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Abs t rac t  

Knowledge of logical inference rules shows s special- 
ised proof editor to provide a user with feedback about 
errors in s proof under development. Providing such feed- 
hlck involves checking a collection of constraints on the 
strings of the proof IsnKua~e. Because attribute ~unmsrs  
allow •uch constraints to be expressed in s modular, 
declarative fashion, they are s suitable underlying formal. 
ism for s proof-checking editor. This paper discusses how 
sun attribute graanm~r can be used in an editor for pactial- 
correctness program proofs in Hosts-style lo~c, where 
verification condition• ace proved using the sequent cal- 
culus. 

1. In t roduc t ion  

This paper concerns the design of an editor for 
partial-correctness program proofs in Hosre-style logic 
[ltoare 1969], where verification conditions are proved 
using the sequent calculus [Gentsen 10~5]. The chief inno- 
vation in the editor'• design is that proofs sro treated as 
object• with constraints on them. The editor keep• the 
user informed of errors and inconsistencies in s proof by 
reexamining the proofs constraint• alter each modification 
to it. This treatment of proof checking is analogous to the 
treatment of arithmetic-dependency checking in a spread- 
• beet system [Bricklin & Franlmton 1970]; al'ter each 
modification, the constraints of the system are reexam- 
in•d, and changes are updated in the display. 

The implementation approach used in the proof- 
checking editor differs from that of other system•. Rule• 
of inference "are embedded in the editor as an attribute 
grammar. This allows proof checking to be done in sn 
incremental fuhion, resulting in good response time. The 
editor has been implemented using the Synthesiser Gen- 
erator, a system that creates editors from an attribute 
grammar description [Repe & Teitelbanm 19fi3]. 
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In its current form, the editor is just a prototype, 
suitable for demonstrntins the principles on sasH exam. 
pies, hut not for proving dsable theorems or msnipuinting 
large program•. (To some extent this is due to the state 
of the Synthesizer Generator, which is still under develop- 
ment). Nonetheless, the editor represents 8, promising 
approach to interactive verification. 

This paper discusses the use of attribute grammars 
for providing feedback about errors in a proof under 
development. While the attribute grammar described 
forms the basis for our proof-checking editor, this paper is 
not a discussion of that psrticuhr editor. Rather, .the 
paper concerns the appropriateness of s particular-data 
8tructurs - attributed derivation trees - for representing 
proofs in proof-checking editors, regacdies8 of what user 
interface is desired. 

The paper is nrganised into $ sections, as follows: 
Section 2 presents an example of s proof being modified, 
which motivates the formalisstlon of inter•calve proof 
checking described in Section 8. Section 8.1, following 
[Oerhsrt 1975J, shows how sen•rating s program's 
verification conditions can be expressed with an attribute 
grammar; Section 8.2 shows how checking of predicate- 
logic proofs can be expressed with an attribute grammar. 
Section 4 discusses some enhancements to the basle 
approach aimed at making the user'• task Jam tedious 
when proofs are created and modified. Section 5 discusses 
how the attribute-grammar approach differs from the 
approaches used in other interactive proof-development 
systems. Section 6 draws some conclusion• about our 
experience with the attribute-grammar approach. 

2. In terac t ive  p roof  checking 

The editor provides information about mistakes in s 
program proof by checking the program's statements 
Sgslnst a formal specification of the program'• behavior 
and indicating places where the code does not implement 
the specification. A program proof can be presented as a 
proo/o,,fflme -- a program mmotated with assertions. In 
the example given below, which is meant to suuest  what 
one sees on the terminal screen during editing, program 
text in a proof outline that is inconsistent with the proof 
outline's 8asertions is hlghiishted in the program display. 
Of course, this mechanism could be replaced by, or used in 
conjunction with, dingnostic messages. 

E#smp/e. Suppose we are trying to correct the fol- 
lowing proof outline no that it will compute s to be the 
product of s and b, using repeated addition: 
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>0} 
If : - ,  6 
Z :toO 
w h i l e [ ] ~ i n v a r i a n t  If ~ -1 ^ e ~ + z  - -  sob do 

If :,.. If - 1 
Z:mZ +18 

od 
(z - .4} 

In this piece of code, the initial•sat•on of variables y and s 
establishes the Ioop-invariant on entering the loop, and 
the loop-body reestablishes the invariant on each succeed- 
Log iteration. However, the conjunction of the invariant 
and the negation of the loop-condition fail. to establish 
the post-condition of the loop. This situation i8 signaled 
(above) by highlighting the loop-condition. 

To fix the problem, the first clause of the ••variant 
is changed to If ~ O, but now the loop-body fails to rees- 
tablish the ••variant, which is signaled (below) by 
highlighting the loop-body: 

(6 > 0 }  
If : - - b  
Z : t o O  

while If ) 0 i nva r i an t  If > 0 A eqr+z  - -  sob do 
le :--  e - lJ  
I z : - - z + a l  
od 

{, - sob} 
The problem is that the conjunction of the loop-condition 
and the ••variant does not imply the weakest pre- 
condition of the invarlant with respect to the loop-body; 
operationally, the loop-condition allows the loop to exe- 
cute one too many times. By changins the loop-condition 
to If ) 0, the loop-body will reestablish the invarlant, and 
the invariant and the negation of the loop-condition wU] 
still establish the post.condition, so the entire program is 
displayed in the normal font: 

{6 > 0 }  
If : - - b  
Z :mmO 

while If >Oinvarlantif > 0  A e q ' + z  m s o b  do 
Ir : - -  J ' -  1 
~:mZ+a 

od 
(, - .ob) 

This example illustrates that modifying one part of 
s proof outline may introduce an inconsistency in some 
other part of the proof outline and simultaneously correct 
an inconsistency in yet • third part of the proof' outline. 
Thus, the editor must not only incorporate the notion of 
an inconsistent proof, but the notion of dependencies 
among parts of a proof, as well. The next section shows 
bow these notions may be expressed using an •ttrlbute 
grammar. 

