
The Competence/Performance Dichotomy in Programming

Preliminary Report

Vattghan R. Pratt

Massachusetts Institute of Technology

Cambridge, Mass., 02139

Abstract

We consider the problem of automating some of the duties

of programmers. We take as our point of departure the claim that

data management has been automated to the point where the

programmer concerned only about the correctness (as opposed to

the efficiency) of his program need not involve himself in any

aspect of the storage allocation problem. We focus on what we

feel is a sensible next step, the problem of automating aspects

of control. To accomplish this we propose a definition of

control based on a fact/heuristic dichotomy, a variation of

Chomsk y’s competence/performance dichotomy. The dichotomy

formalizes an idea originating with McCarthy and developed by

Green, Hewitt, McDermott, Sussman, Hayes, Kowalski and others.

It allows one to operate arbitrarily on the control component of

a program without affecting the program’s correctness, which is

entirely the responsibility of the fact component. The immediate

objectives of our research are to learn how to program keeping

fact and control separate, and to identify those aspects of

control amenable to automation.

1. Transferring Responsibility to the Computer.

One might characterize the difference between a tool and

a servant (or assistant, to avoid anachronism) solely in terms of

intelligent communication. A user commands his tool in the

simple language of the tool; a master commands his assistant in

the rich language of the master, putting a heavy demand on the

assistant’s intelligence. The modern computer began as a tool

for calculating table% a reasonable objective of artificial

intelligence is to make it an intelligent assistant. In this

paper we outline a step in this direction.

As an example of progress to date we may consider storage

allocation, the problem of finding a place in memory to store a

datum, The machine language programmer must specify an absolute

address for an array. The symbolic assembly language programmer
may simply request a given amount of storage at assembly time,

leaving the choice of base address up to the assembler. The

Fortran programmer can store data in two-dimensional arrays

This research was supported by the Advanced Research Pro&cts

Agency of the Department of Defense under Office of Naval

Research contract NOO014-75-C-0643.

without needing to choose or even be aware of a correspondence

between integers and pairs of integers for mapping two dimensions

into one, The Algol programmer can have multiple simultaneous

activations of the same procedure (namely when that procedure

calls itself directly or indirectly, i.e. recursively) without

having to allocate storage in advance for each such activation.

The Lisp programmer can create complex objects (e.g. by appending

lists) without having to declare them in advance to the storage

allocator and without even having to think up names for them. We

observe in this progression a gradual shift of responsibility for

storage management from the programmer to the computer, Every

such responsibility the computer can assume means that much less

work for the programmer, and, more importantly in our opinion,

that much less opportunity for clerical oversights on the part of

the programmer.

One might take the position that such progress, while of

value to programmers, is not a step towards an intelligent

assistant, but merely an application of well-understood

techniques from the theory of algorithms. We dispute that

position; how responsibility is transferred to the computer,

whether via well-understood algorithms or magic, is immaterial

when it has been transferred. Our objective is to continue this

transfer, hopefully without having to resort to magic.

In this paper we will focus not on data management but

on control; our objective is to automate some of the control

decisions currently made by the programmer. In the following we

outline a philosophy of control in terms of interpreters and

programs, present an approach to separating factual issues

(“competence”’) from control or heuristic issues (“performance”)

in programs, and discuss approaches to automating the latter.

2. A Philosophy of Control

We adopt the viewpoint that an operating computer

consists of an interpreter and a program being interpreted, and

that the program guides/advises/constrains the interpreter in its

choice of operations in much the same way as a grammar constrains

a speaker. Readers unfamiliar with this viewpoint might consider

the regular expression Ax=L(X>O;A=XXA;X: =X-l):,;X=O, a grammar

of sorts, where the assignments and tests are terminals, “;” is

concatenation and “<Y is Kleene closur~ this grammar

generates the set of execution sequences associated with one way ‘

of computing X! . Out of context, a grammar does not specify

which of the sentences in its language the speaker should use,

any more than does a program specify which execution sequence

to use in the absence of an environment.

