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We address the problem of designing programming 
systems to reason with and about constraints. Taking a 

F logic programming approach, we define a cluss of program- 
ming languages, the CLP languages, all of which share the 
same essential semantic properties. From a conceptual 
point of view, CLP programs are highly declarative and are 
soundly based within a unified framework of formal se- 
mantics. This framework not only subsumes that of logic 
programming, but satisfies the core properties of logic pro- 
grams more naturally. From a user’s point of view, CLP 
programs have great expressive power due to the constraints 
which they naturally manipulate. Intuition in the reasoning 
about programs is enhanced as a result of working directly 
in the intended domain of discourse. This constrasts with 
working in the Herbrand Universe wherein every semantic 
object has to be explicitly coded into a Herbrand term; this 
enforces reasoning at a primitive level. Finally, from an 
implementor’s point of view, CLP systems can be efficient 
because of the exploitation of constraint solving techniques 
over specific domains. 
- 
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The problem at hand is that of designing programming 
systems to reason with and about constraints. Toward this 
aim, we present the foundations for a class of programming 
languages based upon constraint solving and the logic pro- 
gramming paradigm. The framework herein, we call it 
CLP(X), is a scheme in the sense that when one instantiates 
X with a suitable domain of discourse, one obtains a pro- 
gramming language with several important features. PRO- 
LOG, PROLOG-II, PROLOG-III and the CLP system, for 
example, are instances of the scheme. This scheme may also 
provide formal semantics for other languages such as the 
recently proposed GIL [ 151 and LOGIN [ 11. 

In constraint logic programs, basic components of a 
problem are stated as constraints. the problem as a whole is 
then represented by putting the various constraints together 
by means of rules. Because unification is but one special 
case of constraint solving, constraint logic programs have 
superior expressive power. Furthermore, the programs are 
naturally amenable to algebraic semantics. Two important 
points arise here: fist, these algebraic semantics form an 
important complement to the other logic-based semantics. 
Intuition in the reasoning about programs is enhanced as a 
result of working directly in the intended domain of dis- 
course. This constrasts with working in the Herbrand Uni- 
verse wherein every semantic object has to be explicitly 
coded into a Herbrand term thus enforcing reasoning at a 
primitive level. Second, an algebraic treatment makes pos- 



sible the exploitation of efficient implementation methods 
from the literature on constraint solving over certain struc- 
tures. We will illustrate these points using examples drawn 
from an experimental implementation of a CLP system. 

In the next section, we provide the motivations which 
lead us to design the Constraint Logic Programming 
Scheme. Following that, we provide examples of programs 
written for the CLP system, i.e. an experimental implemen- 
tation of one particular instance of the Scheme, to illustrate 
the expressive power of CLP programs. We also argue here 
that efficient implerqentations of CLP languages can be 
obtained by the judicious use of special-purpose constraint 
solvers. Finally, the semantic properties of the Scheme are 
formally presented. The full treatment of the semantics, 
including all proofs, is however to be found in [6]. 

2. Motivation and Background 

Much of the present research in Logic Programming 
concentrates on extensions to Prolog. An important issue 
is the integration of the essential concepts of functional and 
logic programming. Another issue is the use of equations 
to define data types. Recent work along these lines, from 
Goguen and Meseguer, Kahn, Komorowski, Kornfeld, 
Reddy, Sato and Sakurai, Subrahmanyam and You will be 
found in the text edited by DeGroot and Lindstrom [5]. 

There is some concern that these extensions have little 
connection left with logic. In fact, the very nature of the 
concepts in these extensions is such that it is not difficult to 
accommodate them in standard logic or some variant 
thereof. The crucial point is not, however, the issue of 
formalization within or without logic. Rather, it is whether 
or not the unique semantic properties of logic programs are 
preserved in the extensions. 

