
I n t e r a c t i v e P r o o f C h e e k l n 8

TAomas Reps sad Bomen Alpcvn
Cornell University

Abs t rac t

Knowledge of logical inference rules shows s special-
ised proof editor to provide a user with feedback about
errors in s proof under development. Providing such feed-
hlck involves checking a collection of constraints on the
strings of the proof IsnKua~e. Because attribute ~unmsrs
allow •uch constraints to be expressed in s modular,
declarative fashion, they are s suitable underlying formal.
ism for s proof-checking editor. This paper discusses how
sun attribute graanm~r can be used in an editor for pactial-
correctness program proofs in Hosts-style lo~c, where
verification condition• ace proved using the sequent cal-
culus.

1. In t roduc t ion

This paper concerns the design of an editor for
partial-correctness program proofs in Hosre-style logic
[ltoare 1969], where verification conditions are proved
using the sequent calculus [Gentsen 10~5]. The chief inno-
vation in the editor'• design is that proofs sro treated as
object• with constraints on them. The editor keep• the
user informed of errors and inconsistencies in s proof by
reexamining the proofs constraint• alter each modification
to it. This treatment of proof checking is analogous to the
treatment of arithmetic-dependency checking in a spread-
• beet system [Bricklin & Franlmton 1970]; al'ter each
modification, the constraints of the system are reexam-
in•d, and changes are updated in the display.

The implementation approach used in the proof-
checking editor differs from that of other system•. Rule•
of inference "are embedded in the editor as an attribute
grammar. This allows proof checking to be done in sn
incremental fuhion, resulting in good response time. The
editor has been implemented using the Synthesiser Gen-
erator, a system that creates editors from an attribute
grammar description [Repe & Teitelbanm 19fi3].

"f3d~ lark w~ m~ppoeted In l=~ by the Nstlo~d Selenm Fo-~4--
tlon und~ 8nmtJ MC~80-0421S, MCS81 _.0~___, ud' ~ (~ 7 7 , Bomm
Alpem b suppost~l by u 11~4 Gnu/u~ Fdomhlix

Author,' ~ Dep~mmt ~r Cumputa. scisnm, Up.on H ~
~ y , Ithaca. N.Y. 148~.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983ACM0-89791-125-3/84/001/0036 $00.75

In its current form, the editor is just a prototype,
suitable for demonstrntins the principles on sasH exam.
pies, hut not for proving dsable theorems or msnipuinting
large program•. (To some extent this is due to the state
of the Synthesizer Generator, which is still under develop-
ment). Nonetheless, the editor represents 8, promising
approach to interactive verification.

This paper discusses the use of attribute grammars
for providing feedback about errors in a proof under
development. While the attribute grammar described
forms the basis for our proof-checking editor, this paper is
not a discussion of that psrticuhr editor. Rather, .the
paper concerns the appropriateness of s particular-data
8tructurs - attributed derivation trees - for representing
proofs in proof-checking editors, regacdies8 of what user
interface is desired.

The paper is nrganised into $ sections, as follows:
Section 2 presents an example of s proof being modified,
which motivates the formalisstlon of inter•calve proof
checking described in Section 8. Section 8.1, following
[Oerhsrt 1975J, shows how sen•rating s program's
verification conditions can be expressed with an attribute
grammar; Section 8.2 shows how checking of predicate-
logic proofs can be expressed with an attribute grammar.
Section 4 discusses some enhancements to the basle
approach aimed at making the user'• task Jam tedious
when proofs are created and modified. Section 5 discusses
how the attribute-grammar approach differs from the
approaches used in other interactive proof-development
systems. Section 6 draws some conclusion• about our
experience with the attribute-grammar approach.

2. In terac t ive p roof checking

The editor provides information about mistakes in s
program proof by checking the program's statements
Sgslnst a formal specification of the program'• behavior
and indicating places where the code does not implement
the specification. A program proof can be presented as a
proo/o,,fflme -- a program mmotated with assertions. In
the example given below, which is meant to suuest what
one sees on the terminal screen during editing, program
text in a proof outline that is inconsistent with the proof
outline's 8asertions is hlghiishted in the program display.
Of course, this mechanism could be replaced by, or used in
conjunction with, dingnostic messages.

E#smp/e. Suppose we are trying to correct the fol-
lowing proof outline no that it will compute s to be the
product of s and b, using repeated addition:

36

>0}
If : - , 6
Z :toO
w h i l e [] ~ i n v a r i a n t If ~ -1 ^ e ~ + z - - sob do

If :,.. If - 1
Z:mZ +18

od
(z - .4}

In this piece of code, the initial•sat•on of variables y and s
establishes the Ioop-invariant on entering the loop, and
the loop-body reestablishes the invariant on each succeed-
Log iteration. However, the conjunction of the invariant
and the negation of the loop-condition fail. to establish
the post-condition of the loop. This situation i8 signaled
(above) by highlighting the loop-condition.

To fix the problem, the first clause of the ••variant
is changed to If ~ O, but now the loop-body fails to rees-
tablish the ••variant, which is signaled (below) by
highlighting the loop-body:

(6 > 0 }
If : - - b
Z : t o O

while If) 0 i nva r i an t If > 0 A eqr+z - - sob do
le :-- e - lJ
I z : - - z + a l
od

{, - sob}
The problem is that the conjunction of the loop-condition
and the ••variant does not imply the weakest pre-
condition of the invarlant with respect to the loop-body;
operationally, the loop-condition allows the loop to exe-
cute one too many times. By changins the loop-condition
to If) 0, the loop-body will reestablish the invarlant, and
the invariant and the negation of the loop-condition wU]
still establish the post.condition, so the entire program is
displayed in the normal font:

{6 > 0 }
If : - - b
Z :mmO

while If >Oinvarlantif > 0 A e q ' + z m s o b do
Ir : - - J ' - 1
~:mZ+a

od
(, - .ob)

This example illustrates that modifying one part of
s proof outline may introduce an inconsistency in some
other part of the proof outline and simultaneously correct
an inconsistency in yet • third part of the proof' outline.
Thus, the editor must not only incorporate the notion of
an inconsistent proof, but the notion of dependencies
among parts of a proof, as well. The next section shows
bow these notions may be expressed using an •ttrlbute
grammar.

