaces T by (r,q,OK), and then
moves to the leftmost $.

By executing (i)-(iv), Mi simulates one state tran-
sition of M. A4: codes accepting states of M
by remembering in its finite state memory, when
sweeping left from the cell labelled (a, q, OK} to
$, if q is an accepting state of M, and stays in an
accepting state itself during this tape traversal.

Finally, we simulate Ml by another Turing
Machine h1*, where the alphabet of M* is just
(0, l}, coding up tape symbols in C’ by log2 IC’(
bits. Deriving M’ from A4: is tedious but straight-
forward; see any decent book on automata theory
(e.g., [HU79]) for details. It is clear that M* runs
in exponential time and space, and reaches an ac-
cepting state iff Mi does.

It should be noticed that the tape endmarkers
$ are really not needed, but the price paid is a
complication of the ML simulation. In presenting
the proof, we have taken care to present the ML
code so that it looks as much as possible like a
Turing Machine. An alternative is to reconfigure
the code so that it computes a function mapping
IDS to IDS; in this case the endmarkers could be
removed.

2.11 Transition function for a “uniform”
Turing Machine.

First, we code a transition of M’ moving right:

delta-right =

Xold-ID.

Anew-state.Xnew-Zeft.Xnew-right.Xr.K z

Xstate.Aleft.Xright.Xcell.

Xstatel .Xstate~.Acelll.Xcell~.

(old-ID state left right,

right cell new-right,

copy-state state state1 state2,

copy-cell cell cell1 cells,

Eq(new-state,

next-state state1 cellI),

Eq(new-left,

[new-cell state2 celZ2; left]))

Notice that the term right cell new-right simulates
the breaking of the right hand side of the tape
into the cell being read (cell> and the rest of the
tape to the right (new-right). We now generate an
exponential number of “move right” transitions:

let iif = delta-right

in let bp = XID.@(@ ID)

in let 6r = MD.S;R(s,R ID)

in . . .

The functions delta-left and 6& can be defined
similarly. Note carefully how the rightward move-
ment of the tape head is coded into delta-right:
the left list representing the tape to the left of the
read head grows, and the right list decreases.

392

2.12 The simulation: Finale.

The innermost sequence of let expressions brings
the simulation to its conclusion:

let loop, = XID&(bP, ID)

in let loop, = xID.loop~(loop0 ID)

in let loop2 = XID.loopl (loop, ID)

in . . .

in let Ioopcn = XID.Zoop,,-,(hop,,-, 10)

in

Xstute.Xz. Ii’ 2

((loopm initial-ID) state,

(reject? state) Eq I)

In the above expression, we note that while
initial-ID is indeed the initial instantaneous de-
scription of the simuletion, it is not the initial
configuration of the Turing Machine. The latter
begins its computation by marking off an expo-
nential amount of tape, writing the input, and re-
turning to the leftmost endmarker; it is this state
of the computation where we begin our simula-
tion.

Remember that (reject? state) returns true :
a -+ a - b - b or false : a - 6 - c -+ c;
in the case of the former, Eq : a - a - a and
I : a -+ a will be forced to be unified, causing a
mistyping.

Theorem 2.1, Deciding whether an ML expres-
sion is typable is DEXPTIME-hard,

2.13 Some comments on the lower
bound.

The only place in the above construction where
ML polymorphism is absolutely necessary is where
we use exponential function composition: in con-
structing the exponential tape of zeroes, and in
the construction of the transition function, de-
tailed in Sections 2.6, 2.11, and 2.12. The other
uses of let are mere notational conveniences: we
could remove them by jet-reduction (i.e., reinstan-
tiating several copies of the code) without the re-

sulting ML formula blowing up exponentially, so
that we no longer have a polynomial reduction-

Observe that since the transition function can
be polynomially realized by typed lambda terms,
generic reductions showing PTIME-hardness and
PSPACE-hardness follow easily by relaxing our
use of let polymorphism. The simple reason that
we get merely DEXPTIME-hardness (and DEXP-
TIME-completeness, via the upper bound in [KM89
has nothing to do directly with Turing Machines;
rather, is that we cannot compose function appli-
cation any more succinctly. Since Church numer-
als are just function composition, we are tempted
to say that ML typability is DEXPTIME-complete
because we cannot count high enough, fast enough.

