
Applications of High Level Control Flow

Barry K. Rosen

Computer Sciences Department
IBM Thomas J. Watson Research Center

Yorktown Heights, New York 10598

ABSTRACT. Control flow relations in a high level language pro-

gram can be represented by a hierarchy of small graphs that com-

bines nesting relations among statements in an ALGOL-like syntax

with relevant perturbations caused by goto or leave statements.

Applications of the new style of representation include denotation-

al semantics, data flow analysis, source level compiler diagnostics,

and program proving.

1. INTRODUCTION

Of course we can describe control flow in a program by tracing

a path in the control flow graph of the program. But what is “the”

graph of a program in an ALGOL-like high level language? How is

it related to the source text? Can goto or leave statements be

handled smoothly? How can sets of paths that are “similar” from

the user’s viewpoint be concisely described? Suppose the program

is changed. How can we update the graph and the results of analy-

sis by a program prover or an optimizing compiler? Must we start

from scratch? Questions like these have led to a new representa-

tion of control flow in high level language programs.

Section 2 reviews the standard low level flowchart representa-

tion of control flow and contrasts it with the use of a high level

contro[flow graph and reduced graplrs. Some applications of the

new style of representation are sketched in Sections 3-7. Section

3 shows how denotational semantics can cope with goto while

avoiding continuations. Section 4 globalizes local data flow -in-

formation and computes it bottom-up. Section 5 applies the new

local information to global problems. Section 6 applies the previ-

ous sections to the problem of generating concise but informative

compiler diagnostics at source level [F076; OF76]. Section 7

extends Owicki’s method for proving partial correctness of asynch-

ronous parallel programs [OW75; OW76; OG76] to cope with goto

and leave. In the special case of sequential programs, a similar but

less general trick is proposed by Wang [Wa76]. High level control

flow transcends the restriction to classical structured programming

that formerly limited the usefulness of axiomatic systems for pro-

gram proving in the style introduced by Hoare [H069]. (The re-

striction is only partially relaxed in [CH72].)

Two principles that have guided this work should be men-

tioned. The first is that COMPUTERS ARE NOT PEOPLE: there

is little reason to expect computer processing of large structures to

be expedited by representations that are natural when people

process small structures by hand. For example, compare infix with

postfix notation. In this example computational simplicity corre-

lates poorly with intuitive naturalness, but it correlates well with

mathematical elegance in the rules defining the formal notation.

We have chosen to relate program texts to graphs in a way that is

mathematically elegant (though perhaps unnatural for hand proc-

essing of small programs) in the hope of expediting computer

processing of large programs. The example program SUMFAC in

the next section is small enough for hand processing and is just

barely large enough to illustrate the points we wish to make.

(Another program in this size range is cited in Section 7.) As is

shown in Section 6, high level control flow is convenient for com-

munication between a computer and a person as well as for proc-

essing by a computer alone.

33

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1977 ACM 0-12345-678-9…$5.00

The second principle guiding this work is a cautiously optimis-

tic version of Murphy’s Law: WHATEVER CAN GO WRONG

WILL, BUT NOT OFTEN, In particular, well written programs in

well designed languages will have few if any goto statements, but

even good programmers will use them now and then [Kn74]. We

conclude that methods for proving or optimizing programs should

be able to handle any use of goto, but that this ability should not

contribute to the processing costs for the many programs free of

goto. Moreover, the complexity of our methods should rise gradu-

ally when anomalous statements are added to a large program.

There should not be a drastic change when a single goto or leave is

added to a large program that previously used only single entry and

exit control facilities. Such robustness is acheived by a mathemati-

cal approach that superficially resembles the informal control flow

diagrams of [DDH72, Sec. 1.7] for classically structured programs

but also copes with nonclassical control flow. Ledgard and Mar-

cott y [LM75, Sec. 6] challenge our assumption that classical struc-

tured programming is sometimes inadequate. Space does not per-

mit a full discussion of the issues here. See [DEL76] for some

recent results that support our assumption

2. ASSIGNING GRAPHS TO PROGRAMS

The usual low level flowchart representation [U173, Sec. 1] is

constructed by translating a program into an intermediate text.