3. A t t r i b u t e g r a m m a r s and fo rma l logical sys-
t ems

An attribute grammar is • context-free grammar
extended by attaching attributes to the symbols of' the
grammar. Associated with each production of the gram-
mar is a set of semea|ic cqa~ioar, each equation defines
one attribute as the value of • semantic .taactlea applied
to other attributes in the production. Attributes are
divided into two disjoint clumes: 8ifstkeslzed attributes
and imAcr/ted attributes. Each semantic equation defines
a value for a synthesised attribute of the left-hand side
no•terminal or an inherited attribute of • right-hand side
symbol

The axioms and inference rules of • formal logical
system can be expressed ns productions and semantic
equations of an attribute grammar. Dependencies among
attributes, as defined in the semantic equations of such a
grammar, express dependencies among parts of • proof.

An attribute instance in an attributed derivation
tree is said to be co•eistc~ if its value is equal to the
value obtained by evaluating the rlght-hand side of its
defining semantic equation. An attributed derivation tree
is eonsistenfl U ~r/6ufed if all of its attribute instances are
consistent.

A proof is represented as a consistently attributed
derivstinn tree of the grammar. Proofs are modified by
operations that restructure the derivation tree, such as
pruning, grafting, and deriving. Restructuring • deriva"
tion tree directly affects the values of the attributes st the
modificJtion point; some of the attributes may no longer
have consistent values. Thus, incremental proof checking
can be performed by (incrementally) updating attribute
values throughout the tree in response to modifications.

Fundamental to this approach is the ides of an
incrzmeafd at|rlbufe eeedeetor, an algorithm to produce a
consistently attributed tree after each restructuring opera.
tion. An incremental attribute evaiuator works by follow-
ins attribute-dependency relationships in the tree to rees-
t•bUsh consistent values. Several algorithms for this are
given in [Rape 1982] and [Rape et an. 19~], including ones
that are asymptotically optimal in time.

When proofs •re developed in • top-down fashion,
the editor must not only incorporate the normal rules of
logic, but the notion of an incomplete proof, as well.
Creating a proof top-down entails growing • derivation
tree. During development, it is • partial derivation tree;
that is, it contains unexpanded nonterminals. This is
potentially a problem, because at an unexpanded nonter-
minal X we have no means for giving values to the syn-
the••ned attributes of X nor to any of the attributes that
depend on them; this conflicts with our desire to maintain
values for every attribute of the tree.

To •void this problem, we provide • csmpictisg pro.
ductioa, X ::-= .L, for each nontermLoal symbol X. The
symbol / denotes "unexpanded," and the semantic equa-
tions of the completing production define values for the
synthceised attributes of X. By convention, an occurrence
of an unexpanded no•terminal is considered to have
derived l . By this device, all partial derivation trees
(from the user's viewpoint) are considered complete

37

derivation trees (from the editor's viewpoint), and to a
proof is de,eloped, it8 tree may be fully attributed st all
.rages

To formalise the notion of inconsistent portions of •
proof, we introduce cieek czprcs~'oas. A check exprmmion
is • Boolean semantic function that indicates whether con-
straints of the formal system are satisfied, if an editing
operation modifies the proof in such • way that cow
attaints are violated, check expremlons indicating sstisfae-
tion of constraints become Cabs. These are then nsed to
annotate the program display to provide the user with
feedback •bout errors that exist in the proof. In the
example given in the previous section, the font of the
proofs print representation depends on the values of
check expressions in the pmore derivation tree.

As an aside, note that our use of terms like "seman-
tic equation" conforms with accepted attribute-grammar
terminology, although strictly speaking such terms are
mlsnomertc These terms are carryovers from the context
in which attribute grammars were originally used, namely,
defining the meaning of • context-free language, and they
have remained standard eve• thongh attribute grammars
are often used to describe the annotation of • tree with
information that h u nothing to do with its meaning. For
example, correct•era of formal proofs is • purely syntactic
matter (to a logician), but because it cannot be expressed
in • context.free formalism, we make use of the available
non-context.free mechanism - the "semantic" mechanism
of an attribute grammar.

3.1. Generating verification conditions

Generation of a program's verification conditions
can be expressed with an attribute grammar using two
attributes: pre and post. Pre is • synthesised attribute of
Strut and StmtList whose value is • formula in the
language of assertions; poet is an inherited attribute of
Strut and StmtLiet whose value is also • formula in the
language of assertions. The relationships among these
attributes that express partial correctnem of programs are
given by the rules of the grammar presented in Figure I,
which is adapted from one given in [Gerhart 1075J. (For
brevity, we have not shown the productions that can be
derived from Id, Exp, Co•d, and Assertion, nor have we
shown the completing productions of the grammar).

In the semantic equations in Figure 1, ~ well u
throughout the rest of the paper, we use conventionally
accepted notation to express set operstions~ we use "." ns
the operator for selecting an attribute of • no•terminal,
and we nse subscripts to distinguish among multiple
instances of the same no•terminal. We alsu make use of
the nonstandard notion of • ~atsetlc rc/ereacc. Insofar
am • component of the syntax tree is often Osc/~ s
sufficient representation of the value to be arsucisted with
the comps•erie's root, we allow a nonterminal's name
(when not qualified by an attrihute selection) to denote
the syntactic component as a value. For example, in pro-
duction (I) of Figure I,

(I) Progrmn ::-- {Amertion} S tmtL~ {Aamrtion}
b ~ m t L i ~ . ~ ,,, A~serb'eat
cheek: leT/teercm(A~serh'eas D b~nd/,~.lWe)

AHerh'eat and A~s~ 'ese refer to the compensate derived
from the rule's two Amertion nontermintb. Far further
dis~mi__on of syntuetic references in attribut~grsmmar
specifications, the reader is referred to [Reps & Teitelbanm
1te l .