Because of the generic reduction detailed here,
lower bounds on typability of extensions to the
ML type discipline-or extensions to the expres-
sive power of the typed lambda calculus-can prob-
ably be established merely by considering how
succinctly functions can be composed. Since the
lambda-calculus part of the proof encodes Tur-
ing Machines as well as simpler computing media
(automata, for instance), it may well be general-
izable in other ways, e.g., automata- or regular
expression-based lower bounds for Girard’s Sys-
tem F [GLT89], for example. Of course at the
moment this is wishful thinking.

3 Polymorphic unification.

We have now seen that deciding typability is
DEXPTIME-complete. What is it about decid-
ing typability, however, that makes the problem
so difficult? We now identify a certain problem
concerning unification to be the root cause of the
intractability of the decision problem.

A standard algorithm (whose correctness has
been succinctly proven in [Wsi’]) to decide if a
lambda calcuIus term is typable is to use the term
to generate a series of type equations over a set
of type variables with a binary function symbol
I. The equations are of the form U = V or
U = V ---+ W. This set of equations, whose size

393

is linear in the size of the original lambda term, is
then given to a unification algorithm, which closes
the set of equations over a simple unification logic.
The closure groups type variables having the same
solution into equivalence classes. These equiva-
lence classes then can be thought of as the nodes
of a special kind of directed graph, where the out-
degree of every node is either 0 or 2; in the latter
case, an equation U = V - W can be inter-
preted as (U] = [V] - [WI, namely that [U] is
an equivalence class (node) with two labelled chil-
dren nodes [V] and [WI. A certain subgraph of
this structure can be identified with the putative
type of the original lambda term, and this term
is typable iff the subgraph is acyclic.

The problem of typing Core ML expressions
is virtually identical, except for the let polymor-
phism. In this case, certain subsets of type equa-
tions can be thought of as being polymorphically
reinstantiated in the set of equations to be unified.
For example, in typing let 2 = E in B, where E
is a closed lambda term, the set of type equations
to be unified contains a “copy” of the type equa-
tions associated with E (reinstantiated with new
type variables) for each free occurance of 2 in B.
As in the case of lambda terms, the expression is
typable if the graph induced by the equivalence
classes created by unification is acyclic.

Given a set of type equations generated by a
Core ML expression E, and two type variables
U and V from the system, we may ask: in the
unification solution of the system, do U and V
have the same value? That is, are they in the
same equivalence class ? If this question can be
answered, say, by an oracle requiring no comput-
ing resources, then the typability of E can be de-
cided in PSPACE. Furthermore, if E is indeed ty-
pable, then its principal type can be output as a
directed acyclic graph in polynomial space. (The
careful reader will note that at this point, an ear-
lier, faiIed proof that typability is in PSPACE is
being recycled.) While the details of our DEXP-
TIME-hardness bound have been spelled out in
fuH, we limit ourselves to a sketch of the impor-
tant features of this analysis.

3.1 A canonical-form transformation.

We begin by showing how an arbitrary Core ML
expression E can be transformed into another ex-
pression E’ in a certain canonical form which pre-
serves the principal type iff there is one. We write
I,?31 to refer to the length of an ML expression E,
defined without loss of generality as the size of its
parse tree. The length of a type is defined simi-
larly as the size of its tree (or where relevant, dag)
representation.

The canonical form we compute has the following
structure:

c, z

. . .
let xn = (Xel.Xe2. . . . xe;,.E,) X~,l X'n,2 . . . 16,i,
in

Xn

The salient features of the canonical form are:

Its length is polynomial in the length of the
original expression.

All the let-expressions are nested in a sizlgle
chain.

& and each Xel.X&. a q - Xe;, .Ej are all let-
free and are closed lambda terms.

We now describe how this transformation can
be made in polynomial time. First, we a-convert
all X- and let-bindings to be unique identifiers, so
that subsequent transformation of the expression
does not result in any unwanted name clashes.
The initial ML expression E is then transformed
using the following rule we call let-lifting, since
each let is “lifted” as far “outside” of the expres-
sion as possible:

AxJet y = F in M ==s

let y’ = Xx.F in Xx.M[y’x/y]

394

Repeatedly applying the above transformation
to E results in an expression where no let-binding
occurs in a lambda body, and preserves the prin-
cipal type. The resulting expression has length at
most quadratic in IEl.