Toward this aim, Jaffar, Lassez and Maher [8] proposed 
a “logic prog ramming language scheme” Its syntax is the 
syntax of Definite Clauses, its domain of computation is left 
unspecified but it is assumed to be definable by a unification 
complete equality theory, and its interpreter is based on 

SLD resolution and an appropriate generalized unification 
algorithm. The semantic properties of definite clauses hold 
for this scheme and all its instances. Now instead of estab- 
lishing one by one the various semantic results for a given 
extension to PROLOG, one can use the scheme to obtain 
them all in one move. This is exemplified in [9] in the case 
of Colmerauer’s PROLOG-II [3] defined over the domain 
of rational trees. Essentially we proceeded in two steps, 
fist giving an equality theory whose standard model is the 
intended domain of rational trees, and then showing that 
this equality theory is unification-complete. Thus 
PROLOG-II is an instance of this scheme and its semantics 
is automatically obtained. 

While this Scheme achieved the goal of encapsulating, 
within one unified framework, logic programming languages 
whose domains are definable by an equality theory, it is in- 
timately tied to, and therefore restricted to, unification. 
We have shown that the generalisation from standard tmifi- 
cation to unification in equality theories posed no concep- 
tual barrier in the semantics of logic programs. When 
working outside unification and equations, however, it is no 
longer apparent that a similar scheme exists. 

The problem of inequalities in PROLOG-II [4], for ex- 
ample, cannot be accomodated in this Scheme. It was, in 
fact, not even evident, nor was it to be expected, that the 
key semantic properties of logic programs still hold here. 
However, Jaffar and Stuckey [13] showed, from fist prin- 
ciples, that these properties do indeed hold. 

Consequently, we are now led to consider an extension 
of the Scheme in which the concept of (general&d) unifi- 
cation is replaced by the concept of constraint solving. 
Apart from the advantage of being more general, programs 
in the new Scheme deal with constraints over a given do- 
main of computation, and hence they are provided with al- 
gebraic semantics. This in turn enhances intuition because 
reasoning about programs can be done directly within the 
intended domain using its natural constraints. 
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3. Programming in an Instance of CLP 

In this section we give examples of logic programs with 
arithmetic constraints in order to give an informal notion of 
their semantics. This instance of CLP is suitable for nu- 
merical applications and operations research. We also wish 
to highlight the operational differences with traditional logic 
programming. 

We begin with the domain of computation: this is de- 
fined to be a two-sorted algebra & comprising of the na- 
tural combination of real arithmetic terms and uninterpreted 
functors. Only = is used to relate terms which contain un- 
interpreted functors. For example, X = cons(Y + 3, 
f(X*Z)) is a valid equation involving two uninterpreted 
functors cons and f. A Constraint Logic Program consists 
of a fiite set of rules each being of the form 

P&o): - q(q), . . . , C”(U,), P*(tt), ‘.’ 9 Pll&n) 

where pi, 0 I i S m are predicate symbols different from the 
relation symbols in &; ci , 0 I j I n, are symbols denoting 
relations in Jk (the constraint of the rule) and tk and u,, 0 5 . 
k 6 m, 0 < 1 I n, are terms of Jd constructed in the obvious 
manner. A gwl has the same form as the body of a rule. 

The informal declarative semantics is essentially the 
same as those of standard logic programs. For example, 

complexmult(c(R1, Il), c(R2,12) c(R3,13)) :- 
R3 =Rl *R2-11 *I2, 
13 = Rl * 12 + R2 * Il. 

obmlaw(V, I, R) :- complexmult(1, R, V). 
inductorlaw(1, V, L, W) :- complexmult(c(0, W*L), I, V). 
capacitorlaw(1, V, C, W) :- complexmult(c(0, W*C), V, I). 

describes some elementary properties in circuit analysis. 
Consider the fist rule above. The goal 

?- complexmult(c(R, I), c( 10, SO), c(20,50)) 

entails the solution of the simultaneous equations 

20=R* 10 - I+50 
50=R*50 + lO*I 

giving the resultR = 1.038461 and I = -0.192307. 

The informal operational semantics, however, has two 
main components: a constraint solver for d-relations and 
an adaptation of the goal-reduction technique in logic pro- 
gramming. A derivation sequence consists of goals which 
have solvable constraints. For example, from the goal 

?- dt,), P(t-2) 
and the rule 

p(t,) :- c2(t,), q(ts 
we may derive the goal 

?- c(t,), tz = 5, c2(t,)t q(b) 
providing that the constraint c(t,) & b = b & c2(t,) is solv- 
able in & 

Derivation sequences are successful when the last goal 
therein contains only constraints. These unswer constraints 
constitute the output of CLP programs. Finitely failed se- 
quences are those whose last goal cannot be expanded. 