194

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.© 1977 ACM 0-12345-678-9…$5.00

Given an environment, whether a %mple-minded”

interpreter can choose an appropriate execution sequence depends

on the nature of the program. In the factorial example, the

interpreter can work “from left to right” in the regular

expression, inspecting the tests X>O and X=O to decide whether

to execute X>QA=XXA;X:=X-1 again or to end it all by executing

X=O , using the environment in carrying out the rule “never

execute a test whose value is false,” With this rule, the

interpreter’s options are so limited by this program that almost

no intelligence is needed to choose the right sequence, in that

the interpreter need not be a large program and need not consult

other data bases beyond the immediate environments.

This viewpoint of the program as guide is not constrained

to execution sequences of assignments and tests. The formulae

f(0) = 1 and f(n.1) = (n+l)xf(n) can be regarded as advice on

what to do with, say, f(3) , one obvious possibility being to

rewrite it repeatedly using the above formulae and other facts of

arithmetic to end up with f(3) = (2+1)xf(2) = 3xf(2) = ... =

6xf(0) = 6x1 = 6. Again a simple interpreter will suffice to

discover this sequence, say by trying to unify the last term

generated with the left hand side of one of the above two

identities, where the unifier has enough intelligence to unify 3

and n+l.

In the above examples the interpreter contributed next to

nothing in the collaboration between program and interpreter.

This was about the extent of the power of machine languages on

all early computers. One might be tempted to justify this on the

basis of the theoretical observation of Turing [21] that small

universal interpreters exist, that is, that in the division of

labor between program and interpreter, all but a small fixed

amount of the labor can be allocated to the program. However,

it has always been understood by language designers, whether

consciously or subconsciously, that the savings in hardware

possible using a minimal interpreter are more than offset by the

resulting inefficiency of execution and inconvenience to the

programmer, so that even the simplest machines use machine

languages considerably more sophisticated than that implied by

Turing’s choice of representation of programs to be executed by

his universal machine. With the rapidly decreasing ratio of

hardware to programmer costs, and with the development of

services provided by operating systems as a powerful extension of

the basic machine language, this division of labor has been

steadily shifting, with the interpreter assuming progressively

more responsibility in the decision making process.

The primary beneficiary of this trend in the division of

labor is the programmer, in his capacity as writer of his own

programs, and as reader/modifier of both his own programs and

those of others. The more intelligent the interpreter, the less

advice the programmer need supply to enable the interpreter to

accomplish a given task. It is natural to assume that less

advice leads to less program-writing effort, but we prefer to

de-emphasize this potential benefit and instead stress the

notorious unreliability of the programmer in comparison to the

computer. Less advice means less opportunity for

programmer-generated error. If this results in a substantial

decrease in debugging time, some increase in programming time may

be tolerable. However, the greatest beneficiary in the end may

be the program’s user, for whom the cost of a bug in the program
may often amount to more than the cost of the program, even if he

is the sole purchaser of that program and has absorbed the full

programming costs.

3. Seoaratimz fact and heuristic,

We focus on the notions of competence (or fact, or

epistemology) and performance (or heuristic), which supply a

dimension for modularizing programs that has received relatively

little attention to date. This dimension originates with Chomsky

[21, who argued the relevance of the competence/performance

dichotomy to theoretical linguistics. The idea has implicitly

been applied to computer science in various ways which we discuss

later. The competence of a deterministic program is that

htformation in the program that contributes to its partial

correctness (soundness) and “non-deterministic termination”

(completeness). The performance contributes to the determinism

of the program. In this section we shall be concerned simply with

making the separation, being content to leave the automation of

the heuristic component till later. This is a little vague, so

let us consider some examples.

The simplest domain in which to study the dichotomy is

that of function definitions, where one combines identities with

information as to when each identity is relevant. This can be

observed in the following definition of the factorial function:

f(x) : if x=O then 1 else xi,f(x-1)

We find here two kinds of information. One is factual

the definition asserts that f(0)=i and that if x-O then

f(x)=x,:,f(x-1). The other is procedural, telling the interpreter

in what order to do thing$ the advice given here is to begin

with the fact f(0)=l , treating it as f(0)-d (asymmetric =), and

if it is inapplicable, to proceed to the other fact (with no

provision for advice if the second fact is inapplicable, e.g. if

the mtsltjply hardware is broken).