3. A t t r i b u t e  g r a m m a r s  and  fo rma l  logical sys- 
t ems  

An attribute grammar is • context-free grammar 
extended by attaching attributes to the symbols of' the 
grammar. Associated with each production of the gram- 
mar is a set of semea|ic cqa~ioar, each equation defines 
one attribute as the value of • semantic .taactlea applied 
to other attributes in the production. Attributes are 
divided into two disjoint clumes: 8ifstkeslzed attributes 
and imAcr/ted attributes. Each semantic equation defines 
a value for a synthesised attribute of the left-hand side 
no•terminal or an inherited attribute of • right-hand side 
symbol 

The axioms and inference rules of • formal logical 
system can be expressed ns productions and semantic 
equations of an attribute grammar. Dependencies among 
attributes, as defined in the semantic equations of such a 
grammar, express dependencies among parts of • proof. 

An attribute instance in an attributed derivation 
tree is said to be co•eistc~ if its value is equal to the 
value obtained by evaluating the rlght-hand side of its 
defining semantic equation. An attributed derivation tree 
is eonsistenfl U ~r/6ufed if all of its attribute instances are 
consistent. 

A proof is represented as a consistently attributed 
derivstinn tree of the grammar. Proofs are modified by 
operations that restructure the derivation tree, such as 
pruning, grafting, and deriving. Restructuring • deriva" 
tion tree directly affects the values of the attributes st  the 
modificJtion point; some of the attributes may no longer 
have consistent values. Thus, incremental proof checking 
can be performed by (incrementally) updating attribute 
values throughout the tree in response to modifications. 

Fundamental to this approach is the ides of an 
incrzmeafd at|rlbufe eeedeetor, an algorithm to produce a 
consistently attributed tree after each restructuring opera. 
tion. An incremental attribute evaiuator works by follow- 
ins attribute-dependency relationships in the tree to rees- 
t•bUsh consistent values. Several algorithms for this are 
given in [Rape 1982] and [Rape et an. 19~], including ones 
that are asymptotically optimal in time. 

When proofs •re developed in • top-down fashion, 
the editor must not only incorporate the normal rules of 
logic, but the notion of an incomplete proof, as well. 
Creating a proof top-down entails growing • derivation 
tree. During development, it is • partial derivation tree; 
that is, it contains unexpanded nonterminals. This is 
potentially a problem, because at an unexpanded nonter- 
minal X we have no means for giving values to the syn- 
the••ned attributes of X nor to any of the attributes that 
depend on them; this conflicts with our desire to maintain 
values for every attribute of the tree. 

To •void this problem, we provide • csmpictisg pro. 
ductioa, X ::-= .L, for each nontermLoal symbol X. The 
symbol / denotes "unexpanded," and the semantic equa- 
tions of the completing production define values for the 
synthceised attributes of X. By convention, an occurrence 
of an unexpanded no•terminal is considered to have 
derived l .  By this device, all partial derivation trees 
(from the user's viewpoint) are considered complete 
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derivation trees (from the editor's viewpoint), and to a 
proof is de,eloped, it8 tree may be fully attributed st all 
.rages 

To formalise the notion of inconsistent portions of • 
proof, we introduce cieek czprcs~'oas. A check exprmmion 
is • Boolean semantic function that indicates whether con- 
straints of the formal system are satisfied, if an editing 
operation modifies the proof in such • way that cow 
attaints are violated, check expremlons indicating sstisfae- 
tion of constraints become Cabs. These are then nsed to 
annotate the program display to provide the user with 
feedback •bout errors that exist in the proof. In the 
example given in the previous section, the font of the 
proofs print representation depends on the values of 
check expressions in the pmore derivation tree. 

As an aside, note that our use of terms like "seman- 
tic equation" conforms with accepted attribute-grammar 
terminology, although strictly speaking such terms are 
mlsnomertc These terms are carryovers from the context 
in which attribute grammars were originally used, namely, 
defining the meaning of • context-free language, and they 
have remained standard eve• thongh attribute grammars 
are often used to describe the annotation of • tree with 
information that h u  nothing to do with its meaning. For 
example, correct•era of formal proofs is • purely syntactic 
matter (to a logician), but because it cannot be expressed 
in • context.free formalism, we make use of the available 
non-context.free mechanism - the "semantic" mechanism 
of an attribute grammar. 

3.1. Generating verification conditions 

Generation of a program's verification conditions 
can be expressed with an attribute grammar using two 
attributes: pre and post. Pre is • synthesised attribute of 
Strut and StmtList whose value is • formula in the 
language of assertions; poet is an inherited attribute of 
Strut and StmtLiet whose value is also • formula in the 
language of assertions. The relationships among these 
attributes that express partial correctnem of programs are 
given by the rules of the grammar presented in Figure I, 
which is adapted from one given in [Gerhart 1075J. (For 
brevity, we have not shown the productions that can be 
derived from Id, Exp, Co•d, and Assertion, nor have we 
shown the completing productions of the grammar). 