(I) Program : : - (.din.teen) 8tmtLh* (Amrtio•)
~mtLisf.posf - - Asssrffeae
check: Is ~ o r s m (Aeecrffest ~) b~WLiet.prc)

(S) StmtLin ::-- Strut
~ml.posf - - b~mfLi~.po~
~mtLis t .prc - - ~mt .prs

(8) Stmtl, ist ::-- 8trot StmtLiet
b~mtL is t~pos f m b~mtl, ists.potf
b'*mt.p,st == -~m*Lisfl~prs
~mtListz.prc - - ~m/.prc

(4) Strut ::-- Id : - - I~p
..qmz.pr, -- ~mz.f,,~V.p

(5) Strut ::-- if Goad then 8tmtList elee StmtLiet fl
~mtLisfs.ped an ~q~m&pe~
b'fndLisf~pod m ~m~.p,~
~Nlt&prc m (gee4 ~) 8tmf.f, lSfl.pre)

^ (-~Oeed :2 ~mz£i~s, lws)
(8) Strut ::-- while Oond invs r i an t Amertion

do 8finaList od
b'tml.prc ,m Aseeetin
SfmtLisf.pott - - As#orb'on
check: le Tic erem ((Asscrtloe A'~ (7sad) D b~mLpest)
check: ls Tlcersm ((Asecrffon A Cond)Db~mfList.prs)

Fifm'c 1: Oeneruting verJflcstion conditions.

The semantic equstions of the grammar treat ststo-
ments M backward pmdicste tnmdormem [i)ijkstr• 19'/8].
in an ueigume•t statement, for example, the mlstionship
between the p,'s and peg# attribute is that the pro stark
but, is defined M the peer attribute with the ezpremon on
the right.hand side of the smigmnent substituted for all
occurrences of the left-hand side identifier. (In Figure I
this is denoted by the expression ~mf.pett~p).

For while-looper the post-condition of the Imp-body
and the pre-condition of the parent statement are defined
i• terms of the Joop-Jnvariant. This allows inconsistent
code and smertlons to he detected M violations of the
check-expremions:

check: IsrAcercm((Acecr6o• A -~Cnd) D b~mt.posf)
check: lsTicercm((Asscrffoe A 0gad) D ~mtLi~.pre)

where the function leTheorem is • decision procedure - •
procedure that returns t rue if its argument is • theorem
in the sseertion-langusl~e logic.

It is at thls point that we reach one of the common
8tumbfing blocks of verification systems - the decidability
of an smertion language s t r o q enough to express the

38

verification conditions constructed by the rules given
above. For instance, no decision procedure exists for
first-order predicate logic [Turin S 19a7].

In the next section, we sidestep this problem by
having the user creute and manipulate the required proofs,
instead of having the system try to estlblish theorems
automatically. Further on, in Section 4.1, we discus how
to incorporate decision procedures for subtheoriee of predi-
cate logic, 8o that the user need not prove theorems that
automatic techniques are capable of establishing.

By having the user create and manipulate proofs of
verification conditions, we make the user responsible for
proving theorems that an automatic theorem prover might
be incapable of proving. Oramm~r rules in Figure I that
have • check expremion involving bThcorem are chansed
to include • "Proof" no•terminal for each (predicate-
calculus) proof obligation of the production. Thus, the
new rule for while loops hse two Proof no•terminals, one
st which the user must create • proof of

(Asecvlios A -~Cos,t) :3 $tn~.po~

and • second at which the user must create • proof of

(AuertiOa A Coad) :3 ~m/L*'~.prc.

8.2. Checking proofs o f verification condit ions

Because the editor is • tree-manipulstin$ system, we
need • formal•satin• of the smertion-lansus4|e logic that
sllom proofs of verification conditions to be conveniently
represented as tree-structured objects. It the smertion
language is a predicate logic, • suitable tormalisstion is
Gentsen's sc4mznt cdctdw IGentsen 1086, Klsene 1952].

A seqmc,~ consist, of two set• of formulas,
separated by an arrow, such is:

(At, An,..., A,) -.* (Bu Be, ..., Be) (1)

The set { d b A g , . . . , d .} , on the left, is called the
nteccdest; the set (Be, B e , . . . , B.) , on the right, is
called the nccedest. A sequent is • theorem Jn the
sequent calculus if it can be derived from the system's
u l n a s and rules of inference.

It can be shown that • sequent is • theorem in the
sequent calculus if and only if, in one of the more familiar
forms of the predicate calculus, • formula in the succedent
can be demonstrated tokin$ the formulas in the
antecedent ss assumptions [Oentsen 1086]. Informal~
then, one can think of the formulas of the antecedent ae
known facts sad the formulae of the suecedent ae pals,
one of which is to be demonstrated; thus, the informs/
meaning of the sequent (I) is no different from smerth~
the formulae

A s A A s A " ' " A A . :3 B I V B s V " ' " VB.

The inference rules of sequent calculus allow us to
infer new sequent• from old sequente. For each logics/
operator there are two inference ruissc an esalpis rule and
s #fm#/Je#ie rule. The analysis rule for • (logical) operator
® expresses how • formula of the form A ®B may be

introduced into an antecedent; the synthesis rule for ®
expresses how A ®B may be introduced into s succedent.

For example, nsln S the mete-variables A and B to
represent single formulae and the met~vsriabks r and A
to represent finite sets of formulae, the rules for the impli-
cation operator D Ire expressed E

Implication F -~ £ U (A) r U {B) -* £

an"Y~' r U {A :~ e) - A

Implication r U {A) - , £ U (B) (2b)
synth, , r -. A u {A n)

The implication analysis rule given is (2a) m~,e (roughly)
that if we want to amuse A D B, we must demonstrate
A, and we must demonstrate our goal mmumlng B. The
implication synthesb rule given as (2b) u y s (again
roughly) that ff we want to demonstrate A :3 B, we must
show that by assuming A we can demonstrate B.