Next, we arrange the let-bindings so that they
form a uniform chain. To do so, we use the follow-
ing simple type-preserving transformations until
they can no longer be applied:

for each zj, j < k, and merging them modulo a
small (i.e., polynomial) set of constraints. This
set of constraints is defined from the type of the
closed lambda term A!r.Ae,. . . . A&,.Ek.

We use Example 1.2 in the Introduction to
illustrate this point: bindings to each zk can be
written as

Cp (let 2 = E in B) ==+

let x = E in Cp I3

(let x = E in B) G _

let z = E in B @

and we may type the closed X-term as

xe~‘c.Ae;‘b .Xya.(C;-c(e;-bya)b)c :

(b + c) + (a + b) + a + c.

Jet z = (let y = F in N) in A4

let y = F

in let x = N

in M

==+ Suppose zk-1 has a principal type 7, and separate
copies of r are bound to Lr and &: the constraint
that the definition of zk places on these types is
that the “output” of the type of !z must equal the
“input” of the type of ei.

The result of applying all these transformations is Definition 3.2. The type tree 7, of the canonical

an expression having a single chain of let-bindings, expression C, is tree, where the mot contains type

each of which is let-free. equations derived from the closed lambda term

Theorem 3.1. An arbitrary ML expression can
be reduced to canonical form with only a quadmtic
increase in expression size.

3.2 Deciding typability: the type tree.

We now use the canonical form to define an exp-
onential-sized data structure called the type tree.
We can then essentially dispense with the original
ML expression E as well as its canonical form, and
use a compact representation of the type tree to
derive whether or not E is typable.

with a particular type variable X, in the mot de-
noting the type of xn. The children of the mot
are also type trees, one for each free occumnce
of a let-bound variable xj appearing in the def;-
nition of 2,. The root also contains an equation
X,,j = Ys,j where Ys,j is a type variable in the
subtree associated with the type of the sth free oc-
cumnce of xj in the definition of x,,, and X,,j is
the type variable associated with that free occu-
mnce in the root.

3.3 The type tree.
The type tree enjoys the following friendly prop-
erties:

Notice that in the canonical form, each expression
bound to 5k is defined in terms of two polymor-
phic copies of some set of xj, j < k, imitating the
structure of a tree where the nodes have different
branching factors (outdegree). If the expression is
typable, each Xk has a principal type derived from
taking polymorphic copies of the principal types

l While the type tree has size exponential in
the size of the canonical ML expression, each
node in the type tree takes only polynomial
space to store. Furthermore, the variables
appearing in a constraint equation always
appear in adjacent type tree nodes.

395

l Variables can be uniquely identified as to
what tree node they come from, where the
variable names have polynomial length en-
coding the path to the node, and which vari-
able in the node is being referenced.

l The unification solution of the constraints in
the tree contains the solution for the princi-
pal type of the canonical expression, if there
is such a type.

The idea of the type tree is very similar to a vari-
ety of other representation schemes for describing
the exponential number of type equations gener-
ated by let polymorphism, in particular Kanel-
lakis’ pointer dags [Ka] and Kfoury’s acyclic semi-
unification[Kf].

An important consequence of the above prop-
erties on which the PSPACE result (with oracle)
rests is the following: even though the type tree
has exponential size, it can be virtually repre-
sented in polynomial space by simply storing type
equation representations of the closed
lambda terms. The type equations at any node
can be regenerated in polynomial time by taking
the virtual “master copy” of the node, and simply
renaming variables based on the path to the node.

The last point above-that the solution S of
the constraints determines the principal type-
provides insight into the core of our polynomial
space algorithm. Given two variables U and V
from the type tree, we want to determine in poly-
nomial space if U = V in S, a relation we will
write as U = V to distinguish it from the = con-
straints in the type tree. The solution S defines
an obvious equivalence relation among the vari-
ables which is given by E, but we may further
associate a relation + among these equivalence
classes as [U] * [V] if A = B -+ C is a constraint
in the type tree, A E [VI, and B E [V] or C E [VI.
The type tree 7n then induces a graph f&, where
the nodes are the equivalence classes, and the di-
rected edges are the 3 relation. The relation +
naturally encodes the idea of “type substructure,”
from which we have the following lemma, stating
that a core ML expression is untypable iff an occur

check returns positive.

Lemma 3.3. The ML expression E is typable i#
6, is acyclic, equivalently, if the tmnsitive clo-
sure of j is irreflexive.