In the semantic equations in Figure 1, ~ well u 
throughout the rest of the paper, we use conventionally 
accepted notation to express set operstions~ we use "." ns 
the operator for selecting an attribute of • no•terminal, 
and we nse subscripts to distinguish among multiple 
instances of the same no•terminal. We alsu make use of 
the nonstandard notion of • ~atsetlc rc/ereacc. Insofar 
am • component of the syntax tree is often Osc/~ s 
sufficient representation of the value to be arsucisted with 
the comps•erie's root, we allow a nonterminal's name 
(when not qualified by an attrihute selection) to denote 
the syntactic component as a value. For example, in pro- 
duction (I) of Figure I, 

(I) Progrmn ::-- {Amertion} S tmtL~  {Aamrtion} 
b ~ m t L i ~ . ~  ,,, A~serb'eat 
cheek: leT/teercm(A~serh'eas D b~nd/,~.lWe) 

AHerh'eat and A~s~ 'ese  refer to the compensate derived 
from the rule's two Amertion nontermintb. Far further 
dis~mi__on of syntuetic references in attribut~grsmmar 
specifications, the reader is referred to [Reps & Teitelbanm 
1te l .  

(I) Program : : -  (.din.teen) 8tmtLh* (Amrtio•) 
~mtLisf.posf - -  Asssrffeae 
check: Is ~ o r s m  (Aeecrffest ~) b~WLiet.prc ) 

(S) StmtLin ::-- Strut 
~ml.posf  - -  b~mfLi~.po~ 
~mtLis t .prc - -  ~mt .prs  

(8) Stmtl, ist ::-- 8trot StmtLiet 
b~mtL is t~pos f  m b~mtl, ists.potf 
b'*mt.p,st == -~m*Lisfl~prs 
~mtListz.prc - -  ~m/.prc 

(4) Strut ::-- Id : - -  I~p 
..qmz.pr, --  ~mz.f,,~V.p 

(5) Strut ::-- if Goad then 8tmtList elee StmtLiet fl 
~mtLisfs.ped an ~q~m&pe~ 
b'fndLisf~pod m ~m~.p,~ 
~Nlt&prc m (gee4 ~) 8tmf.f, lSfl.pre ) 

^ (-~Oeed :2 ~mz£i~s, lws ) 
(8) Strut ::-- while Oond invs r i an t  Amertion 

do  8finaList od  
b'tml.prc ,m Aseeetin 
SfmtLisf.pott - -  As#orb'on 
check: le Tic erem ((Asscrtloe A'~ (7sad) D b~mLpest) 
check: ls Tlcersm ((Asecrffon A Cond)Db~mfList.prs ) 

Fifm'c 1: Oeneruting verJflcstion conditions. 

The semantic equstions of the grammar treat ststo- 
ments M backward pmdicste tnmdormem [i)ijkstr• 19'/8]. 
in an ueigume•t statement, for example, the mlstionship 
between the p,'s and peg# attribute is that the pro stark 
but, is defined M the peer attribute with the ezpremon on 
the right.hand side of the smigmnent substituted for all 
occurrences of the left-hand side identifier. (In Figure I 
this is denoted by the expression ~mf.pett~p). 

For while-looper the post-condition of the Imp-body 
and the pre-condition of the parent statement are defined 
i• terms of the Joop-Jnvariant. This allows inconsistent 
code and smertlons to he detected M violations of the 
check-expremions: 

check: IsrAcercm((Acecr6o• A -~Cnd) D b~mt.posf) 
check: lsTicercm((Asscrffoe A 0gad) D ~mtLi~.pre ) 

where the function leTheorem is • decision procedure - • 
procedure that returns t rue  if its argument is • theorem 
in the sseertion-langusl~e logic. 

It is at thls point that we reach one of the common 
8tumbfing blocks of verification systems - the decidability 
of an smertion language s t r o q  enough to express the 
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verification conditions constructed by the rules given 
above. For instance, no decision procedure exists for 
first-order predicate logic [Turin S 19a7]. 

In the next section, we sidestep this problem by 
having the user creute and manipulate the required proofs, 
instead of having the system try to estlblish theorems 
automatically. Further on, in Section 4.1, we discus how 
to incorporate decision procedures for subtheoriee of predi- 
cate logic, 8o that the user need not prove theorems that 
automatic techniques are capable of establishing. 

By having the user create and manipulate proofs of 
verification conditions, we make the user responsible for 
proving theorems that an automatic theorem prover might 
be incapable of proving. Oramm~r rules in Figure I that 
have • check expremion involving bThcorem are chansed 
to include • "Proof" no•terminal for each (predicate- 
calculus) proof obligation of the production. Thus, the 
new rule for while loops hse two Proof no•terminals, one 
st which the user must create • proof of 

(Asecvlios A -~Cos,t) :3 $tn~.po~ 

and • second at which the user must create • proof of 

(AuertiOa A Coad) :3 ~m/L*'~.prc. 

8.2. Checking proofs  o f  verification condit ions 

Because the editor is • tree-manipulstin$ system, we 
need • formal•satin• of the smertion-lansus4|e logic that 
sllom proofs of verification conditions to be conveniently 
represented as tree-structured objects. It the smertion 
language is a predicate logic, • suitable tormalisstion is 
Gentsen's sc4mznt cdctdw IGentsen 1086, Klsene 1952]. 

A seqmc,~ consist, of two set• of formulas, 
separated by an arrow, such is: 

(At, An,..., A,) -.* (Bu Be, ..., Be) (1) 

The set { d b A g , . . . ,  d .} ,  on the left, is called the 
nteccdest; the set (Be, B e , . . . ,  B.) ,  on the right, is 
called the nccedest. A sequent is • theorem Jn the 
sequent calculus if it can be derived from the system's 
u l n a s  and rules of inference. 

