
Constraint Logic Programming

Joxan Jaffart and Jean-Louis Lassez

Abstract 1. Introduction

I.B.M. Thomas J. Watson Research Center
Yorktown Heights

N.Y. IO598
U.S.A

Received 10/30/86

We address the problem of designing programming
systems to reason with and about constraints. Taking a

F logic programming approach, we define a cluss of program-
ming languages, the CLP languages, all of which share the
same essential semantic properties. From a conceptual
point of view, CLP programs are highly declarative and are
soundly based within a unified framework of formal se-
mantics. This framework not only subsumes that of logic
programming, but satisfies the core properties of logic pro-
grams more naturally. From a user’s point of view, CLP
programs have great expressive power due to the constraints
which they naturally manipulate. Intuition in the reasoning
about programs is enhanced as a result of working directly
in the intended domain of discourse. This constrasts with
working in the Herbrand Universe wherein every semantic
object has to be explicitly coded into a Herbrand term; this
enforces reasoning at a primitive level. Finally, from an
implementor’s point of view, CLP systems can be efficient
because of the exploitation of constraint solving techniques
over specific domains.
-
t This work was done while J. Jaffar was in the Department
of Computer Science, Monash University, Victoria 3168,
Australia.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. TO
copy otherwise, or to republish, requires a fee and/or specfic
permission.

Q 1987 0-89791-215-2/87/0100-0111 754
111

The problem at hand is that of designing programming
systems to reason with and about constraints. Toward this
aim, we present the foundations for a class of programming
languages based upon constraint solving and the logic pro-
gramming paradigm. The framework herein, we call it
CLP(X), is a scheme in the sense that when one instantiates
X with a suitable domain of discourse, one obtains a pro-
gramming language with several important features. PRO-
LOG, PROLOG-II, PROLOG-III and the CLP system, for
example, are instances of the scheme. This scheme may also
provide formal semantics for other languages such as the
recently proposed GIL [151 and LOGIN [11.

In constraint logic programs, basic components of a
problem are stated as constraints. the problem as a whole is
then represented by putting the various constraints together
by means of rules. Because unification is but one special
case of constraint solving, constraint logic programs have
superior expressive power. Furthermore, the programs are
naturally amenable to algebraic semantics. Two important
points arise here: fist, these algebraic semantics form an
important complement to the other logic-based semantics.
Intuition in the reasoning about programs is enhanced as a
result of working directly in the intended domain of dis-
course. This constrasts with working in the Herbrand Uni-
verse wherein every semantic object has to be explicitly
coded into a Herbrand term thus enforcing reasoning at a
primitive level. Second, an algebraic treatment makes pos-

sible the exploitation of efficient implementation methods
from the literature on constraint solving over certain struc-
tures. We will illustrate these points using examples drawn
from an experimental implementation of a CLP system.

In the next section, we provide the motivations which
lead us to design the Constraint Logic Programming
Scheme. Following that, we provide examples of programs
written for the CLP system, i.e. an experimental implemen-
tation of one particular instance of the Scheme, to illustrate
the expressive power of CLP programs. We also argue here
that efficient implerqentations of CLP languages can be
obtained by the judicious use of special-purpose constraint
solvers. Finally, the semantic properties of the Scheme are
formally presented. The full treatment of the semantics,
including all proofs, is however to be found in [6].

2. Motivation and Background

Much of the present research in Logic Programming
concentrates on extensions to Prolog. An important issue
is the integration of the essential concepts of functional and
logic programming. Another issue is the use of equations
to define data types. Recent work along these lines, from
Goguen and Meseguer, Kahn, Komorowski, Kornfeld,
Reddy, Sato and Sakurai, Subrahmanyam and You will be
found in the text edited by DeGroot and Lindstrom [5].

There is some concern that these extensions have little
connection left with logic. In fact, the very nature of the
concepts in these extensions is such that it is not difficult to
accommodate them in standard logic or some variant
thereof. The crucial point is not, however, the issue of
formalization within or without logic. Rather, it is whether
or not the unique semantic properties of logic programs are
preserved in the extensions.