Unlike the statemerrls of an ALGOL-like language with structured

programming facilities, the instructions in intermediate text cannot

be nested within each other. Certain sequences of instructions

called basic blocks are grouped together to form the nodes of the

graph. This representation is a hierarchy with a graph at the top

level and sequences of instructions at the level below. An example

is shown in Figure 1 for a program SUMFAC written in ALGOL-

Iike notation (supplemented by line numbers) atop the next col-

umn.

Unlike the usual shallow hierarchy, the high level representa-

tion proposed here has the same depth as the depth of nesting of

statements with~n statements in an ALGOL-like syntax. AU places

in the hierarchy are held by graphs, and each graph represents a

portion of the control flow information in the program. These

01 SUMFAC: begin dcl MS, S integer external;

02

03

04

05

06

07

08

09

10

11

12

13

14

15

comment S will be assigned the sum of the factors of MS;

dcl M, P, T, Q, R integer;

M:= MS; S:=l; P:=l;

NEWPRIME: P:= P+ l; T:=P;

AGAIN: Q := quo(M, P); R := rem(M, P);

TEST: if R = O

then ZERO: [T := mrrl(T, P); M := Q; MORE: goto AGAIN]

else NONZERO:

[CON1: if T # P then S := mul(S. quo(T-1, P-1));

SEMICON: if P>Q then

PGQ: [CON2: if M >1 then S := mrd(S, M+l);

S:= S– MS;

DONE: leave sUMFAC];

ANOTHER: goto NEWPRIME]

16 end

-——.

graphs are related to each other by means of the high level corrfrol

flow graph for the entire program. This graph is used by the

theory to relate high level analysis to concepts usually defined only

for low level flowcharts. The smaller graphs in the hierarchy are

called induced graphs. Semiformal descriptions of the high level

control flow graph for a program are in [Ro76a, Sec. 2; R077, Sec.

2]. Induced graphs are constructed more formally in [R077, Sec.

4]. Here the presentation is rigorous and significantly more gener-

al. The sets (2.2. 1) later in this section are required to be single-

tons in [R077].

Let G be a finite directed graph with a set NG of nodes and a

set AG of arcs. An arc c has a source sc and a target tc, both of

which are nodes. We identify c with the pair (SC, tc). A nesting

strucfure for G is a finite partially ordered set Z with a maximum m,

together with a set Na of nodes and a set Aa of arcs for each a in

X. The following properties are required:

Nrr = NG and AT = AG; (2.1.1)

~ < a in X implies (N8 s Na and A~ s As); (2.1.2)

(c in AG has SC, tc in Nri) implies (o is in As). (2.1.3)

For SUMFAC we take 2 to be the set of all <statement> nodes in

the parse tree, with ~ < a iff tree node ~ is a descendant of tree

39

node a. We deliberately confuse statement labels with the tree and If(a, n, p) = O otherwise. These path bits can be computed

nodes they identify, so that SUMFAC, TEST, ... are said to be “in” bottom-up, beginning with choices of a that are minimal in >. Path

2, with SUMFAC = rr and ZERO s TEST < SUMFAC. For each bits for a can be determined from previously computed path bits

a in X for SUMFAC, let for parts P of a, where

Na = { enrering a, leaving a 1 u U ~<aNP

and construct appropriate arcs. For example, there are arcs from

entering TEST to eniering ZERO and to entering NONZERO,

arcs from feaving ZERO and from leaving NONZERO to leaving

TEST, and an arc from entering MORE to entering AGAIN, The

example of (2.1) just sketched for SUMFAC is the high level

control flow graph for SUMFAC, which combines syntactic nesting

with the details of control flow.

A nesting structure wifh entrances and exits consists of G and

Z as in (2.1) together with, for each a in X, sets of designated

entrances and designated exiis

PARTa={ /3<al Noyin2has~< y< a}. (2.4)

For exampIe, PART. for a = TEST is { ZERO, NONZERO].