If we were to rewrite this definition separating the

competence from the performance, we might write

Competence

base f(0) = 1.

ind: f(x+l) = (x+l)t{f(x)

Performance

integer(f(x)) LtoR(base)lLtoR(ind) ,

The competence component supplies the two facts,

appropriately Iabelled. The performance component says that if

you want the expression f(x) transformed into an integer then

apply the Left-to-Right transformation rule to f(x) using the

identity “base,” and failing that, try the same with the identity

“ind.” This use of labels is inessential; whether we write

factorial as above or as

integer(f(x)) LtoR(<f(0)=l>) I LtoR(<f(x+l)=(x+l):f(x)>)

is not important so long as we can distinguish the two

components, in this case by putting the elements of the

competence component in meta-brackets, With further syntactic

sugaring one might be able to get the definition to look almost

the same as the original one. However, there is an aspect of

competence not yet discussed that makes it likely that labels
would be widely used, and that is the likelihood that much Of a

program’s competence component will consist of generally useful

facts appealed to by more than one program. A trivial instance

of this is the gcd example below.

195

Now that we have seen an example of the idea, let us

return to definitions. We referred in the beginning to

“soundness” and “completeness” as though the competence componel

were an axiom system. Indeed, we shall think of it as just that,

without the usual stigma attached in axiom systems to

non-independent axioms that is, we shall not object in the

least to the presence of axioms that follow from other axioms.

The advantage of having a set of logically independent facts in

the competence component is that it helps to keep that component

small. The disadvantage is that it shifts to the interpreter and

the performance component the burden of coming up with the

relevant theorems. We feel that this task is more appropriate

for whoever establishes the correctness component. In this way

we keep separate the functions of generating the proof of the

program’s correctness and executing the program.

Our notion of “soundness” is here one of fidelity to the

properties of the “problem domain.” Thus no fact in the

competence component should be inconsistent with what we know

about the domain; being able to prove such facts is a sure

guarantee of this. The two facts used in the factorial example,

if not axiomatic, can at least be proved from whatever definition

of factorial one has in mind.

Our notion of “completeness” is a bit more subtle. The

basic idea is to make sure that there are “enough” facts around.

Our objective is to make it possible for the interpreter and the

performance component to run using at most the resources

specified by the programmer, who may say simply “the program

should halt on all inputs,” or, more demandingly, “it should not

take time greater than sqrt(n)<log2(n).” The competence

component we gave for factorial is complete with respect to the

first of these, but not the second, unless the interpreter does

some clever theorem proving; some more facts are needed, such as

nz! - p(()),:,P(n)oP(2\:~n):<..,oP((n-l)i,n)

where P(x) = (x+1)t~(x+2):{...fi(x+n)

together with enough facts (or a library procedure) to allow one

to evaluate the degree n polynomial P at n points in time O(n

log2n) [1].

The following example illustrates issues absent from the

simple factorial example.

define gcd(x,y) : if x-O then y else gcd(y mod x, x) . (Euclid)

define gcd(x,y) : if x=O then y (J. Stein)

else case [even(x),even(y)] of

([t,tl 2~gcd(x/2,y/2)>

[t,fl: gcd(x/2,y),

[f,tl gcd(y,x),

[f,fl: if X?Y then gcd(x-y,y)
else gcd(x,y-x))

Separating out the components, we have

Competence.

base gcd(O,x) = x

sym: gcd(x,y) E gcd(y,x) !

add: gcd(x,y) = gcd(x,x+y) .

corn: gcd(2t,x ,2t,y) = 2t~gcd(x,y) .

disj gcd(2tix,2i(y+l) = gcd(x,2i,y+l)

Euc: gcd(x,y) - gcd(y mod x,x).

(Note that there is no point in keeping separate competence

components for separate programs.)
ilt

Performance.

(Euclid’s algorithm)

integer(gcd(x,y))

LtoR(base)lLtoR(Euc) .

(Stein’s algorithm)

integer(gcd(x,y))

LtoR(base)lLtoR(com)lLtoR(disj)l

even(y)+LtoR(sym) lRtoL(add)lLtoR(sym) .

(Note the use of RtoL. Also note the use of the test “even(y)+

which causes “evenI(y) + L to R(sym)” to fail when y is not

even.” Tests in the performance component do not compromise any

of the advantages of the competence/performance separation. In

contrast, if we were to allow assignments, whether explicitly in

the form of assignments to variables or implicitly by naming

values to be returned as “the answer,” we would then be able to

compromise the correctness of the competence component.)