Toward this aim, Jaffar, Lassez and Maher [8] proposed
a “logic prog ramming language scheme” Its syntax is the
syntax of Definite Clauses, its domain of computation is left
unspecified but it is assumed to be definable by a unification
complete equality theory, and its interpreter is based on

SLD resolution and an appropriate generalized unification
algorithm. The semantic properties of definite clauses hold
for this scheme and all its instances. Now instead of estab-
lishing one by one the various semantic results for a given
extension to PROLOG, one can use the scheme to obtain
them all in one move. This is exemplified in [9] in the case
of Colmerauer’s PROLOG-II [3] defined over the domain
of rational trees. Essentially we proceeded in two steps,
fist giving an equality theory whose standard model is the
intended domain of rational trees, and then showing that
this equality theory is unification-complete. Thus
PROLOG-II is an instance of this scheme and its semantics
is automatically obtained.

While this Scheme achieved the goal of encapsulating,
within one unified framework, logic programming languages
whose domains are definable by an equality theory, it is in-
timately tied to, and therefore restricted to, unification.
We have shown that the generalisation from standard tmifi-
cation to unification in equality theories posed no concep-
tual barrier in the semantics of logic programs. When
working outside unification and equations, however, it is no
longer apparent that a similar scheme exists.

The problem of inequalities in PROLOG-II [4], for ex-
ample, cannot be accomodated in this Scheme. It was, in
fact, not even evident, nor was it to be expected, that the
key semantic properties of logic programs still hold here.
However, Jaffar and Stuckey [13] showed, from fist prin-
ciples, that these properties do indeed hold.

Consequently, we are now led to consider an extension
of the Scheme in which the concept of (general&d) unifi-
cation is replaced by the concept of constraint solving.
Apart from the advantage of being more general, programs
in the new Scheme deal with constraints over a given do-
main of computation, and hence they are provided with al-
gebraic semantics. This in turn enhances intuition because
reasoning about programs can be done directly within the
intended domain using its natural constraints.

112

3. Programming in an Instance of CLP

In this section we give examples of logic programs with
arithmetic constraints in order to give an informal notion of
their semantics. This instance of CLP is suitable for nu-
merical applications and operations research. We also wish
to highlight the operational differences with traditional logic
programming.

We begin with the domain of computation: this is de-
fined to be a two-sorted algebra & comprising of the na-
tural combination of real arithmetic terms and uninterpreted
functors. Only = is used to relate terms which contain un-
interpreted functors. For example, X = cons(Y + 3,
f(X*Z)) is a valid equation involving two uninterpreted
functors cons and f. A Constraint Logic Program consists
of a fiite set of rules each being of the form

P&o): - q(q), . . . , C”(U,), P*(tt), ‘.’ 9 Pll&n)

where pi, 0 I i S m are predicate symbols different from the
relation symbols in &; ci , 0 I j I n, are symbols denoting
relations in Jk (the constraint of the rule) and tk and u,, 0 5 .
k 6 m, 0 < 1 I n, are terms of Jd constructed in the obvious
manner. A gwl has the same form as the body of a rule.

The informal declarative semantics is essentially the
same as those of standard logic programs. For example,

complexmult(c(R1, Il), c(R2,12) c(R3,13)) :-
R3 =Rl *R2-11 *I2,
13 = Rl * 12 + R2 * Il.

obmlaw(V, I, R) :- complexmult(1, R, V).
inductorlaw(1, V, L, W) :- complexmult(c(0, W*L), I, V).
capacitorlaw(1, V, C, W) :- complexmult(c(0, W*C), V, I).

describes some elementary properties in circuit analysis.
Consider the fist rule above. The goal

?- complexmult(c(R, I), c(10, SO), c(20,50))

entails the solution of the simultaneous equations

20=R* 10 - I+50
50=R*50 + lO*I

giving the resultR = 1.038461 and I = -0.192307.