An attribute grammar can be used to express the
rules of sequent calculus ae So•lows. A sequent is
represented by • Proof nontermlnal thor has two inherited
• ttributes: an eats•cries# •ttribute and an ~ccedeat attri-
bute. Each production of the grammar represents • rule
of inference or an axiom scheme (see below). The right-
hand sidce of productions correspond•n| to inference rule,
contain additional Proof no•terminals whom m~ece&nt
and ssccc&n# •ttributes ire defined in terms of the
eel•co&s# and eKe•deal •ttributes of the parent Proof
no•terminal. The check expressions of the sequent-
calculus srsmm~r express the constraint that • production
derived from a Proof no•terminal repro•ate an appropri-
ate deductive step.

For exsmpJe, the productions corresponding to the
Implication inference rules are shown in Figure 2. s In each
production in Figure | , there are two "Wff" no•term•nab
on the right-hand side that determine how an inference
rule is •nets•tiered. The subtrece derived from these Wff's
determine the components of the formula being analysed
(or synthceised, ae the caee may be), as well is the
antecedent• and succedente of the right-hand -'de Proof
no•term•nab. Tim check expmmlons ensure that the Wff
belns analysed (synthesis•d) really is in the left-hand side
Proof no•term•eel's select&a# (m~cc&•t) attribute.

a ~ tw ~ m d tJm ndm d ~ l umtm Iqle
uuF b ~wad In u upi~dlu st t in qul d tJm imi~r.

39

/ . Impllcstion snslysis */
Proof ::-, show Wff Proof

mmume Wff Proof
check: (W~'ID W~'2) c Proof s.s,teccde~
Proof o.ntecede=t

- - Proof s.ntcccdent - (W~,D W~a)
Proof ;.suecedest -- Proof s.sueccdcst U { WBs}
Proof ~sntcccde~

-- Proq ,.antecedent - (WB'zD W~',} U (w f , }
Proof s.slJccedest .= Proof 1.sueczdcat

/0 Implication synthesis . /
Proof ::== assume Wff show Wff Proof

check: (WflD WM~) e Proof ,.ewcccdcat
Proof g.ontcccdest == Proof s.utcccdent U { Wb's}
Proof g.ne ce & st

- - Proof ,.s.ccedent - (W l , :) Wl,} LJ (wb',}

Figure ~: Grammar rules corresponding to
the implication inference rules.

The axioms of the sequent calculus ire expressed in
three schemes:

r U {A} .-, ,, U (A}

r U {fates} -. A

(as)

(Sb}

r - a U {true} ($c)

The scheme given as ($s) 8sys that if formula A is given,
then A is demonstrated; (3b) says that if you start with
false, then anything can he demonstrated; (3c) 8kye that
everything demonstrates true. These three axiom
schemes can be combined into n single production whose
check expression gives the condition under which applica-
tion of sun axiom completes a branch of the proof:

Proof ::== immediate
check: fs.ke e Proof.u/testiest

V t r u e e Proof.s~ce&nt
V (Proof.antecedent n Proo].s~eedcst p~ 4~)

Finally, we need to define the atomic predicates of
our logic; for instance, we need predicates for equality stud
kss than:

Exp =- Exp
Exp < EXp

Wff's are built out of predicates using Ingicsl connectives.
The expressions (Exp) in the predicates can be troy expres-
sion of the progrmnming langu,~ge; whatever is legul on
the right-hand side of an amiKnment is • kfpd Exp.

To fully incorporate these predicates into our logical
tyetem we include their axlomstk definition. For exsan-
pie, the axioms for equality can he expressed as:

r - A U (: - :1 (.a)

r - a U { fJ -K) ~ (K-O} (4b)

r - . a U ((7 - g) A (K--L) ~ (7 . v)) (4c)

where the mean-variables J, K, and L represent single
expres8iona

Each axiom adds in additional production to the
srsrnmsr. For instance, the production corresponding to
axiom (4a) is:

Proof ::== by reflexivity
check: tiers e#isfs #e Proot.euccedznt

et~A fad # ie Of gAS ~om 7 , 7

4. Enhancements to the basic approach to proof
checking

Using the proof editor described in the previous sec-
tion cam be maddeningly tedious; the editor is • proof
checker, not • theorem prover, and proofs must be eom-
pkts formal proofs. This section discusses two wkys of
making the user's task km tedious when proofs sure
created and modified. First, we discuss how the editor can
be extended to include some automatic deductive capabili-
ties so that the user does not have to supply so much
detail. Second, we show how pnttern matching can be
used within proof trees to facilitate editing.

4.1. A u t o m i t k deduct ive capabilities

In Section 8.~, we sidceteped the uncles•dab•Hay of
predicate logic by havins the user write proofs, instead of
having the editor try to utoblish theorems automatically.
In prsctlce, this approach is untensbk because it forces
the user to provide nheulutely every detoil of a proof.
Give• sn unexpsnded Proof •ode that is • k s / o f the tree,
we can often check ths~ its sequent can he proven usin S •
decision procedure for n subtheory of predicate logic.
Another pomibillty is to apply • Iwoof t~t le [Gordon et
al. 107q, that does its beet to construct • proof tree, hut
ms), ksve lone Proof nodes unexpanded for the user to
fill in later.

4.1.1. Decision procedures

The editor can be extended with decision procedures
by making use of known alsorithms for deciding simple
theories. For ezsmpk, an alSurlthm for deciding the
theory of equality with uninterpreted function symbols
[Johnson 1981, Nelson 1981] can be used as the buds of •
procedure for prepositional inference. Our proof editor
uses the propoeltional-inference procedure from the
PL/CV2 proof-checking compiler [Constsbk et sL 1982]; it

40

is incorporated into the editor through the grammar rule:

Proof ::-- au tomat ic
check: lsA~tomstic (Proo/. n~eccdcat ,Pro6/..uccede~)

where hAutomatic returns t rue if the PL/CrV2
propositional-inference procedure can establish the second
argument from the first argument.