As in [R077, Sec. 4], we construct the induced graph Ga for

each a in 2. The set of nodes in Ga is

Nc% = No. U U ~ ~~A~~a (ENTR8 u EXITP) (2.5.1)

where

(2.5.2)

For SUMFAC, Noa = { entering ~, leavinga],Thesetofreal

arcs of Ga is

DENTRtr s Na and DEXITa s Na (2.2.1)

RAGa={c CAalsc, tc~NGa}. (2.5.3)

such that, whenevek /3 s tr in 2,
For each ~ in PARTa there is a set of imaginary arcs

DENTRa n ND s DENTR~ and DEXITa n ND s DEXIT/3.
(2.2.2) IAG[/3] = { (n, p) I n E ENTR~ & p E EXIT~ & II(P, n, p) = 1 }.

(2.5.4)

Entrance and exit sets are defined by

The total set of arcs is

ENTRa=DENTRa u{tc ENrslc&AG &.sc GNa];

(2.2.3)

EXITa=DEXITau {SC EN. I cCAG&~tc CNa}.
(2.2,4)

For all statements in SUMFAC we take

DENTRa = { entering a] and DEXITa = { leaving a }.

Other entrances and exits are added by escape or jump statements

such as the leave (used as in [WU75, p. 145]) and the goto’s in

SUMFAC. We can find ENTRtr and EXITa without constructing

G: all we need is the parse tree and the ability to correlate the

label in goto NEWPRIME with NEWPRIME as a member of 2.

Given a nesting structure with entrances and exits, consider

any a in 2, n in ENTRa, and p in EXITa. Let II(a, n, p) = 1 if

there is a path from n to p in G touching only nodes of Na (2.3)

‘G” = ‘AGa u U Pe PART. IAG4BI (2.5.5)

with the obvious definitions of sources and targets, (Some arcs are

both real and imaginary.)

Let al be the statement CON1 with one part ~1 . Then Ga ~ is

shown in Figure 2 for i = 1. Now let a2 be CON2, so that Ga2 is

shown in Figure 2 for i = 2, More generally, if a is any one part

conditional statement if.. then ~ in any program, and if ~ has only

entering ~ as an entrance and leaving p as an e~i~, ~h~~ Ga is as

shown in Figure 2. Similarly for the other control structures of

classical structured programming [DDH72, Sec. 1.7]. Escapes like

leave and jumps like goto may be used within /3 or elsewhere in the

program: Ga only depends on the relation between a and its parts.

The induced graph construction automatically determines whether

Ga is like the simple diagrams of [DDH72, Sec. 1.7] or whether the

40

escapes and jumps in the program are relevant to cr. For example, should be possible to assign meaning bottom-up in an “almost”

G. for a = SEMICON is as shown in Figure 3

Figure 4 shows Grr for n = SUMFAC. and it is roughly twice

as large as Figure 1. But Figure 1 presupposes the control flow

analysis among instructions that identifies basic blocks and deletes

anything not reachable from the entrance to SUMFAC. Similar

analysis of Figure 4 leads to the compressed induced graph shown

in Figure 5. In general, whenever an induced graph is unpleasantly

large, we can go beyond [R077] by compressing it according to

rules like those used to construct low level flowcharts. The formal

construction follows.

Given a nesting structure with entrances and exits for a graph

G, consider any a in Z and compress the induced graph Ga by

applying rules until no further changes are possible. If n is a node

in Ga — EXITa not reachable from at least one entrance to a, then

delete n and all arcs c with sc = n or tc = n. (2,6)

A node n in Ga is flow trivial iff both

. n E ENTRa u EXITa (2.7.1)

and there are unique arcs x, y with

tx=nandsy=n. (2.7.2)

If n is flow trivial then we bypass it:

delete n, x, y and add an arc z from sx to ty. (2.7.3)

Iterating the bypass operation (2.7) is like grouping instructions

into basic blocks.