The informal operational semantics, however, has two
main components: a constraint solver for d-relations and
an adaptation of the goal-reduction technique in logic pro-
gramming. A derivation sequence consists of goals which
have solvable constraints. For example, from the goal

?- dt,), P(t-2)
and the rule

p(t,) :- c2(t,), q(ts
we may derive the goal

?- c(t,), tz = 5, c2(t,)t q(b)
providing that the constraint c(t,) & b = b & c2(t,) is solv-
able in &

Derivation sequences are successful when the last goal
therein contains only constraints. These unswer constraints
constitute the output of CLP programs. Finitely failed se-
quences are those whose last goal cannot be expanded.

For example, the following program solves the Dirichlet
problem for Laplace’s equation in two-dimensions.

laplace([Hl, H2, H3 IT]):-
av(H1, H2, H3),
laplace([H2, H3 1 T]).

laplad , I).

av([TL,T,TR I Tl], [ML,M,MR] T2], [BL,B,BR 1 T3]):-
B+T+ML+MR-4*M=O,
av([T, ‘I’R I Tll, [M, h4R 17% [B, BR I ‘WI.

av([-, -I,[2 I,[, I)-

This program outputs a matrix (list of lists) giving the tem-
perature of a surface at discrete points. Typical input is a
matrix which contains specific values at the four boundaries.

113

The program then specifies that the temperature at each
non-boundary point is the average of those of four
neighbouring points. The goal

?- laplace([
I4 0, 0, 0, 01,
[loo, R, S, T, 1001,
[loo, u, v, w, 1001,
mo, x, Y, z,1001,
[loo, 100, 100, 100, 1001
I).

for example, results in the answer

laplace([
[O, 0, 0, 0, 01,
[loo, 57.143,47.321,57.143, 1001,
[100,81.250, 74.999,81.250, 1001,
[loo, 92.857,90.176,92.857, 1001,
[loo, 100, 100, 100,1001
1).

During execution, the PROLOG-like goal reduction tech- ’
nique serves to collect together ail the constraints:

U+O+ lOO+S-4*R=O,
V+O+R+T-4*S=O,

. . .
100+w+Y+100-4+2=0

and the second component of the operational model, the
constraint solver, then determines the values of the variables
R, S, . . . , Z.

We may also work with a goal which is “under-
specified”; the goal

?- laplace([
[O. 0, 01,
1100, x, 1001,
[100, B, 1001
I)

results in a symbolic answer “X = 50 + 0.25B”.

In the final example, we further illustrate the expressive
power of using constraints in answers as well as in queries.
This example is based upon option pricing.

heavyside(X, Y, Z) :- Y < X, Z = 0.
heavyside(X, Y, Z) :-Y 2 X, Z = 1.
ramp(X, Y, Z) :-Y < X, Z = 0.
ramp(X,Y,Z):-Y>X,Z=Y-x.

O/o Option valuation

value(Type, BuyorSell, S, C, P, I, X, B, Value) :-
Value = Hl*Tl + H2+T2 + Rl+T3 + R2+T4,
S 2 0, C 2 0, P 1 0, I 1 0, X 1 0, B 2 0,
option(Type, BuyorSeil, S, C, P, I, X, B,

K,Bl,B2,Hl,IQRl,R2),
heavyside(B2, S, Tl), heavyside(S, B2, T2),
ramp(B1, S, T3), ramp(B2, S, T4).

% Lookup option vector
option(Type,sell,S,C,P,I,X,B,Bl,B2,Hl,H2,Rl,IU) :-

table(Type,l,S,C,P,I,X,B,Bl,B2,Hl,H2,Rl,R2).
option(Type,buy,S,C,P,I,X,B,Bl,B2,Hl,H2,Rl,R2) :-

table(Type,-l,S,C,P,I,X,B,Bl,B2,Hl,H2,Rl,R2).

