Interactive Proof Checking

Thomas Reps and Bowen Alpern
Cornell University

Abstract

Knowledge of logical inference rules allows a special-
izsed proof editor to provide a user with feedback about
errors in a proof under development. Providing such feed-
back involves checking a collection of constraints on the
strings of the proof language. Because attribute grammars
allow such constraints to be expressed in a modular,
declarative fashion, they are a suitable underlying formal-
ism for a proof-checking editor. This paper discusses how
an attribute grammar can be used in an editor for partial-
correctness program proofs in Hoare-style logic, where
verification conditions are proved using the sequent cal-
culus.

1. Introduction

This paper concerns the design of an editor for
partial-correctness program proofs in Hoare-style logic
[Hoare 1969], where verification conditions are proved
using the sequent calculus [Gentsen 1935). The chief inno-
vation in the editor’s design is that proofs are treated as
objects with constraints on them. The editor keeps the
user informed of errors and inconsistencies in a proof by
reexamining the proof’s constraints after each modification
to it. This treatment of proof checking is analogous to the
treatment of arithmetic-dependency checking in a spread-
sheet system [Bricklin & Frankston 19790); after each
modification, the constraints of the system are reexam-
ined, and changes are updated in the display.

The implementation approach used in the proof-
checking editor differs from that of other systems. Rules
of inference "are embedded in the editor as an attribute
grammar. This allows proof checking to be done in an
incremental fashion, resulting in good response time. The
editor has been implemented using the Synthesiser Gen-
erator, a system that creates editors from an attribute
grammar description [Reps & Teitelbaum 1983). '

‘This work was supported in part by the Natlonal Sclence Founds-
tion under grants MCS80-04218, MCS81-03008, and MCS82-02677. Bowea
Alpemn §s supported by an IBM Graduate Fellowship.

Anthors’ address: Department of Computer Science, Upson Hal,
Cornell University, Ithaca, N.Y. 14858.

Permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-125-3/84/001/0036 $00.75

36

In its current form, the editor is just a prototype,
suitable for demonstrating the principles on small exam-
ples, but not for proving sisable theorems or manipulating
large programs. (To some extent this is due to the state
of the Synthesiser Generator, which is still under develop-
ment). Nonetheless, the editor represents a promising
approach to interactive verification.

This paper discusses the use of attribute grammars
for providing feedback about errors in a proof under
development. While the attribute grammar described
forms the basis for our proof-checking editor, this paper is
not a discussion of that particular editor. Rather,; the
paper concerns the appropriateness of a particular “data
structure -- attributed derivation trees -- for representing
proofs in proof-checking editors, regardless of what user
interface is desired.

The paper is organised into 8 sections, as follows:
Section 2 presents an example of & proof being modified,
which motivates the formalisation of interactive proof
checking described in Section 3. Section 3.1, following
[Gerhart 1975], shows how generating a program’s
verification conditions can be expressed with an attribute
grammar; Section 3.2 shows how checking of predicate-
logic proofs can be expressed with an attribute grammar.
Section 4 discusses some enhancements to the basic
approach aimed at making the user's task less tedious
when proofs are created and modified. Section $ discusses
how the attribute-grammar approach differs from the
approaches used in other interactive proof-development
systems. Section 6 draws some conclusions about our
experience with the attribute-grammar spproach.

2. Interactive proof checking

The editor provides information about mistakes in a
program proof by checking the program’s statements
against a formal specification of the program’s behavior
and indicating places where the code does not implement
the specification. A program proof can be presented as a
proof ostline -- a program annotated with assertions. In
the example given below, which is meant to suggest what
one sees on the terminal screen during editing, program
text in a proof outline that is inconsistent with the proof
outline’s assertions is highlighted in the program display.
Of course, this mechanism could be replaced by, or used in
conjunction with, diagnostic messages.

Ezample. Suppose we are trying to correct the fol-
lowing proof outline so that it will compute 5 to be the
product of a and b, using repeated addition:

¢ 20

y =}

2 =0 .

while [2> Olinvariant y 2 -1 A esy+: = ¢ do
y=y-1
3mz +a
od

{z = atb}

In this piece of code, the initialisation of variables y and 3
establishes the loop-invariant on entering the loop, and
the loop-body reestablishes the invariant on each succeed-
ing iteration. However, the conjunction of the invariant
and the negation of the loop-condition fails to establish
the post-condition of the loop. This situation is signaled
(above) by highlighting the loop-condition.

To fix the problem, the first clause of the invariant
is changed to y > 0, but now the loop-body fails to rees-
tablish the invariant, which is slgnaled (below) by
highlighting the loop-body:

{6 20}

y =0

z =0

while y > Oinvariant y > 0 A sey+z = ¢4 do

L R_]
od
{z = aob}

The problem is that the conjunction of the loop-condition
and the invariant does not imply the weakest pre-
condition of the invariant with respect to the loop-body;
operationally, the loop-condition allows the loop to exe-
cute one too many times. By changing the loop-condition
to y > 0, the loop-body will reestablish the invariant, and
the invariant and the negation of the loop-condition will
still establish the post-condition, so the entire program is
displayed in the normal font:

{6 20}
y =d
z2 =0
while y > Oinvariant y 2 0 A e¢sy+z = a# do
y=yg-1
z:=z 4+ a
od
{z = asb}

This example illustrates that modifying one part of
a proof outline may introduce an inconsistency in some
other part of the proof outline and simultaneously correct
an inconsistency in yet a third part of the proof outline.
Thus, the editor must not only incorporste the notion of
an inconsistent proof, but the notion of dependencies
among parts of a proof, as well. The next section shows
how these notions may be expressed using an attribute
grammar.