3. DENOTATIONAL SEMANTICS

It is natural to think of a program statement a as “meaning” a

(partial) function from storage states to storage states. In classical

structured programming the meaning of a is quite elegantly deter-

mined by the meanings of its parts and by the production applied to

generate a. The classical case is important but not universal: prac-

tical structured programming [Kn74; WU75; Za74] requires escapes

and perhaps a few jumps. In a large program with a few jumps it

classical way, without a major change in semantic style such as

introduction of continuations [SW74]. Such a robus[semantic

style is easily acheived with the help of Section 2,

The key is simple: instead of asking what a means, we ask

what (a, n, p) means, where n is an entrance to a and p is an exit

from a. In practical structured programming the number of such

triples is often larger than [X [, but not drastically larger, For

many of these triples the meanings follow from elementary obser-

vations. In general, H(:, n, p) = O implies that (a, n, p) computes

the empty map. In many programming languages the syntax is such

that

(P C EXITa and SC = p) implies ~ tc E Na, (3.1)

so that (a, p, p) computes the identity map if p is in ENTRa n

EXITa. In particular, only when H(a, n, p) = 1 and n # p is there

any question about the meaning of (a, n, p) in SUMFAC. The 23

statements give rise to 24 triples in need of analysis here.

Now consider any graph G together with a storage state trans-

formation for each arc and a nesting structure with entrances and

exits that satisfies (3. 1). We assume determinism: arcs with a

common source are assigned transformations with disjoint domains.

Given the induced graph Ga, the transformation for each real arc

in Ga, and previous] y determined meanings for all triples (/3, no,

Po) such that ~ is a part of a, we find that the meaning of (a, n, p)

as a storage state transformation is determined. The usual least

fixpoint considerations are required if Ga has cycles. Transforma-

tions are partial functions and, when ordered by inclusion between

functions as sets of ordered pairs, have appropriate completeness

properties. See [Ma74, Ch. 5; MR76] for details on the mathemat-

ical machinery. In particular, the partial functions form a coherent

[MR76, Def. 5.7] poset.

4. LOCAL DATA FLOW ANALYSIS

For analysis to support a correctness proof or an optimization

it is important to compute meanings that are much simpler than

41

storage state transformations. For example, we could let the mean-

ing of (a, n, p) be the set of variables whose values can be modified

by an execution of a that euters at n and leaves at p, where “can”

refers to all coutrol flow paths. Calf this set MOD (a, n, p). The

previous section applies equally well to this kind of meaning. More-

over, consider CON1 and CON2 in SUMFAC with induced graphs

shown in Figure 2. It is easy to show that

MOD(ai,entering ai, leaving ai)=

MOD(~i, enterirzg~i, leaving ~i). (4.1)

The work of deriving (4.1) need not be repeated for i = 1, 2 in

SUMFACand, foreach program. Atproof time orcompile timewe

need ouly recognize that a: if...then ~ is a one part conditional

statement with a related to ~ in the manner of classical structured

programming. Then the meaning of a can be derived from the

meaning of ~ by plugging into the equation

MOD(a, entering a, leaving a) =

MOD(~, errtering~, leaving~) (4.2)

derived at the time of language definition, when we draw Figure 2

without the i subscript. Now consider SEMICON in SUMFAC

with induced graph shown in Figure 3. Escapes and jumps perturb

the iuduced graph, but only mildly. The statement SEMICON is

semiclassical [R077, Sec. 4], and the sets MOD(SEMICON,

errtering SEMICON, p) for p = leaving SEMICON and for p =

entering DONE can still be found by plugging into equations de-

rived at the time of language de~lnition.

In general, questions as to what statements can or cannot do to

variables or expressions are local data flow questions. They can be

asked of alt statements, not just the minimal ones in 2 that corre-

spond roughly to instructions in an intermediate text. Local data

flow questions ultimately refer to the high level control flow graph

G and to strictly local information about what can or cannot hap-

pen when control flows along each arc. We can answer many such

questions by considering the smaller induced graphs and computing

bottom-up. When a semiclassical statement is encountered we

can plug into a known equation without even considering the in-

duced graph. We used the elementary example of MOD and one

part conditionals to illustrate the method. The potential savings are

more apparent when the equations like (4.2) for various questions

and control operators are considered. Details are in [R077] for

three important questions: MOD (as above), PRE (the variables

that can be preserved), and USE (the variables that can be used).