It can be shown that • sequent is • theorem in the 
sequent calculus if and only if, in one of the more familiar 
forms of the predicate calculus, • formula in the succedent 
can be demonstrated tokin$ the formulas in the 
antecedent ss assumptions [Oentsen 1086]. Informal~ 
then, one can think of the formulas of the antecedent ae 
known facts sad the formulae of the suecedent ae pals,  
one of which is to be demonstrated; thus, the informs/ 
meaning of the sequent (I) is no different from smerth~ 
the formulae 

A s A A s A  " ' "  A A .  :3 B I V B s V  " ' "  VB.  

The inference rules of sequent calculus allow us to 
infer new sequent• from old sequente. For each logics/ 
operator there are two inference ruissc an esalpis rule and 
s #fm#/Je#ie rule. The analysis rule for • (logical) operator 
® expresses how • formula of the form A ®B may be 

introduced into an antecedent; the synthesis rule for ® 
expresses how A ®B may be introduced into s succedent. 

For example, nsln S the mete-variables A and B to 
represent single formulae and the met~vsriabks r and A 
to represent finite sets of formulae, the rules for the impli- 
cation operator D Ire expressed E 

Implication F -~ £ U (A) r U {B) -* £ 

an"Y~' r U {A :~ e) - A 

Implication r U {A) - ,  £ U (B) (2b) 
synth, , r -. A u {A n) 

The implication analysis rule given is (2a) m~,e (roughly) 
that if we want to amuse A D B, we must demonstrate 
A, and we must demonstrate our goal mmumlng B. The 
implication synthesb rule given as (2b) u y s  (again 
roughly) that ff we want to demonstrate A :3 B, we must 
show that by assuming A we can demonstrate B.  

An attribute grammar can be used to express the 
rules of sequent calculus ae So•lows. A sequent is 
represented by • Proof nontermlnal thor has two inherited 
• ttributes: an eats•cries# •ttribute and an ~ccedeat attri- 
bute. Each production of the grammar represents • rule 
of inference or an axiom scheme (see below). The right- 
hand sidce of productions correspond•n| to inference rule, 
contain additional Proof no•terminals whom m~ece&nt 
and ssccc&n# •ttributes ire defined in terms of the 
eel•co&s# and eKe•deal •ttributes of the parent Proof 
no•terminal. The check expressions of the sequent- 
calculus srsmm~r express the constraint that • production 
derived from a Proof no•terminal repro•ate an appropri- 
ate deductive step. 

For exsmpJe, the productions corresponding to the 
Implication inference rules are shown in Figure 2. s In each 
production in Figure | ,  there are two "Wff" no•term•nab 
on the right-hand side that determine how an inference 
rule is •nets•tiered. The subtrece derived from these Wff's 
determine the components of the formula being analysed 
(or synthceised, ae the caee may be), as well is the 
antecedent• and succedente of the right-hand -'de Proof 
no•term•nab. Tim check expmmlons ensure that the Wff 
belns analysed (synthesis•d) really is in the left-hand side 
Proof no•term•eel's select&a# (m~cc&•t) attribute. 

a ~ tw ~ m d tJm ndm d ~ l umtm Iqle 
uuF b ~wad In u upi~dlu st t in qul d tJm imi~r. 
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/ .  Impllcstion snslysis */ 
Proof ::-, show Wff Proof 

mmume Wff Proof 
check: (W~'ID W~'2) c Proof s.s,teccde~ 
Proof o.ntecede=t 

- -  Proof s.ntcccdent - ( W~,D W~a) 
Proof ;.suecedest -- Proof s.sueccdcst U { WBs} 
Proof ~sntcccde~ 

--  Proq ,.antecedent - ( WB'zD W~',} U ( w f , }  
Proof s.slJccedest .= Proof 1.sueczdcat 

/0 Implication synthesis . /  
Proof ::== assume Wff show Wff Proof 

check: (WflD WM~) e Proof ,.ewcccdcat 
Proof g.ontcccdest == Proof s.utcccdent U { Wb's} 
Proof g.ne ce & st 

- -  Proof ,.s.ccedent - (W l , : )  Wl,} LJ ( wb',} 

Figure ~: Grammar rules corresponding to 
the implication inference rules. 

The axioms of the sequent calculus ire expressed in 
three schemes: 

r U {A} .-, ,, U (A} 

r U {fates} -. A 

(as) 

(Sb} 

r - a U {true} ($c) 

The scheme given as ($s) 8sys that if formula A is given, 
then A is demonstrated; (3b) says that if you start with 
false, then anything can he demonstrated; (3c) 8kye that 
everything demonstrates true. These three axiom 
schemes can be combined into n single production whose 
check expression gives the condition under which applica- 
tion of sun axiom completes a branch of the proof: 

Proof ::== immediate  
check: fs.ke e Proof.u/testiest 

V t r u e  e Proof.s~ce&nt 
V (Proof.antecedent n Proo].s~eedcst p~ 4~) 

Finally, we need to define the atomic predicates of 
our logic; for instance, we need predicates for equality stud 
kss than: 

Exp =- Exp 
Exp < EXp 

Wff's are built out of predicates using Ingicsl connectives. 
The expressions (Exp) in the predicates can be troy expres- 
sion of the progrmnming langu,~ge; whatever is legul on 
the right-hand side of an amiKnment is • kfpd Exp. 