3. Attribute grammars and formal logical sys-
tems

37

An sattribute grammar is » context-free grammar
extended by attaching attributes to the symbols of the
grammar. Associated with each production of the gram-
mar is a set of semantic cquations; each equation defines
one attribute as the value of a scmentic function applied
to other attributes in the production. Attributes are
divided into two disjoint classes: synthesized attributes
and ssherited attributes. Each semantic equation defines
s value for a synthesized attribute of the left-hand side
nonterminal or an inherited attribute of a right-hand side
symbol.

The axioms and inference rules of a formal logical
system can be expressed as productions and semantic
equations of an attribute grammar. Dependencies among
attributes, as defined in the semantic equations of such a
grammar, express dependencies among parts of a proof.

An attribute instance in an attributed derivation
tree is said to be comsistent if its value is equal to the
value obtained by evaluating the right-hand side of its
defining semantic equation. An attributed derivation tree
is consistently attriduted if all of its attribute instances are
consistent.

A proof is represented as a consistently attributed
derivation tree of the grammar. Proofs are modified by
operations that restructure the derivation tree, such as
pruning, grafting, and deriving. Restructuring a deriva-
tion tree directly affects the values of the attributes at the
modification point; some of the attributes may no longer
have consistent values. Thus, incremental proof checking
can be performed by (incrementally) updating attribute
values throughout the tree in response to modifications.

Fundamental to this approach is the idea of an
incremental attribute cvalustor, an algorithm to produce a
consistently attributed tree after each restructuring opera-
tion. An incremental attribute evaluator works by follow-
ing attribute-dependency relationships in the tree to rees-
tablish consistent values. Several algorithms for this are
given in [Reps 1982] and [Reps et al. 1983], including ones
that are asymptotically optimal in time.

When proofs are developed in a top-down fashion,
the editor must not only incorporate the normal rules of
logic, but the notion of an incomplete proof, as well.
Creating a proof top-down entails growing a derivation
tree. During development, it is a partial derivation tree;
that is, it contains unexpanded nonterminals. This is
potentially a problem, because at an unexpanded nonter-
minal X we have no means for giving values to the syn-
thesized attributes of X nor to any of the attributes that
depend on them; this conflicts with our desire to maintain
values for every attribute of the tree.

To avoid this problem, we provide a completing pro-
duction, X == |, for each nonterminal symbol X. The
symbol | denotes “unexpanded,” and the semantic equa-
tions of the completing production define values for the
synthesized attributes of X. By convention, an occurrence
of an unexpanded nonterminal is considered to have
derived 1. By this device, all partial derivation trees
{from the user's viewpoint) are considered complete

derivation trees (from the editor’s viewpoint), and as a
proof is developed, its tree may be fully attributed at all
stages.

To formalise the notion of inconsistent portions of a
proof, we introduce check ezpressions. A check expression
is 3 Boolean semantie function that indicates whether con-
straints of the formal system are satisfled. If an editing
operation modifies the proof in such a way that con-
straints are violated, check expressions indicating satisfac-
tion of constraints become false. These are then used to
annotate the program display to provide the user with
feedback about errors that exist in the proof. In the
example given in the previous section, the font of the
proof’s print representation depends on the values of
check expressions in the proof’s derivation tree.

As an aside, note that our use of terms like “‘seman-
tic equation” conforms with accepted attribute-grammar
terminology, although strictly speaking such terms are
misnomers. These terms are carryovers from the context
in which attribute grammars were originally used, namely,
defining the meaning of a context-free language, and they
have remained standard even though sttribute grammarse
are often used to describe the annotation of s tree with
information that has nothing to do with its meaning. For
example, correctness of formal proofs is & purely syntactic
matter (to a logician), but because it cannot be expressed
in a context-free formalism, we make use of the available
non-context-free mechanism -- the ‘“‘semantic” mechanism
of an attribute grammar.

3.1. Generating verification conditions

Generation of a program’s verification conditions
can be expressed with an attribute grammar using two
attributes: pre and post. Pre is » synthesised attribute of
Stmt and StmtList whose value is a formula in the
language of assertions; post is an inherited sttribute of
Stmt and StmtList whose value is also a formula in the
language of assertions. The relationships among these
attributes that express partial correctness of programs are
given by the rules of the grammar presented in Figure 1,
which is adapted from one given in [Gerhart 1975). (For
brevity, we have not shown the productions that can be
derived from 1d, Exp, Cond, and Assertion, nor have we
shown the completing productions of the grammar).

In the semantic equations in Figure 1, as well as
throughout the rest of the paper, we use conventionally
accepted notation to express set operations, we use “." as
the operator for selecting an attribute of a nonterminal,
and we use subscripts to distinguish among multiple
instances of the same nonterminal. We also make use of
the nonstandard notion of a syntectic reference. Insofar
as s component of the syntax tree is often iteclf »
sufficient representation of the value to be associated with
the component’s root, we allow a nonterminal’'s name
(when not qualified by an attribute selection) to denote
the syntactic component as a value. For example, in pro-
duction (1) of Figure 1,

(1) Program ::=s {Assertion} StmtList {Assertion}
StmtList.post == Avscrisong
check: loTheorem (Assertiony D StmtLiet.pre)

Asscrtion, and Asscrtiong refer to the components derived
from the rule's two Amertion nonterminals. For further
discussion of syntactic references in attribute-grammar
npecilﬂntiom, the reader is referred to [Reps & Teitelbaum
1983).