Of the 23 statements in SUMFAC, only T = SUMFAC fails to

be semiclassical. Only for r do we need to trace paths in an in-

duced graph at proof time or compile time. For the same reasons

that the usual low level analysis techniques can use basic blocks

rather than instructions as nodes, we can analyze the compressed

induced graph instead. Whatever graph analysis technique one

would use in Figure 1 to determine whether SUMFAC can modify

the value of its input MS, the same technique can be used in Figure

5 instead, which is only half as large. Whh due cautiori, the local

information derived for SUMFAC can then be applied to find local

information about calls on SUMFAC in other programs. Recursive

procedures lead to a chicken/egg problem: there are circular de-

pendencies in the family of equations like (4.2) derived for a pro-

gram with recursive procedures. It can be shown that correct and

sharpest possible MOD, PRE, USE information is obtained by

finding the least fixpoint of the family of equations. Details and a

full discussion of the pitfalls are in [Ro76b].

5. GLOBAL DATA FLOW ANALYSIS

Local data flow information was globalized in Section 4.

When local information is available for all triples (a, n, p) then high

level versions of traditional global flow problems can be solved

rapidly. As with low level flowcharts, a global problem is an at-

tempt to assign information to nodes that summarizes either what

can happen on some paths or what must happen on all paths. The

set of paths considered, for each node n iu the high level control

flow graph, is either the set of paths to n from nodes in DENTRr

or the set of paths from n to nodes in DEXITn. (Recall (2.2.1).)

The details for live variables are in [R077, Sec. 11], and it is clear

that traditional constant propagation or available expressions

[HU75, Sec. 5.1] can be similarly handled. The more ambitious

semilattice versions of these problems [GW76; KU76] are under

study. As might be expected, situations where f (x Ay) # f(x) A

42

f(y) are delicate. Such mmdis[ribu/ivi/y is fairly common [Ku76,

Sec. 6], and it changes = to > in the Induced Graph Theorem of

[R077, Sec. 4]. Despite this technical hurdle, we can find an

acceptable assignment [GW76, p. 177] of information to nodes in

the high level control flow graph by calculations with induced

graphs only. We are now attempting to generalize the symbolic

analysis typified by (4.2) so as to move much of the work back-

ward from compile time to the time of language definition, as is

done in [R077] for less ambitious flow problems.

A new compiler style is beginning to emerge [Ca77; Ha77:

Kn74; L076]. Source text and machine code will both appear as

dialects of an intermediate language incorporating high and low

level constructs, Compilation will consist of gradual expansion

from relatively high to relatively low level within the intermediate

language, with frequent interludes of analysis and optimization. In

particular, special case code generation will be unnecessary because

systematic optimization at all levels will do at least as well [Ca77].

These ambitious compilers will update data flow information to

reflect program changes due to optimization, so as to polish the

code nearly as well as a good programmer could. The syntax di-

rected high level analysis sketched here is particularly oriented

toward such compilers. We try to hold down the toral cost of

initial analysis and later updating for well written programs. The

well known cost bounds deal only with initial analysis, and no

explicit bounds on total cost are available for any data flow analysis

method. Another hindrance to a direct cost comparison becomes

apparent in the next section. High level analysis yields a great deal

of information that is useful for diagnostics. To extract this in-

formation from the results of low level analysis requires more work.

6. COMPILER DIAGNOSTICS

Much of the information accumulated so far is of obvious

usefulness in understanding and maintaining a program. The

ENTR and EXIT sets in (2.2) and the path bits m in (2.3) display

the effects of any departures from classical structured program-

ming. They do this concisely at source tevel for each statement. A

low level flowchart like Figure 1 conveys the control flow between

basic blocks in one lump that has no simple correlation with the

source text. For example, the statement TEST includes seven

nodes in Figure 1 and part of an eigth. Even though TEST is

rather near the root of a large parse tree, it cannot be correlated

with the usual shallow hierarchy unless we open up a node to reveal

the sequence of instructions within a block:

[Q+quo(M, P)#R+-rem(M, P)#R=O?]