To fully incorporate these predicates into our logical 
tyetem we include their axlomstk definition. For exsan- 
pie, the axioms for equality can he expressed as: 

r - A U ( : - :1  (.a) 

r - a U { fJ -K)  ~ (K-O}  (4b) 

r - .  a U ( ( 7 - g )  A (K--L) ~ ( 7 . v ) )  (4c) 

where the mean-variables J, K, and L represent single 
expres8iona 

Each axiom adds in additional production to the 
srsrnmsr. For instance, the production corresponding to 
axiom (4a) is: 

Proof ::== by reflexivity 
check: tiers e#isfs #e Proot.euccedznt 

et~A fad  # ie Of gAS ~om 7 , 7  

4. Enhancements  to the basic approach to proof  
checking 

Using the proof editor described in the previous sec- 
tion cam be maddeningly tedious; the editor is • proof 
checker, not • theorem prover, and proofs must be eom- 
pkts formal proofs. This section discusses two wkys of 
making the user's task km tedious when proofs sure 
created and modified. First, we discuss how the editor can 
be extended to include some automatic deductive capabili- 
ties so that the user does not have to supply so much 
detail. Second, we show how pnttern matching can be 
used within proof trees to facilitate editing. 

4.1. A u t o m i t k  deduct ive capabilities 

In Section 8.~, we sidceteped the uncles•dab•Hay of 
predicate logic by havins the user write proofs, instead of 
having the editor try to utoblish theorems automatically. 
In prsctlce, this approach is untensbk because it forces 
the user to provide nheulutely every detoil of a proof. 
Give• sn unexpsnded Proof •ode that is • k s / o f  the tree, 
we can often check ths~ its sequent can he proven usin S • 
decision procedure for n subtheory of predicate logic. 
Another pomibillty is to apply • Iwoof t~t le  [Gordon et 
al. 107q, that does its beet to construct • proof tree, hut 
ms), ksve lone Proof nodes unexpanded for the user to 
fill in later. 

4.1.1. Decision procedures 

The editor can be extended with decision procedures 
by making use of known alsorithms for deciding simple 
theories. For ezsmpk, an alSurlthm for deciding the 
theory of equality with uninterpreted function symbols 
[Johnson 1981, Nelson 1981] can be used as the buds of • 
procedure for prepositional inference. Our proof editor 
uses the propoeltional-inference procedure from the 
PL/CV2 proof-checking compiler [Constsbk et sL 1982]; it 
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is incorporated into the editor through the grammar rule: 

Proof ::-- au tomat ic  
check: lsA~tomstic (Proo/. n~eccdcat ,Pro6/..uccede~ ) 

where hAutomatic returns t rue  if the PL/CrV2 
propositional-inference procedure can establish the second 
argument from the first argument. 

The PL/C'W2 automatic-lnference procedure has cer- 
tain limitations because it is a decision procedure for only 
a subtheory of propositional logic {a subtheory selected so 
that problems of inherent computational complexity do 
not have to be solved). Thus, the grammar production 
given above will not be applicable when the theorem to be 
established requires the use of a primitive inference rule 
that the automatic procedure never attempts to apply. 

E#ample. Proving the sequent 

{~ 6, ~} -*  { .~(6A(c3~)) }  (6) 

requires the use of the implication ~,nthesis rule to estab- 
lish the formula c Dd, ns in the starred branch of the fol- 
lowing proof tree: 

(o,b,~,d)-.{~ f.) 
(o,b,d)-..(6) (,,b,d)-.(e:~ 

( ., 6, d} --. ( .} (o, b, ~ -- (b^t'c=d)) 
{., 6, '9 -" (.^CS^~c=d))) 

Thus, s decision procedure that never applies implication 
synthesis cannot establish (fi). 

However, there is still a way to help cut down on 
tedious manipulations when automatic inference pro- 
cedures are not applicable. Our editor incorporates a 
mechanism whereby the user can isolate the offending 
term sad apply the appropriate inference rule explicitly. 
This mechanism is based on an additional rule of inference 
termed the cut ra/e, expressed me. 

r - { A )  r U { , 4 }  - .  a 
Cut rule: (6) 

F - . A  

The cut rule (6) says that if we want to prove some goal, 
we can demonstrate some formula A sad then use A i t  an 
assumption in the proof of the goal. The cut rule allows a 
user to isolate a formula easily, because automatic infer. 
ences can be used to skip over the easy intermediate steps. 

E#6mp/c. Returning to the example shove, if we 
choose c ~ d as the cut formula A, the proof branches into 
two subproofs whose sequents are: 

{., 6, ~} - (e:)~) (7) 

and 

{a, b, d, cDd] - .  {,^(6A(eDd))) (8) 

We ire then able to apply implication synthesis directly to 
(7), and the automatic inference rule can be used to estab- 
fish (8) because n proof can be found that makes no use of 
implication synthesiec 

{.,6,~,c~d}-.{6} ] . ,b,d,e~d)~.{,3d) 
{. ,~,d,c~.~-.{.} (.,  b, d, c~.~ - (6^#~d/) 

{J, 6, d, odd) -.. (,A(bA(cDd))} 

4.1.1. P r o o f  tactics 

A proof tactic is s method for applying inference 
rules repeatedly and recureively until none is applicable 
[Gordon e ta l .  I070]. In proof editors, n proof t~ t ic  may 
be employed to automatically construct a proof fragment, 
doing its best to construct s proof tree, but pomibly leav- 
ins some unexpanded Proof nodes for the user to fill in 
later [Bates & Constable 1083]. 