We now sketch some of the important features
of our polynomial space solution. We are assum-
ing that the = relation is computed by an oracle
at no cost, from which we can compute the *
relation in polynomial space. A consequence of
these assumptions is that deciding typability can
also be computed in polynomial space by a sim-
ple nondeterministic algorithm. Let R be a type
tree variable associated with the putative princi-
pal type of the ML expression E. Beginning with
R, our algorithm simply guesses a path, i.e., a
set of relations VO = R 3 VI + - * * + Vj, and
guesses as well to remember some K where i < j;
it then checks if Vt: E Vj. If the answer is “yes,”
the ML expression is not typable, because a cycle
was discovered. The ML expression is clearly not
typable if it is possible to make a series of correct
guesses leading to a “yes.” A crucial reason why
this computation is in PSPACE is that the num-
ber of Vj which must be guessed along the path is
merely exponential, and thus in polynomial space
we may maintain a sort of clock initialized to a
value exponential in],!?I, and decreased by one af-
ter each Vk is guessed; if there is a path leading to
an acyclicity, it must be guessed before the clock
runs to zero. By Savitch’s Theorem [Sa70], we
know that this algorithm can be simulated by a
deterministic one with only a quadratic blowup in
space, resulting in a polynomial-space algorithm.

Bow can the lower bound presented in Sec-
tion 2 and this oracular PSPACE upper bound
be understood together? First, they indicate that
the bottleneck in deciding typability can be un-
derstood in terms of proving equality of type vari-
ables in the context we have detailed above. Sec-
ondly, given the oracle, deciding if our Turing Ma-
chine simulation codes an accepting computation
can be decided in constant time: observe that ac-
ceptance or rejection is expressed by a Boolean
variable coded as (reject? state). The Boolean
simulation of true and false each use two type vari-

396

ables which may or may not be constrained to be
equal; being able to test in constant time this type
variable equality is analogous to examining the ex-
ponential sized Boolean “circuits” defined by ML
let-polymorphism, and being allowed to test any
“output wire” in constant time to see if it is a 0 or
1. In other words, the lower bound, in its simula-
tion of Boolean values via pairs of type variables,
exploits precisely the computational intractability
of proving equivalence of type variables, the prob-
lem which the oracle was specifically intended to‘
solve.

3.4 How to output the principal type
as a directed acyclic graph

Given that we can decide if an ML expression is
typable, how can we indeed output its type, and
assuming that we have a E-oracle, can this be
done in polynomial space? Since the principal
type can have exponential size, we clearly can-
not compute and store the entire type in polyno-
mial space; instead we ask if we can construct an
output device having polynomial space which will
output the principal type into an external file. We
begin with the following simple observation:

Lemma 3.4. The principal type of an ML ex-
pression E cannot be output as a string in space
polynomial in) E I.

Proof. Let IEl = n. If the output device is al-
lowed some polynomial p(n) space, it can only en-
code &‘tn) states. By a simple counting argument
just like the pumping lemma for finite automata,
if the output device is required to generate a prin-
cipal type represented as a string of length 22c”,
it must either abort prematurely or loop. w

Instead, we show how to output the principal
type as a directed acyclic graph, and in this case,
such counting arguments will not work, since the
dag size is at most a single exponential in IEI.

Definition 3.5. A type tree variabEe V has struc-
ture if V = P --, Q is a constmint in the type
tree.

Definition 3.6. Type tree variable P is a parent

of Q if W = R ---f S is a constmint in the type
tree, P - W, and either Q E R or Q s S. P is
an ancestor of R if either P is a parent of R, or
P is a parent of Q and Q is an ancestor of R.

Definition 3.7. A path is a sequence (Ul, . . . , Uk)
of type variables where U; is a parent of U;+l,
1 5 i < k. A path Pr = (Ur, . . . , Uk) appears
to the left of a path 7’2 = (VI,. . . ,Ve), written
PI 4 P2, if VI = VI, and either l.Jl E U2 - Vz,
or U;! = VZ and Pl = (Uz, . . . , Uk) appears to
the left of P2 = (Vz, . . . , V’). A type tree vari-
able U appears to the left of type tree variable
V, written U 4 V, if there exist leftmost paths
P, = (Ul,..., uk) and I& = (VI, . . . , Ve) where
PI 4 P2, U 5 Uk and V z Ve.