For example, the following program solves the Dirichlet 
problem for Laplace’s equation in two-dimensions. 

laplace([Hl, H2, H3 IT]):- 
av(H1, H2, H3), 
laplace([H2, H3 1 T]). 

laplad , I). 

av([TL,T,TR I Tl], [ML,M,MR ] T2], [BL,B,BR 1 T3]):- 
B+T+ML+MR-4*M=O, 
av([T, ‘I’R I Tll, [M, h4R 17% [B, BR I ‘WI. 

av([-, -I,[ 2 I,[ , I)- 

This program outputs a matrix (list of lists) giving the tem- 
perature of a surface at discrete points. Typical input is a 
matrix which contains specific values at the four boundaries. 
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The program then specifies that the temperature at each 
non-boundary point is the average of those of four 
neighbouring points. The goal 

?- laplace([ 
I4 0, 0, 0, 01, 
[loo, R, S, T, 1001, 
[loo, u, v, w, 1001, 
mo, x, Y, z,1001, 
[loo, 100, 100, 100, 1001 
I). 

for example, results in the answer 

laplace( [ 
[O, 0, 0, 0, 01, 
[loo, 57.143,47.321,57.143, 1001, 
[100,81.250, 74.999,81.250, 1001, 
[loo, 92.857,90.176,92.857, 1001, 
[loo, 100, 100, 100,1001 
1). 

During execution, the PROLOG-like goal reduction tech- ’ 
nique serves to collect together ail the constraints: 

U+O+ lOO+S-4*R=O, 
V+O+R+T-4*S=O, 

. . . 
100+w+Y+100-4+2=0 

and the second component of the operational model, the 
constraint solver, then determines the values of the variables 
R, S, . . . , Z. 

We may also work with a goal which is “under- 
specified”; the goal 

?- laplace( [ 
[O. 0, 01, 
1100, x, 1001, 
[ 100, B, 1001 
I) 

results in a symbolic answer “X = 50 + 0.25B”. 

In the final example, we further illustrate the expressive 
power of using constraints in answers as well as in queries. 
This example is based upon option pricing. 

heavyside(X, Y, Z) :- Y < X, Z = 0. 
heavyside(X, Y, Z) :-Y 2 X, Z = 1. 
ramp(X, Y, Z) :-Y < X, Z = 0. 
ramp(X,Y,Z):-Y>X,Z=Y-x. 

O/o Option valuation 

value(Type, BuyorSell, S, C, P, I, X, B, Value) :- 
Value = Hl*Tl + H2+T2 + Rl+T3 + R2+T4, 
S 2 0, C 2 0, P 1 0, I 1 0, X 1 0, B 2 0, 
option(Type, BuyorSeil, S, C, P, I, X, B, 

K,Bl,B2,Hl,IQRl,R2), 
heavyside(B2, S, Tl), heavyside(S, B2, T2), 
ramp(B1, S, T3), ramp(B2, S, T4). 

% Lookup option vector 
option(Type,sell,S,C,P,I,X,B,Bl,B2,Hl,H2,Rl,IU) :- 

table(Type,l,S,C,P,I,X,B,Bl,B2,Hl,H2,Rl,R2). 
option(Type,buy,S,C,P,I,X,B,Bl,B2,Hl,H2,Rl,R2) :- 

table(Type,-l,S,C,P,I,X,B,Bl,B2,Hl,H2,Rl,R2). 

O/O M is -1 or I depending on buying or seIling option 
table(stock,M,S,C,P,I,X,B,O,O,M*S*(1+I), O,-l+M, 0). 
table( call,M,S,C,P,I,X,B,O,X,MCC+(I+I), 0, O,-l*M). 
table( put,M,S,C,P,I,X,B,O,X,M*P*(l+I)-X.0, 1,-l). 
table( bond,M,S,C,P,I,X,B,O,O,M*B*(l+I), 0, 0,O). 