In practice the situation will often be worse because-programs will

be larger and will have flowcharts that cannot be neatly arranged

on a page.

The local and global data flow information from Sections 4 and

5 is clearly useful for diagnostic purposes or for program proofs

[Ro76a, Sec. 6]. Fosdick and Osterweil [F076; 0F76] explain

how to reinterpret global flow problems such as live variables to

detect data flow anomalies such as an uninitialized use of a local

variable. As they imply, it is helpful to warn the programmer that

B : = A+2 can be reached before A is initialized, but much more

helpful to couple the warning with an example path whereon this

happens.

Now suppose that B : = A+2 occurs in the context

CONTEXT: [FIDDLE: if...then A := O else MESS: [...];

THICKET: [...];

CHANGE: B := A+2]

where MESS and THICKET are large and intricate statements such

that, for y = MESS and for y = THICKET,

= A E MOD(Y, entering y, leaving y).

To trace an anomalous path from a point corresponding to entering

CONTEXT to a point corresponding to errterirrg CHANGE in a

low level flowchart would be confusing. Irrelevant details of paths

through MESS and THICKET would be included. High level

languages should relieve the programmer of the need to read low

level programs, at least when fine tuning of run time performance is

not an immediate issue. The exclusive use of low level control and

data flow analysis methods prechrdes such relief, unless we choose

to have data flow diagnostics that are much less informative than is

desirable. Programmers can cope with exclusively low level diag-

nostics, but “there is fittle appeal in a miraculous new language, if

43

the corresponding debugging tool talks back to me in octal or

hexadecimal” [Sp76, p. 294]. (Similar remarks apply to program

proving when escapes and jumps are permitted.)

In the induced graphs Ga for a = CONTEXT and a = FID-

DLE we can easily and naturally display short paths that character-

ize all the anomalous paths in the full high level control flow graph.

We begin in CONTEXT with the path

from entering CONTEXT to entering FIDDLE

to leaving FIDDLE (along an imaginary arc)

to entering THICKET

to leaving THICKET (along an imaginary arc)

to entering CHANGE,

where the second imaginary arc cannot modify A. The first imagi-

nary arc can modify A, but it can also preserve A. Therefore we

provide more detail in FIDDLE with the path

from entering FIDDLE to entering MESS

to leaving MESS (along an imaginary arc)

to leaving FIDDLE,

“where all arcs cannot modify A. High level analysis leads directly

to concise but informative diagnostics at source level when the

methods of [F076; 0F76] are applied to languages amenable to

practical structured programming.

7. PROGRAM PROVING

It is convenient to consider the original values of input varia-

bles as persisting in a special part of the storage state f of a compu-

tation. Then partial correctness [Ma74, Sec. 3-1] with respect to

predicates P, Q on storage states is the property that, whenever a

computation begins with $ such that P(f) and finishes with q , then

Q(rr). Owicki [OW75; 0w76; 0G761 proposes a powerful method

for proving partial correctness of asynchronous parallel programs.

Two assertions, a precondition and a postcondition, are associated

with each a in X, as in the style of proof introduced by Hoare

[H069]. Carefully chosen assertions can lead to clear and convinc-

ing proofs despite the pitfalls of asynchronous parallelism. We

reformulate a crucial point more abstractly and much more general-

ly, so as to extend the applicability of the method.