O/O M is -1 or I depending on buying or seIling option
table(stock,M,S,C,P,I,X,B,O,O,M*S*(1+I), O,-l+M, 0).
table(call,M,S,C,P,I,X,B,O,X,MCC+(I+I), 0, O,-l*M).
table(put,M,S,C,P,I,X,B,O,X,M*P*(l+I)-X.0, 1,-l).
table(bond,M,S,C,P,I,X,B,O,O,M*B*(l+I), 0, 0,O).

The following straightforward query finds the value of sell-
ing a cali option given the tail price 5, exercise price 50, in-
terest rate 5% and current stock price 60.

?- CALL = 5, EX = 50, INT = 0.05, S = 60,
value(cali, sell, S, CALL, -, INT, EX, -, WEALTH)

114

The answer gives WEALTH = -4.75. In the traditional re-
lational programming style, we can turn the question upside
down and ask what should be the stock price so that the
wealth exceeds 5:

?- WEALTH > 5, CALL = 5, EX = 50, IN’f = 0.05,

v~ue(cti, sell, S, CALL, -, INT, EX, -, WEALTH)

Two symbolic answers are obtained:

(a) WEALTH = 5.25 &S < 50,

(b) WEALTH = 55.25 - S & 50 s S < 50.25.

We may also naturally combine options in several ways.
For example, a straddle (i.e. buying both a put and a call on
the same stock with the same exercise price and maturity
date) will make money only if the stock price varies signif-
icantly. The following goal asks what should the stock price
be so that the profit from the straddle is at least 10:

?-wEALTH=Wl+W2,

CALL = 5, PUT = 7, EX = 50, INT = 0.05,
WEALTH 2 10,
value(call, buy, S, CALL, -, INT, EX, -, Wl),
value(call, sell, S, -, PUT, INT, EX, -, W2).

Two answers are obtained:

(a) M'Fda'f'I-f = 37.4 -s&O< S 5 27.4

(b) WEALTH= S-62.6&S 2 72.6

which corresponds to the nature of a straddle since we profit
by at least 10 if the stock price goes below 27.4 or if it rises
above 72.6.

We conclude this section with a few remarks on an ex-
perimental implementation: the CLP system [7,11].

Constraint solvers, such as the simplex algorithm, are
aimed at solving a given large set of complex constraints
typically arising from Operations Research problems. In

principle, such solvers can of course be used in CLP.
However, in a programming context, the constraints are
obtained incrementally and each increment often involves
only relatively simple constraints. There is another impor-
tant difference. In programs, some constraints are used also
in a manner compatible with that of assignments and tests.
These, and other special classes of constraints, clearly do
not require a general purpose solver.

In short, while traditional solvers attack large and static
constraints, ours must deal with dynamically created smaller
constraints which are often of a specialised nature. These two
fundamental differences dictate that a constraint solver used
in a progr amming language be specially engineered.

The present implementation, an interpreter written in
C, uses two methods for dealing with the “hard” linear
constraints; they are a graph-manipulation procedure and
an adaptation of the simplex algorithm. Minimising the
frequency of invocation of the general purpose solver is a
key factor in its efficiency (the naive list reversal program
runs at 10K Lips on a Pyramid 98X). An important issue
in the ongoing development of *this system concerns the
solution of non-linear constraints. Presently, a co-routining
mechanism is employed to delay the need for solving such
constraints in the hope that further along in a computation
sequence, sufficient variables become
constraints become linear.

4. Semantics for the CLP Scheme

The main results that provide the formal foundations

ground and so the

for the logic progr amming with equality scheme dealt with
the following primary concerns:

115

the existence of a canonical domain of computation;

the existence of a least and greatest model semantics;
the existence of a least andgreatest firpoint semantics;

soundness and completeness results for successful deriva-
tions of the the underlying implementation model;

soundness and completeness results for finitely failed deri-
vations of the underlying implementation model, and
soundness and completeness results for negation-as-failure.