(1) Program ::es {Assertion} StmtList {Assertion}
StmtList.post e Asscrtiong
check: IsThcorem (Assertiony, D StmtList.pre)
(2) StmtList ::em Stmt
Stmt.post == StmtList.post
StmtList.pre == Stmt.pre
(8) StmtList ::m= Stmt StmtList
StmtListg.post == StmtListy.post
Stmt.post == StmtListy. pre
StmtList,.pre == Stmt.pre
(4) Stmt ::m= Id :em Exp
Stmt.pre == Stmt.postfl,
(5) Stm¢ ::e= if Cond then StmtList else StmtList fi
StmtListy.post = Stmt.post
StmtListg.post e= Stme.poet
Stmi.pre == (Cond D StmtListy.pre)
A (~Cond D StmtListg.pre)
(6) Stm¢ ::a= while Cond invariant Assertion
do StmtList od
Stmt.pre == Asscrtion
StmitList.post = Assertion
check: leTheorem ((Assertion A~Cond)D Stmt.pest)
check: JeTheorem ((Assertion ACond)D StmtList.pre)

Figure 1: Generating verification conditions.

The semantic equations of the grammar treat state-
ments a8 backward predicate sransformers [Dijkstra 1976).
In an assignment statement, for example, the relationship
between the pre and poet sttribute is that the pre attri-
bute is defined as the post attribute with the expression on
the right-hand side of the assignment substituted for all
occurrences of the left-hand side identifier. (In Figure 1
this is denoted by the expression Stmt.postfl,).

For while-loops, the post-condition of the loop-body
and the pre-condition of the parent statement are defined
in terms of the loop-invariant. This allows inconsistent
code and assertions to be detected as violations of the
check-expressions:

check: /oeTheorem ((Asscrtion A ~Cond) D Stmt.post)
check: loTheorem ((Asscrtion A Cond) D StmtList.pre)

where the function [sTheorem is a decision procedure — a
procedure that returns true if ite argument is a theorem
in the assertion-language logic.

It is at this point that we reach one of the common
stumbling blocks of verification systems -- the decidability
of an assertion language strong enough to express the

verification conditions constructed by the rules given
above. For instance, no decision procedure exists for
first-order predicate logic [Turing 1937].

In the next section, we sidestep this problem by
having the user create and manipulate the required proofs,
instead of having the system try to establish theorems
automatically. Further on, in Section 4.1, we discuss how
to incorporate decision procedures for subtheories of predi-
cate logic, 8o that the user need not prove theorems that
automatic techniques are capable of establishing.

By having the user create and manipulate proofs of
verification conditions, we make the user responsible for
proving theorems that an automatic theorem prover might
be incapable of proving. Grammar rules in Figure 1 that
have a check expression involving IsTheorem are changed
to include a “Proof” nonterminal for each (predicate-
calculus) proof obligation of the production. Thus, the
new rule for while loops has two Proof nonterminals, one
at which the user must create a proof of

(Assertion A ~Cond) D Stmt.post
and a second at which the user must create » proof of
(Assertion A Cond) D SimtList.pre.

3.2. Checking proofs of verification conditions

Because the editor is a tree-manipulating eystem, we
need a formalisation of the assertion-language logic that
allows proofs of verification conditions to be conveniently
represented as tree-structured objects. If the assertion
language is a predicate logic, a suitable formalisation is
Gentsen's scquent calculus [Gentsen 1035, Kieene 1052).

A scquent consiste of two sets of formulae,
separated by an arrow, such as:

{AbA&--°:A-}"{BbBD-":Bl} (l)

The set {A, Ag ..., A}, on the left, is called the
antecedent; the set {By, By, ..., B,}, on the right, is
called the succedent. A sequent is & theorem in the
sequent calculus if it can be derived from the system’s
axioms and rules of inference.

It can be shown that a sequent is s theorem in the
sequent calculus if and only if, in one of the more familiar
forms of the predicate calculus, s formula in the succedent
can be demonstrated taking the formulse in the
antecedent as assumptions |[Gentsen 1085]. Informally
then, one can think of the formulae of the antecedent as
known facts and the formulse of the succedent as goals,
one of which is to be demonstrated; thus, the informal
meaning of the sequent (1) is no different from asserting
the formula:

ALAAgA - - AAga D B\ VBgV -+ VB,

The inference rules of sequent calculus allow us to
infer new sequents from old sequents. For each logical
operator there are two inference rules: sn enalgeie rule and
a synthesio rule. The analysis rule for a (logical) operator
@ expresses how a formuls of the form A@B may be

39

introduced into an antecedent; the synthesis rule for @
expresses how A @B may be introduced into a succedent.

For example, using the meta-varisbles 4 and B to
represent single formulae and the meta-variables I and A
to represent finite sets of formulae, the rules for the impli-
cation operator D are expressed asx

Implication T' = A (J {4}
analysis

ry{g-a
TU{A>B—~4

(2s)

Implication T'(j (A} = A | (B}
synthesis “ A U {A;B}

The implication snalysis rule given as (2a) says (roughly)
that if we want to assume A D B, we must demonstrate
A, and we must demonstrate our goal assuming B. The
implication synthesis rule given as (2b) says (again
roughly) that if we want to demonstrate A D B, we must
show that by assuming A we can demonstrate B.