(Combined - useful when Euc is not known in advance to be

applicable e.g. when availability of “mod” is unknown)
LtoR(base)lLtoR(Euc)lLtoR(com)lLtoR(disj)l

even(y)+LtoR(sy m)lRtoL(add)lLtoR(sym) .

In this example we have more facts in the competence

component than we need for either one of the two algorithms by

itself. Conventional programming styles encourage “necessary and

sufficient” programming, where you write down just enough cases

to get the job done. In the competence/performance style, since

the use of each fact is unspecified, there isnot the same

temptation to be “necessary,” and one feels free to include any

seemingly relevant facts. At the same time one runs the risk of

not supplying sufficient facts; the “if-then-else” style forces

one to cater for every case, whereas an empty competence

component will at least be sound if not complete.

Impact of this Dichotomy on Verification Methods

Thanks primarily to the work of Floyd [4], we now

understand the relationship between proving theorems in

mathematics and proving that a program is correct, namely that

correctness can be expressed in terms of theorems about programs,

and that such theorems can be rigorously proved using inference

rules analogous to rules used in conventional mathematics. Hoare

[9] has made the connection even clearer by developing an axiom

system modelled on systems developed by Hilbert and Gentzen.

Manna [151has shown that such systems are no stronger than

conventional (non-program oriented) second-order logic, and Cook

[3] has in effect strengthened this by showing that, even when

the symbols of the underlying language are interpreted as
arithmetic operations, such systems are no more powerful than

first-order arithmetic (although his goal was actually to

establish completeness of Hoare’s method).

In the fact/heuristic style of programming, all of the

above results become redundant. Correctness of a program reduces

vacuously to correctness of the facts making up its competence

component. The above results are now implicit in the

interpreter, in which is vested the responsibility for “sticking

to the facts.” Thus all that is needed to prove the program

correct is to prove the individual facts in the competence

196

component. In the example of a pay-roll program, verifying the

facts becomes even simpler than proving mathematical theoremS it

becomes a matter of having an accountant check that the facts are

in accord with his understanding of the tax laws and related

issues. (This observation is in accord with a hobby-horse of ours

that truth transcends proof [18], that is, that the question of

whether a formula is true arises independently of the existence

of any axiom system in which it can be proved. Proofs are just

computations for convincing mere machines limited by Church’s

Thesis of the truth of propositions. Correctness of a program is

defined in terms of whether its facts are true, not whether they

are provable. In this way we can factor out from our theory any

reliance on the notion of proof.)

Procedural competence

Not all competence components need involve static facts.

Sometimes a procedural idea is required, where the crux of the

idea can be explained in terms of a small fixed number of steps

of a procedure. Eliciting the appropriate control structure for

application of the idea is still an appropriate task for the

interpreter. In this case the programmer need only apply a small

fragment of what we know about proving programs correct, just

enough to verify that a couple of instructions have the desired

effec~ the interpreter can then be relied on to use the idea

correctly. The competence components in the following examples

refer to single-instruction programs.

In the following, symbols not taking arguments are

considered universally quantified; all other symbols take on

whatever value is assigned to them by the particular world in

which they are evaluated. “P preserves Q’ is an abbreviation for

“P and Q implies next Q“ “Next” is a unary modal logical

connective (the only procedural concept present) whose meaning is

“after executing one arm operation” (e.g. opening the hand,

moving the hand so that B is caught (meaning that B is between

the fingers of the hand, without the hand necessarily being

closed), moving the hand to “at(B)” (meaning that the hand is

hovering just over B),)

not on(b,b) $

not caught(tableo) $

caught(b) and at(c) implies on(b,c) $

on(b,c) and on(b,d) implies c=d $

at(x) and at(y) implies x=y #

on(x,b) implies next not caught(b) $

on(x,c) preserves not on(b,c) #

on(b,c) implies next (openo implies on(b,c)) $

caught(b) implies next (openo or caught(b)) $

openo preserves on(b,c) $

not openo preserves caught(b) $

not openo preserves not caught(b) $

The reader familiar with interpreters of theorems (as in

[5,6,7,1OJ2,2OI)should not find it hard to see how to interpret

these facts as a program, (The monkey-and-bananas problem of

[12] is the canonical example of this phenomenon.) Three of the

predicate symbols, “at”, “caught” and “open”, have the

appropriate effects on the arm. Note the non-monotonic

application Of the first two facts, discussed in the next
paragraph. We have not yet worked out a suitable heuristic

component for this example or the next; we are at present trying

to reconstruct it from an already existing deterministic (i.e.

conventional) LISP program that embodies essentially these facts.