The PL/C'W2 automatic-lnference procedure has cer-
tain limitations because it is a decision procedure for only
a subtheory of propositional logic {a subtheory selected so
that problems of inherent computational complexity do
not have to be solved). Thus, the grammar production
given above will not be applicable when the theorem to be
established requires the use of a primitive inference rule
that the automatic procedure never attempts to apply.

E#ample. Proving the sequent

{~ 6, ~} -* { .~(6A(c3~)) } (6)

requires the use of the implication ~,nthesis rule to estab-
lish the formula c Dd, ns in the starred branch of the fol-
lowing proof tree:

(o,b,~,d)-.{~ f.)
(o,b,d)-..(6) (,,b,d)-.(e:~

(., 6, d} --. (.} (o, b, ~ -- (b^t'c=d))
{., 6, '9 -" (.^CS^~c=d)))

Thus, s decision procedure that never applies implication
synthesis cannot establish (fi).

However, there is still a way to help cut down on
tedious manipulations when automatic inference pro-
cedures are not applicable. Our editor incorporates a
mechanism whereby the user can isolate the offending
term sad apply the appropriate inference rule explicitly.
This mechanism is based on an additional rule of inference
termed the cut ra/e, expressed me.

r - { A) r U { , 4 } - . a
Cut rule: (6)

F - . A

The cut rule (6) says that if we want to prove some goal,
we can demonstrate some formula A sad then use A i t an
assumption in the proof of the goal. The cut rule allows a
user to isolate a formula easily, because automatic infer.
ences can be used to skip over the easy intermediate steps.

E#6mp/c. Returning to the example shove, if we
choose c ~ d as the cut formula A, the proof branches into
two subproofs whose sequents are:

{., 6, ~} - (e:)~) (7)

and

{a, b, d, cDd] - . {,^(6A(eDd))) (8)

We ire then able to apply implication synthesis directly to
(7), and the automatic inference rule can be used to estab-
fish (8) because n proof can be found that makes no use of
implication synthesiec

{.,6,~,c~d}-.{6}] . ,b,d,e~d)~.{,3d)
{. ,~,d,c~.~-.{.} (., b, d, c~.~ - (6^#~d/)

{J, 6, d, odd) -.. (,A(bA(cDd))}

4.1.1. P r o o f tactics

A proof tactic is s method for applying inference
rules repeatedly and recureively until none is applicable
[Gordon e ta l . I070]. In proof editors, n proof t~ t ic may
be employed to automatically construct a proof fragment,
doing its best to construct s proof tree, but pomibly leav-
ins some unexpanded Proof nodes for the user to fill in
later [Bates & Constable 1083].

• E#smple. Given an unexpanded Proof nonterminal
with the sequent given above as equation (5), a proof tac-
tic could apply the and synthesis rule twice to produce the
attributed derivation tree that corresponds to the infer-
ence:

(.,s,d}-.{6} (. ,6,d)-.(e=d}
(. ,6,d}-.(.} (., 6, d} - . (6^(c~d/)

(. , ~, ~) - {e^(6A(c~d))}
leaving an unexpanded Proof nonterminal with sequent:

(. , 6, d} - . (c~d}

In the attribute-grammar framework, s proof tactic
would require using inherited attributes to drive the tree
construction process. As currently implemented, proof
tactics cannot be incorporated into our editor, because
attribute-driven tree construction is forbidden in the Syn-
thesiser Generator, the Synthesiser Generator only sJlows
attribution of a previously constructed abstract-syntax
tree.

Attribute-driven tree construction has been explored
for resolving ambiguities in attribute-grammar-hosed
parsers [Watt 19T7, Rowland 1977, IUfilton etal . 1079], A
somewhat different notion of "computing with attriboted
trees" is currently being studied for inclusion in the Syn-
thesiser Generator [Reps & Teitelhaum 1083]; this
mechanism appears to be powerful enough to express proor
tactics.

4.2. A p roo f representa t ion tha t uses pa t t e rn
matching

The attribute grsmmur described in Section 3.2 for
representing sequent-calcu]ns proofs as attributed trees h u
a significant drawback: the representation often makes it
tedious to modify previously developed proofs. This sec-
tion describes s modification of the grammar that avoids
this problem.

The grammar of Section 3.2 specifies that one or
two Wfl's be derived st each Proof node in order to (1)
indicate which formula of the Proofs sequent is being
analysed or synthesised, and (2) determine the
antecedents and succedente asmcinted with the node's
subordinate Proof nonterminals. Consider what happens

41

when we modify a proof, say by changing u variable name
in an assumption from x to y. The proof now h u errors
at each Proof node where s Wff contains a use of x,
because the Wff refers to a formula not in the Proof node's
sequent. To reestablish s correct proof, it is necessary to
(manually) change each of the Wfl's that refer to x. The
problem with the grammar of Section &2 is that the Wff
nonterminals bind los mncl iqformatios into the proof
representation by specifying too precisely how the infer-
ence rules are instantiated.

An alternative approach makes use of
"WflPattern's" and pattern matching. A WffPattern is •
partial Wff-- a Wff possibly containing unexpanded now
terminals - and • WffPattern matches • Wff if the latter
can be derived from the former. Instead of having Wff's
at each Proof nonterminal, the grammar is changed to
have WtlPattern's, which are then used to determine the
antecedents and succedents associated with the node's
subordinate Proof nonterminais.

For example, Figure 3 gives the modified rule for
implication analysts. In contrast to the rule with two Wff
nonterminals given previously in Figure 2, the new rule
has two WffPattern's. These WffPattern's give the com-
ponents of a patters for the formula being analysed, which
is selected out of the left-hand aide Proof nonterminal's
antecedent by a pattern-matching lookup. When there is
more that one formula in the antecedent that matches the
pattern, the user may have to specify • more detailed pat-
tern. (Note that premise and conclusion, the components
of the matched formula, appear in the context-free part of
the rule; this is to suggest that the user would be given an
indication in the display as to which formula in the
antecedent the pattern matched).