Lemma 3.8. Given type tree variables P and Q,
we can determine if P 4 Q in polynomial space.

Definition 3.9. We associate with every type tree
variable V a canonical type tree variable x(V) de-
fined as follows: let E(V) = { W 1 W z V}. The
W f E(V) have a lexicogmphic ordering. De-
fine E,(V) = {W E E(V) I W has structure). If
E,(V) # 0, we define x(V) to be the Zexicograph-
ically minimal element of Es(V). Otherwise, we
define x(V) to be the lexicographically minimal el-
ement of E(V).

Lemma 3.10. For any type tree variable V, we
can compute x(V) in polynomial space.

If an ML expression E is typable, then the
solution to its associated set of equational con-
straints contains no positive occur checks. This
means precisely that the “graph encoding” of the
solution (modulo =-equivalence of variables) is
acyclic. Hence we follow the following strategy:
beginning with the root variable R, we depth-first
search the graph following children in left to right
order: if V = P = Q -+ R, we visit the node
(equivalence class) associated with V, then in turn
output the structures associated with Q and R.
When we are about to explore such a structure,
we first compute whether it has already been out-
put, this the intent of the definition of 4. Since
the node of every output structure has a unique
parent via the use of depth-first search, we do not

397

need a stack to implement the tree recursion, al-
though the space savings is at a rather prohibitive
time cost. To compute the address pointers asso-
ciated with nodes is easy: since each node in the
graph corresponds to an equivalence class of type
variables in T,, we choose as node pointer the
canonical representative of the class (see Defini-
tion 3.9 above).

procedure outdag (V : type variable) :
{ only called on structures that have

not yet been output }
u := x(V);
if U has structure --)

{ say, U = A -+ B }
output internal node U;
if 3 W 4 U where W =S A -

output pointer x(A);
if 3 W 4 U where W + B -

output pointer x(B);
imckup(U)

0 else - out&g(B)
fi

0 else - out&g(A)

0 tise-
{ U doesn’t have structure;

we’ve reached a leaf }
output leaf U;
buckup(U)

fi
erudecorp;

Remark. When outdag(V) is only called on “new”
structures, the leftmost parent of V is unique up
to r-isomorphism.

procedure backup (V : type variable) :
if V = R - return
0 else -

u := x(V);
if 3 leftmost parent P = A + B where

ArB=U-
(The second “copy” of U should

be generated by a dag pointer }
output pointer x(U);

backup(P)
0 3 leftmost parent P = A + B where

AdJ,BfU-
if 3 W -t B where W E B -----)

{ B already generated }
output pointer x(B);
backup(P)

0 else --t outdag(B)
fi

0 3 leftmost parent P = A + B where
AfU,BdL+

backup(P)
fi

fi
erudecorp;

4 Conclusions.

In this paper, we have provided a simple proof
that deciding ML typability is DEXPTIME-com-
plete. The proof was just a computer program
written in ML, whose principal type simulated an
exponential number of moves by an arbitrary Tur-
ing Machine; by changing the program slightly, we
could force a mistyping precisely when the Turing
Machine rejected its input. We identified a closely
related problem in the logic of unification, namely
deciding the equality of two type variables in an
exponential set of type equations derived from a
Core ML expression, and showed that the lower
bound comes precisely from this problem. Were
it solvable in polynomial space, deciding typabil-
ity would be in PSPACE, and computation of the
principal type would also be possible in polyno-
mial space.

One question immediately comes to mind: given
the oracle we have postulated for solving the type
variable equality problem described above, is de-
ciding typability PSPACE-hard? We conjecture
this is the case: an argument based on transi-
tive closure will probably bear this out. Can the
DEXPTIME-hardness proof be reworked to get
an undecidability result for the Milner/ Mycroft
type system? We conjecture that it should be
possible to use their FIX rule to code up an un-

398

bounded amount of blank tape, as well as an ML
simulation of a Turing Machine which generates
an unbounded number of IDS. This might pro-
vide some alternative intuitions to the proof of
(KTU89b]. Finally, we propose using the basic
Turing Machine simulation in typed lambda cal-
culus as a tool for studying other more complex
type systems.

The significance of the lower bound present-
ed in this paper is not at all mitigated by the fact
that programmers do not typically code up Turing
Machines in their types. The importance of the
result is that a priori one cannot set a reasonable
upper bound on the amount of computation that
goes on during polymorphic type checking. The
Turing Machine simulation is merely an example
of a particular kind of huge computation.