We assume that the maximum T in X satisfies

DENTRm = { entering T] and DEXITn = { leaving m }, (7.1)

but none of the other constraints of classical structured program-

ming are needed. A storage state predicate C[n] is to be assigned

to each node n in the high level control flow graph G, in such a way

that, for all states f, q and arcs c in G:

P(f) implies Centering ~](.$); (7.2.1)

C[leaving r](q) implies Q(q); (7.2.2)

(C[sc](f) and ~ ~c q) implies C[tc](q), (7.2.3)

where (~c q means that $ can be changed to q when control flows

along c. In sequential programming this would guarantee partial

correctness, and we have so far just transcribed [F167] into the

notation of Section 2. Now we impose the interference-free

condition [OW75, Sec. 3.3]: for all states .$, q and all arcs c in G

such that c and n are in distinct parallel processes,

(C[n](f) and C[SC](6) and f ~C T) implies C[n](~). (7.3)

An assignment C from nodes to assertions that satisfies (7.3) as

well as the Floyd conditions (7.2) will assure partial correctness, In

[OW76; 0G76] the sharing of variables by processes is restricted in

ways that expedite verification of (7.3),

For us the precondition and postcondition for a in a Hoare

style proof are Centering a] and C[leaving a]. By directly assign-

ing one assertion to each node in G rather than assigning fwo

assertions to each statement in 2, we transcend the restriction to

classical structured programming. Wang [Wa76] proposes a similar

trick for sequential programs in the case where each a in Y, not just

r, satisfies (7,1), Only if Noa in (2.5.2) is always { entering a,

leaving a] will [Wa76] assign assertions to all nodes bf G.

Consider the program FINDPOS ~Ro76a, Sec. 3] that has been

used to illustrate what is so hard about asynchronous parallelism.

Owicki presents an elegant partial correctness proof for a similar

program Findpos [OW75, Fig. 3.4] wherein the effects of leave

statements are simulated in classical structured programming. The

44

program Findpos is a shade less clear and distinctly less efficient

than FINDPOS. The mathematical machinery in [OW75] cannot

say, much less prove, that partial correctness of Findpos implies

partial correctness of FINDPOS. With (7.2) and (7.3) however,

we can prove the partial correctness of FINDPOS directly by an

easy adaptation of [OW75, Fig. 3.4]. The formulation (7.3) of

interference-freeness is also simpler than the original one. Adding

[Ro76a, Lemma 5. 1] to the partial correctness proof leads to a total

correctness proof more elegant than [Ro76a, Sec. 5].

REFERENCES

Ca77. Carter, J.L. A case study of a new code generating techni-

que for compilers. Comm. ACM (1977?) to appear.

CH72. Clint, M., and Hoare, C.A.R. Program proving: jumps and

functions. Acts Informatica 1 (1972),214-224.

DDH72. Dahl. O. J., Dijkstra, E. W., and Hoare, C.A.R.

Structured Programming. Academic Press, London and

New York, 1972.

DEL76. DeMillo, R. A., Eisenstat, S. C., and Lipton, R.J. Can

structured programs be efficient? SIGPLAN Nolices vol.

11 num. 10 (October 1976), 10-18.

F167. Floyd, R.W. Assigning meanings to programs. Proc, Symp.

Appl. Math. 19(1967),19-32.

F076. Fosdick, L. D., and Osterweil, L.J, Data flow analysis in

software reliability. TR CU-CS-087-76, Computer Science

Dept., University of Colorado, Boulder, May 1976.

GW76. Graham, S.L., and Wegman, M. Afastand usually linear

algorithm for global flow analysis. X ACM 23 (1976),

172-202.

Ha77. Harrison, W. Anew strategy for code generation – the

general purpose optimizing compiler. These Proceedings.

HU75. Hecht, M. S., and Unman, J.D. A simple algorithm for

global flow data flow problems. SIAM J Computing 4

(1975), 519-532.

H069. Hoare, C.A.R. An axiomatic basis for computer program-

ming. Comm. ACM 12 (1969),576-583.

KU76. Kam, J. B., and Unman, J.D. Global data flow analysis and

iterative algorithms. J. ACM 23(1976), 158-171.

Kn74, Knuth, D.E. Structured programming with goto statements.

Computing Surveys 6(1974),261-302.

L076. Loveman, D.B. Program improvement by source to source

transformation. Proc. 3rd ACM Symp. on Principles af

Programming Languages (January 1976),140-152.

Ma74. Manna, Z. Mathematical Theory of Computation.

McGraw-Hill, New York, 1974.

MR76. Markowsky, G., and Rosen, B.K. Bases for chain-

complete posets. IBM J. Res. and Devel. 20 (1976),

138-147.