An attribute grammar ean be used to express the
rules of sequent calculus as follows. A sequent is
represented by a Proof nonterminal that has two inherited
sttributes: an sntecedent attribute and an swccedent sttri-
bute. Each production of the grammar represents a rule
of inference or an axiom scheme (see below). The right-
hand sides of productions corresponding to inference rules
contain additional Proof nonterminals whose entecedent
and osuccedent attributes sre defined in terms of the
entecedent and ssccedent attributes of the parent Proof
nonterminal. The check expressions of the sequent
calculus grammar express the constraint that s production
derived from a Proof nonterminsl represents an appropri-
ate deductive step.

For example, the productions corresponding to the
implication inference rules are shown in Figure 2.} In each
production in Figure 3, thero are two “WH” nonterminaly
on the right-hand side that determine how an inference
rule is instantiated. The subtrees derived from these Wil's
determine the components of the formula being analysed
(or synthesised, as the cass may be), as well as the
antecedents and succedents of the right-hand eide Proof
nonterminals. The check expresions ensure that the Wi
being analysed (synthesised) really is in the left-hand side
Proof nonterminal's entecedent (succedent) sttribute.

(2v)

1 Productions for the rest of the rules of fist-order predicste bogle
may be found In sa sppendix at the ead of the paper.

/¢ Implication analysis s/
Proof ::=: show WA Proof
assume WH Proof
check: (WD W) € Proof ;.entecedent
Proof g.antecedent
== Proof y.antecedent - { WD W)
Proof y.euccedent == Proof y.euccedent |) { Wi}
Proof 3.antecedent
= Proof y.entecedent - {WHO WL} | {WIk)

Proof 3.euccedent == Proof s.0uccedent

/¢ Implication synthesis ¢/

Proof ::= assume Wfl show Wil Proof
check: (WD W) € Proof y.evccedent
Proof g.antecedent == Proof \.entecedent |) { W}
Proof 3.succedent

= Proof y.euccedest - (WD WL} | (W1}

Figure 2: Grammar rules corresponding to
the implication inference rules.

The axioms of the sequent calculus are expressed in
three schemes:

TU =AU A (3a)
T {false} - A (3b)
(3¢)

I — A {true}

The scheme given as (33) says that if formula A is given,
then A is demonstrated; (3b) says that if you start with
false, then anything can be demonstrated; (3¢c) eays that
everything demonstrates true. These three axiom
schemes can be combined into a single production whose
check expression gives the condition under which applica-
tion of an axiom completes a branch of the proof:

Proof ::== immediate
check: false ¢ Proof.antecedent
V true € Proof.succedent
V (Proof .entecedent (M) Proof.euccedent o ¢)

Finally, we need to define the atomic predicates of
our logic; for instance, we need predicates for equality and
less than:

Exp = Exp
Exp < Exp

Wil's are built out of predicates using logical connectives.
The expressions (Exp) in the predicates can be any expres-
sion of the programming language; whatever is legal on
the right-hand side of an assignment is a legal Exp.

40

To fully incorporate these predicates into our logical
system we include their axiomatic definition. For exam-
ple, the axioms for equality can be expressed ss:

T—ay (=) (4s)
T =AU (7=K) > (K=0}} (40)
(40)

T = & {(7=K) A (K=L) D (J=L))

where the meta-variables J, K, and L represent single
expressions.

Each axiom adds an additional production to the
grammar. For instance, the production corresponding to
axiom (4s) is:

Proof ::=s by reflexivity
check: there esiste 2¢ Proof.enccedent
ouch that 2 30 of the form Jum]

4. Enhancements to the basic approach to proof
checking

Using the proof editor described in the previous sec-
tion can be maddeningly tedious; the editor is a proof
checker, not a theorem prover, and proofs must be com-
plete formal proofs. This section discusses two ways of
making the user's task less tedious when proofs are
created and modified. First, we discuss how the editor can
be extended to include some automatic deductive capabili-
ties so that the user does not have to supply so much
detail. Second, we show how pattern matching can be
used within proof trees to facilitate editing.

4.1. Automatic deductive capabilities

In Section 3.2, we sidesteped the undecidability of
predicate logic by having the user write proofs, instead of
having the editor try to establish theorems sutomatically.
In practice, this spproach is untenable because it forces
the user to provide absolutely every detail of & proof.
Given an unexpanded Proof node that is a leaf of the tree,
we can often check that it sequent can be proven using a
decision procedure for a subtheory of predicate logic.
Another posibility is to apply s proof tectic |Gordon et
al. 1979}, that does its best to construct a proof tree, but
may leave some Proof nodes unexpanded for the user to
ill in later.

4.1.1. Decision procedures

The editor can be extended with decision procedures
by making uss of known algorithms for deciding simple
theories. For example, an algorithm for deciding the
theory of equality with uninterpreted function symbols
[Johnson 1981, Nelson 1081] can be used as the basis of
procedure for propositional inference. Our proof editor
uses the propositionalk-inference procedure from the
PL/CV2 proof-checking compiler [Constable et al. 1882); it

is incorporated into the editor through the grammar rule:

Proof ::== automatic
check: /oAutometic (Proof.entecedent ,Proof.euccedent)

where IsAutomatic returns true if the PL/CV2
propositional-inference procedure can establish the second
argument from the first argument.

The PL/CV2 automatic-inference procedure has cer-
tain limitations because it is a decision procedure for only
a subtheory of propositional logic (a subtheory selected so
that problems of inherent computational complexity do
not have to be solved). Thus, the grammar production
given above will not be applicable when the theorem to be
established requires the use of a primitive inference rule
that the automatic procedure never attempts to apply.