Because of the fundamental difference between equality
theories and constraint solving, we have to introduce new
concepts and techniques in order to obtain corresponding
results for CLP. Paramount amongst these are the notions
of a solution-compact structure.

We start with a many-sorted structure .a2 which is the
central element in our algebraic semantics. cd is solution-
compact if (a) every element in d is the unique solution of
a finite or iniinite set of constraints (limit elements are those
which can be defined only by an infinite set of constraints)
and (b) every element in the complement of the solution
space of a constraint C belongs to the disjoint solution space
of some finite or infinite family Ci of constraints. Symbol-
ically, we have, by identifying constraint symbols and their
solution spaces below, the following equivalent definition:

(4 WdEd,d=ftC,
tb) vc,c’=uci

Thus (a) requires every element to be either fiitely defma-
ble or a limit element. Condition (b) is very weak. It is met
in all plausible structures that we have considered. It is, in
fact, necessary and sufficient to establish many results con-
cerning finite failure and negation.

Example la. Any structure which has no limit elements is
trivially solution-compact. This includes, in particular, any
fiite structure, the structure d, = (HB, =), where HI3 is
some Herbrand universe. and the structure (HB/E, =),

where HB/E denotes the quotient of some Herbrand uni-
verse by an equality theory E. 0

Example 2a. The structure d2 = (BIB, =, #), where IHB
is some infiitary Herbrand universe, is used in
PROLOG-II. It is easy to check that condition (a) holds.
That condition (b) holds follows simply from the fact that
the negation of an atomic constraint is itself a constraint.

0

Example 3a. Consider the structure JI, used in the CLP
system as described in Section 3. The proof of its solution-
compactness can be found in [143. 0

We consider now a correspondence between algebraic
and logical semantics. Logic programs enjoy the following
property: a goal G is true in all models of P iff G is true in
all Herbrand models of P. This allows computation to be
performed in the Herbrand universe. For similar reasons,
we say that a theory d corresponds to & if

(i) d I= g, i.e. & models 8, and
(ii) d2 I= 3C implies #I= 3C for all constraints C.

For reasoning about negation, we also require that d be
satisfaction-complete:

Sl= ,C whenever not $1~ 3C.

We remark that this notion corresponds to that of “unifica-
tion completeness” [8] in the old scheme based on equality
theories.

Example lb. Consider the structure Jd, above, and the
theory obtained from the schema

f(3 f g(i)
z # ttzl
f(Z) = f(i) -c ;; = 5

where f and g are distinct functors in the alphabet of J4, and
t[z] is a term containing an occurrence of the variable z.

116

This theory corresponds to JB1 and is satisfaction-complete.

cl

Example 2b. Consider the structure dz above, and the
theory obtained from the schema

where the x+ 1 I i 5 k, are distinct variables and the t,, 1
I i 5 k, are terms. This theory corresponds to Jz but is
not, however, satisfaction-complete. To make it so, adjoin
the axioms given by the schema

f(3 f l3(3
f(G) = f(y) + ; = 5

where f and g are distinct functors. q

Example 3b. Consider the two-sorted structure Ja, de-
scribed in section 3 above. Take the theory RCF of real
closed fields wherein the variables are universally quantified
over the sort of real numbers. Adjoin the theory S in ex-
ample 4 wherein all variables are quantified over the re-
maining sort. The resulting theory corresponds to d, and
is satisfaction-complete. This is due to a combination of the
two reasons: B is satisfaction-complete and RCF is, simply,
complete. 0

In or&r to establish fixpoint semantics, we have, for
each CLP program P, the following function mapping from
and into d-base (i.e. the cross product between the predi-
cate symbols in P and J).