An important decision to make in deciding just what a

competence component is is whether to treat the facts exactly as

in logic, where the soundness of the whole system can be reduced

to the soundness of the individual facts, or whether one is

willing to let some facts “over-ride” others. For example, a

program to operate a robot arm needs to know somehow that a block

cannot be placed on itself. This will prevent it from attempting

to obey a command such as “Put B on B.” An obvious approach to

conveying this information is to supply the “fact”

“not(on(b,b)).” But if the correctness of the whole competence

component reduces to the correctness of its facts and if it is

correct with the fact “not(on(b,b)),” it must also be correct

without the fact. It follows that any contribution made by this

fact to the correctness of the whole cannot be considered in

isolation from the wholq we must have lost what we will call

“monotonicity,” the ability to add facts without increasing the

correctness of the program (or conversely, to select any subset

of facts from a correct library knowing that the subset will also

be correct).

In the following system we eliminate non-monotonicity,

and also replace a single modality (next) with a separate

modality for every elementary arm operation, represented for

convenience here as assignments to the three arm predicates “at,”

“caught” and “open.” [at(b)=tl is interpreted to mean “after

making the formula at(b) true,” while <at(b):=t> means

m[at(b):=tl= , the dual notion. (A close analogue is Vx,

interpreted as “after setting x to a random value,” and its dual

3X = =Vx= .) Thus [sIP says that no matter what happens as a

result (direct or indirect) of doing s, P will hold; <s>P

promises that it is possible for P to hold as a result of s

terminating when P is just t (true), this asserts that s

terminates.

[P:=tlP s

[P:=niil=P $

on(b,c) implies on(dep(c),c) $

otherthan(c) # c $

caught(b) and at(c) implies on(b,c) $

not on(dep(b),b) and (not caught(b) or openo)

implies <at(b)=t>t 8

not on(dep(b),b) and openo implies <caught(b)=t>t $

not openo and caught(b) implies [at(y) =t]caught(b) $

caught(b) implies [openo=milkaught(b) $

not on(x,y) implies [openo=nil]not on(x,y) $

not on(x,y) implies [caught(b) =t]not on(x,y) $

on(b,otherthan(c)) implies not on(b,c) $

The reader can verify for himself that every assertion in

this system is valid (given a reasonable interpretation of how

the blocks world behaves) by itself, unlike the preceding system,

where in the absence of such pessimistic facts as “not(on(b,b))”

it would be possible to deduce a computation that put B on B.

It is worth noting that in neither of the above systems

is the notion of state referred to explicitly. This is in

contrast to [5] and [12]. See [18] for a rigorous account of how

to do this while keeping the semantics intact.

These two examples suggested two ways in which procedural

information might be incorporated into facts. This leads one to

ask whether there is any limit to how much procedural information

197

can be put in facts. This depends on what programs one is

willing to allow in modalities. The equivalences U81

[aUblP e [a]pA[blp

[wblP s [alklP

show that excluding union (i.e, non-deterministic choice) and

sequencing does not affect what we can say, leading us to include

them without any additional concern. Only when we add iteration

need we again question whether our fact language has become too

rich. Obviously one can then simply implement an interpreter

that executes b when the fact component consists of just [b]P,

announcing P when it terminates along with the current values of

those variables affected by b. This is the phenomenon of “the

richer the language, the more complex the ideas expressible in

it.” In a weaker language, it is up to the interpreter, with the

help of the heuristic component, to figure out the complex idea$

the fact component can only contribute relatively simple ideas.

Other work.