Ezample. Proving the sequent

{e b, & ~ {sA(bA(cD d))} ®)

requires the use of the implication synthesis rule to estab-
lish the formula ¢ Dd, as in the starred branch of the fol-
lowing proof tree:

6,b,c,d}—
ic,b,f b} {"QL‘,}"{CD‘}
s, b, d} — {bA(cDd)}
{e 5, 4} = {eA(BA(cD d))}
Thus, a decision procedure that never applies implication
synthesis cannot establish (5).

(%

=

{65,4—{e}

However, there is still a way to help cut down on
tedious manipulations when automatic inference pro-
cedures are not applicable. Our editor incorporates a
mechanism whereby the user can isolate the offending
term and apply the appropriate inference rule explicitly.
This mechanism is based on an additional rule of inference
termed the cwt rule, expressed as:

r—-{4a ry{4-a ©
r—-a

The cut rule (8) says that if we want to prove some goal,

we can demonstrate some formula A and then use A as an

assumption in the proof of the goal. The cut rule allows a

user to isolate. a formula easily, because automatic infer-
ences can be used to skip over the easy intermediate steps.

Cut rule:

Ezemple. Returning to the example above, if we
choose ¢ D d as the cut formula A, the proof branches into
two subproofs whose sequents are:

{65 & = (28 @)

and
{8, 8, 4, cDd} = {aA(BA(cDd))} (8)

We are then able to apply implication synthesis directly to
(7), and the automatic inference rule can be used to estab-
lish (8) because a proof can be found that makes no use of
implication synthesis:

41

{‘:61‘10311"{6} {6,0,deDd}—~{cDd}

{6,8,4cDd}—~{e} {6, 5, 4 cDd) — {bA(cD)}

{6 b, & ¢cDd} — {eA(BA(cDd))}

4.1.2. Proof tactics

A proof tactic is a method for applying inference
rules repeatedly and recursively until none is applicable
[Gordon et al. 1979]. In proof editors, a proof tactic may
be employed to automatically construct a proof fragment,
doing its best to construct a proof tree, but possibly leav-
ing some unexpanded Proof nodes for the user to fill in
later [Bates & Constable 1983].

- Ezemple. Given an unexpanded Proof nonterminal
with the sequent given above as equation (5), a proof tac-
tic could apply the and synthesis rule twice to produce the
attributed derivation tree that corresponds to the infer-
ence:

TEg=TL (sb.49—(:24
(s} {e b, d} = {bA(cDd)}
{s b &} — {eA(BA(cD d))}

leaving an unexpanded Proof nonterminal with sequent:
{8,d &) = {cDd}

In the attribute-grammar framework, a proof tactic
would require using inherited attributes to drive the tree
construction process. As currently implemented, proof
tactics cannot be incorporated into our editor, because
attribute-driven tree construction is forbidden in the Syn-
thesizer Generator; the Synthesiser Generator only aliows
attribution of a previously constructed abstract-syntax
tree.

{‘!b’ d}"‘

Attribute-driven tree construction has been explored
for resolving ambiguities in attribute-grammar-based
parsers [Watt 1077, Rowland 1977, Milton et al. 1979]. A
somewhat different notion of ‘‘computing with attribuated
trees” is currently being studied for inclusion in the Syn-
thesiser Generator [Reps & Teitelbaum 1983]; this
mechanism appears to be powerful enough to express proof
tactics.

4.2. A proof representation that uses pattern
matching

The attribute grammar described in Section 3.2 for
representing sequent-calculus proofs as attributed trees has
» significant drawback: the representation often makes it
tedious to modify previously developed proofs. This sec-
tion describes a modification of the grammar that avoids
this problem.

The grammar of Section 3.2 specifies that one or
two WiP’s be derived at each Proof node in order to (1)
indicate which formula of the Proof's sequent is being
analysed or synthesised, and (2) determine the
antecedents and succedents associated with the node’s
subordinate Proof nonterminals. Consider what happens

when we modify a proof, say by changing a variable name
in an assumption from x to y. The proof now has errors
at each Proof node where a3 Wl contains a use of x,
because the WH refers to a formula not in the Proof node's
sequent. To reestablish a correct proof, it is necessary to
(manually) change each of the Wil’s that refer to x. The
problem with the grammar of Section 3.2 is that the Wil
nonterminals bind too much information into the proof
representation by specifying too precisely how the infer-
ence rules are instantiated.

An alternative approach makes wuee of
“WflPattern’s’’ and pattern matching. A WilPattern is a
partial Wi —- a3 WA possibly containing unexpanded non-
terminals -- and s WflPattern matches s WAT if the latter
can be derived from the former. Instead of having Wil's
at each Proof nonterminal, the grammar is changed to
have WilPattern'’s, which are then used to determine the
antecedents and succedents associsted with the node’s
subordinate Proof nonterminals.

For example, Figure 3 gives the modified rule for
implication analysis. In contrast to the rule with two WH
nonterminals given previously in Figure 2, the new rule
has two WflPattern’s. These WilPattern’s give the com-
ponents of a pattern for the formula being analysed, which
is selected out of the left-hand side Proof nonterminal's
antecedent by a pattern-matching lookup. When there is
more that one formula in the antecedent that matches the
pattern, the user may have to specify a more detailed pat-
tern. (Note that premise and comclusion, the components
of the matched formula, appear in the context-free part of
the rule; this is to suggest that the user would be given an
indication in the display as to which formula in the
antecedent the pattern matched).