/ . Implication analysis . /
Proof ::-- Inalys.e by (WflPatternDWflPattern)

show premise Proof
assume conclusion Proof

let w f =- Fi=dMetcA ((WffPatgernsD W~PaItcr~,
Pros/s.ntcccdca|)

• Acre premise and conclusion
ere SAc components Of Wff

Proo~ g.aatcccde~ I,, Pros] t .antecedent - {w~}
Proo~ 8.succcdent m Proof 1.sncccdea| [J (prcmltc}
Proof ~nteccdcnt

-- Pros/,.antecedent - {w,~ U {¢omclusloa}
Proof s.snccc dent - - Proo~ t.succcdcn/

F;gure 8." Implication analysis rule
that uses pattern matching.

The proof grammar that uses pattern matching in
the semantic equations is a significant improvement over
the old grammar. At most nodes of a proof tree, it is not
necessary for the WffPattern's to contain variable names;
in most cases, a structural pattern alone is sufficient to

indicate which formul• of the ProoFs sequent is be'ms
analysed or synthesisetL Now if we change a variable
name from x to y, the proof will still check as before,
because all (structural) WflPsttern'8 will still match • for-
mula in the appropriate sequent, and the proper
antecedent and sueesdent will be associated with each
Proof nonterminal of the tree.

5. Compar ison with a l te rna t ive approaches

The attribute grsanmar discussed above formalism
an approach to intersctlve proof development that is
different from what is done in other interactive verification
systems. This section dbcusees some of the differ'ences
between our approach and the approaches used in other
systems.

The Desisner/Verifier's AmisS•at [Moriconl 1070]
uses one alternative approach. There, the user interacts
with the Assistant, which in turn decides what needs to be
reverifled based on an analysis of the dependencies among
the procedures of • program. An important difference in
the way proofs are treated by the Assistant and the way
they are treated by our editor is the granularity and
incrementallty of proof checking in the two systems, in
many respectaq the Amistsnt is simUar to compilation-
control systems, such as Make ~Feldman 19T9]; the Assis-
tant decides what to reverify on s per-proesdure basis,
and when • procedure is reverlfied it is reverified in its
entirety. By contreet, our editor decides what to reverify
on • per-inference-rule beeis, and by virtue of the optimal
behavior of the alpri thm used for incremental attribute
updating, reanalysis is conhed to the attributes that
actually need new values.

in the Edinburgh LCF system [Gordon et al. 1979],
there is a notion of objects of type tam, but the objects of
type tlm are not proofs as such. Tim is an abstract data
type whose constructor functions obey the invariant "all
tam objects are provable," that is, derivable from the
axioms by applications of inference rules. An attempt to
use a constructor to make an inappropriate deductive step
ends in failure. By contreet, our editor supports the
development of actual proofs, which can be manipulated
and restructured directly, and the editor incorporates the
notion of a proof with errors and inconsistencies in it.

The approach taken in AVID is much closer to the
approach taken in our editor. AVID is an editor for the
top-down development of PL/CV2 proofs that incor-
porates a proof checker to provide information about a
pmof's errors and inconsistencies [Krafft 1981, Constable
e t a l . 1082]. An important difference between our editor
and AVID is that AVID is without a notion of logical
dependencies analogous to the attribute dependencies in
our editor's attribute grammar. Lacking the information
needed to re-uee previous verification information us n
proof is checked, AVID carries out verification only when
there is an explicit request by the user, and it always
reverifiee • proof in its entirety.

The closest relative of our editor is the proof-
checking editor that is part of the PRL system [Bates &
Constable 1983]. PRL provides machine aid in the creb-

42

tion of definitions, functions, and proofs based on s
sequent calculus for constructive first-order predicate logic
over integers and lists. One difference between our proof
editor and the one used in PRL is the way the two editors
handle inconsistencies in s proof. The PRL editor forbids
inconsistencies by requiring each interior node of the proof
tree to be an appropriate deductive step. One is able to
go back and modify an interior node of the proof, but if
this would introduce an inconsistency into s subproof, the
subproof is deleted. By contrast, proofs constructed with
our editor are allowed to have inconsistencies in them ns
they arc developed; our editor uses knowledge shout
dependencies among parts of s proof (encoded in attribute
dependencies) to keep track of such inconsistencies.

Our proof editor and the PRL editor sbo differ in
the way they implement proof checking. The PRL
approach may be characterised u the ecmsatlc-arh',n
approach; during editing, each operation that affects a
node of type X invokes an action associated with the
category X. An action is an imperative routine that can
walk the program tree making updates to nodes of the
tree as well ss to global data structures.

Our approach to proof checking relies on two
attractive properties of attribute grummartc

(I) Attribute grammars are declarative statements of
relations that must hold among the parts of • proof;
propagation of context-dependent information
through the syntax tree need not be described expli-
citly, as it is implicit in the formalism.

(2) Attribute grammars allow automatic reestablish-
ment of consistent attribute values when a proof is
modified, without the need for explicit undoing or
rollback actions; furthermore, such updating ean he
performed in an asymptotically optimal manner.

For further discussion of the relative merits of the
semantic-action and the attribute-grammar approaches,
the reader is referred to [Reps et ai. 1083].

6. Summary and conclusions

Our concern is the design of editors that allow one
to create and modify program proofs in Hoare-style logic.
We have constructed an editor that treats • proof as an
object with constraints on it; the editor keeps track of
inconsistencies in a proof by reexamining the proors con-
strainte after each modification to it. The logical system
is encoded in the editor ns an attribute grammar.

We feel that the attrlbute-grammar approach to
interactive proof checking is a promising one on a number
of counts. Attribute grammars permit the specification of
the constraints of a formal logical system, as described in
Section $. Attribute grammars are a good framework for
incorporating previously developed solutions to verification
problems, such as fast decision procedure for subtheories
of predicate logic, as described in Section 4.1. Further-
more, there exist optimal algorithms for incremental attri-
bute updating, which means proof checking can be done in
an incremental and optimal fashion. Finally, there exist
compiler-compilers and editor generators that produce

major software components from an attribute grammar
description of • language; this makes it particularly easy
to implement m/stems hosed on the ideas discussed in this
paper.