The question remains why everyone has be-
lieved ML polymorphic type checking to be effi-
cient, when in the worst case it is clearly not so.
Bounding the amount of nested uses of let, the
notion of let depth as proposed in [KM89], is one
syntactic means of assuring polynomial-time type
inference, but this restriction seems arbitrary; in-
deed, its main virtue is that it facilitates an induc-
tive argument in proving the upper bound. Some
sort of average-case analysis would be very nice,
but it is not at all clear what probabilistic distri-
bution on programs would be convincing or realis-
tic. Certainly distributions on trees (e.g., branch-

the lower bound, and checked many of its details
by implementing them in Standard ML. I am in-
deed fortunate to have benefited from their ad-
vice and scrutiny, but even more fortunate to have
written a proof that could practically have been
checked by a computer!

I would also like to thank Dennis Kfoury for
his patience and invaluable role as sounding board
and critic during a feverish period in April and
May of 1989, when I began thinking that the
work described in [KM891 was worthy of a se-
quel. The opportunity to present that paper at
the BU/Northeastern type theory seminar moti-
vated my interest in this s.ubject.

5 References.

[AS851 Harold Abelson and Gerald Sussman, Struc-
ture and Interpretation of Computer Programs.
MIT Press, 1985.

[AHU74] Alfred V. Aho, John E. Hopcroft, and
Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[DKM84] Cynthia Dwork, Paris Kanellakis, and
John Mitchell, On the Sequential Nature of Uni-
fication. J. Logic Programming l(1):35-50.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul
Taylor, Proofs and Types. Cambridge University
Press, 1989.

ing, depth) simulating the canonical form could
be used to produce a result, but whether such an

[HMM86] Robert Harper, David MacQueen, and

analysis would produce an answer of practical rel-
Robin Milner, Standard ML. Research Report ECS-

evance is not obvious.
LFCS-86-2, Computer Science Department, Uni-
versitv of Edinburgh. March 1986.

u
v I

Acknowledgments. Paris Kanellakis was kind
enough to send me his unpublished notes on de-

[HU79] John E. Hopcroft and Jeffrey D. Ullman,

tails of the PSPACE-hardness construction
Introduction to Automata Theory, Languages, and

sketched in his paper with John Mitchell, which
Computation. Addison-Wesley, 1979.

allowed me to understand how the proof really [Hu73] Harry B. Hunt, The equivalence problem

worked. I would especially like to thank Paris for for regular expressions with intersection is not

detailed reading of several earlier versions of this polynomial in tape’ TR 73-156, Computer Sci-

uaner. some of which were truly flawed beyond ence Department, Cornell University, 1973.

heief, and for his merciless cross-examination and [Ka] Paris Kanellakis, personal communication.

verification of the final DEXPTIME-hardness [KM891 P aris Kanellakis and John Mitcheli, Poly-
bound. John Mitchell F&O read an exposition of morphic unification and ML t,yping,POPL 1989.

399

[Kf] Dennis Kfoury, personal communication.

[KTUSSa] Dennis Kfoury, Jerzy Tiuryn, and Pave1
Urzyczyn, An analysis of ML typability. Preprint.

[KTU89b] Dennis Kfoury, Jerzy Tiuryn, and Pave1
Urzyczyn, Undecidability of the semi-unification
problem. Preprint.

[Mi78] Robin Milner, A theory of type polymor-
phism in programming, JCSS 17 (1978), pp. 348-
375.

[Sa70] Walter Savitch, Relationship between non-
deterministic and deterministic tape complexities,
JCSS 4:2 (1970), pp. 177-192.

[Pf88] Frank Pf enning, Partial polymorphic type
inference and higher-order unification. 1988 Con-

ference on Lisp and Functional Programming.

[W87] Mitch Wand, A simple algorithm and proof
for type inference. Fundamenta Informaticae 10
(1987).

A A pathological example

Standard ML of New Jersey,
Version 0.24, 22 November 1988
val it = () : unit
- fun pair x y=fn z=> z x y;
val pair = fn :

‘a -> ‘b -> (‘a -> ‘b -> ‘c) -> ‘c
- let val xl=fn y=> pair y y

in let val x2=fn y=> x1(x1(y))
in let val x3=fn y=> x2(x2(y))

in let val x4=fn y=> x3(x3(y))
in let val x5=fn y=> x4(x4(y))

in x5(fn z=> z) end end end end end;
Major collection. . .