0F76. Osterweil, L. J., and Fosdick, L.D. DAVE: a validation,

error detection, and documentation system for FORTRAN

programs. Software Practice and Experience (1976) to

appear.

0w75. Owicki, S.S. Axiomatic proof techniques for parallel pro-

grams. Tech. Rep. 75-251 (Ph.D. thesis), Computer Sci.

Dept., Cornell U., Ithaca New York, July 1975.

0w76. Owicki, S.S. A consistent and complete deductive system

for the verification of parallel programs. Proc. 8th Ann.

ACM Symp. on Theory of Computing (May 1976), 73-

86.

0G76. Owicki, S. S., and Gries, D. Verifying properties of parallel

programs: an axiomatic approach. Comm. ACM 19

(1976), 279-285.

Ro76a. Rosen, B,K. Correctness of parallel programs: the

Church-Rosser approach. Theoretical Computer Science 2

(1976), 183-207.

Ro76b. Rosen, B.K, Data flow analysis for procedural languages.

IBM Research Report RC 5948, Yorktown Heights, April

1976.

R077. Rosen, B.K. High level data flow analysis. Comm. ACM

(1977?) to appear.

SP76. Spier, M.J. Software malpractice — a distasteful experi-

ence. Software Practice and Experience 6 (1976), 293-

299.

SW74. Strachey, C., and Wadsworth, C.P. Continuations: a

mathematical semantics for handling full jumps. Tech.

Mono. PRG- 11, Programming Res. Grp., Oxford U., Janu-

ary 1974.

U173. Unman, J.D. Fast algorithms for the elimination of common

subexpressions. Acra Informatica 2 (1973), 191-213.

Wa76. Wang, A. An axiomatic basis for proving’ total correctness

of goto programs. BIT 16 (1976), 88-102.

WU75. Wulf, W. A,, et al. The Design of an Optimizing Compi-

ler. American Elsevier, New York, 1975.

Za74. Zahn, C.T. A control statement for natural top-down struc-

tured programming. Lecture Notes in Computer Sci. 19

(1974), 170-180.

LM75. Ledgard, H. F., and Marcotty, M. A genealogy of control

structures. Comm. ACM 18 (1975), 629-639.

45

ml-f

I .

I I

[

J

Low level flowchart for SUMFAC. Each node is a basic

block of instructions in an intermediate text (not shown)

constructed in the usual way. For each block we indicate

which line numbers in SUMFAC give rise to instructions in

that block. “Grounded arcs” indicate entrances and exits.

I
.

\
\

I

.

Fig. 2. Induced graph Gai for al = CON1 and a2 = CON2 in

SUMFAC. The sinuous dashed arc is imaginary. The same

picture with no i subscripts would be good for any a: if

then ~ statement in classical structured programming.

13ht”j

SEMTCON

/I I.

Fig. 3.

&
.

leav’rj c)k(zv{ PGQ
sEMICO~

4
Induced graph Ga for a = SEMICON in SUMFAC, Note

that leaving PGQ is not reachable from any entrance to

SEMICON. This graph and the graphs shown in Figure 2

belong to the infinite family of graphs induced by one part

conditional statements a: if.. then /3 that appear in programs

with various uses of escapes and jumps, These graphs also

belong to the infinite subfamily derived from one part con-

ditionals that are “semiclassical”. In practical structured

programming most statements are semiclassical.

46

L+
art ‘9

SUMFAC

.

Fig. 4. Induced graph Gn for n = SUMFAC. Sinuous

dashed arcs are imaginary but not real. Heavy

arcs are contributed by escapes and jumps. Be-

cause two of these arcs pass control from TEST

to other parts NEWPRIME and AGAIN of v,

the statement n fails to be semiclassical.

Fig. 5. Compressed induced graph CGm for r = SUM-

FAC. An arc from m to p in CGT summarizes

the net effect of a path from m to p in GrT that

passes through only “flow trivial” nodes.

---,-.(,
I [\

@ G-iz-b-

. .

,

47