Acknowledgements

We were stimulated to write this discussion of our
work on interactive proof checking aider receiving
encouragement from a number of people who had seen the
prototype proof-checking editor; discussions with Rod Bur-
still, Bob (~onetabie, Alan Demers, Edeger Dijkstrz,
Gerard Huet, Oillee Kakn, Dave McQueen, and Tim
Teitelbaum were particularly interesting. We would also
like to thank our coHeMues who read the paper and com-
mented on it; the suggestions of Bob Constable, Bob
Harper, Susan Horwits, Mark Krentel, Fred Schneider,
and Tim Teitelbanm have been extremely helpful

ReFerences
[Bates & Constable 1083J

Bates, J. and Constable, P~ Proob as programs.
Tecb. Pep. 82-630, Dept. of Computer Science, Cor-
nell Univ., lth~ct~ N.Y., Feb. 1083.

[Brick[in & Frankston 1979 I
Brieklin, D. and Frankston, B. V/e/Ode Oempater
Sol|mare ProgrJm fir tic Apple II and II Pi,~,. Per-
sonal Software, Inc., Sunnyvale, Calif., 1970.

[Constable et sl. 1982]
Constable, R., Johnson~ S., and F-,ichenlsub, C.
Lecture Notes is Computer Sos'sacs, voL 135: Istro-
d~tloa #e tAe PL/G~# Progrsmm/,~ Logic.
Springer-Vedng, New York, 1982.

[nij t l.?,]
Dijkstr~ F~W. A /~'eclpllae el Pro~,mm/uf .
Prentice-Hall, Englewood Clifb, N.J., 1076.

IFeldman 19?0|
Feldman, S.L lVlake - A program for maintaining
computer programs. S o / Z m l r e - - Pre~tlce ,sad
Espericnce 0, 4 (April 1979), 266-26,5.

[Gentsen 1935]
Oentsen, O. InvestiSltions into logical deductions.
In TAe Collected Paper, oI (TerAerd (Tcstzes, M.E.
Ssaho (ed.), North-Holland, Amsterdam, 1959, pp.
68-181.

[Oerhart 1975]
Gerhart, S.L. (~orreetness-preser~ing program
trandormations. In Conference Record of the 2nd
ACM Symposium on Principles of Programming
Languages, Palo Alto, Calif., Jan. 20-22, 1975, pp.
54-88.

[Gordon et ai. 1079]
Gordon, IUL, Milner, IL, and Wadsworth, C. Lee-
lure N, tc, in Computer ,~cieacc, vol. 78: Ed/sburgA
LCF. Springer-VerhtK, New York, 1979.

iHoaro ,.s01
Hoare, C.A.R. An axiomatic basis for computer

43

prolp-smming. Comma. ACM IJ~, 10 (Oct. 1080),
ST&5~O, 583.

[Johnson 11081]
Johnson, S. A computer system for checkins proof,~
Tech. Rep. 80-444 and Ph.D. dissertation, Dept. of
Computer Science, ~ornell Univ., lthncs, N.Y., Jan.
108L

[Kleene 1052]
Kleene, S.C. lutroduct~ou le Metems~Aem~ic~.
North-Holland, Amsterdam, 1052.

[Knuth 10~1
Knuth, D.E. Semantics or context-free lungua&,eL
M~tk. ,~ t . Tkeorll ~, 2 (June 1088), 127-146.

JKrffifft 10811
Krafft, D. AVI~. A system for the interactive
development of veriflably correct programs. Tech.
Rep. 81-467 and Ph.D. dissertation, Dept. of Com-
puter Science, Cornell Univ., Ithscs, N.Y., Aug.
1081.

~{ilton et al. 1070]
Milton, D.R., Kirchhoff, L.W., and Rowland, B.IL
An ALL(l) compiler generztor, in Proceedings of
the SIGPLAN Symposium on Compiler Construc-
tion, Denver, Colo., AUK. &10, 1970, $1QPLAN
Noticc~ 1~, 8 (Aug. 1070), 152-157.

[Moriconi 1070]
Moriconi, M. A desisner/verifler'8 assistant. I££~
Trans. $oflm. Eng. ~E-5, 4 (July 1070), 387-401.

[Nelson 1081 !
Nelson, G. Techniques for prosrsm verificstiou.
Tech. Rep. CSL-81-10, Xerox Pale Alto Research
Center, Pale Alto, Calif., June 1081.

[Reps 1082]
Reps, 1". Oeneratlng lansusl~-bssed environments.
Tech. Rep. 82.514 and Ph.D. dissertation, Dept. of
Computer Science, Cornell Univ., lthnes, N.Y., Aug.
1082. To be published by M.LT. Press, Csmbridse,
Ma~., Feb. 1084.

[Peps & Tei~elbaum 1083]
Reps, T., and Teitelbanm, T. The Synthesiser Oen-
erstor. Dept. of Computer Science, Comell Univ.,
Ithacs, N.Y., Oct. 1083.

~eps et ~. 1083]
Reps, T., Teitelbaum, T., and Demem, A. incre-
mental context-dependent an~dyeis for lanSua4|e-
based editors. ACM Trns. PreFr~m. Lau~. Slier.
3 (July 1083), 440-477.

[Rowland 1077I
Rowland, B.R. Combining pa~rslng and evaluation
for -ttributed grammars. Tech. Rep. 308 and Ph.D.
dissertation, Dept. of Computer Science, Univ. of
Wisconsin, Madison, Wise., Nov. 1077.

[Tu~.~ 1o371
Tur~n$, A.NL On computable numbers with an
application to the Entscheidungsproblem. Prec.
Loudou Metk. Sot., eer. J~, 4~ (1038-7), 230-286.

[Wstt 1077J
W~t, D ~ The psmins problem for ~ Ifnm~
msr~ Acre l~orm~c8 $ (10TT), I-~0.