[+ Implication analysis s/
Proof ::= analyse by (WfiPatternD WfiPattern)
show premise Proof
assume conclusion Proof
let wff = FindMatch ((WfPattern,D WifPattern),
: Proof y.antecedent)
where premise and conclusion
are the components of wff
Proof g.antecedent == Proof y.entecedent — {wff}
Proof g.auccedent = Proof j.euccedent |) {premioe}
Proof s.antecedent
= Proof y.antecedent — {wff} | J {conclusion}
Proof 3.succedent = Proof .succedent

Figure 8: Implication analysis rule
that uses pattern matching.

The proof grammar that uses pattern matching in
the semantic equations is a significant improvement over
the old grammar. At most nodes of a proof tree, it is not
necessary for the WflPattern’s to contain variable names;
in most cases, a structural pattern alone is sufficient to

42

indicate which formula of the Proof’s sequent is being
analysed or synthesised. Now if we change a variable
nsme from x to y, the proof will still check as before,
because all (structural) WiPattern’s will still match a for-
mula in the appropriate sequent, and the proper
antecedent and succedent will be associated with each
Proof nonterminal of the tree.

5. Comparison with alternative approaches

The attribute grammar discussed above formalises
an spproach to interactive proof development that is
different from what is done in other interactive verification
systems. This section discusses some of the differences
between our spprosch and the approaches used in other
systems.

The Designer/Verifier's Assistant [Moriconi 1979]
uses one alternative approach. There, the user interacts
with the Assistant, which in turn decides what needs to be
reverified based on an analysis of the dependencies among
the procedures of a program. An important difference in
the way proofs are treated by the Assistant and the way
they are treated by our editor is the granularity and
incrementality of proof checking in the two systems. In
many respects, the Assistant is similar to compilation-
control systems, such as Make [Feldman 1979}; the Assis-
tant decides what to reverify on s per-procedure basis,
and when a procedure is reverified it is reverified in its
entirety. By contrast, our editor decides what to reverify
on s per-inference-rule basis, and by virtue of the optimal
behavior of the algorithm used for incremental attribute
updating, reanalysis is confined to the attributes that
actually need new values.

In the Edinburgh LCF system [Gordon et al. 1979),
there is a notion of objects of type thm, but the objects of
type thm are not proofs as such. Thm is an abstract dats
type whose constructor functions obey the invariant “all
thm objects are provable,” that is, derivable from the
axioms by applications of inference rules. An attempt to
use a constructor to make an inappropriate deductive step
ends in failure. By contrast, our editor supports the
development of actual proofs, which can be manipulated
and restructured directly, and the editor incorporates the
notion of a proof with errors and inconsistencies in it.

The approach taken in AVID is much closer to the
approach taken in our editor. AVID is an editor for the
top-down development of PL/CV2 proofs that incor-
porates a proof checker to provide information about a
proof’s errors and inconsistencies [Krafft 1981, Constable
et al. 1982]. An important difference between our editor
and AVID is that AVID is without a notion of logical
dependencies analogous to the attribute dependencies in
our editor’s attribute grammar. Lacking the information
needed to re-use previous verification information as a
proof is checked, AVID carries out verification only when
there is an explicit request by the user, and it always
reverifies a proof in its entirety.

The closest relstive of our editor is the proof-
checking editor that is part of the PRL system [Bates &
Constable 1983). PRL provides machine aid in the crea

tion of definitions, functions, and proofs based on a
sequent calculus for constructive first-order predicate logic
over integers and lists. One difference between our proof
editor and the one used in PRL is the way the two editors
handle inconsistencies in » proof. The PRL editor forbids
inconsistencies by requiring each interior node of the proof
tree to be an appropriate deductive step. One is able to
go back and modify an interior node of the proof, but if
this would introduce an inconsistency into a subproof, the
subproof is deleted. By contrast, proofs constructed with
out editor are allowed to have inconsistencies in them as
they are developed; our editor uses knowledge about
dependencies among parts of a proof (encoded in attribute
dependencies) to keep track of such inconsistencies.

Our proof editor and the PRL editor also differ in
the way they implement proof checking. The PRL
approach may be characterised as the semantic-action
approach; during editing, each operation that affects a
node of type X invokes an action associated with the
category X. An action is sn imperative routine that can
walk the program tree making updates to nodes of the
tree as well as to global data structures.

Our approach to proof checking relies on two
attractive properties of attribute grammars:

{1) Attribute grammars are declarative statements of
relations that must hold among the parts of a proof;
propagation of context-dependent information
through the syntax tree need not be described expli-

citly, as it is implicit in the formalism.

(2) Attribute grammars allow automatic reestablish-
ment of consistent attribute values when a proof is
modified, without the need for explicit undoing or
rollback actions; furthermore, such updating can be

performed in an asymptotically optimal manner.

For further discussion of the relative merits of the
semantic-action and the attribute-grammar approaches,
the reader is referred to [Reps et al. 1983).

6. Summary and conclusions

Our concern is the design of editors that allow one
to create and modify program proofs in Hoare-style logic.
We have constructed an editor that treats a proof as an
object with constraints on it; the editor keeps track of
inconsistencies in a proof by reexamining the proof’s con-
straints after each modification to it. The logical system
is encoded in the editor as an attribute grammar.