Though we are unaware of any published work in computer

science that explicitly draws attention to the distinction

between competence and performance, the idea is implicit in a

number of places. The most familiar application of the idea is

in the wide-spread use of grammars in parsing systems. A

grammar, whether for Algol or English, can be thought of as a

collection of facts about a language. The con tex t-f ree rule

A:=BC may be read as the fact “An A may be a B concatenated with

a C.” From such facts one may infer “An S may be a ‘THE’

concatenated with a ‘DOG’ concatenated with a ‘EATS’.” The

objective of a parser is to recover the trail of reasoning

leading up to such an inference. For programming language

grammars the performance component is essentially empty and the

interpreter (i.e. parser) supplies all the performance. Until

Woods’s ATN system [22], the same held for natural language

parsers, where the entire grammar resided in the context-free

component and the parser knew nothing about the special

properties of the particular grammar it was to work with. Woods

“augmented” his context-free grammars (represented as “transition

networks” to facilitate this augmentation) with a performance

component that helped the parser decide what to do when. All

major context-free based systems for natural language being

actively worked on today, whether or not represented as

transition networks, now have a substantial performance

component. (Kuno’s Harvard Predictive Analyzer [Ill, which has

an empty performance component, is maintained at IBM Yorktown

Heights, but it is not actively being developed or used.)

An early advocate of explicit representation of

heuristics in addition to facts was McCarthy [12]. However,

McCarthy’s emphasis was on the fact component, and neither that

early work nor more recent work paid a proportional amount of

attention to heuristics. However, this was made up for in the
robot-oriented programs of the late 60’s, notably Green’s QA3

system [5] and Hewitt’s Planner system [7], The former relied on

a theorem prover as its interpreter, and had an empty performance

componen~ this leap into the utopia of fully automated

heuristics proved premature. However, its competence component,

consisting of raw facts, precisely matches our own ideals for a

competence component. Planner was more performance oriented;

however, enough of the performance was mixed in with the

competence, e.g. by distinguishing antecedent theorems from

consequent theorems when these were both merely implications, and

by identifying the competence notion of negation with the

performance notion of unprovability, that we would not wish to

class Planner as a paragon of the method we advocate, Planner’s

successors (Hewitt’s PLANNER?3/ACTORS/PLASMA [8] and

McDermott and Sussman’s CONNIVER [13]) have become

sophisticated performance oriented systems with no distinguishable

competence and performance components as we envisage them. What

distinguishes CONNIVER from PLASMA is CONNIVER’s more

immediate commitment to an int~lligent interpreter, though this

intelligence does not extend significantly beyond implementing

some good algorithms for handling environments flexibly. More

recently McDermott has developed a markedly more intelligent

interpreter, supported by a small theorem prover. However, the

performance component remains inextricably intertwined with the

competence.

J. Schwartz’s notion of “rubble” programs U9], programs

consisting of a rubble of loosely inter-related fragments,

captures one aspect of competence components, namely their

discreteness. Schwartz’s thesis is that any program has such a

rubble program as its prototyp~ the programmer begins by

formulating the rubble program, then proceeds to optimize it, in

the process organizing the rubble into a structured unit and at

the same time converting operations on sets into operations on

their elements via the appropriate generalization of “reduction

in strength.” Schwartz proposes to automate this optimization.

In this, Schwartz comes as close as any to sharing our

objectives. Two major differences are Schwartz’s precrccupation

with reducing the expense of naive set manipulation and his more

ambitious goals concerning automation of control. We ignore

optimization possible by reduction in strength (formal

differentiation) because the examples we work with cannot benefit

from this idea and we expect to see many more examples in that

category. We have relatively modest goals for automating control

because it appears to us that complete automation is at present

enormously difficult. Partial automation seems sensible but begs

the question of “what part?” At present our understanding of

control structures does not permit us to carve them up and

distribute them between the programmer and the computer, which is

why we propose to work out our fact/heuristic dichotomy in more

detail to try to elicit a better understanding of the heuristic

component.

Another place in which the idea can be found is in the

most recent attempts to implement “logic as a programming

language,” notably those of Hayes [6] and Kowalski [IO]. These

come as close as any work to meeting our own objectives for

separating competence and performance. Both of them have the

advantage of inheriting a well-defined semantics from logic (as

did QA3), providing reassurance that proofs of correctness will

not be just optimistic symbol manipulation but will be supported

by a Tarskian definition of truth, for which to our knowledge no

trustworthy substitute has ever been satisfactorily worked out.

Hayes pays more attention to the development of a performance
component than does Kowalski, who prefers to rely on the

interpreter, which he implements using SL-resolution. Tarnhsnd

[201 has implemented a version of Kowalski’s system that
incorporates the missing performance component.

Marr and Poggio [16] propose applying a four-level

version of the competence/performance dichotomy to

biologically-related computation. The top two levels resemble

our fact and heuristic levels respectively, with their other two

levels corresponding respectively to functions and their

198

implementation with digital hardware, Discussions with Marr

suggest however that their top level is really a set of

independent axioms (cf. our inclusion of theorems in the fact

component) while their next level is a hybrid of our fact and

heuristic components.