• E#smple. Given an unexpanded Proof nonterminal 
with the sequent given above as equation (5), a proof tac- 
tic could apply the and synthesis rule twice to produce the 
attributed derivation tree that corresponds to the infer- 
ence: 

(.,s,d}-.{6} (. ,6,d)-.(e=d} 
(. ,6,d}-.(.} (.,  6, d} - .  (6^(c~d/) 

(. ,  ~, ~) - {e^(6A(c~d))} 
leaving an unexpanded Proof nonterminal with sequent: 

(. ,  6, d} - .  (c~d} 

In the attribute-grammar framework, s proof tactic 
would require using inherited attributes to drive the tree 
construction process. As currently implemented, proof 
tactics cannot be incorporated into our editor, because 
attribute-driven tree construction is forbidden in the Syn- 
thesiser Generator, the Synthesiser Generator only sJlows 
attribution of a previously constructed abstract-syntax 
tree. 

Attribute-driven tree construction has been explored 
for resolving ambiguities in attribute-grammar-hosed 
parsers [Watt 19T7, Rowland 1977, IUfilton etal .  1079], A 
somewhat different notion of "computing with attriboted 
trees" is currently being studied for inclusion in the Syn- 
thesiser Generator [Reps & Teitelhaum 1083]; this 
mechanism appears to be powerful enough to express proor 
tactics. 

4.2. A p roo f  representa t ion tha t  uses pa t t e rn  
matching 

The attribute grsmmur described in Section 3.2 for 
representing sequent-calcu]ns proofs as attributed trees h u  
a significant drawback: the representation often makes it 
tedious to modify previously developed proofs. This sec- 
tion describes s modification of the grammar that avoids 
this problem. 

The grammar of Section 3.2 specifies that one or 
two Wfl's be derived st each Proof node in order to (1) 
indicate which formula of the Proofs sequent is being 
analysed or synthesised, and (2) determine the 
antecedents and succedente asmcinted with the node's 
subordinate Proof nonterminals. Consider what happens 
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when we modify a proof, say by changing u variable name 
in an assumption from x to y. The proof now h u  errors 
at each Proof node where s Wff contains a use of x, 
because the Wff refers to a formula not in the Proof node's 
sequent. To reestablish s correct proof, it is necessary to 
(manually) change each of the Wfl's that refer to x. The 
problem with the grammar of Section &2 is that the Wff 
nonterminals bind los mncl iqformatios into the proof 
representation by specifying too precisely how the infer- 
ence rules are instantiated. 

An alternative approach makes use of 
"WflPattern's" and pattern matching. A WffPattern is • 
partial Wff-- a Wff possibly containing unexpanded now 
terminals - and • WffPattern matches • Wff if the latter 
can be derived from the former. Instead of having Wff's 
at each Proof nonterminal, the grammar is changed to 
have WtlPattern's, which are then used to determine the 
antecedents and succedents associated with the node's 
subordinate Proof nonterminais. 

For example, Figure 3 gives the modified rule for 
implication analysts. In contrast to the rule with two Wff 
nonterminals given previously in Figure 2, the new rule 
has two WffPattern's. These WffPattern's give the com- 
ponents of a patters for the formula being analysed, which 
is selected out of the left-hand aide Proof nonterminal's 
antecedent by a pattern-matching lookup. When there is 
more that one formula in the antecedent that matches the 
pattern, the user may have to specify • more detailed pat- 
tern. (Note that premise and conclusion, the components 
of the matched formula, appear in the context-free part of 
the rule; this is to suggest that the user would be given an 
indication in the display as to which formula in the 
antecedent the pattern matched). 

/ .  Implication analysis . /  
Proof ::-- Inalys.e by (WflPatternDWflPattern) 

show premise Proof 
assume conclusion Proof 

let w f  =- Fi=dMetcA (( WffPatgernsD W~PaItcr~, 
Pros/s.ntcccdca| ) 

• Acre premise and conclusion 
ere SAc components Of Wff 

Proo~ g.aatcccde~ I,, Pros] t .antecedent - {w~}  
Proo~ 8.succcdent m Proof 1.sncccdea| [ J  (prcmltc} 
Proof ~nteccdcnt 

-- Pros/,.antecedent - {w,~ U {¢omclusloa} 
Proof s.snccc dent - -  Proo~ t.succcdcn/ 

F;gure 8." Implication analysis rule 
that uses pattern matching. 

The proof grammar that uses pattern matching in 
the semantic equations is a significant improvement over 
the old grammar. At most nodes of a proof tree, it is not 
necessary for the WffPattern's to contain variable names; 
in most cases, a structural pattern alone is sufficient to 

indicate which formul• of the ProoFs sequent is be'ms 
analysed or synthesisetL Now if we change a variable 
name from x to y, the proof will still check as before, 
because all (structural) WflPsttern'8 will still match • for- 
mula in the appropriate sequent, and the proper 
antecedent and sueesdent will be associated with each 
Proof nonterminal of the tree. 

5. Compar ison  with a l te rna t ive  approaches  

The attribute grsanmar discussed above formalism 
an approach to intersctlve proof development that is 
different from what is done in other interactive verification 
systems. This section dbcusees some of the differ'ences 
between our approach and the approaches used in other 
systems. 