We feel that the sattribute-grammar approach to
interactive proof checking is a promising one on a number
of counts. Attribute grammars permit the specification of
the constraints of a formal logical system, as described in
Section 3. Attribute grammars are a good framework for
incorporating previously developed solutions to verification
problems, such as fast decision procedure for subtheories
of predicate logic, as described in Section 4.1. Further-
more, there exist optimal algorithms for incremental attri-
bute updating, which means proof checking can be done in
an incremental and optimal fashion. Finally, there exist
compiler-compilers and editor generators that produce

43

major software components from an sttribute grammar
description of a language; this makes it particularly easy
to implement systems based on the ideas discussed in this
paper.

Acknowledgements

We were stimulated to write this discussion of our
work on interactive proof checking after receiving
encouragement from s number of people who had seen the
prototype proof-checking editor; discussions with Rod Bur-
stall, Bob Constable, Alan Demers, Edsger Dijkstra,
Gerard Huet, Gilles Kahn, Dave McQueen, and Tim
Teitelbaum were particularly interesting. We would also
like to thank our colleagues who read the paper and com-
mented on it; the suggestions of Bob Constable, Bob
Harper, Susan Horwits, Mark Krentel, Fred Schneider,
and Tim Teitelbaum have been extremely helpful.

References

[Bates & Constable 1983)
Bates,). snd Constable, R. Prools as programs.
Tech. Rep. 82-530, Dept. of Computer Science, Cor-
pell Univ., Ithaca, N.Y., Feb. 1983.

[Bricklin & Frankston 1979}
Bricklin, D. and Franketon, B. VieiCalc Computer
Software Progrem for the Apple Il and I Pius. Per-
sonal Software, Inc., Sunnyvale, Calif., 1979.

[Constable et al. 1982)
Constable, R., Johnson, S., and Eichenlaub, C.
Lecture Notes in Computer Science, vol. 135; Intro-
duction te the PL/CVE Progremming Logic.
Springer-Verlag, New York, 1982.

[Dijkstra 1976)
Dijkstra, EW. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, N.J., 1076.

[Feldman 1979}
Feldman, S.I. Make -- A program for maintaining
computer programs. Softwere -- Prectice and
Ezperience 9, 4 (April 1979), 255-285.

[Gentsen 1935)
Gentsen, G. Investigations into logical deductions.
In The Collected Papers of Gerhard Gentzen, MLE.
Ssabo (ed.), North-Holland, Amsterdam, 1969, pp.
68-131.

[Gerhart 1975)
Gerhart, SL. Correctness-preserving program
transformations. In Conference Record of the 2nd
ACM Symposium on Principles of Programming
Languages, Palo Alto, Calif., Jan. 20-22, 1975, pp.
54-66.

[Gordon et al. 1979) ’
Gordon, M., Milner, R., and Wadsworth, C. Le¢-
ture Notes in Computer Science, vol. 78: Edinburgh
LCF. Springer-Verlag, New York, 1979,

{Hoare 1969]
Hoare, C.A.R. An asxiomatic basis for computer

programming. Commun. ACM 18, 10 (Oct. 1989),
$76-580, 583.

[Johnson 1981]
Johnson, S. A computer system for checking proofs.
Tech. Rep. 80-444 and Ph.D. dissertation, Dept. of
Computer Science, Cornell Univ., Ithaca, N.Y,, Jan.
1981.

[Kleene 1952
Kleene, S.C. Introduction to Metemathematice.
North-Holland, Amsterdam, 1952.

[Knuth 1968]
Knuth, D.E. Semantics of context-free languages.
Math. Syet. Theory £, 2 (June 1968), 127-145.

[Krafft 1981]
Krafit, D. AVID: A system for the interactive
development of verifiably correct programs. Tech.
Rep. 81-467 and Ph.D. dissertation, Dept. of Com-
puter Science, Cornell Univ., Ithaca, N.Y., Aug.
1081.

[Milton et al. 1979]
Milton, D.R., Kirchhof, L.W., and Rowland, B.R.
An ALL(1) compiler generator. In Proceedings of
the SIGPLAN Symposium on Compiler Construe-
tion, Denver, Colo., Aug. 6-10, 1970, SIGPLAN
Notices 14, 8 (Aug. 1979), 152-157.

[Moriconi 1979]
Moriconi, M. A designer/verifier's assistant. /EEE
Trens. Softw. Eng. SE-5, 4 (July 1979), 387-401.

[Nelson 1981)
Nelson, G. Techniques for program verification.
Tech. Rep. CSL-81-10, Xerox Palo Alto Research
Center, Palo Alto, Calif., June 1981.

[Reps 1982)
Reps, T. Generatmg language-based environments.
Tech. Rep. 82-514 and Ph.D. dissertation, Dept. of
Computer Science, Cornell Univ., Ithaca, N.Y., Aug.
1982. To be published by M.LLT. Press, Cambridge,
Mass., Feb, 1084.

[Reps & Teitelbaum 1983]
Reps, T., and Teitelbaum, T. The Synthesiser Gen-
erator. Dept. of Computer Science, Cornell Univ.,
Ithaca, N.Y,, Oct. 1983.

[Reps et al. 1983]
Reps, T., Teitelbaum, T., and Demers, A. Incre-
mental context-dependent analysis for language-
based editors. ACM Trans. Program. Leng. Syet. 5,
S (July 1983), 440-477.