4. Approaches to Automation.

As we have little experience to date in separating fact

from control, we are not in a god position to predict what

approaches we will take to automating control. The only idea we

have had to date concerns the non-monotonic style of programming

exemplified by our blocks world example. As this idea is

moderately interesting, we sketch it here. It was suggested by a

technique used in R. Weyhrauctt’s first-order logic proof checker.

We view each fact as a collection of optimists and

pessimists. To do this we restructure each fact slightly: all

logical connective (ignoring modalities for the moment, and

assuming that only unary and binary logical connective exist)

are replaced by A, v and ~ (e.g. P~Qbecomes -PvQ.) and then the-.
-’s are moved down to the atomic formulae via de M&gan’s laws

(We think of formulae as trees with vertices Iabelled with

symbols and having the root at the top.) The result is a

monotone expression (tsne containing only A’s and v’s) whose

leaves are Iiterals (possibly-negated atomic formulae). The

monotonicity plays an essential role as we shall see. Note that

this restructuring does not result in the substantial increase of

size generally associated with conversion to conjunctive or

disjunctive normal form unless s or 4 occur. For example,

(AABACADAEAFAGAH)V(IAJAKALAMANAOAP) is not altered

by our transformation, but is expanded to 64 Iiterais if

converted to conjunctive normal form. In fact our

transformation does no violence to the basic structure of the

expression in the absence of ~ and ~ ch?.nging only the names

of some of the binary logical connective and relocating

some negations.

If P is an atomic formula we take -P as usual; however,

if P is -Q for some atomic formula Q we take YP to be Q In

this way we can say that for any literal P, P is an optimist for

P and the literal -P is a pessimist for P.

Given a fact consisting of the single literal P, any

attempt to make P true must meet with instant success since the

existence of P as a fact means that P is always true. Thus if P

occurs as a goal, the fact P is an optimist for that goal.

Conversely, -TP is a pessimist for that goal if it occurs as a

fact, saying that P can never be achieved.

Given a fact of the form PvQ the occurrence of P in

this fact still acts as an optimist for a goal P (and as a

pessimist for -P) because all the operators “above” P in the

formula (namely v) are monotone and do not reverse the sense of

P. Thus if P is set as a goal, PvQsays nothing pessimistic

about it but is optimistic in the sense that if Q were false then

P would be forced to be true. We call =Qthe requisite of this

optimist. If the goal is -P then PvQis only pessimistic, and

says that Q had better be true or 1P will not be achievable. We

call Qthe requisite of this pessimist. If the fact is PAQ then

this is as optimistic as the fact P for the goal P, and as

pessimistic as the fact P for the goal =P, and say that there

are no requisites.

These ideas generalize to arbitrary formulae in the

normal form described above, because of the monotonicity. Given

a goal P, if an optimist P occurs in a fact, then the set of

requisites for that optimist are the negations of the siblings in

each of the v’s encountered going from the occurrence of the

optimist to the root of the expression. For example, if the goal
is D and the fact is (((AvB)v(CA(DVE)))VF)A(GV(HAI)), then the

requisites of the optimist D are (in the order encountered going

up the expression) YE, -(AvB), -F and ~(Gv(HAI)).

Similarly if the goal is -D then the requisites of the pessimist

D are E, AvB, F and Gv(HAI).

This leads to an algorithm for achieving a goal P when P

is a literal. First determine the truth of P; if true we are

done. Now satisfy some requisite of every pessimist for P. This

may entail recursively setting requisites as subgoals. If for

some pessimist it proves impossible to satisfy any requisite then

abandon the attempt to satisfy P. Otherwise find an optimist

every one of whose requisites can be satisfied; success or’

failure here translates into success or failure in satisfying P.

We implemented an interpreter based on this idea and

tried it out on the non-monotonic blocks world fact component,

with an empty performance component. The absence of other facts

that might throw the system off the scent allowed our interpreter

to proceed reasonably quickly to satisfy such goals as

“on(Bl,B2)” in simple situations. Unfortunately. the presence of

modalities such as “next” complicates this approach, and the

heuristics we added to the interpreter to deal with the

modalities did not seem satisfactory. Our next project is to

give some thought as to how best to deal with “next”.