The following straightforward query finds the value of sell- 
ing a cali option given the tail price 5, exercise price 50, in- 
terest rate 5% and current stock price 60. 

?- CALL = 5, EX = 50, INT = 0.05, S = 60, 
value(cali, sell, S, CALL, -, INT, EX, -, WEALTH) 
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The answer gives WEALTH = -4.75. In the traditional re- 
lational programming style, we can turn the question upside 
down and ask what should be the stock price so that the 
wealth exceeds 5: 

?- WEALTH > 5, CALL = 5, EX = 50, IN’f = 0.05, 

v~ue(cti, sell, S, CALL, -, INT, EX, -, WEALTH) 

Two symbolic answers are obtained: 

(a) WEALTH = 5.25 &S < 50, 

(b) WEALTH = 55.25 - S & 50 s S < 50.25. 

We may also naturally combine options in several ways. 
For example, a straddle (i.e. buying both a put and a call on 
the same stock with the same exercise price and maturity 
date) will make money only if the stock price varies signif- 
icantly. The following goal asks what should the stock price 
be so that the profit from the straddle is at least 10: 

?-wEALTH=Wl+W2, 

CALL = 5, PUT = 7, EX = 50, INT = 0.05, 
WEALTH 2 10, 
value(call, buy, S, CALL, -, INT, EX, -, Wl), 
value(call, sell, S, -, PUT, INT, EX, -, W2). 

Two answers are obtained: 

(a) M'Fda'f'I-f = 37.4 -s&O< S 5 27.4 

(b) WEALTH= S-62.6&S 2 72.6 

which corresponds to the nature of a straddle since we profit 
by at least 10 if the stock price goes below 27.4 or if it rises 
above 72.6. 

We conclude this section with a few remarks on an ex- 
perimental implementation: the CLP system [7,11]. 

Constraint solvers, such as the simplex algorithm, are 
aimed at solving a given large set of complex constraints 
typically arising from Operations Research problems. In 

principle, such solvers can of course be used in CLP. 
However, in a programming context, the constraints are 
obtained incrementally and each increment often involves 
only relatively simple constraints. There is another impor- 
tant difference. In programs, some constraints are used also 
in a manner compatible with that of assignments and tests. 
These, and other special classes of constraints, clearly do 
not require a general purpose solver. 

In short, while traditional solvers attack large and static 
constraints, ours must deal with dynamically created smaller 
constraints which are often of a specialised nature. These two 
fundamental differences dictate that a constraint solver used 
in a progr amming language be specially engineered. 

The present implementation, an interpreter written in 
C, uses two methods for dealing with the “hard” linear 
constraints; they are a graph-manipulation procedure and 
an adaptation of the simplex algorithm. Minimising the 
frequency of invocation of the general purpose solver is a 
key factor in its efficiency (the naive list reversal program 
runs at 10K Lips on a Pyramid 98X). An important issue 
in the ongoing development of *this system concerns the 
solution of non-linear constraints. Presently, a co-routining 
mechanism is employed to delay the need for solving such 
constraints in the hope that further along in a computation 
sequence, sufficient variables become 
constraints become linear. 

4. Semantics for the CLP Scheme 

The main results that provide the formal foundations 

ground and so the 

for the logic progr amming with equality scheme dealt with 
the following primary concerns: 
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the existence of a canonical domain of computation; 

the existence of a least and greatest model semantics; 
the existence of a least andgreatest firpoint semantics; 

soundness and completeness results for successful deriva- 
tions of the the underlying implementation model; 

soundness and completeness results for finitely failed deri- 
vations of the underlying implementation model, and 
soundness and completeness results for negation-as-failure. 

Because of the fundamental difference between equality 
theories and constraint solving, we have to introduce new 
concepts and techniques in order to obtain corresponding 
results for CLP. Paramount amongst these are the notions 
of a solution-compact structure. 