The Desisner/Verifier's AmisS•at [Moriconl 1070] 
uses one alternative approach. There, the user interacts 
with the Assistant, which in turn decides what needs to be 
reverifled based on an analysis of the dependencies among 
the procedures of • program. An important difference in 
the way proofs are treated by the Assistant and the way 
they are treated by our editor is the granularity and 
incrementallty of proof checking in the two systems, in 
many respectaq the Amistsnt is simUar to compilation- 
control systems, such as Make ~Feldman 19T9]; the Assis- 
tant decides what to reverify on s per-proesdure basis, 
and when • procedure is reverlfied it is reverified in its 
entirety. By contreet, our editor decides what to reverify 
on • per-inference-rule beeis, and by virtue of the optimal 
behavior of the alpri thm used for incremental attribute 
updating, reanalysis is conhed to the attributes that 
actually need new values. 

in the Edinburgh LCF system [Gordon et al. 1979], 
there is a notion of objects of type tam, but the objects of 
type tlm are not proofs as such. Tim is an abstract data 
type whose constructor functions obey the invariant "all 
tam objects are provable," that is, derivable from the 
axioms by applications of inference rules. An attempt to 
use a constructor to make an inappropriate deductive step 
ends in failure. By contreet, our editor supports the 
development of actual proofs, which can be manipulated 
and restructured directly, and the editor incorporates the 
notion of a proof with errors and inconsistencies in it. 

The approach taken in AVID is much closer to the 
approach taken in our editor. AVID is an editor for the 
top-down development of PL/CV2 proofs that incor- 
porates a proof checker to provide information about a 
pmof's errors and inconsistencies [Krafft 1981, Constable 
e t a l .  1082]. An important difference between our editor 
and AVID is that AVID is without a notion of logical 
dependencies analogous to the attribute dependencies in 
our editor's attribute grammar. Lacking the information 
needed to re-uee previous verification information us n 
proof is checked, AVID carries out verification only when 
there is an explicit request by the user, and it always 
reverifiee • proof in its entirety. 

The closest relative of our editor is the proof- 
checking editor that is part of the PRL system [Bates & 
Constable 1983]. PRL provides machine aid in the creb- 
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tion of definitions, functions, and proofs based on s 
sequent calculus for constructive first-order predicate logic 
over integers and lists. One difference between our proof 
editor and the one used in PRL is the way the two editors 
handle inconsistencies in s proof. The PRL editor forbids 
inconsistencies by requiring each interior node of the proof 
tree to be an appropriate deductive step. One is able to 
go back and modify an interior node of the proof, but if 
this would introduce an inconsistency into s subproof, the 
subproof is deleted. By contrast, proofs constructed with 
our editor are allowed to have inconsistencies in them ns 
they arc developed; our editor uses knowledge shout 
dependencies among parts of s proof (encoded in attribute 
dependencies) to keep track of such inconsistencies. 

Our proof editor and the PRL editor sbo differ in 
the way they implement proof checking. The PRL 
approach may be characterised u the ecmsatlc-arh',n 
approach; during editing, each operation that affects a 
node of type X invokes an action associated with the 
category X. An action is an imperative routine that can 
walk the program tree making updates to nodes of the 
tree as well ss to global data structures. 

Our approach to proof checking relies on two 
attractive properties of attribute grummartc 

(I) Attribute grammars are declarative statements of 
relations that must hold among the parts of • proof; 
propagation of context-dependent information 
through the syntax tree need not be described expli- 
citly, as it is implicit in the formalism. 

(2) Attribute grammars allow automatic reestablish- 
ment of consistent attribute values when a proof is 
modified, without the need for explicit undoing or 
rollback actions; furthermore, such updating ean he 
performed in an asymptotically optimal manner. 

For further discussion of the relative merits of the 
semantic-action and the attribute-grammar approaches, 
the reader is referred to [Reps et ai. 1083]. 

6. Summary  and conclusions 

Our concern is the design of editors that allow one 
to create and modify program proofs in Hoare-style logic. 
We have constructed an editor that treats • proof as an 
object with constraints on it; the editor keeps track of 
inconsistencies in a proof by reexamining the proors con- 
strainte after each modification to it. The logical system 
is encoded in the editor ns an attribute grammar. 

We feel that the attrlbute-grammar approach to 
interactive proof checking is a promising one on a number 
of counts. Attribute grammars permit the specification of 
the constraints of a formal logical system, as described in 
Section $. Attribute grammars are a good framework for 
incorporating previously developed solutions to verification 
problems, such as fast decision procedure for subtheories 
of predicate logic, as described in Section 4.1. Further- 
more, there exist optimal algorithms for incremental attri- 
bute updating, which means proof checking can be done in 
an incremental and optimal fashion. Finally, there exist 
compiler-compilers and editor generators that produce 

major software components from an attribute grammar 
description of • language; this makes it particularly easy 
to implement m/stems hosed on the ideas discussed in this 
paper. 
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Appendix: ( ] r s m m ~  rules tor first.order predicate 
iosic 

[* Axiom schemes: 

r U {tim} - 

r -  ~ U (*~'} .I 
Proof ::-- Immtdlate 

check: r a i n  c Proof . e~c ¢ c &st 
V true c P,~sf.o~ce&sg 
V (Prsef.u~ccc&~ ('1Presl "'vge¢~nt ~ 4) 

I* ~-pUc**~n ~ r -  a LJ {a) r U { e } -  A "I 
r u { a  ~ e} - a 

Proof ::-. show Wff Proof mmume WE Proof 
check: ( WI,:3 Wlt] c Proof l.~lecc~.nt 
Prssf • miteec &st 

- -  Prosl i.s,acce~nt - { WI~3 Wl,} 
l~',,h.mc¢cdesl - -  Prs,f  l .m=,,kst  l,.J { w I J  
Proof • mitecekM 

- Pro, l , .a ,de. ,k l t  - { Wit::) WId  U ( w I d  
Preef ~msecedesd - -  Proof i.eueeedeaf 