T(S) = {d t d-base:
there ‘s,a rule in P
A :- :, B
and an d-valuation 0 such that
(a) dI= (A0 = d),
(b) .@ I= :O, and

(4 WI 5 S
3

Thus it is a counter-part to the usual function T for logic
programs. This function is, however, based upon
JB-solvability and not unifiability in a Herbrand Universe.
Thus if d were a real arithmetic structure and P contains
just the rule

p(X) :- 17X256 + 35X” - 99x = 0

then T(E)) = {p(d): d is a zero of the polynomial in P}.

In general, the structure JB has limit elements. We are
thus in the new position of having semantic objects for
which there is no syntactic counter-part. The problem of
referring to these elements arises. In our framework, a limit
element is related to syntactic objects, e.g goals, by means
of a constraint containing this element in its solution space.
This constraint thus represents a finite approximation to the
element. Take, for instance the structure and program P
immediately above. Let d be a limit element (i.e. a
transcendental number) and therefore not a zero of the
polynomial. The semantic object p(d) is clearly seman-
tically finitely failed; this can be formalised as p(d) f
T(LB-base). We can find an interval (rl, r2) such that rl,
r2 are rationals, rl I d I r2 and the goal

?-p(X), rl I X, X 5 r2

will be fiitely failed in one derivation step of the inter-
preter. In other words, to show that p(d) $ T(cB-base),
we showed that approximation to p(d), which can syntac-
tically presented as a goal, fails.

This technique can be generalised to all solution-
compact structures. In order to do so, we introduce a
topological notion related to closure: a set S 5 d-base has
afinitary coyer if for all d E S, there exists a constraint C
such that d E C E S. We then establish a key lemma which
has no counterpart in previous treatments of logic pro-
gramming. This lemma states that the various sets associ-
ated with T have fiitary covers:

117

Finitary Cow Lemma: For all finite II,
(a) Ttn has a finitary cover.
(b) Ttn has a fiitary cover.
(cl T% has a finitary cover.
(d) T&i has a finitary cover. 0

This lemma is crucial for proving the soundness and com-
pleteness of the interpreter with respect to the semantic
notion of finite failure. It is interesting to note that if this
result holds for a given structure, then the structure has to
be solution-compact.

The only place where there is a discrepancy between
the logical and algebraic semantics concerns the operational
aspects of finite failure. In the algebraic treatment of CLP,
falsity is no longer character&d by the fiite failure of the
interpreter. This is due to the existence of infinite deriva-
tions that give rise to an unsolvable set of answer con-
straints. The corresponding result is that falsity is
character&d by ground finite failure, or equivalently, the
complement of the greatest fiipoint of T. This discrepancy
disappears for canonical logic programs, those whose great-
est fiipoint is reached in w steps. This discrepancy also
disappears when the structure is compact in the sense that
an infinite set of constraints is unsolvable iff some finite
subset thereof is unsolvable (e.g PROLOG-II without une-
quations). Many structures (e.g. PROLOG and the CLP
system) are, however, not compact.

It follows that the completeness of the negation-as-
failure rule does not hold, in general, in the algebraic se-
mantics. In order to resolve this problem, we extend, in a
more natural setting, the discussion in [lo] and the result
of [121 which showed that every logic program is equivalent
to a canonical one.

Summary of Main Results

The results we present here provide a formal semantics for

CLP languages. They are comprehensive in the sense that
they cover algebraic, fiipoint, model-theoretic and opera-
tional aspects. The fundamental results concerning logic
programs, as described in [lo], have their counterparts here.

Theorem 1.

Least model of P = Least fixpoint of T = [SS(P)J.

Theorem 2. ‘27;; = [FP(P)].

Theorem 3. gfp(T) = [Ground-FF(P)].

Theorem 4. (Negation-as-Failure, Logical Version)
8&P]= vG lff G E FF(P).

Theorem 5. (Negation-as-Failure, Algebraic Version)
The following statements are equivalent:
(a) P is canonical.
(b)uZ&P]= ,G iff G c FF(P).