We start with a many-sorted structure .a2 which is the 
central element in our algebraic semantics. cd is solution- 
compact if (a) every element in d is the unique solution of 
a finite or iniinite set of constraints (limit elements are those 
which can be defined only by an infinite set of constraints) 
and (b) every element in the complement of the solution 
space of a constraint C belongs to the disjoint solution space 
of some finite or infinite family Ci of constraints. Symbol- 
ically, we have, by identifying constraint symbols and their 
solution spaces below, the following equivalent definition: 

(4 WdEd,d=ftC, 
tb) vc,c’=uci 

Thus (a) requires every element to be either fiitely defma- 
ble or a limit element. Condition (b) is very weak. It is met 
in all plausible structures that we have considered. It is, in 
fact, necessary and sufficient to establish many results con- 
cerning finite failure and negation. 

Example la. Any structure which has no limit elements is 
trivially solution-compact. This includes, in particular, any 
fiite structure, the structure d, = (HB, =), where HI3 is 
some Herbrand universe. and the structure (HB/E, =), 

where HB/E denotes the quotient of some Herbrand uni- 
verse by an equality theory E. 0 

Example 2a. The structure d2 = (BIB, =, #), where IHB 
is some infiitary Herbrand universe, is used in 
PROLOG-II. It is easy to check that condition (a) holds. 
That condition (b) holds follows simply from the fact that 
the negation of an atomic constraint is itself a constraint. 

0 

Example 3a. Consider the structure JI, used in the CLP 
system as described in Section 3. The proof of its solution- 
compactness can be found in [143. 0 

We consider now a correspondence between algebraic 
and logical semantics. Logic programs enjoy the following 
property: a goal G is true in all models of P iff G is true in 
all Herbrand models of P. This allows computation to be 
performed in the Herbrand universe. For similar reasons, 
we say that a theory d corresponds to & if 

(i) d I= g, i.e. & models 8, and 
(ii) d2 I= 3C implies #I= 3C for all constraints C. 

For reasoning about negation, we also require that d be 
satisfaction-complete: 

Sl= ,C whenever not $1~ 3C. 

We remark that this notion corresponds to that of “unifica- 
tion completeness” [8] in the old scheme based on equality 
theories. 

Example lb. Consider the structure Jd, above, and the 
theory obtained from the schema 

f(3 f g(i) 
z # ttzl 
f(Z) = f(i) -c ;; = 5 

where f and g are distinct functors in the alphabet of J4, and 
t[z] is a term containing an occurrence of the variable z. 
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This theory corresponds to JB1 and is satisfaction-complete. 

cl 

Example 2b. Consider the structure dz above, and the 
theory obtained from the schema 

where the x+ 1 I i 5 k, are distinct variables and the t,, 1 
I i 5 k, are terms. This theory corresponds to Jz but is 
not, however, satisfaction-complete. To make it so, adjoin 
the axioms given by the schema 

f(3 f l3(3 
f(G) = f(y) + ; = 5 

where f and g are distinct functors. q 

Example 3b. Consider the two-sorted structure Ja, de- 
scribed in section 3 above. Take the theory RCF of real 
closed fields wherein the variables are universally quantified 
over the sort of real numbers. Adjoin the theory S in ex- 
ample 4 wherein all variables are quantified over the re- 
maining sort. The resulting theory corresponds to d, and 
is satisfaction-complete. This is due to a combination of the 
two reasons: B is satisfaction-complete and RCF is, simply, 
complete. 0 

In or&r to establish fixpoint semantics, we have, for 
each CLP program P, the following function mapping from 
and into d-base (i.e. the cross product between the predi- 
cate symbols in P and J). 

T(S) = {d t d-base: 
there ‘s,a rule in P 
A :- :, B 
and an d-valuation 0 such that 
(a) dI= (A0 = d), 
(b) .@ I= :O, and 

(4 WI 5 S 
3 

Thus it is a counter-part to the usual function T for logic 
programs. This function is, however, based upon 
JB-solvability and not unifiability in a Herbrand Universe. 
Thus if d were a real arithmetic structure and P contains 
just the rule 

p(X) :- 17X256 + 35X” - 99x = 0 

then T(E)) = {p(d): d is a zero of the polynomial in P}. 