I .  ,-pU=,~. q~the~ r U {A} " A  U {el . i  

Proof ::-- assume Wff show Wff Proof 
check: (WflD WBt) c Pr** f , .ncc¢&~ 
Pr**fs.nlccc&nl -- Proof I.unlcce&mt U { Wl i }  
Presf I~ mscec ~ rill 

- Prs,/,.necc~nt - { Wll::)Wit} U { wJM 

I ,  ~ d  - - , ~ , :  r U Ix, n} -* A "I 
r u { x  A n } - - A  

Proof ::- ,  ~ e u m e  Wm s a d  W l  Proof 
check: ( WJ~  W~) c Pr**l i.utecc&ss 
Presf p s~eecdenl 

- P,'*, I  ,.,,~cc, ,~,,e - { w I ,  Awl , }  U { Wl~, wl , }  
Pre, f  ~necc&st - -  P r , ~  z.neecden# 
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r..,4U{A} r-au{e} .i 
i. ~d ,yoth,~: r - A U {A ^ e} 

Proof ::-- s h o w  Wff Proof s h o w  Wff Proof 
cheek: (W~'zA W~'=) ( Prool ~.o~ccde •g 
proo[ t.ntecedemt , "  Proof t.smteeedest 
Proo~ ~.n¢ce de•! 

. p ,  oo! ~.,.~cde•~ - { w # ~  wJ'.} U { w#d 
Proof ~Htceedenl , "  Proo.t I.e•leeedestg 
Pros[ st•see de at 

- -  Proof t.s~cedent - { W~l'd~ W.~'.} U { W/a} 

r U {A}-. 4 ru{s}-* 4 
I. o, -~.~-: r U {A V B) -- a ' ""I 

Proof ::== assume WIf Proof aumume Wlf Proof 
check: (W#~g W#a) ( Pr, ol ~..•reccdesl 
Pr0o~ ~ n l e c c ~  

. ,  Pros/ , .satccc~, t  - { W~zV W#,} U { WJ,} 
Proo~ s~t~ccdest m. Proo.t t.s~cedest 
Proo~ ~s•lcccde~t 

• ,. Proo~ l.sstccede~ - { W~'IV W~a} U { Wffa} 
Prool ~ee ,des t  -- Prool t ~eecdest 

r-, 4 U{A, B} 
[ .  Or synthesis: r ~ A U {A V B } e/ 

Proof ::-- show W8 or Wff Proof 
check: ( W~tV WU~ ( Prool t s~eede~ 
prooj~astecedent .., Proo~ l.ntccedeat 
Pros[ wince dear 

r -. 4 U { A }  .i 
i .  No~ .,,~s',: r U {..A} .-. 4 

Proof ::-- show We Proof 
check: ('~ W~) c Proo~ z. s~ceedest 
Proo[ ~ssteeedent m Proo~ l ••/eeedeal - {',W~) 
Pr,ol g,s~cedeat - -  Proof z.tseee~at U { W~J~ 

r U (A} • 4 
I .  ,st , , th,;-:  r -.  ~ U {-Ai . /  

Proof ::-- ~sume W~ Proof 
cheek: ('~ W~ ( Pros/t.~wecde~ 
Prools..ntecedent . P r o o , , . , t e e c , c s , ~ . c { W ~  
Proo~ ws~cedemt m Proo~ I.t•OCO~IZ| - 

r U lAP)} U {v,,~ (,)} - 4 
I" AU ,~-~r~ r U {V,.A{,)} -- A 

el~r~ ~ is • term .tree/st # is  A ( s )  .1 

Proof ::-- usume Wff substituting gxp for ld Proof 
cheek: ~[d.  W~J~ ~ Pro,[ t sntcecde~ 
Pres] wnteeckat "- Preo.t l.•Stccedeal U { W~m) 
Pres~ wncee~at " Preo~ t.~eedent 

r - 4 U { ~ ) )  
/ ,  ~ qn~he~ r -- A U {V,.A(,)} 

,,/,ere b is • e s , ~  •0t ~csm'~t lrce is A(#) el  

Proof ::-- show WE sub6t i tut ins  ld for ld Proof 
check: (Vld~ Wl) c Pr. .!  t.e*gccde.~ 
check: Nc~rre¢ ( Idb WlJ 
Proe~ l~mntcccdemt m Preo~ z.mmteeedesl 
Pvool ~nec~&sl 

. p , . q , . c . ~ . ~  - {wd, w~ U { wn~,") 

r U {A~J} - a 
I* g'~ -'~'~ r U {~,.4(s}} - 4 

t t ~ n  b is • esei~te s~4 ,ccsrrlmt lrcc is A(s) e/  

Proof ::-- as sume WE •ubst i tut lng  Id for id Proof 
check: (glda.Wl) ( Pr,*! l.utecc~ 
check: NotFrec (Id.. W~) 
Prools.s~cec&sl 

. p , . . ! , . ~c . ,~ , ,  {:,u, w~ U { w(,~,'} 
Proot ~noeeks t  --  Pros! 1.s,gcc~st 

r - A U {sp)} 
i .  r~u, .~,thes. r - .  4 U (x,.s(,}} 

, ~  t i, • tern l - c  lot • i= ~ # )  */ 

Proof ::-- show WH subetitutlnlg ~ tp  for Id Proof 
check: (~IL W~ c Pr**[ t . ,~cckst  
proe~ l~s~eeeJes! , -  Proe~ s.utccede~ 
Preoh.noeckst 

- -  p roo l , .ncccks t  - { 3 ; L W ~  ~ {WW,,}  
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