5. couclusion

There are languages involving constraints such as [2]

and 1161. These, as well as many others concentrated on
extending PROLOG, are typically motivated by implemen-
tation issues or specific applications. Our approach in this
paper is fundamentally different because we establish first
a formal framework with pre-defined semantic properties.
This is then used to define languages that cater for different
applications,

All the languages in this class share the same essential
semantic properties by being encapsulated in one unified
framework of formal semantics. This framework is not just
more general than that of logic programming, but satisfies
the core properties in a more natural setting. The resulting
CLP languages satisfy the three criteria for a programming
language in that they are soundly based, they have substan-
tial expressive power, and that efficient implementations
can be constructed.

Acknowledgements

We are grateful to P.J. Stuckey for valuable discussions
during the early part of this work. S. Michaylov was in-
strumental in the construction of the CLP solver and the
development of a programming methodology. Many thanks
due to R. Yap, N. Heintze, C.S. Lii and C. Yee for their
various contributions to the CLP system.

118

References

(11

PI

[31

[41

M

bl

171

Dl

r91

H. Ait-Kaci and R. Nasr, LOGIN: A Logic Pro-
gramming Language with Built-In Inheritance, Jour-
nal of Logic Programming, 3(3), 1986.

A. Boming, TI-BNGLAB - A Constraint Orientated
Simulation Laboratory, ACM TOP&IS, 3(4), 1981.

A. Cohnerauer, Prolog and Infinite Trees, in: Logic
Programming, K.L. Clark and S.A. Tamlund (Eds.),
Academic Press, New York, 1982.

A. Colmerauer, Solving Equations and lnequations
on Finite and Infinite Trees, Proc. Conference on
Ftfth Generation Computer Systems, Tokyo, Novem-
ber 1984.

D. DeGroot and G. Lmdstrom (eds.), Logic Pro-
gramming: Relations, Functions and Equations,
Prentice Hall, 1986.

J. Jaffar and J-L. Lassez, Constraint Logic Program-
ming, Technical Report, Department of Computer
Science, Monash University, June 1986.

N.C. Heir&e, J. Jaffar, C.S. Lim, S. Michaylov, P.J.
Stuckey, R. Yap and C.N. Yee, The CLP Program-
mer’s Manual, Department of Computer Science,
Monash University, June 1986.

J. Jaffar, J-L. Lassez and M.J. Maher, A Logic Pro-
gramming Language Scheme, in: Logic Program-

ming: Relations, Functions and Equations, D.
DeGroot, G. Lindstrom (eds.), Prentice Hall, 1986.

J. Jaffar, J-L. Lassez and M.J. Maher, PROLOG-B
as an Instance of the Logic Programming Language
Scheme, in Formal Descriptions of Programming
Concepts, M. Wirslng (Ed), North-Holland, 1986.

1101 J. Jaffar, J-L. Lassez and M.J. Maher, Issues and
Trends in the Semantics of Logic Programming, Proc.
3rd International Conference on Logic Programming,
London, July 1986.

[ill J. Jaffar and S. Michaylov, Methodology and lmple-
mentation of a Constraint Logic Programmi.ng Sys-
tem, Technical Report, Computer Science Dept.,
Monash University, June 1986.

1121 J. Jaffar and P.J. Stuckey, Canonical Logic Programs,
Journal of Logic Programming, 3(2), 1986.

[13] 3. Jaffar and P.J. Stuckey, Semantics of Infinite Tree
Logic Programming, Theoretical Computer Science, to
appear.

[14] J. Jaffar and P.J. Stuckey, A Separation Algorithm
for Theories with Uninterpreted Functors, Forth-
coming.

[151 K. Mukai and H. Yasukawa, Complex Indeterminates
in PROLOG and its Application to Discourse Mod-
els, New Generation Computing, 3, 1985.

[161 G.L. Steele, The Definition and Implementation of a
Computer Programming Language based on Con-
straints, Ph.D. Thesis, M.I.T. AI-TR 595, 1980.

119