[Rowland 1977]

’ Rowland, B.R. Combining parsing and evaluation
for attributed grammars. Tech. Rep. 308 and Ph.D.
dissertation, Dept. of Computer Science, Univ. of
Wisconsin, Madison, Wisc., Nov. 1977,

[Turing 1937]
Turing, AM. On computable numbers with an

application to the Entscheidungsproblem. Proc.
London Math. Soc., ser. £, 42 (1936-7), 230-285.

44

[Watt 1077)
Watt, D.A. The parsing problem for affix gram-
mars. Acts Informetice 8 (1077), 1-20

Appendix: Grammar rules for first-order predicate
logic

/¢ Axiom schemes:

rg{a-apy

TU (false} = A

o/
T~ A {true}
Proof ::=s immediate
check: false ¢ Proof.antecedent
V true ¢ Proof .onccedent
V (Proof .antecedent (M) Proof .ouccedent 9k ¢)

I‘-OAU{A) PU{B}-A
ry{as B} - A
Proof ::=s show Wf Proof assume WA Proof
check: (WD W) ¢ Preof . antecedent
Proof o antecedent
ws Proof i.entecedent - (WD W)
Proof g.0uccedent w Proof y.ouccedent |) {Wh)
Proof o antecedent
= Proof y.ontecedent ~ (WD Wi} U (W)
Proof o.0uccedent an Proof s.ouccedent

/¢ Implication synthesis: —u {:}J {i lDJ ‘{:}
Proof ::== assume Wl show W Proof
check: (WD W) ¢ Proof y.0uccedent
Proof g.antecedent == Proof y.antecedent | J {Wh}
Proof g succedent

ws Proef y.onccedent - (WHD WL} (J (W)

ry {A,B)—-A
l‘U {AAB)—A
Proof ::ws assume Wff and WE Proof

check: (WHAWS) ¢ Proof y.entecedent
Proof o.antecedent

== Proof ,.entecedent - {WRAWS)} | (Whh, WhL)

Proof g.ouccedent == Proof y.ouccedent

/¢ Implication snalysis: o/

o/

/¢ And analysis. o/

P-*AU{A} PﬂAU(B} o/
r—-agy {A A B}
Proof ::== show Wi Proof show WH Proof

check: (WA WS) ¢ Proof youccedent
Proof o.anteccdent == Proof yantecedent

Proof g.ouccedent
{(WOAWS) | (Wh)

== Proof y.euccedent -
Proof s.antecedent = Proof)-entecedent

Proof g.9uccedent
{(WHAWS) U (WhR)

== Proof y.ouccedent -
. ,.I‘U{A)—oA I‘U{B}~A.
/¢ Or analysis: —— TV B}-TA

Proof ::== sssume Wi Proof sssume W Proof
check: (WY WIT) € Proof y.entecedent
Proof g.entecedent
== Proof y.antecedent - {WHV W} {Wh}

Proof g.#uccedent w= Proof souccedent

Proof s.entecedent
w= Proof y.antecedent - {WOHVWI} (Wi}

Proof g.#uccedent == Proof ouccedent

/* And synthesis:

/

r-ayfa p
T—Aa|{AVB)

Proof ::== show Wil or WH Proof
check: (WL WI) € Proof r.euccedent
Proof g.entecedent == Proof 1. entecedent
Proof g.euccedent
ws Proof j.euccedent -

o/

[+ Or synthesis:

r~AUu}.
ry{-a}-a /

Proof ::=e show W Proof
check: (= Wf) ¢ Proof ,.entecedent

/¢ Not analysis:

Proof g entecedent w= Proof y.entecedent - {~wm
Proof g.euccedent == Proof y.euccedesnt | {Wh
_Ty{AI=a
,. Not lyntbesus. m ‘l

Proof ;:= assume Wff Proof
check: (~Wf) € Proof y.euccedent
Proof g.entecedent == Proof y.entecedent {Wh
Proof g.euccedent == Proof y.euccedent - W5

(WEVWEYU (WD, WH)

45

ryfam)y {vs.A(s)} ~ A
TY(vsA(s)} —~ A

where ¢ io @ term Jree for s in Afs) ¢/

/* All analysis:

Proof ::= assume Wi substituting Exp for 1d Proof
check: (VId.Wf) ¢ Proof ;.antecedent
Proof o entecedent ws Proof .entecedest | J { woks,)
Preef g euccedent == Proof yeuccedent

r = AU (A0}
T=AaQ (V2A(s))

where b is varisble mot occurring free in Afs) ¢/

/* All synthesis:

Proof ::e= show WH substituting 1d for 1d Proof
check: (VIdg WJ) ¢ Proof j.0uccedent
check: NetFree(ldy, Wl
Proof g antecedent == Proof j.entecedent
Proof g ouccedent

ws Proof . ouceedent - (Ve WO} | (Wl:“ 3

ry(AGh =8
TU(BsAGN -4

where b is o varisble not occurring free in Afs) o/

/¢ Exist analysis:

Proof ::== assume W substituting 1d for Id Proof
check: (31dg. W) ¢ Proof ,.antecedent
check: NotFree(ld,, W)
Proof 5. entecedent ‘
= Proof y.entecedent - (3l WO} | {WJL"}

Proof g.ouccedent o= Proof y.ouccedent

- . r-ay{Am)
/e Exist synthesis: A UTiM mn

where ¢ io & term free for s in Afs) o]

Proof ::== show W substituting Exp for Id Proof
check: (/& WP ¢ Proof y.ouccedent
Proof g.antecedent == Proef y.entecedent

Preof g.ouccedent
W Y (Wot,)

ws Proef . 0uccedent -