97% used (375228/385108), 1280 msecl

[Increasing heap to 1104kl
[Major collection.. .

88% used (504800/568000), 1940 msecl
[Increasing heap to 1480k]

[Major collection. . .
[Increasing heap to 2288k]
99% used (824308/825248), 3200 msec]
[Increasing heap to 2416k]

[Major collection.. .
[Increasing heap to 3816k]
99% used (1313348/1314312), 5140 msec]
[Xncreasing heap to 3848k]

[Major collection.. .
99% used (2057024/2058152), 8400 msec]
[Increasing heap to 6032k]

[Major collection.. .
99% used (3185268/3186408), 12680 msecl

[Increasing heap to 9336kl
[Major collection.. .

99% used (4887136/4888160), 20540 msecl

[Increasing heap to 1432Ok]
[Major collection.. .

99% used (7394828/7395948), 31020 msec]
[Increasing heap to 21672k]

[Major collection.. .
[Increasing heap to 35016k]
99% used (12274372/12351328). 49780 msecl

[Increasing heap to 35968N
[Major collection. . .

99% used (19176936/19179460). 79040 msecl

[Increasing heap to 56184ti
[Major collection. . .

-48% used (28902440/28906544), 119580 msecl

[Increasing heap to 5796Ok]
[Major collection.. .

[Increasing heap to 58936k]
[Increasing heap to 59192k]
[Increasing heap to 5932Ok]
-35% used (31712940/31713380), 129880 msec]
[Increasing heap to 59352131

val it = fn : ((((((((((((((((((((((((((((((
((‘a -> ‘a) -> (‘a -> ‘a) -> ‘b) -> ‘b) ->

(((‘a -> ‘a) -> (‘a -> ‘a) -> ‘b) -> ‘b) ->

Jc) -> Jc) -> (((((‘a -> ‘a) -> (‘a -> ‘a) ->
lb) -> ‘b) -> (((‘a -> ‘a) -> (‘a -> ‘a) ->

‘b) -> ‘b) -> ‘c) -> ‘c) -> ‘d) -1 ‘d) -1 ((
(((((‘a -> ‘a) -> (‘a -> ‘a) -> ‘b) -> ‘b) ->

(((‘a -> ‘a) -> (‘a -> ‘a) -> ‘b) -> ‘b) ->

‘c) -> ‘c) -> (((((‘a -> ‘a) -> (‘a -> ‘a) ->

‘b) -> Jb) -> (((‘a -> ‘a) -> (‘a -> ‘a) ->
Jb) -> Jb) -> ‘c) -> ‘c) -> ‘d) -> ‘d) -> ‘e)
-> ‘e) -> (((((((((‘a -> ‘a) -> (‘a -> ‘a> ->
Jb) -) lb) -> (((‘a -> ‘a) -> (‘a -> ‘a) ->

‘b) -> ‘b) -> ‘c) -> ‘c) -> (((((‘a -> ‘a) ->
(‘a -> ‘a) -> ‘b) -> ‘b) -> (((‘a -> ‘a) ->
(‘a -> ‘a) -> ‘b) -> ‘b) -> ‘c) -> ‘c) -> ‘d)
-> ‘d) -> (((((((‘a -> ‘a) -> (‘a -> ‘a> ->
‘b) -> ‘b) -> (((‘a -> ‘a) -> (‘a -> ‘a) ->
lb) -> ‘b) -> ‘c) -> ‘c) -> (((((‘a -> ‘a) ->
(‘a -> ‘a) -> ‘b) -> ‘b) -> (((‘a -> ‘a) ->
(‘a -> ‘a) -> ‘b) -> ‘b) -> ‘c) -> ‘c) -> ‘d)
-> . . . and so on for hundreds of pages! . . .

400

in

GT-7

.t’l Yl x2 y2
--

out.1 out2

sta.te -+

/ \

left -

/ \
right -

0

Xl + Yl 4

/ \ / \
x2 Y2

Wl,
4

/ \

Xl +

/ \

Yl -

0

X2 +

/ \
Y2 -

0

Figure 1: Implementing fa.nout as (a) a dag; (b) a type.

Figure 2: Turing Machine IDS.

401