Appendix: (] r s m m ~ rules tor first.order predicate
iosic

[* Axiom schemes:

r U {tim} -

r - ~ U (*~'} .I
Proof ::-- Immtdlate

check: r a i n c Proof . e~c ¢ c &st
V true c P,~sf.o~ce&sg
V (Prsef.u~ccc&~ ('1Presl "'vge¢~nt ~ 4)

I* ~-pUc**~n ~ r - a LJ {a) r U { e } - A "I
r u { a ~ e} - a

Proof ::-. show Wff Proof mmume WE Proof
check: (WI,:3 Wlt] c Proof l.~lecc~.nt
Prssf • miteec &st

- - Prosl i.s,acce~nt - { WI~3 Wl,}
l~',,h.mc¢cdesl - - Prs,f l .m=,,kst l,.J { w I J
Proof • mitecekM

- Pro, l , .a ,de. ,k l t - { Wit::) WId U (w I d
Preef ~msecedesd - - Proof i.eueeedeaf

I . ,-pU=,~. q~the~ r U {A} " A U {el . i

Proof ::-- assume Wff show Wff Proof
check: (WflD WBt) c Pr** f , .ncc¢&~
Pr**fs.nlccc&nl -- Proof I.unlcce&mt U { Wl i }
Presf I~ mscec ~ rill

- Prs,/,.necc~nt - { Wll::)Wit} U { wJM

I , ~ d - - , ~ , : r U Ix, n} -* A "I
r u { x A n } - - A

Proof ::- , ~ e u m e Wm s a d W l Proof
check: (WJ~ W~) c Pr**l i.utecc&ss
Presf p s~eecdenl

- P,'*, I ,.,,~cc, ,~,,e - { w I , Awl , } U { Wl~, wl , }
Pre, f ~necc&st - - P r , ~ z.neecden#

44

r..,4U{A} r-au{e} .i
i. ~d ,yoth,~: r - A U {A ^ e}

Proof ::-- s h o w Wff Proof s h o w Wff Proof
cheek: (W~'zA W~'=) (Prool ~.o~ccde •g
proo[t.ntecedemt , " Proof t.smteeedest
Proo~ ~.n¢ce de•!

. p , oo! ~.,.~cde•~ - { w # ~ wJ'.} U { w#d
Proof ~Htceedenl , " Proo.t I.e•leeedestg
Pros[st•see de at

- - Proof t.s~cedent - { W~l'd~ W.~'.} U { W/a}

r U {A}-. 4 ru{s}-* 4
I. o, -~.~-: r U {A V B) -- a ' ""I

Proof ::== assume WIf Proof aumume Wlf Proof
check: (W#~g W#a) (Pr, ol ~..•reccdesl
Pr0o~ ~ n l e c c ~

. , Pros/ , .satccc~, t - { W~zV W#,} U { WJ,}
Proo~ s~t~ccdest m. Proo.t t.s~cedest
Proo~ ~s•lcccde~t

• ,. Proo~ l.sstccede~ - { W~'IV W~a} U { Wffa}
Prool ~ee ,des t -- Prool t ~eecdest

r-, 4 U{A, B}
[. Or synthesis: r ~ A U {A V B } e/

Proof ::-- show W8 or Wff Proof
check: (W~tV WU~ (Prool t s~eede~
prooj~astecedent .., Proo~ l.ntccedeat
Pros[wince dear

r -. 4 U { A } .i
i . No~ .,,~s',: r U {..A} .-. 4

Proof ::-- show We Proof
check: ('~ W~) c Proo~ z. s~ceedest
Proo[~ssteeedent m Proo~ l ••/eeedeal - {',W~)
Pr,ol g,s~cedeat - - Proof z.tseee~at U { W~J~

r U (A} • 4
I . ,st , , th,;-: r -. ~ U {-Ai . /

Proof ::-- ~sume W~ Proof
cheek: ('~ W~ (Pros/t.~wecde~
Prools..ntecedent . P r o o , , . , t e e c , c s , ~ . c { W ~
Proo~ ws~cedemt m Proo~ I.t•OCO~IZ| -

r U lAP)} U {v,,~ (,)} - 4
I" AU ,~-~r~ r U {V,.A{,)} -- A

el~r~ ~ is • term .tree/st # is A (s) .1

Proof ::-- usume Wff substituting gxp for ld Proof
cheek: ~[d. W~J~ ~ Pro,[t sntcecde~
Pres] wnteeckat "- Preo.t l.•Stccedeal U { W~m)
Pres~ wncee~at " Preo~ t.~eedent

r - 4 U { ~))
/ , ~ qn~he~ r -- A U {V,.A(,)}

,,/,ere b is • e s , ~ •0t ~csm'~t lrce is A(#) el

Proof ::-- show WE sub6t i tut ins ld for ld Proof
check: (Vld~ Wl) c Pr. .! t.e*gccde.~
check: Nc~rre¢ (Idb WlJ
Proe~ l~mntcccdemt m Preo~ z.mmteeedesl
Pvool ~nec~&sl

. p , . q , . c . ~ . ~ - {wd, w~ U { wn~,")

r U {A~J} - a
I* g'~ -'~'~ r U {~,.4(s}} - 4

t t ~ n b is • esei~te s~4 ,ccsrrlmt lrcc is A(s) e/

Proof ::-- as sume WE •ubst i tut lng Id for id Proof
check: (glda.Wl) (Pr,*! l.utecc~
check: NotFrec (Id.. W~)
Prools.s~cec&sl

. p , . . ! , . ~c . ,~ , , {:,u, w~ U { w(,~,'}
Proot ~noeeks t -- Pros! 1.s,gcc~st

r - A U {sp)}
i . r~u, .~,thes. r - . 4 U (x,.s(,}}

, ~ t i, • tern l - c lot • i= ~ #) */

Proof ::-- show WH subetitutlnlg ~ tp for Id Proof
check: (~IL W~ c Pr**[t . ,~cckst
proe~ l~s~eeeJes! , - Proe~ s.utccede~
Preoh.noeckst

- - p roo l , .ncccks t - { 3 ; L W ~ ~ {WW,,}

45