In general, the structure JB has limit elements. We are 
thus in the new position of having semantic objects for 
which there is no syntactic counter-part. The problem of 
referring to these elements arises. In our framework, a limit 
element is related to syntactic objects, e.g goals, by means 
of a constraint containing this element in its solution space. 
This constraint thus represents a finite approximation to the 
element. Take, for instance the structure and program P 
immediately above. Let d be a limit element (i.e. a 
transcendental number) and therefore not a zero of the 
polynomial. The semantic object p(d) is clearly seman- 
tically finitely failed; this can be formalised as p(d) f 
T(LB-base). We can find an interval (rl, r2) such that rl, 
r2 are rationals, rl I d I r2 and the goal 

?-p(X), rl I X, X 5 r2 

will be fiitely failed in one derivation step of the inter- 
preter. In other words, to show that p(d) $ T(cB-base), 
we showed that approximation to p(d), which can syntac- 
tically presented as a goal, fails. 

This technique can be generalised to all solution- 
compact structures. In order to do so, we introduce a 
topological notion related to closure: a set S 5 d-base has 
afinitary coyer if for all d E S, there exists a constraint C 
such that d E C E S. We then establish a key lemma which 
has no counterpart in previous treatments of logic pro- 
gramming. This lemma states that the various sets associ- 
ated with T have fiitary covers: 
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Finitary Cow Lemma: For all finite II, 
(a) Ttn has a finitary cover. 
(b) Ttn has a fiitary cover. 
(cl T% has a finitary cover. 
(d) T&i has a finitary cover. 0 

This lemma is crucial for proving the soundness and com- 
pleteness of the interpreter with respect to the semantic 
notion of finite failure. It is interesting to note that if this 
result holds for a given structure, then the structure has to 
be solution-compact. 

The only place where there is a discrepancy between 
the logical and algebraic semantics concerns the operational 
aspects of finite failure. In the algebraic treatment of CLP, 
falsity is no longer character&d by the fiite failure of the 
interpreter. This is due to the existence of infinite deriva- 
tions that give rise to an unsolvable set of answer con- 
straints. The corresponding result is that falsity is 
character&d by ground finite failure, or equivalently, the 
complement of the greatest fiipoint of T. This discrepancy 
disappears for canonical logic programs, those whose great- 
est fiipoint is reached in w steps. This discrepancy also 
disappears when the structure is compact in the sense that 
an infinite set of constraints is unsolvable iff some finite 
subset thereof is unsolvable (e.g PROLOG-II without une- 
quations). Many structures (e.g. PROLOG and the CLP 
system) are, however, not compact. 

It follows that the completeness of the negation-as- 
failure rule does not hold, in general, in the algebraic se- 
mantics. In order to resolve this problem, we extend, in a 
more natural setting, the discussion in [lo] and the result 
of [ 121 which showed that every logic program is equivalent 
to a canonical one. 

Summary of Main Results 

The results we present here provide a formal semantics for 

CLP languages. They are comprehensive in the sense that 
they cover algebraic, fiipoint, model-theoretic and opera- 
tional aspects. The fundamental results concerning logic 
programs, as described in [lo], have their counterparts here. 

Theorem 1. 

Least model of P = Least fixpoint of T = [SS(P)J. 

Theorem 2. ‘27;; = [FP(P)]. 

Theorem 3. gfp(T) = [Ground-FF(P)]. 

Theorem 4. (Negation-as-Failure, Logical Version) 
8&P]= vG lff G E FF(P). 

Theorem 5. (Negation-as-Failure, Algebraic Version) 
The following statements are equivalent: 
(a) P is canonical. 
(b)uZ&P]= ,G iff G c FF(P). 

5. couclusion 

There are languages involving constraints such as [2] 

and 1161. These, as well as many others concentrated on 
extending PROLOG, are typically motivated by implemen- 
tation issues or specific applications. Our approach in this 
paper is fundamentally different because we establish first 
a formal framework with pre-defined semantic properties. 
This is then used to define languages that cater for different 
applications, 

All the languages in this class share the same essential 
semantic properties by being encapsulated in one unified 
framework of formal semantics. This framework is not just 
more general than that of logic programming, but satisfies 
the core properties in a more natural setting. The resulting 
CLP languages satisfy the three criteria for a programming 
language in that they are soundly based, they have substan- 
tial expressive power, and that efficient implementations 
can be constructed. 
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