The above method may be generalized to deal with ~,

which avoids having to expand it out and destroy the original

expression structure (though this need at worst square the

expression size [17], roughly), by treating occurrences of a

literal below ~ as both a positive and a negative occurrence.

Any segment of a path from that occurrence to the root, with the

segment lying between consecutive 4s, may be forced to take on

either truth-value, with the siblings at the two s’s determining

how that value interacts with the rest of the path. We leave the

details to the reader.

Acknowledgments.

David Marr provided some stimulating argument. Richard

Weyhrauch gave me the idea for section 4.

References.

U] Aho, A. V., J. E. Hopcroft and J.D. Unman. The Design

and Analysis of Computer Algorithms. Addison-Wesley, Reading,

Mass. 1974.

[2] Chomsky, N. Some Aspects of the Theory of Syntax, MIT

Press, Cambridge Mass. 1965.

[3] Cook, S.A. Axiomatic and Interpretive Semantics for an

Algol Fragment. TR-79, Toronto, Feb. 1975.

[4] Floyd, R.W. Assigning Meanings to Programs. in

Mathematical Aspects of Computer Science (cd. J.T. Schwartz),

19-32. 1967.

199

[51 Green, C. Cordell. The Application of Theorem Proving to [22] Woods, W. A. Augmented Transition Networks for Natural

Question-Answering Systems. Stanford University Computer Language Analysis. Report No CS-1 to the NSF, Aiken Computation

Science Department Report CS-138. 1969. Laboratory, Harvard University, Cambridge, Massachusetts. 1969.

[61 Hayes, Patrick J. “Computation and Deduction,” Proc.

Symp. Math. Found. of Comp. Sci., Czech Acad. of Sciences. 1973.

01 Hewitt, C.E. Description and Theoretical Analysis (Using

Schemata) of PLANNER: A Language for Proving Theorems and

Manipulating Models in a Robot, MIT AI Lab TR-258. 1972.

[81 --------, P. Bishop, and R. Steiger. “A Universal

Modular ACTOR Formalism for Artiicial Intelligence,” Proc.

IJCAI 3, p. 235.1973.

[91 Hoare, C. A. I?. An Axiomatic Basis for Computer

Programming. CACM ~, 576-580.1969.

[101 Kowalski, R. Predicate Logic as Programming Language,

University of Edinburgh Department of Computational Logic

Memo 70.1973.

[11] Kuno, S. The Predictive Analyzer and a Path Elimination

Technique. CACM 8,7,453-462. 1%5.—

[12] McCarthy, J. Programs with Common Sense. In Semantic

Information Processing (cd. Minsky, M.L.), MIT Press, Cambridge,

Mass. 1968.

[131 McDermott, D. and G.J. Sussman. The Conniver Reference

Manual, MIT AI Lab Memo 259a. 1972.

[14] --------- Flexibility and Efficiency in a Computer

Program for Designing Circuits. Ph.D. Thesis, MIT AI Lab. Sept.

1976.

[15] Manna, Z. Second-order Mathematical Theory of
Computation. Proc. 2nd Ann, ACM Symp. on Theory of

Computation, 158-168. May, 1970.

[161 Marr, D.C. and T.G. Poggio. From Understanding
Computation to Understanding Neural Circuitry. MIT AI Memo

357. May 1976.

[17] Pratt, V.R. Effect of Basis on the Size of Boolean

Expressions. Proc. 16th Ann. IEEE Symp. on Foundations of

Comp. Sci., 119-121.1975,

[181 Pratt, V.R. Semantical Considerations on Floyd-Hoare
Logic. Proc. 17th Ann. IEEE Symp. on Foundations of Comp.

109-121. 1976.

[19] Schwartz, J. A view of Program Genesis and its
Implications for Future Programming Languages. In
New Directions in Algorithmic Languages (cd. Schuman,

S.A.), IRIA. 1976.

Sci.,

[20] Tarnlund, Sten-Ake. “An Interpreter for the Programming
Language Predicate Logic: Proc. IJCAI 4, p. 601. 1975.

[21] Turing, A.M. On computable numbers, with an application

to the Entscheidungsproblem, Proc. London Math. Sot., ser. 2, 42,

230-265, E, 544-546. 1936.
—

200

